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Abstract

Maintaining the structural integrity of conveyor belts is essential for safe and reliable
mining operations. However, these belts are susceptible to longitudinal tearing and surface
degradation from material impact, fatigue, and deformation. Many computer vision-
based inspection methods are inefficient and unreliable in harsh mining environments
characterized by dust and variable lighting. This study introduces a smartphone-driven
defect detection system for the cost-effective, geometric inspection of conveyor belt surfaces.
Using Apple’s iPhone 12 Pro Max (Apple Inc., Cupertino, CA, USA), the system captures
3D point cloud data from a moving belt with induced damage via the integrated TrueDepth
camera. A key innovation is a 3D-to-2D projection pipeline that converts point cloud
data into structured representations compatible with standard 2D Convolutional Neural
Networks (CNNs). We then propose a hybrid deep learning and machine learning model,
where features extracted by pre-trained CNNs (VGG16, ResNet50, InceptionV3, Xception)
are classified by ensemble methods (Random Forest, XGBoost, LightGBM). The proposed
system achieves high detection accuracy exceeding 0.97 F1 score in the case of all proposed
model implementations with TrueDepth F1 score over 0.05 higher than RGB approach.
Applied cost-effective smartphone-based sensing platform proved to support near-real-
time maintenance decisions. Laboratory results demonstrate the method’s reliability, with
measurement errors for defect dimensions within 3 mm. This approach shows significant
potential to improve conveyor belt management, reduce maintenance costs, and enhance
operational safety.

Keywords: conveyor belt inspection; convolutional neural networks; 3D scanning; machine
learning; point cloud analysis; smartphone; TrueDepth camera

1. Introduction

The operational continuity and safety of mining transport systems depend heavily on
the integrity of their conveyor belts [1-5]. These belts are particularly prone to longitudinal
tearing from impacts with sharp objects and from material fatigue, which can cause costly
unplanned downtime and resource losses [6]. Phenomena such as belt mistracking can
lead to rubbing against the conveyor structure, significantly shortening belt life cycle [7,8].
Given the limitations of manual visual inspection, developing reliable automated methods
for detecting longitudinal tears has become an important research challenge [9,10].
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Monitoring conveyor belt condition is challenging because damage to the top cover,
such as cuts and gouges caused by sharp, falling material, can propagate and cause core
degradation [11]. In practice, surface and geometric assessments at many mining sites
still depend largely on manual visual inspection by supervisors. Prior efforts to automate
inspection with image-based methods have met limited success, largely due to adverse
field conditions, including poor illumination and airborne dust, that degrade data quality
and complicate reliable analysis. These limitations highlight the need for more robust,
environment-resilient inspection techniques [6,12].

Automatic methods for detecting longitudinal tears in industrial conveyor belts fall
into two main categories: contact and non-contact. Contact techniques use hardware that
physically interacts with the belt, such as linear detectors, swing rollers, and pressure
sensors [13]. Although these approaches can be fast and conceptually simple, they tend
to be costly and can collide with conveyed material, producing false alarms. Non-contact
approaches, including electromagnetic induction and X-ray fluoroscopy, generally yield
fewer false detections but depend on precise sensor-belt coupling, an arrangement that is
difficult to maintain in the dynamic conditions of mining operations [14].

Surface reconstruction through 3D scanning offers a valuable approach to evaluating
conveyor belt condition, enabling the generation of precise digital representations of belt
geometry. Consequently, this perspective suggests that affordable 3D scanning could be a
beneficial method for inspecting conveyor belts, despite the ongoing challenge of adapting
these readily available technologies for reliable performance in demanding industrial envi-
ronments [15]. Recent developments have expanded the availability of these technologies
across a spectrum of devices, ranging from sophisticated industrial setups to more afford-
able scanners [16]. Although high-end systems offer greater precision, lower-cost devices
frequently prove adequate and more practical when the objective is to identify significant
geometric anomalies rather than minute imperfections [15].

Modern consumer-grade smart devices, including mobile phones and tablets, now
incorporate sophisticated scanning technologies that extend beyond traditional photogram-
metry. Among these, LIDAR (Light Detection and Ranging) functions on a Time-of-Flight
(ToF) principle, determining distance by measuring the delay between emitting a light
signal and receiving its reflection [17]. In contrast, Apple’s proprietary TrueDepth camera
utilizes a vertical-cavity surface-emitting laser (VCSEL), a dot projector, a flood illumi-
nator, and an infrared camera. Its operational core involves projecting a pattern of over
30,000 infrared dots onto a scene; the distortion of this pattern, captured by the infrared
camera, is then analyzed to construct a depth map [18]. This map is subsequently pro-
cessed by machine learning algorithms to generate a precise mathematical model of the
environment [19].

The TrueDepth camera built into Apple devices functions as a low-cost 3D scanner, us-
ing infrared illumination to produce depth maps for applications such as facial recognition
and augmented reality. Its use in scientific contexts, particularly for anthropometric data
collection, has been investigated in recent studies [15,20,21]. Nevertheless, the sensor’s
capacity to reliably reconstruct fine surface geometry remains an area of ongoing research.

