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Introduction: Rapid and scalable surveillance of antimicrobial resistance (AMR) 
is urgently needed in resource-constrained countries where routine monitoring 
is limited. Wastewater-based metagenomics offers a potential solution for early 
detection and geographic mapping of AMR.
Methods: We conducted a retrospective DNA shotgun metagenomic analysis 
of untreated wastewater collected across Nagpur, India (February–April 2021). 
A total of 422 grab samples were pooled into 138 composite samples from 10 
urban zones and rural catchments. The bacterial microbiota and resistome were 
profiled, and urban–rural patterns were compared using diversity metrics and 
correlation analyses.
Results: Across all samples, 871 bacterial genera were detected, dominated 
by Proteobacteria, with frequent presence of Pseudomonas, Acinetobacter, 
Aeromonas, Acidovorax and Bacteroides. Beta diversity revealed statistically 
significant but subtle urban–rural compositional shifts. Of 33 globally important 
pathogens examined, 13 were detected at generally low relative abundance 
(<1%). Vibrio cholerae appeared in one sample, while Aeromonas spp. were 
most prevalent. Seven pathogens occurred in ≥10% of samples, with Aeromonas, 
Citrobacter, and Enterobacter differing significantly between locations (p < 
0.05). The resistome comprised 606 unique antimicrobial resistance genes 
(ARGs), dominated by drug/biocide efflux determinants, followed by macrolide-
lincosamide-streptogramin B genes driven largely by 23S rRNA mutations. 
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Carbapenemases (blaNDM, blaKPC) and colistin resistance (mcr) were 
detected at lower abundance. Correlation analyses linked Pseudomonas with 
mexEF/emhABC efflux and copBCDRS copper resistance operon, Acinetobacter 
with oxa and dfrA, and Aeromonas with ctx, tetA, sul1, dfrB/F, and gyrA/parC.
Discussion: These findings show that wastewater metagenomics sensitively 
resolved clinically relevant pathogens and ARGs in an Indian urban–rural 
setting, capturing nuanced geographic structure. Integrating routine DNA 
metagenomics into One Health environmental surveillance could strengthen 
AMR early warning and guide interventions in resource-constrained contexts.

KEYWORDS

antimicrobial resistance (AMR), India, low- and middle-income countries, One Health, 
resistome, wastewater metagenomics, wastewater surveillance

1 Introduction

The COVID-19 pandemic catalyzed global recognition of 
wastewater-based surveillance (WBS) as a powerful and cost-effective 
tool for tracking emerging and endemic infectious diseases at the 
population level (Thompson et al., 2020; Wade et al., 2022). 
Wastewater reflects pooled biological signals from entire communities, 
capturing pathogens shed by both symptomatic and asymptomatic 
individuals. This makes it particularly valuable in low- and middle-
income countries (LMICs), where traditional surveillance and 
diagnostic systems may be limited or fragmented (Crits-Christoph et 
al., 2021; Hendriksen et al., 2019). While WBS initially gained 
prominence through its role in monitoring SARS-CoV-2, its broader 
utility extends to the detection of respiratory, gastrointestinal, 
zoonotic, and antimicrobial-resistant organisms (Asghar et al., 2014; 
Knight et al., 2021; Lamba et al., 2017).

India presents a compelling case for expanded environmental 
surveillance. The country faces a dual challenge of high infectious 
disease burden and a growing concern around escalating antimicrobial 
resistance (AMR), influenced by high antibiotic use in medicine and 
agriculture, alongside limitations in wastewater treatment 
infrastructure (Graham et al., 2019; Klein et al., 2018; Laxminarayan 
and Chaudhury, 2016). A recent systematic review highlights that the 
treatment of hospital wastewater fails to eliminate pathogens and 
AMR genes, resulting in hospitals representing a significant AMR 
environmental burden and public health risk (Amin et al., 2024). 
Despite increasing evidence of their diagnostic value and cost-
effectiveness (Marais et al., 2023), investment in advanced technologies 
such as clinical and environmental metagenomics remains limited in 
many LMICs, including India. This slower uptake is not primarily a 
consequence of insufficient interest, but rather of structural challenges. 
These include fragmented or incomplete sewerage infrastructure, 
restricted laboratory and bioinformatics capacity, financial constraints, 
outdated or underdeveloped policy frameworks, limited recognition 
of utility within existing surveillance systems, and the considerable 
time and resources required to establish and sustain training in new 
methodologies (Getchell et al., 2024).

Environmental reservoirs, especially untreated urban and rural 
wastewater, play a critical role in the emergence, amplification, and 
dissemination of AMR. These reservoirs facilitate horizontal gene 
transfer and serve as convergence points for human, animal, and 
environmental microbiomes, making them a priority in One Health 
surveillance strategies (Huijbers et al., 2015; Larsson et al., 2018; 

Wellington et al., 2013). Despite this, comprehensive metagenomic 
datasets from Indian wastewater systems remain scarce, and the urban 
and rural perspective is lacking. Most previous studies have used 
culture-based or polymerase chain reaction (PCR)-targeted 
approaches, limiting insights into microbial diversity and resistome 
structure across different environments (Balkrishna et al., 2024; Rout 
et al., 2023; Taneja and Sharma, 2018).

