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1. Carnivory in plants is thought to enhance growth through an increased supply 2 

of nutrients, although there are considerable costs involved. It has been 

assumed that the relative investment of biomass in traps is inversely 

proportional to the availability of nutrients from non-carnivorous sources. Our 

aim was to test the effect of increasing nutrient concentration on investment in 

carnivory by Utricularia vulgaris. 

2. Plants were grown under controlled conditions and nitrogen and phosphorus 8 

added at three loadings in a crossed design. Investment in carnivory was 

assessed as the proportion of i) leaf biomass and ii) leaf area comprising traps.   

3. There was no effect of nutrient additions on plant growth or periphyton 

abundance. Investment in carnivory declined with increasing phosphorus 

loading. There was no effect of nitrogen, despite this being the nutrient 

commonly thought to be sought by carnivorous plants. Analysis of previously 

published data also indicated a decline in investment with increasing P 

availability.  

4. Investment in carnivory in U. vulgaris is inversely proportional to the 

availability of phosphorus from non-carnivorous sources. 

 

Key words:  Bladderwort, carnivorous plant, investment, macrophyte, nutrients, prey, 

traps, Utricularia vulgaris. 
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Carnivory in plants is a bizarre phenomenon, a complete reversal of the usual 

feeding relationship between plants and animals, and one that has fascinated scientists 

and natural historians for a very long time (Darwin, 1875). The unusual nature of 

these plants even lead to confusion over their classification, with carnivorous plants 

being put into a taxon separate from both plants and animals (Juniper, Robins & Joel 

1989). However, it is now generally assumed that carnivory has evolved to enhance 

the supply of mineral nutrients in habitats where growth is severely restricted by their 

supply (Heslop-Harrison, 1978).  

Typically it is assumed that N is the most important nutrient derived from 

carnivory (Ellison & Gotelli, 2001; Guisande et al., 2004). In the bladderwort 

Utricularia vulgaris L., 51.8% of the total nitrogen content has been estimated to 

come from insect-derived nitrogen (Friday & Quarmby, 1994). Such a substantial 

contribution of nitrogen from animal prey is not atypical of carnivorous plants, with 

estimates ranging from 10 to 87% dependent on taxa (Ellison & Gotelli, 2001). 

Nevertheless, other nutrients could be gained through carnivory. Carnivorous 

plants release a variety of enzymes to digest prey, including esterase, protease, 

ribonuclease and acid phosphatase (Heslop-Harrison, 1978) and they take up other 

minerals from prey (Lollar, Coleman & Boyd, 1971). 

A cost-benefit model of carnivory has been described where any gains, in 

terms of increased availability of nutrients, are offset by its costs, direct and indirect 

(Givnish et al., 1984). Direct costs comprise those involved in the production and 

maintenance of the organs necessary for the attraction, capture and digestion of prey 

(Friday, 1992; Adamec, 1997; Mendez & Karlsson, 1999). Production costs will 

depend upon the size and complexity of the traps. Maintenance costs are likely to be 
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particularly high in those species that capture their prey by means of active traps [e.g. 

venus fly-trap (Dionaea muscipula Soland. ex Ellis), bladderworts (Utricularia spp.)], 

compared to species with passive traps [e.g. bromeliads (Bromeliaceae), pitcher plants 

(Sarraceniaceae)]. In U. vulgaris, for example, the traps take up to 40 minutes to reset 

once the prey is captured (Friday, 1991). Indirect costs of carnivory are a consequence 

of a reduced photosynthetic efficiency of traps compared to conventional foliage 

(Friday, 1992). 

Thus, there is a trade-off between photosynthetic costs and benefits. The 

Givnish et al. cost-benefit model (1984) predicts that the net photosynthetic benefit of 

carnivory, and thus investment in it at the species or community level, should decline 

with increased availability of nutrients in the surrounding medium.  

The common or greater bladderwort Utricularia vulgaris is a free-floating, 

submerged, aquatic plant that grows in low nutrient standing freshwaters. The plant 

gets its name from the traps, called bladders or utricles, on the finely dissected leaves. 