In this paper, we present a low-cost, smartphone-driven maintenance system for
intelligent condition monitoring of conveyor belt surfaces that leverages the iPhone 12 Pro
Max as an integrated sensing platform. The system uses the device’s TrueDepth camera to
create accurate 3D point cloud models of the moving belt. This allows for a quantitative
assessment and identification of surface issues based on their geometric characteristics.
This smartphone-only approach supports cost-effective, near-real-time monitoring to aid
maintenance decision-making.
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Deep learning models have exhibited strong efficacy in image classification, detection,
and segmentation, largely due to the application of 2D convolutional neural networks
(CNNs). These models effectively capture both global and spatial features, demonstrating
considerable generalization capabilities, which renders them particularly well-suited for
the analysis of RGB imagery. Recent developments in 3D deep learning have expanded
the application of these techniques to include classification, object detection, and semantic
segmentation of point cloud data. Despite this progress, 3D CNNs continue to be computa-
tionally demanding and exhibit reduced scalability compared to their 2D counterparts [22].
To address this limitation, we can use dimension reduction methods, such as projection-
based techniques. This allows us to use pre-trained and efficient 2D convolutional neural
network (CNN) architectures to analyze 3D data.

The contributions of the proposed surface defect detection system are summarized
as follows:

* A smartphone-driven 3D inspection pipeline: A cost-effective system has been devel-
oped to capture point clouds, utilizing the iPhone 12 Pro Max’s TrueDepth camera,
and subsequently processes these point clouds through a novel 3D-to-2D projection
method. This pipeline capitalizes on pre-trained 2D convolutional neural networks
(CNN ) to extract deep features, and it incorporates efficient tree-based classifiers
to facilitate robust defect detection and classification, relying exclusively on geomet-
ric data.

*  Anindustrial benchmark and empirical assessment: a specialized dataset comprising
TrueDepth point clouds, encompassing various induced fault types and detailed an-
notations, serves as the foundation for evaluating the generalizability of the proposed
method in the context of conveyor-component condition monitoring.

* A lightweight, deployable detection and quantification pipeline: a computationally
efficient approach suitable for edge and mobile deployment that identifies topographic
defects and provides practical geometric measurements (e.g., depth, volume) to sup-
port maintenance decisions.

The remainder of this paper is structured as follows. Section 2 reviews related work
on conveyor belt damage modes and point cloud based condition monitoring methods.
Section 3 delineates the proposed methodology for geometric defect detection. Section 4
describes the experimental setup, including the dataset, data collection process, and eval-
uation metrics. Section 5 reviews the model training and validation process. Section 6
presents and discusses the experimental results. Finally, Section 7 concludes the study and
suggests directions for future work.

2. Literature Review

A wide range of techniques are used to diagnose and inspect conveyor belts, each
aimed at identifying various types of faults and maintaining reliable operations. These
approaches span from traditional visual and manual inspections to more advanced tech-
nologies, such as ultrasonic testing [23,24] or magnetic belt inspection [25]. Additional
methods include the use of RGB and infrared cameras, commonly applied to monitor
idlers [26-28], detect material blockages [29], or detect misalignment of the track belt [30],
as well as to evaluate the belt’s own condition [31,32], alongside acoustic analysis [33,34]
and X-ray imaging [35]. Multisensor systems designed for belt conveyor monitoring, such
as DiagBelt+ can incorporate mentioned sensors to great results [36-38].

The approach using LiDAR data can be found in [6] where the belt has been scanned
with the TLS system (terrestrial laser scanner), obtaining the elevation data of the belt and
consequently allowing the detection of local defects. In [39] the authors used a binocular
line laser stereo vision camera mounted between the upper and lower belts to obtain the
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data for the detection of longitudinal rip. As in the previous case, the suspected points
come from fluctuations of the point position in selected directions. An example of the
damage detection in a multi-wedge belt can be found in [40], where the authors detected
the most common pits, scratches, and cracks with a detection rate of 96%. The proposed
methodology consisted of point cloud extraction, clustering of separate tooth top surfaces
with use of DBSCAN, and final defect detection through adaptive moving window.

Some other uses of surface inspection with the use of scanning technology can be
found in the inspection of buildings, road damage detection, and quality control of various
materials. In [41], the authors used TLS in the bridge structural health monitoring task.
The accuracy of the scanning equipment (Faro 5350) proved to be high in comparison with
manual measurements. As expected, the differences increased with the increasing angle
of the scanning axis perpendicular to the surface. In [42] the colored point cloud of the
ship hull was utilized in the detection of corroded regions, allowing better estimation and
optimization of maintenance routines. The authors used threshold-based detection similar
to image segmentation methodologies. On a larger scale, scanning has been used in cases
such as quality inspection of large prefabricated housing units [43], where the geometric
dimensions (together with parameters such as straightness or flatness) of different elements
have been measured. In this case, the preserved accuracy remained below 2.3 mm. A few
different scanners, including the iPhone Lidar, have been tested in the task of damage
estimation of forest road surfaces. The quality and accuracy of iPhone Lidar proved
sufficient for the task, although with error tied strictly to the distance from the scanned
surface [44].

In [45] the authors utilized density histograms, Euclidean clustering, and a dimension-
based classifier for the detection of idle position for further diagnosis. Machine vision
and artificial intelligence are often used in modern methods to make fault detection more
accurate and to better predict when maintenance will be needed. This category includes
approaches such as support vector machines [46—48], neural networks [49,50], or DB-
SCAN [51].

In the case of belt damage detection with the use of machine learning, there can be
distinguished two types of damage that the methodologies focus on separately. Both of
them usually rely on the image data (such as RGB or X-ray images), with exceptions such
as magnetic detection [50]. First branch of the trained networks revolve around the belt
deviation problem [28,52-54] that often incorporate various edge and line detection algo-
rithms into the algorithm pipeline. The second one focuses on the surface damage [55,56].
In both cases, a robust region of interest reduction is usually very beneficial for the final
results - for this purpose detectors such as MobileNet SSD have been implemented [28].