We previously reported the first RNA-Seq-based analysis of 
untreated wastewater in India, conducted during the second wave of 
COVID-19. This study analyzed composite samples collected from 
urban and rural areas of Nagpur, Central India, and revealed extensive 
circulation of SARS-CoV-2, hepatitis C virus, and a range of zoonotic 
and enteric viruses, including chikungunya, rabies, and Jingmen tick 
virus (Stockdale et al., 2023). The study demonstrated the power of 
unbiased RNA metagenomics to detect unexpected viral threats, 
assess co-infections, and monitor pathogen distribution across diverse 
geographic settings.

Building on this platform, the present study applies DNA-based 
shotgun metagenomic sequencing to the same wastewater surveillance 
network. Our dataset comprises 138 composite samples spanning 
both urban and rural catchments, one of the largest of its kind in 
India, providing unprecedented resolution of bacterial communities 
and the antimicrobial resistome in this setting. Our objectives were to 
(1) assess the microbial composition and antimicrobial resistance gene 
(ARG) burden in urban versus rural wastewater catchments; (2) detect 
the presence and abundance of clinically important bacterial 
pathogens and resistance genes; and (3) explore correlations between 
key microbial taxa and ARGs. By combining viral and bacterial 
metagenomic data from the same community surveillance network, 
we aim to generate a more holistic understanding of public health 
threats and AMR risks in a major urban–rural region of central India. 
In doing so, we demonstrate the scalability and relevance of wastewater 
metagenomics for integrated infectious disease surveillance under a 
One Health framework in LMIC settings.

2 Materials and methods

2.1 Approvals for wastewater sample 
collection

As this was an environmental sampling study, no formal ethics 
were required from the respective institutions. However, official 
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permissions for sample collection were taken from the Nagpur 
Municipal Corporation (NMC).

2.2 Study design

We conducted a retrospective cross-sectional DNA metagenomic 
analysis of untreated wastewater samples in Nagpur district, 
Maharashtra, during the second wave of the COVID-19 pandemic 
(3rd of February to 3rd April 2021). A total of 422 samples (1 L each) 
were collected using sterile plastic (HDPE) leak-proof containers from 
the main sewer drainage lines of 10 urban municipality zones and 
from open drains or surface water bodies in rural areas from Nagpur 
district. Sampling sites were selected in consultation with technical 
staff from the Nagpur Municipal Corporation (NMC) to identify 
primary sewer junctions receiving convergent flow from adjacent 
residential catchments, thereby ensuring that collected samples 
reflected mixed community effluent. Site selection additionally 
accounted for accessibility and operator safety under COVID-19 
restrictions (Supplementary Table 1). Samples were collected by 
directly filling the containers to the 1 L mark. Each container was 
sanitized with 70% ethanol, labeled with zonal identifiers, and sealed 
in zip-lock bags. Sampling was carried out in the morning hours 
(07:30 and 12:00), when wastewater flow rates were expected to peak 
due to higher defecation frequency, as described by Heaton et al. 
(1992). All collections were performed under biosafety conditions in 
accordance with the Government of India standard operating 
procedures (Government of India, 2020).

The samples were immediately transferred under cold chain 
conditions (4 ± 2 °C) to the Research Department at the Central India 
Institute of Medical Sciences (CIIMS), using Thermocol boxes with ice 
packs. Under aseptic conditions, individual samples were pooled in 
equal volumes across geography and time to generate 138 composite 
samples comprising 110 composite samples from urban zones and 28 
from rural areas. Pooling ensured that each composite sample was 
representative of a defined geographic catchment and minimized 
variability due to temporal or diurnal fluctuations in microbial load. In 
addition to reducing overall sequencing costs, pooling improved the 
likelihood of detecting low-abundance pathogens and antimicrobial 
resistance genes (ARGs) by concentrating signals from the same area. 
Composite samples were subsequently transported under cold chain to 
the Dr. B. Lal Institute of Biotechnology in Jaipur for further processing.

2.3 Sample collection, processing, and 
nucleic acid extraction

The samples were stored and processed at the Dr. B. Lal Institute 
of Biotechnology following protocols as previously described 
(Stockdale et al., 2023). In brief, after collection, all samples were stored 
at 4 °C for no longer than 24 h before pre-processing. Containers were 
sterilized by UV treatment for 30 min, followed by heat inactivation in 
a 70 °C sonicating water bath for 90 min. The samples were then 
brought to room temperature (21 °C) and subjected to a two-step 
filtration process: initial filtration through Whatman qualitative grade 
40 paper, followed by vacuum filtration using a Millipore 0.45-μm 
membrane filter. Nucleic acids were precipitated by combining 50 mL 
of the filtrate with 0.9 g sodium chloride (NaCl) and 4 g polyethylene 

glycol (PEG) in a 50-mL Falcon tube. After dissolution, the mixture 
was centrifuged at 4 °C for 30 min at 5750 g. The supernatant was 
decanted, and the resulting pellet was re-suspended in the RNA/DNA 
Shield, provided in the ZYMOBIOMICS ™ kit. Nucleic acids were 
extracted using the ZymoBIOMICS MagBead DNA/RNA kit (R2136) 
according to the manufacturer’s instructions.

