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 15 

SUMMARY  16 

Aspergillus species cause severe infections and are widespread environmental 17 

saprotrophs. Climate change is expected to alter the ecological niches and spread of 18 

fungal pathogens. Here, we use a global metabarcoding dataset and Maximum 19 

Entropy (MaxEnt) modelling to predict the current and future environmental suitability 20 

of three pathogenic Aspergilli : A. fumigatus sensu lato, A. flavus sensu lato, and A. 21 

niger sensu lato. We show that suitability of A. fumigatus is higher in temperate 22 

climates, while A. flavus and A. niger are more suitable in warmer regions. Future 23 

climate scenarios suggest a northward shifts of habitat suitability for all three 24 
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species, particularly under severe warming. We combine our MaxEnt model with 25 

spatial models of crop growing areas and human population and show that 26 

geographical shift will occur on Aspergillus species along different climate scenarios. 27 

These predictions can guide experimental validation efforts and provide a base 28 

model for further refinement for other pathogenic fungi. 29 

Keywords: 30 

Climate change, aspergillus, aspergillosis, fungal disease, MaxENT modelling, 31 

flavus, niger, fumigatus 32 

 33 

Introduction 34 

The filamentous fungal Aspergillus species are the prime example of a cross-kingdom 35 

pathogen. They are capable of infecting humans, other mammals, birds, honeybees 36 

and corals, they spoil crops pre- and post-harvest, and they render crops unsafe for 37 

consumption by production of mycotoxins 1,2. They also play a crucial role in the 38 

environment as saprotrophs; recycling nutrients in decaying matter back into the soil 39 

3. Furthermore, frontline drugs used to treat clinical and veterinary aspergillosis, 40 

namely azoles, are also found in agricultural pesticides used to protect crops against 41 

fungal disease 4-6. The structural similarity between clinical azoles and agricultural 42 

azoles has led to a rise in patients with azole-resistant infections after inhaling 43 

Aspergillus spores that have developed resistance following environmental exposure 44 

to azoles 7-9.  45 

Due to their lifecycle; reproducing asexually and sexually in soil and sporulating to 46 

release 1000s of microscopic spores, Aspergillus spores are ubiquitous in air 10,11. 47 
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They are found indoors and outdoors, are detectable on a global scale, and it is 48 

estimated that we each inhale several hundred spores per day 12,13. The small size of 49 

these spores (2-3 µm) allows them to bypass mucociliary clearance and reach the 50 

lung alveoli, where they are subsequently cleared by the innate immune system 14. 51 

However, in individuals with a compromised immune system, or who have been 52 

exposed to a high number of spores, spores can establish and grow in a pre-existing 53 

cavity in the lung resulting in chronic pulmonary aspergillosis (CPA) 15,16. If the immune 54 

system fails to prevent spores from entering the bloodstream via the lungs the infection 55 

results in a life-threatening disease called invasive aspergillosis (IA) 17. It is estimated 56 

that 1.8 million people globally develop CPA, with 340,000 annual deaths, and 2.1 57 

million people globally develop IA, with 1.8 million annual deaths 18.  58 

There are a number of Aspergillus species more commonly associated with 59 

aspergillosis infections in humans and animals: A. fumigatus, A. flavus, A. niger, A. 60 

terreus and A. nidulans 19. In the Northern Hemisphere, the majority of aspergillosis 61 

infections are caused by A. fumigatus 20-23, which in part contributed to the World 62 

Health Organisation (WHO) adding A. fumigatus to its fungal priority pathogens list 63 

(FPPL) 24. However, in others parts of the world, other Aspergillus species are often 64 

reported as the leading cause of aspergillosis 25-27. It is likely that environmental 65 

conditions, such as temperature, humidity and rainfall, favour the proliferation of 66 

different Aspergillus species in different climates 28-31. It has been hypothesised that 67 

climate change will bring about an increase in human fungal infections in multiple ways 68 

including: i) by increasing the range of currently-pathogenic species, and ii) by 69 

increasing the thermotolerance of fungal species allowing more to survive at 70 

mammalian body temperature 32-36. It follows that climate change may alter the 71 

distribution of currently-pathogenic Aspergillus species, or enable other Aspergillus 72 
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species to become pathogenic, leading to late or under diagnosis of aspergillosis 73 

infections caused by unexpected species. 74 

The same logic applies to Aspergillus species that cause crop losses, either through 75 

spoilage or mycotoxin contamination 37. We are currently facing the challenge of 76 

feeding a predicted population of 9.7 billion by 2050, yet we still lose 20% of crop yields 77 

pre-harvest and a further 10% post-harvest to pathogens 38,39. Black Aspergillus 78 

species, such as A. niger, and Aspergillus section Flavi, which includes A. flavus, are 79 

the most often reported plant-pathogenic Aspergilli 40. It is estimated that aflatoxin 80 

contamination could cost the corn industry in the United States alone between 81 

US$52.1 million and US$1.68 billion, with the upper estimate for if climate change 82 

causes more regular aflatoxin contamination in the Corn Belt as was experienced in 83 