The TrueDepth camera utilized has been thoroughly tested in [57] where authors
proved its usability in the millimeter range applications, obtaining 0.1 mm details detection
on a working distance of 150 to 170 mm. For a stable measurement of less intensive textures
it was recommended to stay in range of maximum 300 mm distance from the surface,
500 mm in case of more textured material. Similar conclusions have been reached by
authors in [58], where they obtained results of point-to-plane deviation from 0.291 to
0.739 mm for distances from surface increasing from 175 to 450 mm. This highlights
a significant importance of the distance from the measured object that might render it
not useful in many industrial applications. A direct comparison with existing solutions
have been provided in [59], where authors evaluated the scanning accuracy of iPad Pro
TrueDepth with Artec Space Spider high resolution industrial scanner. In these tests,
TrueDepth was outperformed by industrial solution, although the differences were in the
range of one millimeter differences. Additionally, a high impact of the scanner movement
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and measurement technique in the case of TrueDepth accuracy have been noticed, which
may lead to a significant improvement in the scanner performance if implemented properly.

3. Material and Methods

This section delineates the proposed methodology for the intelligent inspection of
conveyor belt surfaces based on geometric data. The overall procedure, illustrated in
Figure 1, begins with the acquisition of 3D point cloud data using the integrated TrueDepth
camera of an iPhone 12 Pro Max. A critical preprocessing step involves transforming
the raw 3D point clouds into 2D feature projections. This transformation is essential to
reduce computational complexity and to leverage pre-trained 2D CNN:Ss for effective feature
extraction. Subsequently, a hybrid framework is introduced, where deep features extracted
from the 2D point cloud projections are classified using traditional machine learning models.
The procedures for training and evaluating these models are detailed to identify the optimal
CNN and classifier pair for defect detection.
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Figure 1. Flowchart of the hybrid CNN-ML pipeline for surface defect detection via 3D-to-2D
projection of point cloud data captured by the TrueDepth camera.

3.1. Point Cloud Reconstruction

To leverage the TrueDepth camera for accurate geometric modeling of the conveyor
belt surface, the raw sensor data must first be preprocessed. This section outlines the core
computer vision principles for this processing, beginning with the camera’s intrinsic pa-
rameters. These parameters govern the transformation between 3D world coordinates and
2D image pixels, forming the foundation for converting depth maps into 3D point clouds.
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The projective transform maps a 3D point p = [x/z,1/z,1]T from the camera coordi-
nate system to a point u = [1,v,1]T in the image plane u = Kp. Here K is defined as:

fx s Cx
K=100 fy-a ¢ (1)
0.0 00 1.0

The matrix K contains the focal length f in pixels, an aspect ratio 4, a shear factor, s
and the principal point cy, cy.

The authors Urban et al. [60] performed the series of experiments to find the calibration
factors. In their work for the iPhone 12 Pro Max the factory-calibrated intrinsics returned:
a =1and s = 0. In addition, the principal point always coincides with the lens distortion
center that can also be requested from the APIs provided by the manufacturer (Apple Inc.,
Cupertino, CA, USA) [60,61].

In the next step the acquired depth image needs to be used to reconstruct the point
clouds. To convert a depth image D € R? to a point cloud, Xi; € R? the following mapping
can be used:

Xi; = D(i,/)K 'uj; )

wherei=1...Wandj=1...Hand u;; = [,/,1.0]". In the test smartphone, the depth
image has a resolution of 640 x 480 pixels.

3.2. 3D-to-2D Point Clouds Feature Projection

The proposed architecture processes point clouds using 2D convolutional layers,
necessitating the transformation of 3D point data into 2D feature maps compatible with
regular grid-based processing. Since point clouds inhabit continuous 3D space, they
cannot be directly processed by 2D CNNs without prior conversion to a structured 2D
representation [22].

For a point p with coordinates (x, y,z) and associated feature f, the projection process
involves normalizing the point cloud to a specified range relative to each projection plane.
For the XY-plane with dimension / x [, the x and y coordinates are normalized to the interval
[—%, é} Feature projection onto the grid is accomplished through bilinear interpolation,
selected for its favorable balance of computational efficiency and memory requirements.
When multiple features map to the same grid cell, they are aggregated through summation.
This process generates a 2D feature map of dimension / X [ from the 3D point cloud,

formally defined as:

Ixy(x ZZG Xy, xy) - flxy,z) )
G(A,B,a,b) = g(A,a) -&(B,b) (4)
¢(N,n) = max(0,1 —|N —n|) ()

where Ixy(x,y’) denotes the 2D feature at grid position (x’, ') on the XY-plane, f(x,y, z)
represents the 3D feature of point p, and G(-) is the 2D bilinear interpolation kernel
composed of one-dimensional linear kernels as defined in Equation (4). Figure 2 illustrates
this projection mechanism.

For points that share identical (x, y) coordinates but differ in their z values, such as
two points p and p’ with coordinates (x,y,z) and (x,y,z’) respectively, projecting into
only the XY-plane results in identical 2D representations. This characteristic ensures
that the surface geometry of the conveyor belt is effectively captured while maintaining
computational efficiency.
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Figure 2. The operation of the point cloud transformation from 3D space into a 2D plane.

To ensure data continuity and the reliability of the geometric profile in the captured
point cloud, missing data points resulting from infrared dots that were not correctly re-
flected and captured by the TrueDepth camera were reconstructed using linear interpolation.
For each missing point at coordinates (x,y), the algorithm estimates its depth value z by
analyzing the values of its valid neighboring points within a defined spatial kernel. This
process reconstructs a spatially consistent point cloud suitable for further analysis.