2.4 Library construction and sequencing

The quality of extracted DNA was assessed using a NanoDrop 
spectrophotometer and quantified using a Qubit Fluorometer 
(Thermo Fisher Scientific, United States). DNA libraries were prepared 
using the Illumina TruSeq® Nano DNA Library Preparation kit 
(Illumina, United States), with 100 ng of input DNA per sample. DNA 
was fragmented to an average size of approximately 350 bp following 
the manufacturer’s protocol. Library quality and fragment size 
distribution were evaluated using an Agilent Tapestation with high-
sensitivity D1000 ScreenTape (Agilent Technologies, United States). 
Sequencing was performed on an Illumina HiSeq 2,500 platform 
using 2 × 150 bp paired-end reads, generating approximately 5 GB of 
raw data per sample. FASTQ files, quality checked and adaptor 
trimmed, were provided by Eurofins Genomics (Bengaluru, India).

2.5 Metagenomics analysis

Illumina paired-end reads were quality-assessed and trimmed to 
remove poor quality bases (−q 20) and short reads (−l 50) using 
FastQC (v0.12.1; Andrews, 2010) and FastP (v0.23.2; Chen et al., 
2018), respectively. Host-derived sequences were filtered out using 
Hostile (v1.1.0; Constantinides et al., 2023) with a masked host 
reference database to enhance bacterial sequence retention. Microbial 
taxonomic profiling was performed using MetaPhlAn 4 (v4.1.1; 
Blanco-Míguez et al., 2023). ARGs were detected using AMR++ 
(v3.0.6; Bonin et al., 2023) with the MEGARes 3 database. Read counts 
were deduplicated and subjected to single-nucleotide polymorphism 
(SNP) verification to ensure ARG specificity. Relative abundance of 
ARGs was calculated from raw counts obtained from AMR++, and 
normalization was conducted using Cumulative Sum Scaling (CSS) 
implemented in the metagenomeSeq R package (v1.50.0; Paulson et 
al., 2013). Where required, relative abundance was calculated using the 
normalized counts. Coverage of specific genes was calculated by first 
identifying the length of each gene and the number of bases covered 
for each gene of interest using the deduplicated sequence alignment 
files from AMR++ (Bonin et al., 2023) and SAMtools v1.21 (Danecek 
et al., 2021), with secondary and low-quality alignments excluded. 
Gene-level abundance and presence were determined using 
ResistomeAnalyzer (Lakin et al., 2017) with default parameters. 
Resistance genes were only reported when read alignments met 
minimum identity requirements and covered a substantial proportion 
of the reference gene length (default ≥80% gene coverage), thereby 
excluding partial or low coverage matches arising from short conserved 
regions or mobile genetic element fragments. As the MEGARes 3 
database contains multiple sequences for each gene, percentage 
coverage was calculated as (∑(bases covered) / ∑(gene length) * 100). 
Alignments failing to meet these thresholds were discarded, ensuring 
that reported resistance genes represent near full-length gene coverage, 
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reducing inflation of ARG detection due to ambiguous or low-depth 
mapping (Supplementary Table 2).

2.6 Data and statistical analysis

All statistical analyses and data visualizations carried out in this 
study were conducted in R (v4.4.1). The continuous variables were 
compared using the independent samples t-test when the normality 
assumption is valid, as evaluated using the Shapiro–Wilk test, or the 
Wilcoxon rank-sum test otherwise. The specific test used is stated 
where appropriate. To characterize community structure and its 
determinants, we combined diversity, multivariate, and statistical 
association approaches: alpha diversity metrics quantified within-
sample richness and evenness, multivariate analyses of community 
structure examined between-sample compositional differences, and 
correlation analysis assessed relationships between diversity, 
ordination scores, and relevant environmental or clinical variables. 
Each of these approaches is described briefly in the subsequent 
paragraphs.

Alpha diversity metrics (Shannon, Simpson, and species richness) 
and beta diversity (Bray–Curtis dissimilarity) were calculated using 
MetaPhlAn supporting scripts. Diversity analyses for ARGs were 
based on normalized counts and similarly assessed using Shannon, 

Simpson, and Bray–Curtis metrics calculated using the vegan package 
(v2.7–1; Oksanen et al., 2025).

Multivariate analyses of community structure were carried out 
using non-metric multidimensional scaling (NMDS), permutational 
multivariate analysis of variance (PERMANOVA), and 
permutational analysis of multivariate dispersion (PERMDISP). 
NMDS was performed using Bray–Curtis dissimilarity matrices, 
implemented via the metaMDS function in the vegan package. 
PERMANOVA was performed with 999 permutations using 
adonis2 to assess the differences in microbial and ARG community 
composition between urban and rural samples. Finally, PERMDISP, 
implemented via the betadisper function in the vegan package, was 
used to examine differences in multivariate dispersion 
among groups.

Spearman’s rank correlation analysis was performed to assess 
associations with the relative abundance of ARGs and bacterial 
genera present in at least 50% (69/138) of the metagenomic samples. 
Hierarchical clustering was subsequently performed using a distance 
matrix calculated as 1- Spearman correlation coefficient, with 
complete linkage.

Finally, the representative map of the Nagpur district, India, was 
produced using the Quantum Geographic Information System 
Software (QGIS) v3.40.7 (QGIS, 2025), using points with the 
longitude and latitude of the collection locations of the samples.

FIGURE 1

Map of the Nagpur district, central India, indicating geographical locations of sample collection sites contributing to composite samples produced 
using QGIS. Blue points denote urban sampling locations, while pink points denote rural sampling locations.
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3 Results

In this study, a retrospective DNA metagenomic survey was 
performed using 138 untreated composite wastewater samples 
collected from rural (n = 28) and urban (n = 110) areas of Nagpur, 
Central India (Figure 1).