2012 41. 84 

Studies of other fungal pathogens have underscored the significance of environmental 85 

conditions in shaping host-pathogen dynamics. Cryptococcus neoformans is a 86 

significant fungal pathogen of humans that is conditioned to grow in warmer 87 

environments. Some strains of this organism have acquired enhanced 88 

thermotolerance which enhances their virulence 42,43. Likewise, Fusarium species that 89 

damage both plants and humans, adaptively respond to climate variations with 90 

increases in toxin production and fungicide resistance under warmer temperatures 91 

44,45. It is timely that we build a global picture of Aspergillus species distribution: to 92 

understand what it looks like now and predict what it might look like in the future, based 93 

on the known impacts of climate variables on spore proliferation. In this study, we use 94 

a literature review and the GlobalFungi database to ascertain the current distribution 95 

of three pathogenic Aspergillus species: A. fumigatus, A. flavus and A. niger and 96 
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MaxEnt modelling to predict how the distribution of these species might alter in future 97 

climate scenarios. 98 

 99 

Results 100 

A Maximum Entropy model shows the geographic expansion of Aspergillus 101 

species 102 

It has been hypothesised that fungal pathogens will expand their geographical range 103 

due to climatic changes within the next 100 years. However, currently there is little 104 

data to support these statements as experimental validation would rely on long term 105 

standardised global sampling efforts. Therefore, we approached this hypothesis using 106 

available metabarcoding sequencing data from GlobalFungi 46 and Maximum Entropy 107 

modelling. We focused on three fungal pathogens within the Aspergillus genus as 108 

these are causative agents of human infections but also plant infections. From the 109 

GlobalFungi database we obtained metabarcodes which both included ribosomal ITS1 110 

and ITS2 data. These metabarcodes are only able to accurately define the three 111 

Aspergillus species up to their section level; Aspergillus Section Fumigati, Aspergillus 112 

section Nigri and Aspergillus Section Flavi 47,48. However, speciation within these 113 

sections relies on multiple genetic markers (calmodulin and beta-tubulin) which are 114 

not available within the GlobalFungi dataset. Therefore, in here we refer to these 115 

further as Aspergillus fumigatus sensu lato, Aspergillus niger sensu lato and 116 

Aspergillus flavus sensu lato. We obtained data from 2599 samples, 5124 samples 117 

and 4015 samples for Aspergillus niger, Aspergillus flavus and Aspergillus fumigatus, 118 

respectively. After quality control, 1021, 871 and 319 datapoints were considered of 119 

high quality and contained all required metadata for Aspergillus niger, Aspergillus 120 
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flavus and Aspergillus fumigatus, respectively (Fig S1). We only included datapoints 121 

from natural soil samples (non-experimental). Several unique biomes were not 122 

represented in this data, as sampling data of these regions is sparse. Data from the 123 

Amazon region, the Sahara, and northern Russia and Alaska was not available and 124 

therefore we can’t make any accurate predictions for these regions. Latitude and 125 

longitude data of occurrences were used in the MaxEnt model together with bioclimatic 126 

variables. We assessed correlation between bioclimate variables to reduce the 127 

variables, autocorrelation and overfitting in the model (Fig S2). ROC curves were 128 

obtained to quantify the models predictive ability relative to a random prediction (Fig 129 

S3). For A. flavus the AUC of the ROC curve was 0.804, for A. fumigatus 0.874 and 130 

for A. niger 0.776 showing that the MaxEnt model predicts suitable habitat better than 131 

a random model. Furthermore, the jackknife test on the regularised training data 132 

showed that the annual mean temperature was considered the most important variable 133 

when taken in isolation for all three fungi (Fig S3). In a multivariate model that included 134 

the 7 bioclim variables, omission of the annual mean temperature reduced the fit of 135 

the model of A. flavus and A. fumigatus habitat, while omission of precipitation of the 136 

coldest month most reduced the fit of the model for A. niger habitat.  137 

In addition, we extracted the data from the SoilGrid database on pH, sand, clay and 138 

silt particles, organic carbon stocks and density, total nitrogen, water retention, bulk 139 

density, cation exchange capacity to give further granularity to the metabarcoding data 140 