The number of traps on each leaf can be very high, but is variable, with leaf size, trap 

size and the density of traps all being plastic characters (Friday, 1992). Each bladder 

is capped by a small “trapdoor”, which is closed when the trap is primed and the ions 

pumped actively from within the bladder, causing water to leave, such that the walls 

of the bladder are flattened and under pressure (Sydenham & Findlay, 1975). The trap 

is activated when an animal disturbs the trigger bristles around the mouth of the trap, 

the trapdoor opens and the animal is sucked into the bladder as the walls revert to 

their rounded shape. Enzymes, glucosidases, aminidases and phosphatases are 

released from glands in the bladder wall and digest the prey (Sirová, Adamec & Vrba, 

2003). 
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Utricularia vulgaris plants are rootless and, other than the traps, have no 

specialised organs for the uptake of nutrients from the surrounding water. In this 

species, therefore, there are two routes by which nutrients can be taken up:  
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a) by the capture and breakdown of prey in traps, and 4 

b) by the absorption of dissolved nutrients from the aquatic medium over the entire 5 

shoot surface (Friday, 1992). 6 

As the production of traps by the plant is plastic, and there is no cost involved in 

the production of roots to obtain nutrients from the medium, U. vulgaris should be an 

ideal species to test the impact of increasing nutrients on investment in carnivory. 

However, previous attempts to use Utricularia species to assess the investment in 

carnivory have been unsuccessful due to the use of poor measures of relative 

investment (e.g. Knight, 1992, see Friday, 1991), or poorly controlled experiments 

(Knight & Frost, 1991). Nevertheless, it has been suggested that the investment in 

traps varies in response to season (Friday, 1992), prey density (Guisande et al., 2000), 

periphyton density and nutrient availability (Knight & Frost, 1991). There are further 

complications in that the growth of the plants, and leaf size in particular, also appears 

to be affected by several of these factors (Kosiba, 1992a; Kosiba, 1992b), highlighting 

the importance of using relative measures of investment in carnivory rather than total 

investment per leaf (e.g. Knight, 1992; Guisande et al., 2004). 

Our aim was to quantify the effects of increasing nutrient availability on the 

investment in carnivory of U. vulgaris under controlled conditions using appropriate 

measures of relative investment in trap production. We tested the hypothesis that the 

relative investment of biomass in traps is negatively influenced by the availability of 

limiting nutrients available from non-carnivorous sources. We did not attempt to 

investigate the influence of prey availability or nutritional quality on relative 
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Site Description 

Utricularia vulgaris plants were collected from Wicken Fen National Nature 

Reserve, Cambridgeshire, UK (52 18’ N 0 17’ E), and transported to the laboratory in 

water. Wicken Fen is a calcareous lowland fen exceptionally rich in vascular plants 

with over 400 species present. Additional water was also collected for use as a growth 

medium and for the estimation of nitrogen and phosphorus concentrations using a 

Skalar San++ autoanalyser (Breda, The Netherlands). 
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Experimental Design 

On return to the laboratory, plants were cut to a standard length of 10 cm from 

the growing point (comprising approximately 25 expanded nodes). Only unbranched 

shoots were used; any shoots with developed side branches less than 10 cm from the 

growing point were discarded. Each plant was then placed in a plastic bucket (20 cm 

diameter) containing 1L of unfiltered Wicken Fen water. The water was well mixed 

prior to use, in order to keep prey density similar between the all replicates. 

The plants were incubated for 5 weeks (4th May to 8th June, 2004) under 

controlled temperature (12 ±1° C) and light conditions (130 µmol m-2 s-1 PAR at plant 

surface) on a 16 hour light: 8 hour dark cycle. Additions of nitrogen, as ammonium 

nitrate (NH4NO3), and phosphorus, as sodium dihydrogen orthophosphate (NaH2PO4), 

were added weekly to buckets at one of three loadings in a fully crossed design: 

Phosphorus  

i) 0 μg P L-1 (0 μM),  25 
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ii) 25 μg P L-1 (0.78 μM),  1 

iii) 50 μg P L-1 (1.56 μM)  2 
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and nitrogen  

i) 0 μg N L-1 (0 μM),  4 

ii) 400 μg N L-1 (28.6 μM), 5 

iii) 800 μg N L-1 (56.1 μM)  6 

Each of the nine treatments was replicated five times arranged within five blocks. Any 

water loss due to evaporation was replaced with deionised water. 