3.1 Comparison of urban vs. rural samples

Shotgun metagenomic analysis identified 871 unique genera across 
all samples, with 97% of classified taxa belonging to the domain 
Bacteria. The majority of classified reads were assigned to four 
dominant phyla, shown as the median abundance and interquartile 
range (IQR): Actinobacteria (0.42%; 2.06%), Bacteroidota (3.68%; 
12.8%), Firmicutes (0.65%; 4.90%), and Proteobacteria (91.9%; 22.1%) 
across all samples. Proteobacteria overwhelmingly dominated samples 
from both locations. Within Proteobacteria, the presence of 
Pseudomonas was prevalent across all samples, with a median (IQR) 
relative abundance of 34.4% (83.9%). Other frequently detected genera 
were Acinetobacter, Aeromonas, Acidovorax, and Bacteroides (Figure 2). 
No statistical differences were observed in alpha diversity between 
urban and rural samples (p = 0.6).

Beta diversity analysis revealed significant compositional differences 
between locations (PERMANOVA, p < 0.001). To assess whether this 
may be influenced by differences in within-group dispersion, we used 
the betadisper function from vegan. The results indicated a significant 
difference in dispersion between urban and rural groups (p < 0.01), 
suggesting that the observed PERMANOVA result should be interpreted 
with caution, as compositional differences may be confounded by 
heterogeneity in variance structure (Supplementary Figure 1).

3.2 Presence of potentially clinically 
relevant taxa in untreated wastewater 
samples

Globally, 33 bacterial pathogens have been implicated in 13.6% of 
all deaths and 56.2% of sepsis-related deaths in 2019 (Ikuta et al., 
2022). Due to their relevance, metagenomic sequences were specifically 
interrogated for these 33 pathogens. Overall, 13/33 (39%) of the 
targeted pathogens were detected across the wastewater samples, 
although their abundance was generally low (Supplementary Table 3). 
When considering the ESKAPE group, all pathogens except 
Staphylococcus aureus were detected. Vibrio cholerae was also identified 
in a single sample. Despite the high prevalence of the Pseudomonas 
genus, P. aeruginosa was only identified in 6/138 samples.

To ensure robust statistical analysis, only pathogens present in at least 
10% of samples were retained for further comparison. This threshold 
yielded seven pathogens for downstream analysis. Using the Wilcoxon 
rank-sum test with Benjamini–Hochberg correction, the comparison of 
the relative abundance showed no significant difference between urban 
and rural samples for Escherichia coli, Acinetobacter baumannii, Klebsiella 
pneumoniae, and other non-pneumoniae Klebsiella. However, Aeromonas 
spp., Citrobacter spp., and Enterobacter spp. demonstrated a significant 
difference between sampling sites (*p < 0.05; Figure 3).

3.3 Abundance and diversity of ARGs in 
environmental samples

A total of 606 unique ARGs were identified across all the samples, 
the most prevalent category of which was drug and biocide resistance 
(19.1%), primarily comprising genes encoding efflux pumps. This was 

FIGURE 2

Relative abundance of the four phyla with the highest median abundance across all samples, together with the most abundant genera (by median 
abundance) within each phylum. Genera are color-coded according to phylum: shades of blue for Actinobacteria, purple for Bacteroidota, brown for 
Firmicutes, and beige for Proteobacteria. Genera belonging to all other phyla are shown in gray.
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followed by resistance to macrolide-lincosamide-streptogramin B (MLS) 
antibiotics, accounting for 17.6% of detected ARGs, which was largely 
due to mutations in the 23S rRNA gene (Supplementary Figure 2). Other 
clinically significant ARGs were also identified at lower abundance; this 
included carbapenemases such as blaNDM and blaKPC (3.5%) and 
colistin resistance from mcr (0.7%), although the coverage of these genes 
across all samples was low, 2.4 and 2.6%, respectively.

No significant difference was observed in the alpha diversity of 
ARGs between urban and rural samples (Shannon, p = 0.745; 
Simpson, p = 0.606; Figure 4A). ARG abundances were normalized 
using cumulative sum scaling (CSS) to account for variation in 
sequencing depth across samples. This normalization reduced 
compositional bias and enabled robust comparison between urban 

and rural wastewater communities. No statistically significant 
difference was observed in total ARG abundance between urban and 
rural sites (Figure 4B). However, there was a significant difference in 
the beta diversity (PERMANOVA, p < 0.01). This variation was 
unlikely to be driven by differences in within-group dispersion, as the 
PERMDISP result was not significant (p = 0.05; Figure 4C).