49. This revealed different patterns for each species could be found in cation exchange 141 

capacity where A. flavus was present in higher cmol(c )/kg soil compared to the other 142 

two species (Fig S4). In addition, A. flavus was found more in soil with lower carbon 143 

and nitrogen content, and in soil with higher proportion of sand particles, which is in 144 

line with published literature 50,51. A. fumigatus was more commonly found in soils 145 
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containing higher levels of nitrogen and carbon stocks, higher proportion of clay 146 

particles as well as lower pH soils. These findings are also in line with previously 147 

published reports 52-54. 148 

The MaxEnt model resulted in a world map with the suitability profile for each of these 149 

fungi (Figure 1A). Not completely unsurprisingly, A. fumigatus was most suitable in 150 

the northern hemisphere in temperate climates and A. flavus was more suitable for 151 

tropical regions. As relative abundance within each sample was not taken into 152 

consideration, we divided habitat into two categories: suitable and unsuitable. We 153 

used the maximum test sensitivity plus specific (MTSPS) as a threshold for suitable 154 

and non-suitable, which is generally used to classify suitability in MaxENT modelling 155 

55,56. A cut-off above 0.64, 0.61 and 0.68 was considered suitable habitat for A. flavus, 156 

A. niger and A. fumigatus, respectively. To validate our model, we collected published 157 

data on culture-based experimentation where culturing from soil was performed which 158 

allowed identification of the three Aspergillus species. We chose for soil culture 159 

experiments only as Aspergilli species are ubiquitously found in air. This resulted in 160 

29 studies from different countries which identified all three Aspergillus species from 161 

soils. A positive correlation could be found between suitability from the MaxEnt model 162 

and frequency of each species from culture-based experimentation found in each 163 

study (r(91) = 0.44, p =0.114 x 10-5) (Figure 1B). 164 

Within our species distribution model environmental variables that significantly differed 165 

between the Aspergillus species included the annual mean temperature, annual 166 

precipitation and precipitation seasonality (Figure 1C). A. flavus and A. niger showed 167 

presence at a significantly higher annual mean temperature compared to A. fumigatus, 168 

at 17.8 and 16.5 and 12.3 average Celsius, respectively (one-way ANOVA with 169 

multiple comparison, p<0.05) (Fig S5). Significantly higher precipitation was 170 
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associated with presence of A. fumigatus compared to A. flavus and A. niger, while 171 

higher seasonality of precipitation was associated with A. flavus and A. niger (Fig S5). 172 

 173 

Expanding geographic ranges can impact the spectrum of aspergillosis disease 174 

in plants and humans 175 

Next, we wanted to model the environmental suitability changing over time due to 176 

climatic changes. We used the Shared Socioeconcomic Pathways (SSP) models 177 

SSP126, SSP245 and SSP585 within three time horizons (2041-2060, 2061-2080, 178 

2081-2100) to assess the changes in suitability for the three Aspergillus species. The 179 

SSP126 models is the low emissions scenario, where the focus lays on a future with 180 

sustainability-focused development, where CO2 emissions decline after 2025 and limit 181 

global warming to below 2 °C. The SSP245 models is the intermediate emissions 182 

scenario where CO2 emissions peak around 2040 and then decline slowly, with global 183 

warming reaching 2.5-3 °C by 2100. The SSP585 is the high emissions models where 184 

fossil-fuel driven development is central, and CO2 emissions keep rising. This scenario 185 

would see warming of 4 °C or more by 2100. Of these SSP models and time horizons 186 

all bioclimatic variables contributing to the model were included. Using the MaxEnt 187 

model, we generated a habitat suitable/non-suitable map for these climate change 188 

models until 2100 (Fig S6).  189 

For A. flavus the current suitable habitat contains much of middle of south Africa, Brazil 190 

and part of Mexico, large parts of South America, India, Pakistan, China and South-191 

East Asia as well as Oceania. Under the low climate change model (SSP126), little 192 

will change for habitat suitability of A. flavus until 2100 and most regions will remain 193 

suitable, while only small pockets of land will become more suitable (Fig S6). Under 194 
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the moderate model (SSP245) (Figure 2), habitat suitability in Australia will largely 195 

disappear by 2100 while new suitable habitats are seen in north China and across 196 

Russia and part of northern America. Under the severe model (SSP585) by 2100 many 197 

of the suitable habitats will disappear, mainly on the African continent and across 198 

Brazil (Fig S6). Large parts of Australia will become unsuitable. However, larger parts 199 

of north China and Russia will become suitable as well as other parts of the northern 200 

hemisphere such as Scandinavia and Alaska. This is supported looking at suitability 201 

across latitude where 40 to 80 degrees latitude will become more suitable while 20 to 202 