The investment in carnivory was assessed at the start of the experiment, prior to 

any nutrient addition, and at the end of the five week growing period, using two 

methods. 

a) The proportion of the leaf area comprising traps (assessed using image analysis). 12 

This measure of the investment in carnivory takes into account both the number 

and the size of individual traps, relative to the size of the leaf. Large traps are 

more effective than small (Friday 1991), but encounter rate with prey is a function 

of the number of traps (Harms 2002). 

b) The proportion of the leaf dry mass comprising traps. This measure of the 17 

investment in carnivory takes into account the amount of matter used to construct 

the traps, relative to that used to construct the leaf. There is not a direct 

relationship between this measure of investment and investment measured as area, 

because large traps have a higher mass per unit area than small traps (Friday, 

1991).  

Although the proportion of biomass comprising traps is the most useful measure of a 

plant’s investment in carnivory, the way in which the biomass is partitioned among a 
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variable number of traps of different sizes may also be important (Friday, 1992). 

Hence, both methods were used. 

 

a) Image analysis  

A single leaf attached to the shoot 3 cm from the growing point was carefully 

removed from the stem of each plant using forceps and a scalpel. Each leaf was then 

placed individually into a glass Petri-dish, using a paintbrush and needle to ensure that 

the leaf and traps were spread out and did not overlap. A computerised image of each 

leaf was produced and analysed using Optimas 6.5 software to calculate surface area. 

Once the image had been produced all the traps were carefully removed and the 

process repeated. The percentage of the leaf surface area that comprised traps was 

then calculated by the difference between the two images.  

 

b) Dry weight 

After the leaves had been used for image analysis, the dry mass of the leaves 

and traps were determined separately after drying at 70 °C to constant mass.  

 

Only one leaf was sampled as bladders are only active for a short time after 

leaf expansion (Friday, 1989). We chose this position as this was within the region of 

the stem where 100% of the bladders are active. Once the leaves are more than 10 

days old the bladders stop being active and start to break down. After 21 days, >90% 

of the bladders are missing (Friday, 1989). An additional advantage of using young 

leaves is that they are generally clear of periphyton, thus improving the accuracy of 

measurements. 
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At the end of the five-week growth period the plants were harvested and the 

investment in carnivory assessed as at the start. To estimate plant growth, the length 

of the main axis of each plant was measured and the dry mass of the plants measured 

after the removal of periphyton. Periphyton was removed from each plant by vigorous 

shaking it for 1.5 minutes in a sealed vessel containing 150ml of tap water, sufficient 

to remove nearly all attached algae (Zimba & Hopson, 1997; Jones et al., 2000). The 

plant, and any fragments, was removed from the algal suspension and dried at 70°C to 

constant mass. One 50ml aliquot of the resultant suspension was passed through a pre-

weighed Whatman GF/C filter. The filter was checked for any plant fragments, which 

were removed with forceps, and dried at 70°C to constant mass to estimate total mass 

of matter, including all live and dead organic matter and inorganic material. Another 

50 ml aliquot of the periphyton suspension was passed through a second Whatman 

GF/C filter in a similar manner, and chlorophyll-a determined after cold extraction in 

90% acetone. In order to make valid comparisons between plants of differing size, 

measures of periphyton were standardized to per unit area of plant surface, calculated 

from known surface area: dry mass relationships (following Jones et al., 2000). 
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Published data 

The data given in Kosiba (1992a & b) were used to assess the effect of varying 

nutrient conditions across sites in the field. The data were collected from various sites 

in Poland in 1983. Leaves varied in size among the sites. As area varies in proportion 

to the square of length, the number of traps per unit leaf length squared was used as a 

measure of investment in carnivory to correct for variations in leaf size. Kosiba 

(1992a & b) also include data on the elemental composition of the plants (N, P, K, Ca, 

Mg, Na, Fe, S) and the water chemistry parameters measured at the sites (pH, PO4
3- 
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(orthophosphate), NO3
-, NH4

+, K+, Ca+, Mg2+, Na+, Fe3+, SO4
2-, Cl-, total hardness, 

total organic carbon and humic acid concentration). A further chemical variable, the 

atomic N:P in the water at each site, was calculated from these data to determine if the 

relative availability of nutrients was important. Both sets of data, water chemistry 

variables and plant elemental composition, were used to determine the effect on 

investment in carnivory. 
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Statistics 

A general linear model two-way analysis of variance (GLM ANOVA) was 

used to test for differences between nutrient treatments using MINITAB. Data on the 

proportion of leaf comprising traps, determined both by image analysis and by dry 

weight, were transformed using arcsin transformation before use. The relationship 

between investment in carnivory and water chemistry variables in the Polish data set 

was analysed using stepwise regression (SAS). 