3.4 Relationship of ARGs and bacterial genera

To investigate associations between ARGs and bacterial genera 
that were present in more than 50% of the samples, hierarchical 
clustering was used to group genera using Spearman’s correlation 

FIGURE 3

Relative abundance of clinically relevant human pathogens detected in at least 10% of rural and urban samples. Data are presented as median values 
with 25th and 75th percentiles. Statistical significance was assessed using the Wilcoxon rank-sum test with Benjamini–Hochberg correction (*p < 0.05).

https://doi.org/10.3389/fmicb.2025.1722229
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Secker et al.� 10.3389/fmicb.2025.1722229

Frontiers in Microbiology 07 frontiersin.org

coefficient values (Figure 5). This analysis revealed three distinct 
clusters of genera based on their correlation with ARGs. The first 
cluster consisted solely of Pseudomonas. ARGs strongly associated 
with Pseudomonas were generally negatively correlated with other 
genera, suggesting a distinct resistome profile. Notably, Pseudomonas 
showed strong associations with efflux pump genes mexEF and 
emhABC, as well as the copBCDRS copper resistance operon, 
consistent with known resistance mechanisms in this genus. The 
second cluster contained three genera, notably Acinetobacter, which 
was strongly associated with resistance genes oxa (beta-lactamases) 
and dfrA (trimethoprim resistance). The third cluster comprised 
multiple genera, including Aeromonas, which were broadly associated 
with diverse ARGs across multiple classes, such as ctx, tetA, sulI, 
dhrF/B, and quinolone resistance determinants gyrA/parC.

4 Discussion

This study provides one of the most comprehensive DNA 
metagenomic analyses of untreated wastewater from both urban and 

rural areas in central India. By analyzing 138 composite samples 
across Nagpur district, a central transport hub with extensive human 
and goods movement, we deliver high-resolution insights into 
microbial composition and antimicrobial resistance gene (ARG) 
burden at the community level. Our findings demonstrate that 
wastewater grab samples can yield valuable information on the 
presence of ARGs and the gut-associated microbial composition of 
populations within the study site. When integrated with 
complementary data sources, such as clinical isolates or antibiotic 
usage records, or extended through longitudinal sampling, this 
approach could reveal trends and shifts over time, offering a 
foundation for improved understanding of population health and 
antimicrobial resistance dynamics in settings where formal diagnostic 
systems are under-resourced.

Bacterial antimicrobial resistance (AMR) is a major global health 
challenge, directly responsible for an estimated 1.14 million deaths in 
2021. South Asia is projected to have the highest AMR-related 
mortality across all age groups by 2050 (Naghavi et al., 2024). The 
environment acts as an important reservoir for AMR, facilitating 
resistance transmission between humans, animals, and natural 

FIGURE 4

(A) Violin plot showing Shannon and Simpson alpha diversity metrics for ARG diversity in samples from rural and urban locations. Black point shows 
medians, with whiskers representing the 25th and 75th percentiles. (B) Box and whisker plots showing total antimicrobial resistance gene abundance 
per sample across both locations. (C) NMDS ordination plots of Bray–Curtis dissimilarity of the antimicrobial resistance gene composition in rural and 
urban samples. Each point represents an individual sample, with separation reflecting compositional differences. Larger circles denote median NMDS1 
and NMDS2 values for each location. The stress value indicates the goodness-of-fit of the NMDS.
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ecosystems (Larsson and Flach, 2022). Surveillance of untreated 
wastewater is therefore crucial for identifying clinically important 
pathogens and ARGs circulating within communities.

Multiple mechanisms contribute to the emergence, maintenance, 
and dissemination of antimicrobial resistance in wastewater 
environments. Selective pressure from residual antibiotics, even at 
sub-inhibitory concentrations, can maintain resistance genes and 
promote horizontal gene transfer (Gullberg et al., 2011). Co-selection 
by heavy metals and biocides, which are commonly present in 
wastewater, can indirectly maintain antibiotic resistance genes 
through genetic linkage on mobile elements (Baker-Austin et al., 
2006). The high microbial density and taxonomic diversity of 
wastewater create optimal conditions for horizontal gene transfer via 
conjugation, transformation, and transduction, facilitated by mobile 
genetic elements including plasmids, integrons, insertion sequences, 
and transposons (von Wintersdorff et al., 2016). Differential inputs to 
wastewater systems further shape resistome composition: urban 
catchments receive substantial contributions from hospitals and 
healthcare facilities, where antibiotic selective pressure is intense 
(Berendonk et al., 2015; Lépesová et al., 2020; Verlicchi et al., 2012); 
rural catchments receive greater proportional inputs from agricultural 
sources, including livestock excreta containing veterinary 
antimicrobials and resistant commensal bacteria (He et al., 2020; 
Manyi-Loh et al., 2018); and both urban and rural systems receive 
domestic sewage containing human gut microbiota influenced by 
community antibiotic consumption (Bengtsson-Palme et al., 2016; 
Pärnänen et al., 2019; Pazda et al., 2019). These overlapping selection 
pressures and transmission pathways make wastewater a critical 
convergence point for resistance genes from multiple sources, 

underlining its importance for One Health surveillance (Hassoun-
Kheir et al., 2020; Pruden et al., 2021).

Consistent with previous Indian studies, our results show a 
dominance of Proteobacteria across all samples, followed by 
Bacteroidota, Firmicutes, and Actinobacteria (Gawande et al., 2025; 
Marathe et al., 2019). The most abundant genera included 
Pseudomonas, Acinetobacter, Aeromonas, and Acidovorax, all 
associated with environmental and anthropogenic sources. This 
phylum-level structure mirrors shotgun metagenomic profiles from 
six hospitals across India, where Proteobacteria and Bacteroidota 
similarly dominated, with Pseudomonas and Acinetobacter leading 
depending on geography (Marathe et al., 2019). A hospital-based 
survey from Chennai further highlighted Acinetobacter dominance, 
alongside high prevalence of sul1 and mphE conferring sulphonamide 
and macrolide resistance, respectively (Marathe et al., 2019).