-20 latitude will become less suitable (Fig S7). 203 

Aspergillus fumigatus suitable habitat is currently mostly on the northern hemisphere 204 

in Europe, United States and parts of China. However, in the southern hemisphere 205 

parts of Brazil and Africa are also considered suitable as is New Zealand and some 206 

coastal regions in Australia. Under the low climate change model and moderate 207 

models (SSP126 and SSP245) only small parts of the northern hemisphere will 208 

become suitable for A. fumigatus and little change will be on the southern hemisphere 209 

suitable areas (Figure 2). However, under the severe model (SSP585) A. fumigatus 210 

suitable habitats will almost exclusively be on the northern hemisphere and pushed 211 

more towards the north pole (Fig S6). Still New Zealand, coastal Australia, parts of 212 

Argentina and Peru will be suitable as these remain more temperature climates. This 213 

is supported by suitability across latitudes as a strong decrease of suitability is 214 

observed from 40 to -40 degrees latitude (Fig S7). 215 

Aspergillus niger habitat is currently suitable across many regions of the world, 216 

including all continents and many countries on the northern and southern hemisphere. 217 

None of the climate models will have a drastic impact on the northern hemisphere 218 

suitability for A. niger. The suitability for the southern hemisphere, in particular Africa 219 
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will change only in the land inwards region under the severe climate model (SSP585) 220 

but is predicted to remain suitable along the coastal regions (Fig S6). Suitability along 221 

latitude supports this as only marginally decreases are seen from 0 degrees to -40 222 

latitude and some small increases from 50 – 80 degrees latitude (Fig S7). 223 

Both A. flavus and A. niger are the causative agents of plant infections of many 224 

different crops. Using our MaxEnt model and land usage from CROPGRIDS 57 we 225 

established the habitat suitability of these two plant pathogens across 7 different crops; 226 

apple, grape, maize, rice, soybean, sugarcane and wheat for the severe climate model 227 

(SSP585) (Figure 3A). Across all crops, a reduction in habitat suitability across the 228 

growing areas was observed. Most interestingly, a steep decline was observed for A. 229 

flavus on maize habitat and rice. The maize growth area and habitat overlap was 230 

estimated to be 19.1 million km2 currently, but would reduce to 13.3 million km2 in 231 

2050, 9.9 million km2 in 2070 and 6.8 million km2 in 2090. This steep decline was not 232 

observed for A. niger of which growth area and habitat overlap was estimated at 23.8 233 

million km2 currently, to 20.9 million km2 in 2050, 19.1 million km2 in 2070 and 16.8 234 

million km2 in 2090. For rice crops a similar trend was observed in which the A. flavus 235 

habitat was estimated at 8.8 million km2 currently, but would reduce to 4.8 million km2 236 

in 2050, 3.2 million km2 in 2070 and 2.0 million km2 in 2090, while for A. niger it was 237 

estimated at 10.9 million km2 currently, to 8.2 million km2 in 2050, 7.3 million km2 in 238 

2070 and 6.4 million km2 in 2090.  239 

A detailed spatial overview of these overlaps was generated which revealed that for 240 

maize growing areas and A. flavus habitat the main regions which showed a reduced 241 

overlap were located across South America and Africa (Figure 3B). However, habitat 242 

suitability in the Northern Hemisphere was mostly retained. A similar trend was 243 

observed for A. niger but with a smaller effect. Some maize growing regions in Africa 244 
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and South America would not be considered suitable, but habitat across the Northern 245 

Hemisphere, including India and Mexico was maintained. A. flavus habitat within rice 246 

growing regions was severely reduced and would in 2100 only be maintained into 247 

China and small regions in Africa (Fig S8). However, for A. niger larger regions across 248 

South America (Brazil) and West-Africa would be retained by 2100. 249 

Next, we wanted to know if a change in habitat could result in a change in causative 250 

agents of aspergillosis in the clinic. To assess the link between environment and 251 

clinical distribution of Aspergillus species we found literature where at least one report 252 

containing relative prevalence in invasive aspergillosis of A. niger, A. flavus and A. 253 

fumigatus and at least one report from these Aspergilli and their relative prevalence in 254 

soils (Figure 4A). This resulted in 14 countries in which we could find literature with 255 

these data. This showed that species distribution from clinical samples (invasive 256 

pulmonary aspergillosis) generally correlated with the species distribution (A. flavus 257 

r(12) = 0.74, p = 0.002, A. fumigatus r(12) = 0.66, p=0.011, A. niger r(12) = 0.40, 258 

p=0.058) in the environment.  259 

Given that habitat suitability and causative agents of invasive aspergillosis are 260 

correlated, we sought to model how many more people will be living in suitable areas 261 

for these Aspergillus species. We combined our MaxEnt model with a 1km spatial 262 

model of population density across the same climate models (SSP126, SSP245 and 263 