3.3. Deep CNN Models for Defect Feature Extraction

Convolutional Neural Networks (CNNs) are a distinct category of deep learning
architectures designed for analyzing structured grid data, with a primary focus on images.
They mirror the hierarchical pattern recognition processes observed in biological vision
systems [62,63]. Their remarkable effectiveness in image processing, coupled with the
ability to learn directly from raw pixel data, has established CNNs as the prevailing
approach in computer vision applications. The fundamental CNN architecture employs a
series of convolutional filters, activation functions, and pooling operations to autonomously
derive hierarchical feature representations from input images. These models are typically
optimized using gradient-based methods, such as backpropagation, for a variety of tasks,
including image classification and feature extraction [64,65].

The standard structure of a convolutional neural network is a series of specific layers
arranged in order. Each layer has a distinct computational role in a step-by-step process of
extracting features. The process begins with the input layer, which receives the original
image data and applies preprocessing steps, such as normalization, to standardize the
data. Following this, the convolutional layers, which are the core of the architecture, use
learnable filters to extract spatial features through convolution. The generated feature maps
pass through activation layers, often utilizing rectified linear units (ReLU), to incorporate
non-linear transformations crucial for the acquisition of intricate mappings. Pooling layers
then execute spatial down-sampling, diminishing feature dimensionality while maintaining
essential information, thus improving computational efficiency and offering translational
invariance. The concluding phase entails flattening the extracted features and subjecting
them to fully connected layers, which consolidate high-level representations to produce
classification outputs.

Transfer Learning with Pre-Trained Architectures

Over the last ten years, the development of Convolutional Neural Network (CNN)
architectures has produced numerous models that excel in large-scale visual recognition
applications. This study utilizes transfer learning, employing four well-established CNN
architectures—VGG16, ResNet50, InceptionV3, and Xception—to extract distinguishing
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features from the 2D point cloud representation of the conveyor belt surface. Transfer
learning facilitates the transfer of knowledge from models initially trained on extensive
datasets, such as ImageNet, to our specific area of interest, thereby substantially improving
performance, particularly when labeled data is scarce [66].

Each architecture presents unique benefits for feature extraction. VGG16, distin-
guished by its consistent architecture, features 13 convolutional layers utilizing 3 x 3 filters,
thereby establishing a deep yet uncomplicated structure that effectively identifies hierarchi-
cal features [67]. Conversely, ResNet50 incorporates residual connections throughout its
48 convolutional layers to address the vanishing gradient issue, thus facilitating the effec-
tive training of considerably deeper models [68]. The InceptionV3 architecture, in contrast,
utilizes parallel convolutional pathways with diverse receptive fields to efficiently capture
multi-scale features while managing computational complexity [69]. Lastly, Xception, an ad-
vancement of the Inception concept, is predicated on depthwise separable convolutions
within its 71-layer design, which improves parameter efficiency while preserving robust
representational capabilities [70].

Initially trained on the ImageNet dataset, which comprises more than 13 million
images spanning 20,000 categories, these pre-trained models offer strong feature extrac-
tion abilities. We leverage these capabilities to identify surface anomalies within point
cloud representations of conveyor belts. The features extracted from this process are then
utilized as input for conventional machine learning classifiers, ultimately facilitating the
classification of defects.

To prepare the extracted point cloud data for feature extraction using convolutional
filters, the proposed projection algorithm was applied to convert the 3D point clouds
captured by the TrueDepth camera into 2D top-view representations on the XY plane (see
Figure 3). The z-axis (depth parameter) of point clouds was normalized to a range of 0 to
255 and represented as grayscale images, enabling their direct use as input to the employed
feature extraction models. To reduce computational cost while preserving the essential
geometric information, all projected point clouds were resized to 128 x 128 pixels.

To use the pre-trained architectures without changing the point cloud matrices to RGB,
two extra dimensions were created by copying the single-channel image across all three
channels. This channel duplication is a common practice to adapt single-channel data
for models pre-trained on 3-channel RGB images, preserving the learned filter structures
from ImageNet.

3.4. Hybrid Deep Learning and Machine Learning Framework

To address the challenges of limited computational resources and small datasets in
industrial applications, particularly in our case study, we propose a hybrid framework. This
framework combines deep feature extraction, using pre-trained CNN architectures, with tra-
ditional machine learning models for classification tasks based on the extracted features.

The proposed framework functions via a two-step process. Initially, pre-trained con-
volutional neural network (CNN) models are employed to extract high-level features from
two-dimensional point cloud representations, which are themselves derived from the
original three-dimensional point cloud data. Subsequently, traditional machine learning
classifiers, such as Random Forest, Extreme Gradient Boosting (XGBoost), and Light Gradi-
ent Boosting Machine (LightGBM), conduct the final classification based on the features
that have been extracted. This modular design facilitates the efficient optimization of
each individual component while simultaneously mitigating computational requirements
when contrasted with end-to-end deep learning methodologies. Consequently, the frame-
work retains the lightweight attributes that are critical for practical implementation within
industrial contexts.
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Figure 3. 2D representation of a 3D point cloud after normalization in XY and XYZ plane views.
(a) 2D representation of a 3D point cloud for an exemplary defect. (b) 3D representation of normalized
2D point cloud.

Ensemble Machine Learning Classifiers

To augment the profound feature extraction capabilities inherent in pre-trained Convo-
lutional Neural Networks (CNNs), we utilize three ensemble machine learning classifiers,
each recognized for its strong performance in classification applications: Random For-
est (RF), XGBoost, and LightGBM. These algorithms each present unique benefits when
processing the features derived from 2D point cloud representations.