In our dataset, Pseudomonas was uniquely abundant in both 
urban and rural settings, strongly associated with efflux pumps 
(mexEF and emhABC) and copper resistance operons (copBCDRS). 
These links highlight its dual role in metal tolerance and AMR, 
aligning with previous reports from wastewater and aquatic systems 
(Pal et al., 2015; Poole, 2001). Acinetobacter formed a separate cluster, 
associated with oxa and dfrA genes, reflecting its well-established 
multidrug resistance profile. A third, broader cluster including 
Aeromonas carried diverse ARGs, such as ctx, tetA, sulI, dfrB/F, and 
gyrA/parC, suggesting high potential for lateral gene transfer. 
Aeromonas spp. also showed significantly higher relative abundance 
in rural samples compared to urban samples (Mann–Whitney U-test, 
p < 0.05), potentially reflecting greater exposure to environmental 
water sources, agricultural runoff, and animal reservoirs characteristic 

FIGURE 5

Heatmap of Spearman’s rank correlations between bacterial genera and antimicrobial resistance genes. Pink shading indicates positive correlations, 
while blue indicates negative correlations. Hierarchical clustering was applied to group bacterial genera based on their correlation profile. The color bar 
at the top denotes antimicrobial resistance gene classes as classified by the MEGARes database.
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of rural settings. Aeromonas species are ubiquitous in aquatic 
environments and are known to colonize agricultural systems (Janda 
and Abbott, 2010). Similarly, Enterobacter spp. showed significantly 
higher relative abundance in rural samples, likely owing to its role as 
an opportunistic pathogen in plants, animals, and humans, as such is 
readily identified in environmental samples such as wastewater 
(Davin-Regli et al., 2019). Conversely, Citrobacter spp. demonstrated 
significantly higher relative abundance in urban samples (p < 0.05), 
which may reflect inputs from healthcare facilities, as this organism is 
a known opportunistic nosocomial pathogen (Jabeen et al., 2023). 
These urban–rural differences in pathogen profiles suggest distinct 
transmission pathways and reservoir dynamics between the two 
settings.

Microbial alpha diversity did not differ between urban and rural 
locations, whereas beta diversity analyses indicated subtle but 
statistically significant differences in both community and resistome 
structures. These findings indicate that while overall ARG richness 
and evenness were similar across urban and rural catchments, the 
composition of resistance gene profiles differed significantly between 
locations. These patterns are consistent with observations from 
hospital, riverine, and open drainage settings across India (Gawande 
et al., 2025; Madhukar et al., 2024), reflecting differences in selective 
pressures, including variation in antibiotic usage patterns, sanitation 
infrastructure, healthcare facility density, treatment processes, and 
agricultural practices between urban and rural environments. In 
rural settings, for example, open drains often receive mixed waste 
from humans, livestock, and small-scale industries, creating hotspots 
for microbial interaction and horizontal gene transfer (Madhukar et 
al., 2024). The detection of these subtle but consistent differences 
suggests that local infrastructure and waste stream composition can 
shape both microbial ecology and resistance gene circulation. This 
has potential implications for pathogen and AMR transmission, as 
rural systems may promote more frequent microbial exchange across 
human, animal, and environmental reservoirs, whereas urban 
systems may reflect more anthropogenically driven selective pressures 
such as antibiotic residues and higher-density sewage inputs. The 
subtle but statistically significant urban–rural differences observed in 
microbial community structure and resistome composition merit 
careful interpretation. Urban catchments in Nagpur are characterized 
by higher population density, greater concentration of healthcare 
facilities (including tertiary hospitals), more extensive sewerage 
networks, and potentially higher burdens of pharmaceutical residues. 
These factors may create selective environments favoring particular 
resistance profiles and pathogen distributions. In contrast, rural 
catchments typically feature lower population density, limited 
wastewater treatment infrastructure, greater agricultural activity, 
more direct animal contact, and reliance on open drainage systems 
or surface water bodies. Such environments may facilitate different 
patterns of microbial exchange and horizontal gene transfer, 
particularly at the human–animal–environment interface. Similar 
urban–rural gradients in wastewater resistomes have been reported 
from other Indian regions (Diwan et al., 2018; Lamba et al., 2017; 
Marathe et al., 2017) and comparable LMIC settings (Ekwanzala et 
al., 2018; Auma et al., 2025; Nadimpalli et al., 2018), suggesting that 
local infrastructure, sanitation access, and anthropogenic activities 
are important drivers of geographic variation in AMR gene 
circulation (Collignon et al., 2018; Larsson and Flach, 2022; Van 
Boeckel et al., 2019). However, the overlapping nature of our 

ordination results indicates that these differences are subtle rather 
than categorical, likely reflecting the complex mosaic of influences 
operating across both urban and rural catchments in a rapidly 
developing region.

