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THE FUNRAL I ANIDCAADE A cuICTINAR WANADI D EUTURE
TODAY PROJECTIONS & IMPACTS

Pathogens on the Move: Under all climate
scenarios, suitable habitats for all three
species are predicted to shift northward.
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SUMMARY

Aspergillus species cause severe infections and are widespread environmental
saprotrophs. Climate change is expected to alter the ecological niches and spread of
fungal pathogens. Here, we use a global metabarcoding dataset and Maximum
Entropy (MaxEnt) modelling to predict the current and future environmental suitability
of three pathogenic Aspergilli : A. fumigatus sensu lato, A. flavus sensu lato, and A.
niger sensu lato. We show that suitability of A. fumigatus is higher in temperate
climates, while A. flavus and A. niger are more suitable in warmer regions. Future

climate scenarios suggest a northward shifts of habitat suitability for all three
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species, particularly under severe warming. We combine our MaxEnt model with
spatial models of crop growing areas and human population and show that
geographical shift will occur on Aspergillus species along different climate scenarios.
These predictions can guide experimental validation efforts and provide a base

model for further refinement for other pathogenic fungi.

Keywords:

Climate change, aspergillus, aspergillosis, fungal disease, MaxENT modelling,

flavus, niger, fumigatus

Introduction

The filamentous fungal Aspergillus species are the prime example of a cross-kingdom
pathogen. They are capable of infecting humans, other mammals, birds, honeybees
and corals, they spoil crops pre- and post-harvest, and they render crops unsafe for
consumption by production of mycotoxins 2. They also play a crucial role in the
environment as saprotrophs; recycling nutrients in decaying matter back into the soil
3. Furthermore, frontline drugs used to treat clinical and veterinary aspergillosis,
namely azoles, are also found in agricultural pesticides used to protect crops against
fungal disease #®. The structural similarity between clinical azoles and agricultural
azoles has led to a rise in patients with azole-resistant infections after inhaling
Aspergillus spores that have developed resistance following environmental exposure

to azoles °.

Due to their lifecycle; reproducing asexually and sexually in soil and sporulating to

release 1000s of microscopic spores, Aspergillus spores are ubiquitous in air 192,
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They are found indoors and outdoors, are detectable on a global scale, and it is
estimated that we each inhale several hundred spores per day 123, The small size of
these spores (2-3 um) allows them to bypass mucociliary clearance and reach the
lung alveoli, where they are subsequently cleared by the innate immune system 4,
However, in individuals with a compromised immune system, or who have been
exposed to a high number of spores, spores can establish and grow in a pre-existing
cavity in the lung resulting in chronic pulmonary aspergillosis (CPA) 516, If the immune
system fails to prevent spores from entering the bloodstream via the lungs the infection
results in a life-threatening disease called invasive aspergillosis (IA) 7. It is estimated
that 1.8 million people globally develop CPA, with 340,000 annual deaths, and 2.1

million people globally develop IA, with 1.8 million annual deaths 8,

There are a number of Aspergillus species more commonly associated with
aspergillosis infections in humans and animals: A. fumigatus, A. flavus, A. niger, A.
terreus and A. nidulans *°. In the Northern Hemisphere, the majority of aspergillosis
infections are caused by A. fumigatus 2°-23, which in part contributed to the World
Health Organisation (WHO) adding A. fumigatus to its fungal priority pathogens list
(FPPL) 4. However, in others parts of the world, other Aspergillus species are often
reported as the leading cause of aspergillosis 2527, It is likely that environmental
conditions, such as temperature, humidity and rainfall, favour the proliferation of
different Aspergillus species in different climates 2231, It has been hypothesised that
climate change will bring about an increase in human fungal infections in multiple ways
including: i) by increasing the range of currently-pathogenic species, and ii) by
increasing the thermotolerance of fungal species allowing more to survive at
mammalian body temperature 3236, |t follows that climate change may alter the

distribution of currently-pathogenic Aspergillus species, or enable other Aspergillus
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species to become pathogenic, leading to late or under diagnosis of aspergillosis

infections caused by unexpected species.