Random Forest (RF), as introduced by Breiman [71], constitutes an ensemble learning
technique that employs bootstrap aggregation (bagging) to construct numerous decision
trees during the training phase. RF operates by building trees in parallel; each tree is
trained on randomly selected subsets of both data and features. This methodology serves
to effectively reduce the overfitting tendencies often observed in individual decision trees.
The ultimate predictions are derived from the aggregation of individual tree outputs via
majority voting, thereby improving both accuracy and robustness.

XGBoost, as presented by Chen and Guestrin [72], constitutes an advanced version
of Gradient Boosting Decision Trees (GBDT). In contrast to the bagging methodology of
Random Forests (RF), XGBoost constructs trees sequentially through boosting, wherein
each subsequent tree addresses the errors of its predecessors by minimizing a specified loss
function using gradient descent. The algorithm’s structure is characterized by level-wise
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tree growth, which promotes balanced architectures, and it incorporates regularization
techniques to manage model complexity. Consequently, the ultimate prediction is derived
from a weighted aggregation of all tree outputs, thereby demonstrating considerable
efficacy in handling intricate datasets.

LightGBM, a variant of GBDT, is engineered for both efficiency and rapid processing
of extensive datasets [73]. This algorithm introduces two principal innovations: Gradient-
based One-Side Sampling (GOSS), which emphasizes instances exhibiting substantial
gradients while randomly sampling those with smaller gradients, and Exclusive Feature
Bundling (EFB), which diminishes feature dimensionality by bundling mutually exclusive
features. Furthermore, LightGBM utilizes leaf-wise tree growth, thereby facilitating faster
convergence and enhanced performance relative to conventional level-wise methodologies.

4. Experimental Setup and Data Collection

The experimental investigation employed a steel cord conveyor belt with a rubber top
cover as the test specimen. The belt was maintained in excellent condition with intact edges,
attributable to its exclusive use in a controlled laboratory environment, as depicted in
Figure 4. All data acquisition and testing were performed in the specialized belt conveyor
laboratory at the Wroctaw University of Science and Technology (WUST). This controlled
facility enabled the precise induction of artificial defects and the subsequent collection of
high-quality data necessary to validate the proposed inspection methodology.

Figure 4. The studied conveyor belt system was within a controlled laboratory setting.

To assess the efficacy of the suggested non-destructive inspection (NDI) system, nine
unique artificial defects were incorporated onto the surface of the test conveyor belt. These
defects were engineered to simulate common failure mechanisms observed in industrial
contexts, specifically the significant impact and abrasive wear typical of hard rock mining
operations. As depicted in Figure 5, the induced damage exhibits variations in geometry,
depth, and severity, thus creating a demanding and representative dataset for thorough
system evaluation.
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Figure 5. Representative collection of conveyor belt tearing defects analyzed in the study.

The simulated damage profile includes situations such as deep gouges and cuts that
partially expose the underlying steel cord reinforcement. These defects are mainly charac-
terized by localized geometric changes on the belt’s surface. The proposed method uses
these geometric indicators, specifically point clouds from a TrueDepth camera, to provide
precise, quantitative measurements of 3D surface changes. This approach allows for reliable
defect detection based solely on measurable geometric anomalies, maintaining accuracy
regardless of lighting conditions or surface contamination.

4.1. Data Acquisition and Sensor Characteristics

Data acquisition was performed using a smartphone-based sensing platform, using
an iPhone 12 Pro Max, which features an integrated TrueDepth camera. This system
employs structured light technology; it projects a pattern of over 30,000 infrared dots onto
the surface, subsequently capturing the resultant deformation with an infrared camera.
This procedure yields a dense 3D point cloud, with each point characterized by its spatial
coordinates in relation to the sensor. Furthermore, the system integrates a flood illuminator
to facilitate low-light operation and a CCD sensor for the concurrent capture of 2D RGB
texture data.

As demonstrated in Figure 6, which compares the LIDAR and TrueDepth camera
in capturing point clouds from an exemplary conveyor belt defect, the iPhone LiDAR
shows limitations in accurately reproducing the defect’s geometrical features. In contrast,
the TrueDepth camera captures precise point clouds that enable accurate depth measure-
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ment of the surface defects. The main reason behind the poor performance of the LIDAR
sensor is the fact that the LIDAR module in the iPhone 12 Pro Max is specially designed for
distance estimation rather than precise point cloud generation. Therefore, although it can
work better with geometrical features at longer distances in comparison to the TrueDepth
camera, it has a poor performance in capturing precise point cloud data at short distances,

as was the intention of this case study.

(a) iPhone LiDAR sensor

(b) iPhone TrueDepth camera

Figure 6. Comparison of iPhone LiDAR and TrueDepth camera sensors in the correct capturing of
the geometrical features of an exemplary defect.

The working distance of the TrueDepth camera was maintained within 200-300 mm,
consistent with ranges validated in prior studies for reliable 3D data acquisition [57,74].
During experiments, the smartphone was positioned approximately 250 mm above the belt
surface to capture samples. The TrueDepth camera operated at a frame rate of 30 frames
per second, with each frame generating a corresponding point cloud. A rectangular
region of interest (ROI) measuring 25 cm in width and 35 cm in height was continuously
recorded from the central section of the belt. Each TrueDepth frame generated a point
cloud containing 273,674 individual points (see Figure 7). To ensure smooth and consistent
data acquisition, the conveyor belt was moving at a constant speed of 0.075 m/s. The test
conveyor had a total length of 15 m and a belt thickness of 5 cm.
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Figure 7. Smartphone mounting configuration for conveyor belt monitoring.