 

Results 
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Water 

The water from Wicken Fen contained 58 µgl-1 (3.4 µM) ammonium, 3.6 µgl-1 

(0.06 µM) nitrate, 1.8 µgl-1 (0.04µM) nitrite and 1.2 µgl-1 (0.01 µM) soluble reactive 

phosphate.  
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Growth 

All plants grew during the five week incubation period, with a mean length of 

the main axis of 30.88 cm (cf. 10 cm at start).  However, there was no effect of 

nitrogen loading on the growth of the plants (p = 0.75), and the influence of 

phosphorus was also (though only marginally) insignificant (p = 0.08; Fig. 1). This 

may have been due to the growth period being of insufficient time for significant 
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Periphyton 

The mean density of periphyton, as dry mass per unit plant surface area, 

ranged from 0.017 mg cm-2 to 0.022 mg cm-2 and, as chlorophyll-a per unit plant 

surface area, from 0.0052 μg chla cm-2 to 0.0102 μg chla cm-2. However, the amount 

of periphyton growing on the plants was not significantly affected by phosphorus, 

nitrogen or by the interaction between phosphorus and nitrogen, using either measure 

(Fig. 2). 
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Investment in Carnivory  

Although variable among plants, the percentage of the total surface area of the 

leaf that comprised traps was not significantly different among the treatments at the 

start of the experiment (Fig. 3a). Neither was there any difference among treatments 

in the percentage of the leaf mass that comprised traps (Fig. 4a). Therefore, there was 

no difference in investment in carnivory between treatments before the nutrient 

manipulation began.  

In contrast, after five weeks incubation the percentage of the total surface area 

comprising traps was significantly lower in those plants that had been exposed to 

higher phosphorus loading (Fig. 3b, p = 0.007). However, there was no significant 

effect of nitrogen, or of the interaction between phosphorus and nitrogen (Fig. 3b). 

The same result was found when investment in carnivory was estimated as the 

proportion of the leaf mass comprising traps (Fig. 4b). It is possible that the observed 

experimental effect of phosphorus on investment in carnivory was indirect, via 

changes in the quantity or quality of prey. Nevertheless, it is clear that the availability 
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of phosphorus in the water has a significant impact, either direct or indirect, upon the 

investment in carnivory of U. vulgaris. 

Over the five weeks incubation the percentage of the total surface area that 

comprised traps declined overall (p = 0.0001), but the percentage of the leaf mass that 

comprised traps did not (p = 0.11). The difference in response between these two 

measures of investment is due to an increase in average trap size; small traps have a 

lower mass per unit area than large traps (Friday, 1991). Distribution of the same 

mass among a smaller number of large traps will result in a reduced encounter rate 

with prey, which may reflect an increased prey density in all experimental treatments 

relative to the field. 
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Published data 

The biomass of U. vulgaris increased with increasing phosphorus 

concentration in the surrounding water (Fig. 5a), as noted by (Kosiba, 1992a). 

Although there was no relationship between biomass of U. vulgaris and nitrogen 

concentration (either as ammonium, nitrate or both), high biomass was not achieved at 

high nitrogen concentrations. It was also apparent that leaf size increased with 

increasing phosphorus concentration (Fig. 5b), which had an influence on the number 

of traps per leaf (Fig. 5c). Hence, the number of traps per unit leaf length squared was 

used as a measure of relative investment, to take into account variations in leaf size. 