The same logic applies to Aspergillus species that cause crop losses, either through
spoilage or mycotoxin contamination 3. We are currently facing the challenge of
feeding a predicted population of 9.7 billion by 2050, yet we still lose 20% of crop yields
pre-harvest and a further 10% post-harvest to pathogens 383°. Black Aspergillus
species, such as A. niger, and Aspergillus section Flavi, which includes A. flavus, are
the most often reported plant-pathogenic Aspergilli 4. It is estimated that aflatoxin
contamination could cost the corn industry in the United States alone between
US$52.1 million and US$1.68 billion, with the upper estimate for if climate change
causes more regular aflatoxin contamination in the Corn Belt as was experienced in

2012 41,

Studies of other fungal pathogens have underscored the significance of environmental
conditions in shaping host-pathogen dynamics. Cryptococcus neoformans is a
significant fungal pathogen of humans that is conditioned to grow in warmer
environments. Some strains of this organism have acquired enhanced
thermotolerance which enhances their virulence 4243, Likewise, Fusarium species that
damage both plants and humans, adaptively respond to climate variations with
increases in toxin production and fungicide resistance under warmer temperatures
4445 1t is timely that we build a global picture of Aspergillus species distribution: to
understand what it looks like now and predict what it might look like in the future, based
on the known impacts of climate variables on spore proliferation. In this study, we use
a literature review and the GlobalFungi database to ascertain the current distribution

of three pathogenic Aspergillus species: A. fumigatus, A. flavus and A. niger and
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MaxEnt modelling to predict how the distribution of these species might alter in future

climate scenarios.

Results

A Maximum Entropy model shows the geographic expansion of Asperqgillus

species

It has been hypothesised that fungal pathogens will expand their geographical range
due to climatic changes within the next 100 years. However, currently there is little
data to support these statements as experimental validation would rely on long term
standardised global sampling efforts. Therefore, we approached this hypothesis using
available metabarcoding sequencing data from GlobalFungi 46 and Maximum Entropy
modelling. We focused on three fungal pathogens within the Aspergillus genus as
these are causative agents of human infections but also plant infections. From the
GlobalFungi database we obtained metabarcodes which both included ribosomal ITS1
and ITS2 data. These metabarcodes are only able to accurately define the three
Aspergillus species up to their section level; Aspergillus Section Fumigati, Aspergillus
section Nigri and Aspergillus Section Flavi 4748, However, speciation within these
sections relies on multiple genetic markers (calmodulin and beta-tubulin) which are
not available within the GlobalFungi dataset. Therefore, in here we refer to these
further as Aspergillus fumigatus sensu lato, Aspergillus niger sensu lato and
Aspergillus flavus sensu lato. We obtained data from 2599 samples, 5124 samples
and 4015 samples for Aspergillus niger, Aspergillus flavus and Aspergillus fumigatus,
respectively. After quality control, 1021, 871 and 319 datapoints were considered of

high quality and contained all required metadata for Aspergillus niger, Aspergillus
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flavus and Aspergillus fumigatus, respectively (Fig S1). We only included datapoints
from natural soil samples (non-experimental). Several unique biomes were not
represented in this data, as sampling data of these regions is sparse. Data from the
Amazon region, the Sahara, and northern Russia and Alaska was not available and
therefore we can’t make any accurate predictions for these regions. Latitude and
longitude data of occurrences were used in the MaxEnt model together with bioclimatic
variables. We assessed correlation between bioclimate variables to reduce the
variables, autocorrelation and overfitting in the model (Fig S2). ROC curves were
obtained to quantify the models predictive ability relative to a random prediction (Fig
S3). For A. flavus the AUC of the ROC curve was 0.804, for A. fumigatus 0.874 and
for A. niger 0.776 showing that the MaxEnt model predicts suitable habitat better than
a random model. Furthermore, the jackknife test on the regularised training data
showed that the annual mean temperature was considered the most important variable
when taken in isolation for all three fungi (Fig S3). In a multivariate model that included
the 7 bioclim variables, omission of the annual mean temperature reduced the fit of
the model of A. flavus and A. fumigatus habitat, while omission of precipitation of the

coldest month most reduced the fit of the model for A. niger habitat.

In addition, we extracted the data from the SoilGrid database on pH, sand, clay and
silt particles, organic carbon stocks and density, total nitrogen, water retention, bulk
density, cation exchange capacity to give further granularity to the metabarcoding data
49, This revealed different patterns for each species could be found in cation exchange
capacity where A. flavus was present in higher cmol(c )/kg soil compared to the other
two species (Fig S4). In addition, A. flavus was found more in soil with lower carbon
and nitrogen content, and in soil with higher proportion of sand particles, which is in

line with published literature %°51, A. fumigatus was more commonly found in soils
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containing higher levels of nitrogen and carbon stocks, higher proportion of clay
particles as well as lower pH soils. These findings are also in line with previously