To ensure data integrity and avoid the opaque processing routines common in many
3D scanning applications, the “Record3D” application was utilized for data extraction.
This application exports raw, unaltered point cloud data streams directly from Apple’s
ARKit framework without applying proprietary post-processing or mesh refinement al-
gorithms. Consequently, the dataset employed in this work consists exclusively of native
ARKit outputs, establishing a transparent and reproducible foundation for analysis [58].
For validation purposes, manual measurements of maximum depth, width, and height
for each defect were collected using precision rulers and calipers (see Figure 8) to enable
comparative analysis with the camera-acquired results.

Figure 8. Hand measurement of defect size using a ruler and caliper.

https:/ /doi.org/10.3390/app16020609


https://doi.org/10.3390/app16020609

Appl. Sci. 2026, 16, 609 14 0f 23

4.2. Performance Metrics

The performance of the proposed classifier was evaluated using standard metrics
derived from the confusion matrix: accuracy, sensitivity (recall), precision, and F1 score.
These metrics are formally defined as follows:

TP+ TN

Accuracy = PN TP EN ©

Sensitivity (Recall) = TPT+7PFN o
.. TP

Precision = TP L FP @

F1 Score — 2 . Lrecision - Sensitivity o

Precision + Sensitivity

In these formulations, TP (True Positive) represents correctly identified defective
regions, TN (True Negative) denotes correctly classified non-defective areas, FP (False
Positive) indicates non-defective areas misclassified as defective, and FN (False Negative)
corresponds to defective areas incorrectly classified as non-defective. Sensitivity quantifies
the model’s capability to detect actual defects, while precision measures the accuracy of
positive predictions. The F1 score provides a balanced metric through the harmonic mean
of precision and sensitivity. All metrics range from 0 to 1, with 1 representing optimal
performance, which served as the optimization objective in this study.

5. Model Training and Validation Process

The dataset for this study comprised a total of 7086 of samples captured from the
conveyor belt surface, representing nine distinct fault conditions as represented in the
Figure 5. To ensure a robust evaluation, a structured approach was employed for data
partitioning into training, validation, and test sets.

To mitigate the risk of overfitting from sequential, highly correlated samples and
to maximize feature diversity for enhanced model generalizability, a strategic sample
selection process was employed, leveraging the ORB (Oriented FAST and Rotated BRIEF)
algorithm [75]. Established by Rublee et al. as computationally efficient, ORB was ideal for
rapidly quantifying visual dissimilarity. ORB features were extracted from an initial pool
of 832 healthy and 832 faulty samples, and the Hamming distance between their binary
descriptors was computed for all projected point cloud pairs to generate a dissimilarity
score for each sample. The 832 faulty samples represent the defect numbers 1 to 5. The final
balanced training dataset was constructed by selecting the 100 most dissimilar samples
from each of the two categories, ensuring the selected data encapsulated the widest possible
variation in surface conditions and promoting robust model performance from a limited
number of samples.

Hyperparameter optimization was conducted using a separate validation set, which
consisted of 274 healthy samples and 686 faulty samples encompassing the two defects
(defect numbers 6 and 7) on validation dataset. The hyperparameter optimization is an
integral part of tuning the employed ML-based classifier in this study. The optimization was
performed using random search cross-validation, a technique that efficiently explores the
hyperparameter space by evaluating a fixed number of parameter settings sampled from
specified distributions in RF, XGBoost, and LightGBM classifiers. Unlike an exhaustive grid
search, random search cross-validation offers a more computationally efficient approach to
identifying a near-optimal configuration for the classifiers, providing a favorable trade-off
between search time and model performance.
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The final performance evaluation of the model was conducted on a held-out test set,
which included samples from the two remaining fault types (Faults 8-9) not seen during
training or validation. This test set contained 259 healthy samples and 814 faulty samples,
providing a rigorous assessment of the model’s ability to generalize to novel defect patterns.

The experimental setup utilized the following hardware configuration: a desktop
computer equipped with an AMD Ryzen 7 5800H CPU (Advanced Micro Devices Inc.
(AMD), Santa Clara, CA, US), an NVidia GeForce RTX 3060 graphics processing unit (GPU)
(N'Vidia, Santa Clara, CA, USA), and 16 GB of RAM.

6. Results and Discussion

This section presents a comprehensive evaluation of the proposed defect detection
models. The analysis begins by systematically evaluating the strengths and limitations of
models trained exclusively on data from the TrueDepth camera. To quantitatively validate
the system’s measurement precision, we compare the physical dimensions (height, width,
and depth) of identified faults against manual measurements obtained with laboratory-
grade tools in Section 6.2. This comparative analysis confirms that the geometric data
derived from the point clouds provides highly accurate quantitative assessments of surface
damage, moving beyond mere detection to enable precise fault characterization.

6.1. Hybrid CNN-ML Model Performance Comparison in Performing Surface Defect Classification

The performance of the trained classification models was evaluated for their capability
to identify surface defects on the conveyor belt using RGB and TrueDepth cameras sepa-
rately. Classifiers’ efficacy was quantified using standard performance metrics: accuracy
and F1 score. An F1 score exceeding 0.9 indicates strong potential for real-world indus-
trial deployment. The comprehensive performance results across both validation and test
datasets are summarized in Table 1.

Table 1. Performance comparison of models for RGB image and TrueDepth camera classification on
validation and test data sets.