There was no relationship between the investment in carnivory and the concentration 

of nitrogen in the water, either as nitrate, ammonium, or total nitrogen (Fig. 5d). Of 

the water chemistry variables, the best predictor of relative investment in carnivory 

was phosphorus concentration in the surrounding water, although its effect was 

marginally insignificant (Fig. 5e). The poor correlation between measured 
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orthophosphate and investment in carnivory may reflect the difficulties of estimating 

phosphorus availability with this measure (a small and rapidly recycled portion of the 

total phosphorus pool). When plant elemental composition was included, the best 

predictor of relative investment was phosphorus content (Fig. 5f). Again there was a 

decline in relative investment with increasing phosphorus content, but the relationship 

was highly significant using this measure of phosphorus availability (Fig. 5f). 
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Plant Growth 

It is generally assumed that carnivory enhances the supply of nutrients in 

habitats where growth is severely restricted by their supply. In this experiment, 

however, increased availability of phosphorus or nitrogen in the water surrounding the 

Utricularia plants did not affect their growth. Nevertheless, the field data of Kosiba 

(1992a) show a strong relationship between phosphorus and growth. Other workers 

have suggested that the growth of Utricularia is better explained by prey density 

(Englund & Harms, 2003), but this seems highly unlikely unless nutrient acquisition 

is solely via carnivory.  

It is possible that growth of the Utricularia plants was restricted by some other 

factor, with the most likely explanation being that the density of periphyton (Jones & 

Sayer, 2003). However, there was no relationship between periphyton, either as dry 

weight or chlorophyll per unit plant surface area, and plant growth. Also, the amount 

of periphyton was not significantly affected by the addition of P, N or the interaction 

between P and N. These findings suggest that in this experiment, the periphyton was 

not responsible for the lack of a relationship between nutrient addition and the growth 

of Utricularia. This is contrary to the theory proposed by Phillips et al. (1978) who 
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suggested that periphyton biomass is related to nutrient concentration. Laboratory 

experiments under controlled conditions have also shown an increase in periphyton 

with nutrients (for example, Jones et al., 2000) and there is a well described negative 

interaction between periphyton and plants (Jones et al., 1999; Jones & Sayer, 2003). 

However, there is also evidence that the main constraint on periphyton biomass is the 

grazing action of invertebrates (Cattaneo, 1983; Kairesalo & Koskimies, 1987; Jones, 

Moss & Young, 1998; Jones & Sayer, 2003) and it is likely that the prey, chydorids 

and ostracods, were feeding upon the periphytic algae. 

Most importantly, the lack of a significant effect of the added nutrients on the 

growth of the plants and periphyton, and a lack of a significant effect of periphyton on 

plant growth, removes the influence of these confounding variables on the 

relationship between nutrient availability and investment in carnivory. The test of this 

relationship was the prime objective of this work.  
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Investment in Carnivory 

At the start of the experiment the proportion of leaf biomass represented by 

traps was not significantly different among the treatments, measured using either 

image analysis or dry weight. There was variation among the plants, but this was 

expected as the proportion of biomass invested in traps can vary widely within 

populations of U. vulgaris (Friday, 1992), presumably as each individual plant 

experiences different conditions dependent upon microhabitat.  

By the end of the growth period, however, there was a significant relationship 

between phosphorus addition and the investment in carnivory, measured both as 

surface area and dry mass. Both the image analysis and the dry weight measurements 

showed that the proportion of the leaf dedicated to carnivory declined with increasing 

availability of phosphorus in the surrounding medium, but was not influenced by 
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nitrogen additions or by the interaction between phosphorus and nitrogen. This is 

somewhat surprising as it is commonly assumed that nitrogen is the nutrient “sought 

after” by carnivorous plants. However, the concentration of nitrogen in the water at 

Wicken Fen, from where the plants were collected and was used as the growth 

medium during the experiment, was far greater than that of phosphorus. Assuming 

that only ammonium was used by the plants, as it is energetically favoured, there was 

260-fold more N than P (3.4µM NH3 cf. 0.013 µM P04
-) in the water at Wicken Fen. 

The habitats where the plants and water were collected were typical of the stagnant 

pools in this peaty fen. The conditions of low oxygen would tend to encourage 

mineralization and the production of ammonia, a characteristic common to many of 

the sites where U. vulgaris grows (Kosiba, 1992a). Utricularia vulgaris cannot make 

direct use of the sediment pool of phosphate, which is the principle source for rooted 

macrophytes, suggesting that, at the start of the experiment the plants depended on 

prey as virtually the sole source of phosphorus. Friday & Quarmby (1994) found this 

to be the case in their investigation of U. vulgaris growing at Wicken Fen.  