SSP585) 58. Currently, 846 million, 1.98 billion and 905 million people live in suitable 264 

habitat for A. flavus, A. fumigatus and A. niger, respectively (Figure 4B). Generally, 265 

less people will live in suitable habitat for all three fungi. The largest effect is in suitable 266 

habitat for A. fumigatus as this will be reduced to 650 million (SSP585 2081-2100) – 267 

1.1 billion (SSP126 2081-2100), a reduction of 45-75%. The smallest effect will be on 268 

number of people living in suitable areas for A. niger. Under the least severe climate 269 
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model (SSP126) this will reduce to 562 million by 2100 (38% reduction), while under 270 

the most severe climate model (SSP585) 345 million people will live in suitable areas 271 

for A. niger by 2100 (a 62% reduction).  272 

However, a more detailed analysis of people living in suitable areas across different 273 

continents shows other patterns of potential exposure to these Aspergillus species 274 

(Figure 4C). The largest reduction of people living in suitable areas for all three 275 

Aspergillus species are in Africa, Asia and South America. In Asia a steep reduction 276 

of people living in suitable habitat is noticeable; for A. flavus from 278 million to 38 277 

million (SSP585) – 98 million (SSP126), A. fumigatus from 1.5 billion to 392 million 278 

(SSP585) – 686 million (SSP126) and A. niger from 115 million to 14.5 million 279 

(SSP585) to 49 million (SSP126). In Africa lower numbers of people are already living 280 

in suitable areas for A. fumigatus (45 million) compared to A. flavus (283 million) and 281 

A. niger (398 million), but a reduction in people living in suitable habitats for A. flavus 282 

(34 – 216 million) and A. niger (83 – 278 million) is predicted, especially in the more 283 

severe SSP585 model. In Europe, consistent number of people living in A. flavus (80 284 

million currently versus 75 million) and increase in people living in A. niger (109 million 285 

currently versus 170 million) suitable habitat will only be seen in the SSP585 model. 286 

Interestingly, an increase in people living in A. flavus suitable habitat across Australia 287 

is observed across all three climate models; 5 million currently, 10.2 million in SSP126, 288 

12.8 million in SSP245 and 16.2 million people in the SSP585 model (Figure 4C).  289 

In summary, we have generated a MaxEnt model for three Aspergillus species that 290 

are of relevance in plant infections and infections of humans and animals. We have 291 

shown that this model correlates with experimental culture-based data available and 292 

that our model can be used to predict potential future outcomes along different climate 293 

scenarios. This model showed that all three Aspergillus species will move more 294 
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polewards and become more prevalent in the Northern hemisphere while the less 295 

suitable habitat will be presented across the Southern Hemisphere. We show this can 296 

potentially impact plant infections and human infections and provide data that can be 297 

used to inform future surveillance strategies.  298 

 299 

Discussion 300 

In this study we have used a MaxEnt modelling approach to assess how the 301 

geographical distributions of three Aspergillus species; A. fumigatus, A. flavus, and A. 302 

niger, are likely to shift in response to climate change. This MaxEnt model, supported 303 

by global metabarcoding data and climate variables, highlight trends in current and 304 

future environmental suitability for these species. Notably, A. flavus and A. niger are 305 

more prevalent in tropical and subtropical climates with higher mean temperatures, 306 

whereas A. fumigatus shows greater suitability in cooler, temperate regions as has 307 

been previously reported in the literature 12,27,30,59. A. fumigatus has been previously 308 

found in low concentrations in soils in New Zealand, a temperature zone in the 309 

southern hemisphere and soils in Iceland, highlighting its potential to establish more 310 

northward and further expand 60,61. Our literature review supports a positive correlation 311 

between environmental suitability and clinical prevalence of Aspergillus species, 312 

suggesting that shifts in habitat suitability may result in changing patterns of 313 

aspergillosis worldwide 62,63. This is particularly concerning given the role of A. 314 

flavus and A. niger in both invasive human infections and crop contamination, 315 

especially as their environmental niches expand or shift.  316 

Whilst this study focuses MaxEnt species distribution modelling, we acknowledge that 317 

alternative modelling approaches are available, including generalised linear models 318 
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(GLM) 64, gradient boosted models (GBM). 65,66 and random forest (FR) machine 319 

learning approaches 67-69. However, MaxEnt offers several advantages 70, including its 320 

ability to handle presence-only data effectively 71; is robust with relatively small sample 321 

sizes; incorporates regularisation techniques to avoid model overfitting and produces 322 

transparent and interpretable outputs. 72. It is also widely used and well validated 323 

having been effectively tested across taxa and geographies 73-77. In addition, here we 324 

have used one climate model, the HadGEM3-GC31-LL model 78. Over 40 different 325 

climate models are currently available with slightly different outcomes across the 326 

tested timelines 79. The HadGEM3-GC31-LL has shown a high climate sensitivity in 327 

the CMIP6 models, which has been debated if these are inconsistent with evidence 328 

from historical records 80,81. Further research using other modelling approaches are 329 

required to come to a better understanding of the sensitivity of our analysis. 330 