published reports 52-54,

The MaxEnt model resulted in a world map with the suitability profile for each of these
fungi (Figure 1A). Not completely unsurprisingly, A. fumigatus was most suitable in
the northern hemisphere in temperate climates and A. flavus was more suitable for
tropical regions. As relative abundance within each sample was not taken into
consideration, we divided habitat into two categories: suitable and unsuitable. We
used the maximum test sensitivity plus specific (MTSPS) as a threshold for suitable
and non-suitable, which is generally used to classify suitability in MaxENT modelling
5556, A cut-off above 0.64, 0.61 and 0.68 was considered suitable habitat for A. flavus,
A. niger and A. fumigatus, respectively. To validate our model, we collected published
data on culture-based experimentation where culturing from soil was performed which
allowed identification of the three Aspergillus species. We chose for soil culture
experiments only as Aspergilli species are ubiquitously found in air. This resulted in
29 studies from different countries which identified all three Aspergillus species from
soils. A positive correlation could be found between suitability from the MaxEnt model
and frequency of each species from culture-based experimentation found in each

study (r(91) = 0.44, p =0.114 x 10°) (Figure 1B).

Within our species distribution model environmental variables that significantly differed
between the Aspergillus species included the annual mean temperature, annual
precipitation and precipitation seasonality (Figure 1C). A. flavus and A. niger showed
presence at a significantly higher annual mean temperature compared to A. fumigatus,
at 17.8 and 16.5 and 12.3 average Celsius, respectively (one-way ANOVA with
multiple comparison, p<0.05) (Fig S5). Significantly higher precipitation was

7
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associated with presence of A. fumigatus compared to A. flavus and A. niger, while

higher seasonality of precipitation was associated with A. flavus and A. niger (Fig S5).

Expanding geographic ranges can impact the spectrum of aspergillosis disease

in plants and humans

Next, we wanted to model the environmental suitability changing over time due to
climatic changes. We used the Shared Socioeconcomic Pathways (SSP) models
SSP126, SSP245 and SSP585 within three time horizons (2041-2060, 2061-2080,
2081-2100) to assess the changes in suitability for the three Aspergillus species. The
SSP126 models is the low emissions scenario, where the focus lays on a future with
sustainability-focused development, where CO2 emissions decline after 2025 and limit

global warming to below 2 °© C. The SSP245 models is the intermediate emissions

scenario where CO2 emissions peak around 2040 and then decline slowly, with global
warming reaching 2.5-3 °C by 2100. The SSP585 is the high emissions models where
fossil-fuel driven development is central, and CO2 emissions keep rising. This scenario
would see warming of 4 °C or more by 2100. Of these SSP models and time horizons
all bioclimatic variables contributing to the model were included. Using the MaxEnt
model, we generated a habitat suitable/non-suitable map for these climate change

models until 2100 (Fig S6).

For A. flavus the current suitable habitat contains much of middle of south Africa, Brazil
and part of Mexico, large parts of South America, India, Pakistan, China and South-
East Asia as well as Oceania. Under the low climate change model (SSP126), little
will change for habitat suitability of A. flavus until 2200 and most regions will remain

suitable, while only small pockets of land will become more suitable (Fig S6). Under



195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

the moderate model (SSP245) (Figure 2), habitat suitability in Australia will largely
disappear by 2100 while new suitable habitats are seen in north China and across
Russia and part of northern America. Under the severe model (SSP585) by 2100 many
of the suitable habitats will disappear, mainly on the African continent and across
Brazil (Fig S6). Large parts of Australia will become unsuitable. However, larger parts
of north China and Russia will become suitable as well as other parts of the northern
hemisphere such as Scandinavia and Alaska. This is supported looking at suitability
across latitude where 40 to 80 degrees latitude will become more suitable while 20 to

-20 latitude will become less suitable (Fig S7).

Aspergillus fumigatus suitable habitat is currently mostly on the northern hemisphere
in Europe, United States and parts of China. However, in the southern hemisphere
parts of Brazil and Africa are also considered suitable as is New Zealand and some
coastal regions in Australia. Under the low climate change model and moderate
models (SSP126 and SSP245) only small parts of the northern hemisphere will
become suitable for A. fumigatus and little change will be on the southern hemisphere
suitable areas (Figure 2). However, under the severe model (SSP585) A. fumigatus
suitable habitats will almost exclusively be on the northern hemisphere and pushed
more towards the north pole (Fig S6). Still New Zealand, coastal Australia, parts of
Argentina and Peru will be suitable as these remain more temperature climates. This
is supported by suitability across latitudes as a strong decrease of suitability is

observed from 40 to -40 degrees latitude (Fig S7).