Our detection of 606 unique ARGs represents a markedly higher 
diversity than previously reported in Indian wastewater studies. For 
comparison, metagenomic surveys of Indian river sediments typically 
reported 50–150 unique ARGs (Singh et al., 2025; Gawande et al., 
2025; Rout et al., 2023), while open drain studies from Hyderabad 
identified 89 ARGs and 287 antimicrobial resistance ontology (ARO) 
terms (Madhukar et al., 2024). This higher ARG diversity may reflect 
several factors: (1) deeper sequencing coverage in our study enabling 
detection of low-abundance genes; (2) use of the comprehensive 
MEGARes v3.0 database for ARG annotation; (3) the composite 
sampling strategy capturing resistance gene diversity across multiple 
sites; and (4) genuine differences in resistome complexity related to 
local antibiotic usage patterns, wastewater treatment infrastructure, 
and environmental selection pressures in central India. Importantly, 
the relative abundance patterns we observed, dominance of efflux 
pump genes and macrolide resistance determinants, align with reports 
from Hyderabad wastewater, where 23S rRNA mutations conferring 
macrolide resistance were similarly prevalent (Madhukar et al., 2024), 
suggesting consistency in certain resistance profiles across Indian 
urban centers despite differences in absolute ARG diversity.

Macrolides—classified as critically important by the WHO—are 
widely used in Indian clinical practice and agriculture (Chakraborty et 
al., 2024; Nair et al., 2010), often available over the counter and 
employed as poultry growth promoters (Hennessey et al., 2025). These 
practices likely drive the elevated levels of MLS resistance genes 
observed. ARG classes conferring resistance to aminoglycosides and 
tetracyclines were also frequently detected, consistent with patterns 
reported in hospital wastewater and major Indian rivers (Marathe et al., 
2019; Rout et al., 2023; Sharma et al., 2024). Such findings underscore 
the need for environmental AMR surveillance that is contextualized to 
the location to inform national strategies and dissemination and 
implementation across countries of wide geography and environments. 
Phenotypic surveillance in four Indian cities, including Nagpur, has 
shown high bacterial resistance rates to erythromycin, tetracycline, 
vancomycin, ofloxacin, cefixime, and ampicillin (47–71%, Kapley et al., 
2023), supporting our genomic findings.

The distinct ARG-bacterial genus correlation profiles suggest 
genus-specific resistome signatures that may reflect both intrinsic 
resistance mechanisms and patterns of acquired resistance via 
horizontal gene transfer. Wastewater environments represent 
recognized hotspots for horizontal gene transfer due to high 
microbial cell density, co-occurrence of diverse bacterial taxa, 
presence of selective agents (residual antibiotics, heavy metals, and 
biocides), and abundance of mobile genetic elements including 
plasmids, integrons, and transposons (Bengtsson-Palme et al., 2018; 
Guo et al., 2017). Recent metagenomic and genomic studies have 
demonstrated extensive ARG mobilization on plasmids recovered 
from wastewater-associated Pseudomonas, Acinetobacter, and 
Aeromonas isolates, supporting the interpretation that observed 
correlations reflect both genus-specific resistance profiles and 
ongoing horizontal gene transfer dynamics (Karkman et al., 2019; 
Ludden et al., 2019; Pärnänen et al., 2019; Petersen et al., 2019; Smalla 
et al., 2018). The strong correlation between copper resistance 
operons and efflux pumps in Pseudomonas is particularly noteworthy, 
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as co-selection by heavy metals has been implicated in maintaining 
antibiotic resistance genes even in the absence of direct antibiotic 
pressure (Baker-Austin et al., 2006; Pal et al., 2015). This co-selection 
mechanism may be especially relevant in wastewater environments 
where both antibiotics and metals are present at sub-inhibitory 
concentrations. The strong associations between specific genera and 
ARG classes are consistent with other known resistance mechanisms: 
Acinetobacter species frequently harbor blaOXA carbapenemases and 
trimethoprim resistance determinants (Hamidian and Nigro, 2019; 
Royer et al., 2015); and Aeromonas species have been increasingly 
recognized as reservoirs of mobile resistance elements, including 
extended-spectrum beta-lactamases, tetracycline resistance genes, 
and sulphonamide resistance determinants (Igbinosa et al., 2012; Neil 
et al., 2024). These relationships indicate that the resistome structure 
in both urban and rural wastewater is shaped not only by the 
taxonomic composition of the microbial community but also by the 
horizontal transfer of ARGs and co-selection under complex 
environmental pressures.

We identified 13 of the 33 WHO priority bacterial pathogens 
responsible for 13.6% of all global deaths in 2019 (Ikuta et al., 2022; 
Naghavi et al., 2024), though only seven were detected in more than 
10% of samples. Despite Pseudomonas prevalence at the genus level, 
P. aeruginosa was detected in only 6 of 138 samples, possibly due to 
strain-level detection limitations or low relative abundance below 
sequencing thresholds. While targeted approaches such as qPCR may 
offer greater sensitivity for specific pathogens (Ahmed et al., 2020; 
Maal-Bared et al., 2023), our findings illustrate that DNA 
metagenomics can concurrently capture a wide diversity of clinically 
relevant bacteria directly from wastewater (Brunfield et al., 2020; 
Hendriksen et al., 2019; Ng et al., 2019). This breadth underscores its 
value for characterizing subclinical and environmental circulation of 
multiple pathogens in parallel, providing complementary insights to 
targeted surveillance methods (Ng et al., 2019; Sims and Kasprzyk-
Hordern, 2020).