The MaxEnt modelling approach offers great potential in habitat suitable assessment, 331 

several methodological limitations are acknowledged. Firstly, highly customised 332 

MaxEnt models may become overly complex, leading to potential overfitting thus 333 

resulting in weakened predictive accuracy and ability to extrapolate to under sampled 334 

areas or new time horizons 82,83. Moreover, MaxEnt also assumes that the presence 335 

data used in the model are geographically representative of the true species 336 

distribution. However, occurrence records typically exhibit spatial bias due to uneven 337 

sampling and/or reporting efforts, which we highlighted as no samples were available 338 

for example the Amazon, north Russia, Alaska and the Sahara dessert 84-86. Finally, 339 

MaxEnt uses a presence-only modelling framework, therefore generating relative, 340 

rather than, absolute suitability. Therefore, consideration and careful interpretation is 341 

required when comparing between multiple species or across environments. MaxEnt 342 

and other modelling approaches do not account for biotic interactions, 343 

Jo
urn

al 
Pre-

pro
of



15 
 

microenvironmental variability, or genetic adaptation. For example, we do not account 344 

for the potential evolution of thermotolerance, virulence or fungicide resistance, which 345 

could drastically alter species distributions or ability to cause infections 87-89.  346 

In addition, although we focused on climate variables, other abiotic factors, such as 347 

soil composition, pH, and anthropogenic land use, undoubtedly influence Aspergillus 348 

ecology 90. A. fumigatus, in particular, is strongly associated with thermogenic 349 

environments rich in decaying organic matter, such as compost heaps, where 350 

temperatures can exceed 50°C during active decomposition 91,92. Surveys across the 351 

UK found elevated levels of A. fumigatus across compost bags, heaps and garden 352 

plots treated with compost which was associated with antifungal resistant isolates 54,93. 353 

These conditions provide a unique niche for A. fumigatus, enabling high sporulation 354 

and aerial dispersal, especially when compost is disturbed 92,94. In contrast, A. 355 

flavus and A. niger are more frequently isolated from multiple types of soils, with high 356 

organic content, lower nitrogen levels, and acidic to neutral pH 95,96. Soil pH has been 357 

shown to influence fungal community structure, with A. niger  thriving in acidic 358 

conditions 97,98. Another layer of uncertainty stems from population projections in 359 

suitable habitats. While we estimate increasing exposure risk in some regions, these 360 

are modelled on current species-environment relationships and may not capture future 361 

human behaviour, people at risk of developing fungal infections, or agricultural 362 

changes that would render plants at risk of infection. 363 

In addition to long-term climatic changes, seasonal variation and extreme weather 364 

events are likely to play an important role in shaping the distribution 365 

of Aspergillus species 99. Seasonal dynamics influence growth and spore release, 366 

particularly through cycles of rainfall and temperature shifts as is seen with other 367 
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fungal pathogens 100-102. The MaxEnt model identified precipitation seasonality as a 368 

key predictor of habitat suitability, particularly for A. flavus and A. niger, suggesting 369 

these species are more present in areas with increased wet-dry cycles. Furthermore, 370 

extreme weather events such as droughts, floods, and heatwaves, which are expected 371 

to increase in frequency and intensity, can contribute to higher levels of fungal spores 372 

within the air 92,103. Past studies have observed spikes in aspergillosis cases following 373 

natural disasters 104,105.  374 

While our MaxEnt model provides a prediction of suitable habitat overlap within crop 375 

growing regions, it does not account for climate change directly impacting the crop 376 

growing regions. Several modelling attempts have shown that regions will become 377 

unsuitable to grow rice 106-108, wheat 109,110 and maize 111,112 under different climate 378 

scenarios. In addition, differential virulence of species and the occurrence of 379 

Aspergillus species across different crops and their disease has not been accounted 380 

for. While this would ideally be done, current epidemiological data from across the 381 

world remains sparse. Future work combining crop models, virulence data and 382 

epidemiology would provide a more detailed approached to model plant infections in 383 

a changing world. 384 

Historically, invasive aspergillosis was primarily a concern for immunocompromised 385 

individuals, such as transplant recipients or those undergoing chemotherapy 113. Our 386 