Aspergillus niger habitat is currently suitable across many regions of the world,
including all continents and many countries on the northern and southern hemisphere.
None of the climate models will have a drastic impact on the northern hemisphere
suitability for A. niger. The suitability for the southern hemisphere, in particular Africa

9
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will change only in the land inwards region under the severe climate model (SSP585)
but is predicted to remain suitable along the coastal regions (Fig S6). Suitability along
latitude supports this as only marginally decreases are seen from 0 degrees to -40

latitude and some small increases from 50 — 80 degrees latitude (Fig S7).

Both A. flavus and A. niger are the causative agents of plant infections of many
different crops. Using our MaxEnt model and land usage from CROPGRIDS °7 we
established the habitat suitability of these two plant pathogens across 7 different crops;
apple, grape, maize, rice, soybean, sugarcane and wheat for the severe climate model
(SSP585) (Figure 3A). Across all crops, a reduction in habitat suitability across the
growing areas was observed. Most interestingly, a steep decline was observed for A.
flavus on maize habitat and rice. The maize growth area and habitat overlap was
estimated to be 19.1 million km? currently, but would reduce to 13.3 million km? in
2050, 9.9 million km? in 2070 and 6.8 million km? in 2090. This steep decline was not
observed for A. niger of which growth area and habitat overlap was estimated at 23.8
million km? currently, to 20.9 million km? in 2050, 19.1 million km? in 2070 and 16.8
million km? in 2090. For rice crops a similar trend was observed in which the A. flavus
habitat was estimated at 8.8 million km? currently, but would reduce to 4.8 million km?
in 2050, 3.2 million km? in 2070 and 2.0 million km? in 2090, while for A. niger it was
estimated at 10.9 million km? currently, to 8.2 million km? in 2050, 7.3 million km? in

2070 and 6.4 million km?2 in 2090.

A detailed spatial overview of these overlaps was generated which revealed that for
maize growing areas and A. flavus habitat the main regions which showed a reduced
overlap were located across South America and Africa (Figure 3B). However, habitat
suitability in the Northern Hemisphere was mostly retained. A similar trend was
observed for A. niger but with a smaller effect. Some maize growing regions in Africa

10
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and South America would not be considered suitable, but habitat across the Northern
Hemisphere, including India and Mexico was maintained. A. flavus habitat within rice
growing regions was severely reduced and would in 2100 only be maintained into
China and small regions in Africa (Fig S8). However, for A. niger larger regions across

South America (Brazil) and West-Africa would be retained by 2100.

Next, we wanted to know if a change in habitat could result in a change in causative
agents of aspergillosis in the clinic. To assess the link between environment and
clinical distribution of Aspergillus species we found literature where at least one report
containing relative prevalence in invasive aspergillosis of A. niger, A. flavus and A.
fumigatus and at least one report from these Aspergilli and their relative prevalence in
soils (Figure 4A). This resulted in 14 countries in which we could find literature with
these data. This showed that species distribution from clinical samples (invasive
pulmonary aspergillosis) generally correlated with the species distribution (A. flavus
r(12) = 0.74, p = 0.002, A. fumigatus r(12) = 0.66, p=0.011, A. niger r(12) = 0.40,

p=0.058) in the environment.

Given that habitat suitability and causative agents of invasive aspergillosis are
correlated, we sought to model how many more people will be living in suitable areas
for these Aspergillus species. We combined our MaxEnt model with a 1km spatial
model of population density across the same climate models (SSP126, SSP245 and
SSP585) %8. Currently, 846 million, 1.98 billion and 905 million people live in suitable
habitat for A. flavus, A. fumigatus and A. niger, respectively (Figure 4B). Generally,
less people will live in suitable habitat for all three fungi. The largest effect is in suitable
habitat for A. fumigatus as this will be reduced to 650 million (SSP585 2081-2100) —
1.1 billion (SSP126 2081-2100), a reduction of 45-75%. The smallest effect will be on
number of people living in suitable areas for A. niger. Under the least severe climate

11
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model (SSP126) this will reduce to 562 million by 2100 (38% reduction), while under
the most severe climate model (SSP585) 345 million people will live in suitable areas

for A. niger by 2100 (a 62% reduction).