Accuracy F1 Score
Model Depth  Parameters RGB Camera TrueDepth Camera RGB Camera TrueDepth Camera
Validation Test Validation Test Validation Test Validation Test
VGG16-RF 0.9740 0.9644 0.9667 0.9691 0.9817 0.9769 0.9763 0.9793
VGG16-XGBoost 16 1384 M 0.9375 0.9269 0.9271 0.9372 0.9573 0.9527 0.9465 0.9568
VGG16-LightGBM 0.9333 0.9316 0.9635 0.9709 0.9542 0.9559 0.9745 0.9805
InceptionV3-RF 0.8313 0.8988 0.9844 0.9878 0.8864 0.9363 0.9890 0.9919
InceptionV3-XGBoost 189 239M 0.7969 0.8304 0.9521 0.9803 0.8637 0.8926 0.9654 0.9869
InceptionV3-LightGBM 0.8094 0.8332 0.9260 0.9419 0.8728 0.8948 0.9495 0.9624
ResNet50-RF 0.8302 0.8510 0.9115 0.9119 0.8848 0.9003 0.9403 0.9432
ResNet50-XGBoost 107 256 M 0.7521 0.6607 0.7479 0.7432 0.8250 0.7418 0.8210 0.8259
ResNet50-LightGBM 0.8542 0.6710 0.8281 0.8013 0.8988 0.7740 0.8821 0.8691
Xception-RF 0.9573 0.9719 0.9812 0.9841 0.9692 0.9813 0.9867 0.9894
Xception-XGBoost 81 229M 0.9802 0.9513 0.9198 0.9157 0.9860 0.9674 0.9456 0.9458
Xception-LightGBM 0.9833 0.9653 0.9229 0.9185 0.9882 0.9771 0.9477 0.9476

For the RGB image modality, the Xception architecture paired with a Random Forest
(Xception-RF) classifier achieved the highest F1 score (0.9813) on the test set, demonstrating
its superior capability in detecting defects based on visual features. This model also showed
strong consistency, with its performance on the validation set (0.9692) closely matching
its test results, indicating robust generalizability. The VGG16-RF model also performed
robustly, with an F1 score of 0.9769. Notably, while the Xception-XGBoost model achieved
the highest validation F1 score (0.9882) for RGB, its test performance (0.9674) experienced a
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more significant drop, suggesting a potential for overfitting compared to the more stable RF-
based variants. In contrast, models based on the ResNet50 architecture showed markedly
lower performance on RGB data, with F1 scores on the test set falling below 0.78 for its
XGBoost and LightGBM implementations. This suggests that the ResNet50 architecture
may be less suitable for extracting discriminative features from the surface texture and
color variations present in the conveyor belt images under the studied conditions.

For the 2D representation of point cloud data modality, which captures 3D topographic
information, the InceptionV3-RF model achieved the highest F1 score (0.9919) on the test
set. This indicates the exceptional effectiveness of geometric features for defect detection,
as surface deformations like gouges and cuts manifest clearly as anomalies in the 3D point
cloud. The Xception-RF and VGG16-LightGBM models also performed exceptionally well
on this modality, with test F1 scores of 0.9894 and 0.9805, respectively. The consistently
high performance across multiple architectures for the TrueDepth modality—with six
different model-classifier combinations achieving a test F1 score above 0.97—underscores
the inherent robustness of geometric data. This data is less susceptible to the visual
challenges, such as lighting variations and dust, that can adversely affect RGB image
analysis, a fact highlighted by the performance gap between modalities for architectures like
InceptionV3, where the TrueDepth F1 score was over 0.05 higher than its RGB counterpart.

The confusion matrix for the top-performing TrueDepth model including InceptionV3-
RF, shown in Figure 9, reveals a conservative detection profile: no false negatives were
observed on the test set (259 faulty instances), while the primary error mode consisted
of 13 false positives where intact surface areas were flagged as defective. This behaviour
reduces the risk of missed critical defects, which is an important advantage for maintenance
in safety-critical operations, but increases the rate of unnecessary follow-up inspections.
The false-positive burden can be managed in practice by adjusting detection thresholds,
applying simple post-processing filters, or introducing a lightweight secondary verification
step to improve precision without substantially compromising defect detection sensitivity.
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Figure 9. Confusion matrices for the three top-performing models from Table 1.
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The Receiver Operating Characteristic (ROC) curves in Figure 10 summarize the per-
formance of models trained on TrueDepth-derived data. The models using 3D geometric
features exhibit strong and consistent discriminative power, with curves rising sharply
toward the top-left corner and area under the curve (AUC) values exceeding 0.98 across
classifiers. These results indicate that features extracted from TrueDepth point clouds
provide a robust and separable representation of defects, enabling high true positive rates
with low false alarm rates across different model—classifier combinations. The consistency

of ROC behaviour across architectures suggests that the projected point cloud represen-
tation delivers classifier-agnostic signal quality suitable for reliable defect detection in

challenging environments.
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Figure 10. ROC curves for all studied models evaluated on TrueDepth camera data.

The results demonstrate that the TrueDepth camera captures superior data for identify-

ing surface defects on conveyor belts. The underperformance of the model trained on RGB
data is primarily due to false positives caused by surface textures such as permanent belt
patches which were incorrectly classified as defects, as illustrated in Figure 11. In contrast,
the point cloud data from the TrueDepth camera effectively excluded these patches from
consideration, as their depth measured below 1 mm. Our model was specifically trained to

recognize defects with a depth exceeding 2 mm, thereby ignoring superficial variations.

Furthermore, the 2D representation derived from the point cloud retains only depth-
based anomalies, whereas RGB images contain all visual textures present on the belt
surface. This additional complexity makes it significantly more challenging for a model
to distinguish genuine defects from normal surface patterns. Consequently, using the
2D representation of point clouds substantially reduces the number of training samples
required to achieve high performance. This is a crucial advantage in industrial environ-
ments, where acquiring large, accurately labeled datasets is often prohibitively expensive

or logistically impractical.
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(a) A belt patch (red box) captured by RGB camera

(b) A belt patch (red box) captured by TrueDepth camera

Figure 11. Comparison of RGB and TrueDepth camera sensors in the capturing of a belt patch (false
positive case).