MaxEnt model does not take into account the changing patient population or emerging 387 

novel risk factors for aspergillosis. Examples of recently associated risk factors include 388 

COVID-19 and severe influenza, leading to COVID-19-associated pulmonary 389 

aspergillosis (CAPA) and influenza-associated pulmonary aspergillosis (IAPA), 390 

collectively termed viral-associated pulmonary aspergillosis (VAPA) 114,115. These 391 
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diseases have been increasingly recognised in intensive care settings, where patients 392 

often experience prolonged ventilation and receive corticosteroids or other 393 

immunomodulatory treatments 116.  394 

Despite these caveats, this work represents a valuable step in modelling the climate-395 

driven shifts in Aspergillus ecology. By combining environmental metagenomic 396 

sequencing and modelling with clinical and environmental prevalence data, we 397 

highlight the importance of proactive monitoring in a changing world. The expanding 398 

and shifting range of these fungal pathogens, exacerbated by climate change, 399 

reinforces the urgency of a One Health approach to infectious disease surveillance. 400 

 401 

Resource Availability 402 

Lead contact 403 

Requests for further information and resources should be directed to and will be 404 

fulfilled by the lead contact, Norman van Rhijn 405 

(Norman.vanrhijn@manchester.ac.uk). 406 

Materials availability 407 

This study did not generate new unique reagents. 408 

Data and code availability 409 

• This paper analyses existing, publicly available data, accessible at 410 

https://globalfungi.com. Other databases used have been mentioned in the 411 

relevant section in the STAR methods.  412 

• This paper does not report original code.  413 
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• Any additional information required to reanalyze the data reported in this paper 414 

is available from the lead contact upon request. 415 

Limitations of Study 416 

This study has several limitations that should be considered when interpreting the 417 

findings. First, species occurrence data were derived primarily from global 418 

metabarcoding datasets, which rely on ITS sequencing that do not reliably resolve 419 

Aspergillus species beyond the section level, introducing uncertainty in species-level 420 

attribution, particularly within sections Nigri and Flavi. In addition, the presence-only 421 

nature of MaxEnt modelling produces relative suitability rather than true probability of 422 

occurrence and is sensitive to spatial sampling bias, which is evident in the 423 

underrepresentation of large regions such as the Amazon basin, Sahara, northern 424 

Russia, and the Arctic regions. Also, biotic interactions, microclimatic conditions, land 425 

management practices, and point-source habitats such as composting sites are not 426 

explicitly modelled, despite their known importance for Aspergillus ecology. Future 427 

projections rely on a single global climate model and do not capture inter-model 428 

variability present across CMIP6 ensembles, which can influence regional predictions. 429 

Finally, while the spatial modelling framework provides quantitative projections of 430 

potential future habitat suitability, it remains a theoretical representation of complex 431 

ecological systems, and the actual real-world impact on Aspergillus exposure, disease 432 

burden, and crop losses will ultimately depend on future environmental, biological, 433 

agricultural, and societal factors that require surveillance and experimental validation. 434 
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STAR methods 450 

Key resources table 451 

REAGENT or 

RESOURCE 
SOURCE IDENTIFIER 

Deposited data 

GlobalFungi v5 Vetrovsky et al 2020 globalfungi.com 

WorldClim 2 Fick and Hijmans 2017 worldclim.org 

Jo
urn

al 
Pre-

pro
of



20 
 

HadGEM3-

GC31-LL 

O'Neill et al 2016 https://www.wdc-climate.de/ui/cmip6?input=CMIP6.CMIP.MOHC.HadGEM3-GC31-LL 

CROPGRIDS Tang et al 2024 https://figshare.com/articles/dataset/CROPGRIDS/22491997 

Population 

distributions 

under SSP 

models 

Wang et al 2022 https://figshare.com/articles/dataset/Projecting_1_km-

grid_population_distributions_from_2020_to_2100_globally_under_shared_socioeconomic_pathways/19608594/2 

Software and algorithms 

SPSS Statistics 

24 

IBM  

ArcGIS Pro 

v3.4.2 

Esri  

MaxEnt v3.4.4 https://biodiversityinformatics.amnh.org/open_source/maxent/  

RStudio 

v2024.09.0+375 

Posit PBC  

 452 

METHOD DETAILS 453 

Data acquisition 454 

To gather metabarcoding sequencing data on Aspergillus species, the GlobalFungi 455 

database (release 5.0) was used 46. Search by taxonomy on Aspergillus fumigatus, 456 