However, a more detailed analysis of people living in suitable areas across different
continents shows other patterns of potential exposure to these Aspergillus species
(Figure 4C). The largest reduction of people living in suitable areas for all three
Aspergillus species are in Africa, Asia and South America. In Asia a steep reduction
of people living in suitable habitat is noticeable; for A. flavus from 278 million to 38
million (SSP585) — 98 million (SSP126), A. fumigatus from 1.5 billion to 392 million
(SSP585) — 686 million (SSP126) and A. niger from 115 million to 14.5 million
(SSP585) to 49 million (SSP126). In Africa lower numbers of people are already living
in suitable areas for A. fumigatus (45 million) compared to A. flavus (283 million) and
A. niger (398 million), but a reduction in people living in suitable habitats for A. flavus
(34 — 216 million) and A. niger (83 — 278 million) is predicted, especially in the more
severe SSP585 model. In Europe, consistent number of people living in A. flavus (80
million currently versus 75 million) and increase in people living in A. niger (109 million
currently versus 170 million) suitable habitat will only be seen in the SSP585 model.
Interestingly, an increase in people living in A. flavus suitable habitat across Australia
is observed across all three climate models; 5 million currently, 10.2 million in SSP126,

12.8 million in SSP245 and 16.2 million people in the SSP585 model (Figure 4C).

In summary, we have generated a MaxEnt model for three Aspergillus species that
are of relevance in plant infections and infections of humans and animals. We have
shown that this model correlates with experimental culture-based data available and
that our model can be used to predict potential future outcomes along different climate
scenarios. This model showed that all three Aspergillus species will move more

12
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polewards and become more prevalent in the Northern hemisphere while the less
suitable habitat will be presented across the Southern Hemisphere. We show this can
potentially impact plant infections and human infections and provide data that can be

used to inform future surveillance strategies.

Discussion

In this study we have used a MaxEnt modelling approach to assess how the
geographical distributions of three Aspergillus species; A. fumigatus, A. flavus, and A.
niger, are likely to shift in response to climate change. This MaxEnt model, supported
by global metabarcoding data and climate variables, highlight trends in current and
future environmental suitability for these species. Notably, A. flavus and A. niger are
more prevalent in tropical and subtropical climates with higher mean temperatures,
whereas A. fumigatus shows greater suitability in cooler, temperate regions as has
been previously reported in the literature 1227:3059 A, fumigatus has been previously
found in low concentrations in soils in New Zealand, a temperature zone in the
southern hemisphere and soils in Iceland, highlighting its potential to establish more
northward and further expand €°,61. Our literature review supports a positive correlation
between environmental suitability and clinical prevalence of Aspergillus species,
suggesting that shifts in habitat suitability may result in changing patterns of
aspergillosis worldwide 6293, This is particularly concerning given the role of A.
flavus and A. niger in both invasive human infections and crop contamination,

especially as their environmental niches expand or shift.

Whilst this study focuses MaxEnt species distribution modelling, we acknowledge that
alternative modelling approaches are available, including generalised linear models

13
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(GLM) 4, gradient boosted models (GBM). %566 and random forest (FR) machine
learning approaches 87-6°. However, MaxEnt offers several advantages ’°, including its
ability to handle presence-only data effectively 7*; is robust with relatively small sample
sizes; incorporates regularisation techniques to avoid model overfitting and produces
transparent and interpretable outputs. 2. It is also widely used and well validated
having been effectively tested across taxa and geographies ">/, In addition, here we
have used one climate model, the HadGEM3-GC31-LL model 7. Over 40 different
climate models are currently available with slightly different outcomes across the
tested timelines 7°. The HadGEM3-GC31-LL has shown a high climate sensitivity in
the CMIP6 models, which has been debated if these are inconsistent with evidence
from historical records 838!, Further research using other modelling approaches are

required to come to a better understanding of the sensitivity of our analysis.

The MaxEnt modelling approach offers great potential in habitat suitable assessment,
several methodological limitations are acknowledged. Firstly, highly customised
MaxEnt models may become overly complex, leading to potential overfitting thus
resulting in weakened predictive accuracy and ability to extrapolate to under sampled
areas or new time horizons 8283, Moreover, MaxEnt also assumes that the presence
data used in the model are geographically representative of the true species
distribution. However, occurrence records typically exhibit spatial bias due to uneven
sampling and/or reporting efforts, which we highlighted as no samples were available
for example the Amazon, north Russia, Alaska and the Sahara dessert 886, Finally,
MaxEnt uses a presence-only modelling framework, therefore generating relative,
rather than, absolute suitability. Therefore, consideration and careful interpretation is
required when comparing between multiple species or across environments. MaxEnt

and other modelling approaches do not account for biotic interactions,

14



344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

microenvironmental variability, or genetic adaptation. For example, we do not account
for the potential evolution of thermotolerance, virulence or fungicide resistance, which

could drastically alter species distributions or ability to cause infections 8789,