The relative importance of nitrogen and phosphorus for carnivorous plants has 

been debated for some time (Lollar et al., 1971; Heslop-Harrison, 1978), and it would 

seem reasonable that under conditions of nutrient limitation, carnivory could provide 

a route for the supply of whatever nutrient was limiting growth. Although U. vulgaris 

grows in waters over a range of nitrogen and phosphorus conditions (Knight & Frost, 

1991; Friday, 1992), both the laboratory experiment and the data of Kosiba (1992a & 

b) show that investment in carnivory in U. vulgaris was inversely correlated to 

phosphorus availability, and particularly the amount of phosphorus acquired by the 

plants. The availability of nitrogen in the medium or acquired by the plant, both as 

absolute concentration or relative to phosphorus, had little influence on either the 
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growth of the plants or the investment in carnivory. Furthermore, it is apparent that 

growth and flowering are directly related to the availability of phosphorus (Kosiba, 

1992a). Many carnivorous plants release phosphatases to digest their prey and, in 

Utricularia at least, they appear to be more important than other enzymes (Sirová et 

al., 2003). Phosphorus uptake via carnivory has been identified using radioisotopes 

(Lollar et al., 1971). Phosphorus often limits the growth of phytoplankton in 

freshwaters, and the influence of phosphorus on carnivory may reflect the aquatic 

habit of U. vulgaris. However, these findings may be more applicable to all 

carnivorous plants, as phosphorus limitation has been linked to the occurrence of 

carnivory in the terrestrial cobra lily Darlingtonia californica Torr. (Ellison & 

Farnsworth, 2005).  

The findings here support the assumption that increasing availability of 

nutrients from external sources leads to a reduction in the investment in carnivory 

(Givnish et al., 1984). As U. vulgaris does not have any specialised organs for the 

uptake of nutrients from the surrounding water, there are no costs involved in the 

production of roots to obtain nutrients from the medium, and the reduction in the 

proportion of the leaves that comprise traps is a reduction in investment in carnivory 

in terms of reduced commitment of biomass. What is somewhat surprising is that they 

indicate that phosphorus is the element sought after by this species of carnivorous 

plant, not nitrogen as is commonly assumed.  
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Figure 1. Influence of nutrient addition on the growth of U. vulgaris measured as 

mean length of the main axis (± SE, n = 5). From ANOVA phosphorus (p = 0.08), 

nitrogen (p = 0.75), interaction between phosphorus and nitrogen (p = 0.53).  
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Figure 2. Periphyton density expressed as mean dried weight per unit plant surface 

area after 5 weeks (± SE, n = 5). From ANOVA phosphorus p = 0.096, nitrogen p = 

0.76, and the interaction between phosphorus and nitrogen p = 0.794. 

 

Figure 3. The mean percentage (± SE, n = 5) of the leaf surface area that comprised 

traps, (a) at the start of the experiment (phosphorus p = 0.37, nitrogen p = 0.38, 

phosphorus*nitrogen p = 0.13), and (b) after 5 weeks incubation under the 

experimental treatments (phosphorus p = 0.007, nitrogen p = 0.55, 

phosphorus*nitrogen p = 0.89). Between the two time intervals p = 0.0001. 

 

Figure 4. The mean percentage (± SE, n = 5) of the leaf dry mass that comprised traps, 

(a) at the start of the experiment (phosphorus p = 0.66, nitrogen p = 0.98, 

phosphorus*nitrogen p = 0.14), and (b) after 5 weeks incubation under the 

experimental treatments (phosphorus p = 0.03, nitrogen p = 0.32, 

phosphorus*nitrogen p = 0.80). Between the two time intervals p = 0.11. 

 

Figure 5. The relationship between phosphorus concentration and (a) biomass (R2 = 

0.488, p = 0.005), (b) maximum leaf length (R2 = 0.333, p = 0.019), and (c) traps per 

leaf (R2 = 0.315, p = 0.015) of U. vulgaris from sites in Poland. The relationship 

between investment in carnivory in the same plants, measured as traps per cm2 leaf 

length, and (d) nitrogen concentration (R2 = 0.008, p = 0.74) and (e) phosphorus 
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concentration (R2 = 0.192, p = 0.079) in the surrounding water, and (f) phosphorus 

content in the plant tissue (R2 = 0.349, p = 0.013). (All data from Kosiba, 1992a & b) 
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