6.2. Real-World Accuracy Comparison for Defect Quantification

This section analyses the model outcomes and outlines how detected faults can be
subjected to further quantitative evaluation using TrueDepth-derived geometry. By training
on 2D projections of the point cloud, we substantially reduce computational complexity
while retaining the geometric detail needed for reliable defect detection. Only samples
classified as defective are forwarded for high-resolution, full-dimensional 3D reconstruc-
tion using the TrueDepth point clouds, producing detailed geometric models that support
precise dimensional measurements and localization. Figure 12 illustrates the measured
dimension of fault sample 2 obtained from the TrueDepth point cloud. This selective recon-
struction strategy optimizes computational resources by avoiding expensive processing
of non-defective data and delivers actionable, geometry-focused maintenance feedback
to technicians.

To validate the quantitative accuracy of the proposed vision-based system, its mea-
surements were benchmarked against a conventional manual method using a ruler and
caliper as the baseline. A comprehensive comparison between the measured height, width,
and depth of the faults obtained from TrueDepth 3D point clouds and the manual measure-
ments is presented in Table 2.
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Figure 12. Quantitatively analyzing the defect sample 2 captured by the TrueDepth camera.

Table 2. Defect measurement results with absolute differences (mm) between Ruler & Caliper and
TrueDepth camera measurements.

Ruler & Caliper TrueDepth Camera Absolute Difference
Defect Number
Height Width Depth Height Width Depth Height Width Depth

Defect 1 155 125 20 155 123 18 0 2 2
Defect 2 155 135 19 154 134 21 1 1 2
Defect 3 153 118 19 155 116 22 2 2 2
Defect 4 165 125 23 163 124 24 2 1 1
Defect 5 157 130 21 154 130 19 3 0 1
Defect 6 160 125 23 161 128 26 1 3 2
Defect 7 250 140 22 248 139 20 2 1 2
Defect 8 274 140 21 277 142 24 3 2 2
Defect 9 185 50 19 184 49 18 1 1 1

The comparative analysis revealed a high degree of concordance, with the measure-
ment error for defect dimensions between the TrueDepth camera and the manual method
remaining within 3 mm. This result confirms the system'’s reliability and precision in captur-
ing key geometric parameters. Beyond replicating manual measurements, the TrueDepth
camera offers a distinct advantage: the capability for near-real-time, quantitative assess-
ment of complex defect morphology. While manual techniques struggle with the irregular,
non-linear contours typical of surface damage, the system accurately determines the shape
and calculates the actual surface area of a defect. This facilitates a more comprehensive
damage assessment, including a preliminary estimation of material loss volume, derived
from the product of the measured area and average depth. It is important to note that the
accuracy of this volumetric estimate is contingent upon the slope and internal geometry of
the surface defects.

7. Summary and Conclusions

The presented study successfully introduced and validated a novel smartphone-driven
surface defect detection system framework for the inspection of industrial conveyor belt
surfaces. Addressing the challenges of unreliable computer vision methods in harsh mining
environments characterized by variable lighting and dust, the system uses the integrated
TrueDepth camera of a commercial smartphone (iPhone 12 Pro Max) to simultaneously
capture high-resolution visual data and precise 3D point clouds from a moving belt.

The presented methodology is based on a 3D-to-2D projection, which converts complex
point cloud data into structured 2D representations. We employed a hybrid architecture
where pre-trained CNNs (VGG16, ResNet50, InceptionV3, Xception) serve as deep feature
extractors, followed by machine learning classifiers (Random Forest, XGBoost, LightGBM).
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The InceptionV3-RF model, operating on geometric features, attained a high test F1 score
of 0.9919 and maintained a near-perfect recall for the fault class. This capability is critical
for operational safety as it prevents the occurrence of errors.

Additionally, the proposed methodology enables the quantitative assessment of sur-
face damage. Comparative analysis against manual measurements confirmed the system'’s
reliability, with measurement errors for defect dimensions remaining within 3 mm for point
cloud-derived depth. Such accuracy allows the system to properly determine the complex
morphology of defects and calculate the defect surface area and shape. This information
allows for a robust system of maintenance with tracking of the belt condition through its
full life cycle and, in turn, better prediction of the time of necessary intervention.

In conclusion, this research validates a reliable and cost-effective smartphone-based
sensing platform that supports near-real-time maintenance decisions. We demonstrate the
distinct advantage of the TrueDepth camera over conventional RGB imaging for capturing
surface geometry, a capability that proves particularly suitable for low-light industrial con-
ditions. This study successfully established the system'’s core effectiveness in a controlled
laboratory setting, confirming its ability to detect geometric defects and generate accurate
surface maps under simulated conditions.

Building on this validated foundation, the proposed methodology demonstrates
significant potential to improve conveyor belt management, reduce maintenance costs,
and enhance operational safety. In our future work, we plan to conduct field validation on
an operational conveyor belt within a mining site to investigate the system’s robustness
against real-world challenges such as airborne particulates and mechanical vibration.
Furthermore, we intend to explore data fusion techniques that integrate complementary
information from both RGB and TrueDepth cameras. This multi-modal approach aims
to generate a more comprehensive condition report, potentially providing supervisors
with a richer, hybrid data stream for enhanced quality monitoring and decision-making in
industrial settings.
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