In addition, although we focused on climate variables, other abiotic factors, such as
soil composition, pH, and anthropogenic land use, undoubtedly influence Aspergillus
ecology °. A. fumigatus, in particular, is strongly associated with thermogenic
environments rich in decaying organic matter, such as compost heaps, where
temperatures can exceed 50°C during active decomposition °%°2, Surveys across the
UK found elevated levels of A. fumigatus across compost bags, heaps and garden
plots treated with compost which was associated with antifungal resistant isolates 549,
These conditions provide a unique niche for A. fumigatus, enabling high sporulation
and aerial dispersal, especially when compost is disturbed °294. In contrast, A.
flavus and A. niger are more frequently isolated from multiple types of soils, with high
organic content, lower nitrogen levels, and acidic to neutral pH %%, Soil pH has been
shown to influence fungal community structure, with A. niger thriving in acidic
conditions °7%, Another layer of uncertainty stems from population projections in
suitable habitats. While we estimate increasing exposure risk in some regions, these
are modelled on current species-environment relationships and may not capture future
human behaviour, people at risk of developing fungal infections, or agricultural

changes that would render plants at risk of infection.

In addition to long-term climatic changes, seasonal variation and extreme weather
events are likely to play an important role in shaping the distribution
of Aspergillus species . Seasonal dynamics influence growth and spore release,

particularly through cycles of rainfall and temperature shifts as is seen with other
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fungal pathogens 109192, The MaxEnt model identified precipitation seasonality as a
key predictor of habitat suitability, particularly for A. flavus and A. niger, suggesting
these species are more present in areas with increased wet-dry cycles. Furthermore,
extreme weather events such as droughts, floods, and heatwaves, which are expected
to increase in frequency and intensity, can contribute to higher levels of fungal spores
within the air 92193, Past studies have observed spikes in aspergillosis cases following

natural disasters 104105,

While our MaxEnt model provides a prediction of suitable habitat overlap within crop
growing regions, it does not account for climate change directly impacting the crop
growing regions. Several modelling attempts have shown that regions will become
unsuitable to grow rice 196108 \wheat 199110 and maize 1112 under different climate
scenarios. In addition, differential virulence of species and the occurrence of
Aspergillus species across different crops and their disease has not been accounted
for. While this would ideally be done, current epidemiological data from across the
world remains sparse. Future work combining crop models, virulence data and
epidemiology would provide a more detailed approached to model plant infections in

a changing world.

Historically, invasive aspergillosis was primarily a concern for immunocompromised
individuals, such as transplant recipients or those undergoing chemotherapy *3. Our
MaxEnt model does not take into account the changing patient population or emerging
novel risk factors for aspergillosis. Examples of recently associated risk factors include
COVID-19 and severe influenza, leading to COVID-19-associated pulmonary
aspergillosis (CAPA) and influenza-associated pulmonary aspergillosis (IAPA),

collectively termed viral-associated pulmonary aspergillosis (VAPA) 14115 These
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diseases have been increasingly recognised in intensive care settings, where patients
often experience prolonged ventilation and receive corticosteroids or other

immunomodulatory treatments 6.

Despite these caveats, this work represents a valuable step in modelling the climate-
driven shifts in Aspergillus ecology. By combining environmental metagenomic
sequencing and modelling with clinical and environmental prevalence data, we
highlight the importance of proactive monitoring in a changing world. The expanding
and shifting range of these fungal pathogens, exacerbated by climate change,

reinforces the urgency of a One Health approach to infectious disease surveillance.

Resource Availability

Lead contact

Requests for further information and resources should be directed to and will be
fulfilled by the lead contact, Norman van Rhijn
(Norman.vanrhijn@manchester.ac.uk).

Materials availability

This study did not generate new unique reagents.

Data and code availability

e This paper analyses existing, publicly available data, accessible at

https://globalfungi.com. Other databases used have been mentioned in the

relevant section in the STAR methods.
e This paper does not report original code.
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e Any additional information required to reanalyze the data reported in this paper

is available from the lead contact upon request.

Limitations of Study

This study has several limitations that should be considered when interpreting the
findings. First, species occurrence data were derived primarily from global
metabarcoding datasets, which rely on ITS sequencing that do not reliably resolve
Aspergillus species beyond the section level, introducing uncertainty in species-level
attribution, particularly within sections Nigri and Flavi. In addition, the presence-only
nature of MaxEnt modelling produces relative suitability rather than true probability of
occurrence and is sensitive to spatial sampling bias, which is evident in the
underrepresentation of large regions such as the Amazon basin, Sahara, northern
Russia, and the Arctic regions. Also, biotic interactions, microclimatic conditions, land
management practices, and point-source habitats such as composting sites are not
explicitly modelled, despite their known importance for Aspergillus ecology. Future
projections rely on a single global climate model and do not capture inter-model
variability present across CMIP6 ensembles, which can influence regional predictions.
Finally, while the spatial modelling framework provides quantitative projections of
potential future habitat suitability, it remains a theoretical representation of complex
ecological systems, and the actual real-world impact on Aspergillus exposure, disease
burden, and crop losses will ultimately depend on future environmental, biological,

agricultural, and societal factors that require surveillance and experimental validation.
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STAR methods