The public health implications of our findings are substantial. 
Detection of high-priority resistance determinants, including blaNDM 
carbapenemases, blaKPC carbapenemases, and mcr-mediated colistin 
resistance genes in community wastewater, indicates circulation of last-
resort antibiotic resistance mechanisms beyond clinical settings. While 
the relative abundance of these genes was low (2–3% of samples), their 
presence in environmental wastewater suggests potential for 
community transmission and highlights the importance of 
strengthening antimicrobial stewardship, infection prevention and 
control measures, and wastewater treatment infrastructure. The 
detection of the WHO priority pathogens, including members of the 
ESKAPE group, further underscores the value of wastewater-based 
surveillance as a complement to clinical microbiology systems. In 
resource-constrained settings where routine diagnostic capacity may 
be limited, wastewater metagenomics can provide cost-effective 
population-level surveillance of pathogen circulation and resistance 
trends, enabling early detection of emerging threats and informing 
public health interventions. Integration of wastewater surveillance data 
with clinical isolate databases, antimicrobial consumption data, and 
healthcare facility reports would create a more comprehensive AMR 
monitoring framework aligned with the WHO Global Action Plan on 
AMR and One Health principles (World Health Organization, 2015).

Our study has some limitations. First, we did not include 
phenotypic validation through culture-based isolation or 

antimicrobial susceptibility testing with clinically relevant 
pathogens (e.g., Pseudomonas, Acinetobacter, and Aeromonas). 
While metagenomic detection of resistance genes provides insight 
into genetic potential, it does not confirm functional expression or 
phenotypic resistance in viable isolates. Integration of culture-
dependent approaches and antibiotic susceptibility testing in future 
studies would strengthen confidence in the clinical relevance of 
detected resistance determinants and establish genotype–phenotype 
links. Second, integration with clinical datasets was not possible as 
such data were not available. Aligning pathogen and ARG profiles 
from patients and wastewater would confirm the utility of 
wastewater as a proxy for population-level AMR surveillance. 
Thirdly, sample pooling—while enabling board geographical 
coverage—may mask fine-scale variation within individual sites. 
Additionally, sampling was conducted over a 3-month period 
(February–April 2021) during the dry season, and therefore, our 
findings may not capture seasonal variations in microbial 
composition or resistome dynamics that could occur during 
monsoon or winter periods. Longitudinal monitoring with absolute 
gene quantification would enable risk assessment, particularly for 
high-priority ARGs, such as blaNDM, blaKPC, and mcr. 
Longitudinal studies spanning multiple seasons and incorporating 
higher-resolution spatial sampling would provide further insight 
into temporal and local-scale drivers of wastewater microbiome 
structure and AMR gene dynamics. Fourth, untreated wastewater 
represents mixed human, animal, agricultural, and industrial 
inputs, but source attribution remains unresolved. Physicochemical 
data (e.g., nutrient load, heavy metal content, organic matter, pH, 
and temperature) were not collected as part of this analysis, limiting 
our ability to mechanistically link environmental variables to 
observed microbial and resistome patterns. Incorporating host-
associated markers, antibiotic residues, and comprehensive 
environmental metadata in future prospective studies would help 
clarify resistance drivers and refine the interpretation of geographic 
variation. Finally, this study focused on one district and bacterial 
ARGs only. Broader geographic coverage, inclusion of viral and 
fungal resistance, and embedding wastewater metagenomics into 
national AMR surveillance frameworks will be critical for policy 
translation under a One Health approach. Furthermore, our 
findings are derived from urban and rural catchments in Nagpur 
district, central India, and reflect the specific demographic, 
environmental, and infrastructural context of this region. While 
these results may offer insights relevant to comparable settings in 
India and other low- and middle-income countries, direct 
extrapolation to regions with markedly different sanitation 
infrastructure, antibiotic usage patterns, or environmental 
conditions should be undertaken with caution. Broader geographic 
replication and comparative metagenomic surveillance across 
diverse Indian states and LMICs would strengthen the 
generalizability of these observations.

These limitations are offset by key strengths. Our dataset of 138 
composites from 422 samples is among the largest DNA metagenomic 
wastewater surveys in India, spanning both urban and rural 
catchments. Use of untargeted shotgun metagenomics enabled 
simultaneous profiling of 871 genera, 606 ARGs, and 13 clinically 
important pathogens, including high-priority determinants, such as 
blaNDM, blaKPC, and mcr. Importantly, it is one of the few studies 
to compare microbial and resistome structures across urban and 
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rural wastewater in India, offering ecological and public health 
insights.

From a One Health perspective, untreated wastewater 
represents a critical convergence point for microbial exchange 
between humans, animals, and the environment. In India, high 
antibiotic consumption, unregulated drug sales, limited wastewater 
treatment, and extensive environmental mixing zones create 
conditions that favor resistance evolution and dissemination 
(Laxminarayan and Chaudhury, 2016; World Health Organization, 
2015). Our findings from Nagpur illustrate how metagenomic 
analysis of wastewater can capture clinically relevant pathogens and 
ARGs across urban–rural settings, offering insights with relevance 
beyond the local context. Looking forward, planetary health 
considerations must be incorporated into AMR planning: climate 
change-driven floods, droughts, and heatwaves will increasingly 
disrupt wastewater infrastructure and reshape microbial dynamics, 
with potential to accelerate resistance emergence (van Bavel et al., 
2024). Addressing this challenge requires integrated strategies that 
combine metagenomics-based environmental monitoring with 
strengthened antibiotic stewardship and the development of 
sustainable alternatives such as bacteriophage or probiotic 
interventions.
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