An applied mathematics perspective on stochastic modelling for climate

Majda, Andrew J.; Franzke, Christian; Khouider, Boualem. 2008 An applied mathematics perspective on stochastic modelling for climate. Philosophical Transactions of the Royal Society of London, A, 366 (1875). 2429-2455.

Full text not available from this repository. (Request a copy)


Systematic strategies from applied mathematics for stochastic modelling in climate are reviewed here. One of the topics discussed is the stochastic modelling of mid-latitude low-frequency variability through a few teleconnection patterns, including the central role and physical mechanisms responsible for multiplicative noise. A new low-dimensional stochastic model is developed here, which mimics key features of atmospheric general circulation models, to test the fidelity of stochastic mode reduction procedures. The second topic discussed here is the systematic design of stochastic lattice models to capture irregular and highly intermittent features that are not resolved by a deterministic parametrization. A recent applied mathematics design principle for stochastic column modelling with intermittency is illustrated in an idealized setting for deep tropical convection; the practical effect of this stochastic model in both slowing down convectively coupled waves and increasing their fluctuations is presented here.

Item Type: Publication - Article
Digital Object Identifier (DOI):
Programmes: BAS Programmes > Global Science in the Antarctic Context (2005-2009) > Natural Complexity Programme
ISSN: 1364-503X
Additional Keywords: low-frequency variability, tropical convection, multiplicative noise, intermittency
NORA Subject Terms: Meteorology and Climatology
Date made live: 09 Jan 2009 11:41 +0 (UTC)

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...