Key resources table

REAGENT or

SOURCE IDENTIFIER
RESOURCE
Deposited data
GlobalFungi v5 |Vetrovsky et al 2020 globalfungi.com
WorldClim 2 Fick and Hijmans 2017 worldclim.org
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462

distributions
under SSP

models

HadGEM3- O'Neill et al 2016 https://www.wdc-climate.de/ui/cmip6?ir
GC31-LL

CROPGRIDS [Tang et al 2024 https://figshare.com/articles/dataset/CF
Population Wang et al 2022 https://figshare.com/articles/dataset/Pr

grid_population_distributions_from_20:

Software and algorithms

SPSS Statistics |IBM
24

ArcGIS Pro Esri
v3.4.2

MaxEnt v3.4.4

https://biodiversityinformatics.amnh.org/open_source/maxent/

RStudio
v2024.09.0+375

Posit PBC

METHOD DETAILS

Data acquisition

To gather metabarcoding sequencing data on Aspergillus species, the GlobalFungi

database (release 5.0) was used 6. Search by taxonomy on Aspergillus fumigatus,

Aspergillus flavus and Aspergillus niger was used. Raw data containing sample ID,

latitude and longitude, sample type and ITS total were exported following data quality

control. Data from aquatic and air samples were removed as well as manipulated

samples. To remove potential datapoints that resulted from low level contamination

only datapoints with over 10 sequencing reads attributed to each species were

maintained. Data were stored and analysed using IBM SPSS Statistics 24.
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Current and future bioclimate variables were obtained from the WorldClim data archive
117 Initially a total of 19 bioclimate variables were downloaded with a spatial resolution
of 5 arc-min (10km?) were selected for analysis. Initially, a baseline MaxEnt model was
constructed with all 19 variables to assess contribution percentage, and Pearson
correlation coefficients between variables were calculated. Variables demonstrating a
correlation exceeding + 0.8 were investigated and the variable with the lower
contribution in the baseline model was excluded. Ultimately, seven WorldClim
bioclimate variables - Annual Mean Temperature (bio_01), Mean Diurnal Range
(bio_02), Temperature Annual Range (bio_07), Annual Precipitation (bio_12),
Precipitation of Driest Month (bio_14), Precipitation Seasonality (bio_15) (which is
calculated as the coefficient of variation of monthly precipitation) and Precipitation of

Coldest Month (bio_19) were retained for MaxEnt modelling.

The future climate data used in this study comes from the Sixth iteration of the Coupled
Model Intercomparison Project 118, Specifically, we used the HadGEM3-GC31-LL
future climate dataset for 3 shared socioeconomic pathways (SSPs; SSP 126, SSP

245 and SSP 585) for 3 future time horizons: 2014-2060, 2061-2080 and 2081-2100.

Data on future human population density was obtained from projections at a 30 arc-
seconds (1km) spatial resolution until 2100 under different SSP models 8. Data on
spatial distribution of growing different crops (5.6km resolution) was obtained from
CROPGRIDS ®’. A selection of crops to focus on was chosen at the top 10 highest
value crops globally. Data intersections and maps were generated using ArcGIS Pro

v3.4.2.

Literature review
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A literature search was performed using several search terms for each individual
country from the WHO country list; “country name” AND aspergillosis OR aspergillus,
as well as “country name” AND aspergillus AND soil. Articles were manually curated
and included when all three species were identified in the data, which allowed
comparison of species prevalence. Articles referring to specific substrates (food items,
fruits etc) were excluded and only data on soil species distributions were included for
environmental prevalence of Aspergillus species. For clinical prevalence only data

from invasive aspergillosis was used to make articles comparable.

QUANTIFICATION AND STATISTICAL ANALYSIS

Model generation

All pre-processing was undertaken in ArcGIS Pro 3.2. Occurrence data were cleaned,
projected to a uniform coordinate system, and spatially thinned to reduce
autocorrelation. Environmental predictor variables were reprojected, resampled, and

clipped to a consistent spatial resolution and study extent.

Using MaxEnt v3.4.4, separate species-specific models were generated using GPS
coordinates for Aspergillus fumigatus, Aspergillus flavus and Aspergillus niger
individually._For each individual species model, 80% of occurrence records were used
for model training and 20% for independent validation. Model complexity was explicitly
defined by testing feature class (FC) combinations of L, H, LQ, LQH, and LQHPT with
regularization multipliers (RM) of between 0.5 and 4 at 0.5 intervals. The maximum
number of iterations was set to 500, and a convergence threshold of 0.00001 was

applied to ensure model stability while minimising overfitting.

Each model used 10,000 background (pseudo-absence) points, spatially constrained

by species-specific bias files to match the sampling structure of occurrence data.
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Bootstrap replication (n = 10) was employed, and outputs were generated in Cloglog
format to facilitate interpretation of habitat suitability as relative probability of presence.
For each species, input variable importance was assessed via the Jackknife test, and
response curves were examined to evaluate ecological relationships. Jackknife test of
regularised training gain was assessed to quantify the importance of each
environmental variable in isolation as well as when it is removed from the dataset.
Model performance was quantified using the area under the receiver operating

characteristic curve (AUC).

Following MaxEnt calibration, resulting suitability layers were imported into the ArcGIS
Pro for further spatial analysis. Continuous Cloglog outputs were reclassified using the
maximum training sensitivity plus specificity (MTSPS) threshold to delineate suitable
habitat areas. In ArcGIS, the Reclassification Tool was used to divide habitats into
non-suitable (0-MTSPS value) and suitable (MTSPS value-1). The future suitable

habitats were generated by overlaying habitats using the “Intersect” function.

Maps and additional spatial analysis were executed using ArcGIS Pro v3.4.2. All other

data was visualised using Rstudio (v 2024.09.0+375) and ggplot2.

Differences between bioclimatic variables were assessed via One-way ANOVA with

post-hoc Tukey’s Honest Significant Difference. P<0.05 was considered significant.

Figure legends

Figure 1 MaxENT model accurate described Aspergillus global distributions. A
Habitat suitability for three Aspergillus species from the MaxENT model. Least suitable
is 0 and most suitable is 1. B Correlation plots of frequency of each Aspergillus species

found in the literature compared to the median suitability for that particular country in
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the MaxENT model. Shaded region represents the 95% confidence interval. C
Boxplots showing environmental differences between A. flavus, A. fumigatus and A.
niger among three environmental variables used for SDM. Species marked with the
same letter are not significantly different at P <0.05 with regards to each
environmental variable. Boxplot shows the median and interquartile ranges. Whiskers
represent lower and higher quartile range. a shows significance (p<0.05) versus the
two other groups, b significance (p<0.05) versus Aspergillus fumigatus and c versus

Aspergilllus flavus as determined by one-way ANOVA.

Figure 2 Climate change will shift distributions of Aspergillus species. The
SSP245 model is shown here as a representative across three different time horizons
(2041-2060, 2051-200 and 2081-2100). Red is considered suitable habitat according

to the cut-off from the MTSPS analysis.

Figure 3 Suitable habitat will have lower overlap with crop growing regions. A
Quantification of the km? overlap between crop growing regions from CROPGRIDS
and the suitable habitat for A. niger and A. flavus. ND is not done as Aspergillus niger
has not been reported to cause wheat infection. B Map overviews of A. flavus and A.
niger across three different time horizons for the SSP585 model. Red is the overlap

between habitat suitability and the crop growing region for maize.

Figure 4 The epidemiological landscape of invasive aspergillosis is predicted to
shift due to climate change. A Correlation of the relative frequency of Aspergillus
species found in the literature where one report of clinical frequencies and one of
environmental frequencies could be found. Blue is A. niger, Orange A. fumigatus and
grey A. flavus. Shaded bands are the 95% confidence intervals. B People living in

suitable habitat for the three Aspergillus species until the 2100 time horizon. The solid
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line is the moderate scenario SSP245, while the bands represent the SSP585 and
SSP126 models. C People living in suitable habitat broken down into continents for
the three Aspergillus species until the 2100 time horizon. Australia was considered
separate in this analysis. The solid line is the moderate scenario SSP245, while the

bands represent the SSP585 and SSP126 models.
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Highlights

¢ MaxEnt models reveal poleward habitat shifts of Aspergillus spp. under
climate change

e A fumigatus prefers temperate, while A. flavus and A. niger thrive in warmer
climates

¢ Climate-driven habitat shifts reduce overlap with maize and rice crop-growing
areas

e Clinical prevalence of aspergillosis mirrors environmental suitability patterns

e Over 2 billion people currently live in areas suitable for pathogenic Aspergillus
species