Aspergillus flavus and Aspergillus niger was used. Raw data containing sample ID, 457 

latitude and longitude, sample type and ITS total were exported following data quality 458 

control. Data from aquatic and air samples were removed as well as manipulated 459 

samples. To remove potential datapoints that resulted from low level contamination 460 

only datapoints with over 10 sequencing reads attributed to each species were 461 

maintained. Data were stored and analysed using IBM SPSS Statistics 24.  462 
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Current and future bioclimate variables were obtained from the WorldClim data archive 463 

117. Initially a total of 19 bioclimate variables were downloaded with a spatial resolution 464 

of 5 arc-min (10km2) were selected for analysis. Initially, a baseline MaxEnt model was 465 

constructed with all 19 variables to assess contribution percentage, and Pearson 466 

correlation coefficients between variables were calculated. Variables demonstrating a 467 

correlation exceeding ± 0.8 were investigated and the variable with the lower 468 

contribution in the baseline model was excluded. Ultimately, seven WorldClim 469 

bioclimate variables - Annual Mean Temperature (bio_01), Mean Diurnal Range 470 

(bio_02), Temperature Annual Range (bio_07), Annual Precipitation (bio_12), 471 

Precipitation of Driest Month (bio_14), Precipitation Seasonality (bio_15) (which is 472 

calculated as the coefficient of variation of monthly precipitation) and Precipitation of 473 

Coldest Month (bio_19) were retained for MaxEnt modelling. 474 

The future climate data used in this study comes from the Sixth iteration of the Coupled 475 

Model Intercomparison Project 118. Specifically, we used the HadGEM3-GC31-LL 476 

future climate dataset for 3 shared socioeconomic pathways (SSPs; SSP 126, SSP 477 

245 and SSP 585) for 3 future time horizons: 2014-2060, 2061-2080 and 2081-2100. 478 

Data on future human population density was obtained from projections at a 30 arc-479 

seconds (1km) spatial resolution until 2100 under different SSP models 58. Data on 480 

spatial distribution of growing different crops (5.6km resolution) was obtained from 481 

CROPGRIDS 57. A selection of crops to focus on was chosen at the top 10 highest 482 

value crops globally. Data intersections and maps were generated using ArcGIS Pro 483 

v3.4.2. 484 

Literature review 485 
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A literature search was performed using several search terms for each individual 486 

country from the WHO country list; “country name” AND aspergillosis OR aspergillus, 487 

as well as “country name” AND aspergillus AND soil. Articles were manually curated 488 

and included when all three species were identified in the data, which allowed 489 

comparison of species prevalence. Articles referring to specific substrates (food items, 490 

fruits etc) were excluded and only data on soil species distributions were included for 491 

environmental prevalence of Aspergillus species. For clinical prevalence only data 492 

from invasive aspergillosis was used to make articles comparable.  493 

QUANTIFICATION AND STATISTICAL ANALYSIS 494 

Model generation 495 

All pre-processing was undertaken in ArcGIS Pro 3.2. Occurrence data were cleaned, 496 

projected to a uniform coordinate system, and spatially thinned to reduce 497 

autocorrelation. Environmental predictor variables were reprojected, resampled, and 498 

clipped to a consistent spatial resolution and study extent. 499 

Using MaxEnt v3.4.4, separate species-specific models were generated using GPS 500 

coordinates for Aspergillus fumigatus, Aspergillus flavus and Aspergillus niger 501 

individually. For each individual species model, 80% of occurrence records were used 502 

for model training and 20% for independent validation. Model complexity was explicitly 503 

defined by testing feature class (FC) combinations of L, H, LQ, LQH, and LQHPT with 504 

regularization multipliers (RM) of between 0.5 and 4 at 0.5 intervals. The maximum 505 

number of iterations was set to 500, and a convergence threshold of 0.00001 was 506 

applied to ensure model stability while minimising overfitting. 507 

Each model used 10,000 background (pseudo-absence) points, spatially constrained 508 

by species-specific bias files to match the sampling structure of occurrence data. 509 
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Bootstrap replication (n = 10) was employed, and outputs were generated in Cloglog 510 

format to facilitate interpretation of habitat suitability as relative probability of presence. 511 

For each species, input variable importance was assessed via the Jackknife test, and 512 

response curves were examined to evaluate ecological relationships. Jackknife test of 513 

regularised training gain was assessed to quantify the importance of each 514 

environmental variable in isolation as well as when it is removed from the dataset. 515 

Model performance was quantified using the area under the receiver operating 516 

characteristic curve (AUC). 517 

Following MaxEnt calibration, resulting suitability layers were imported into the ArcGIS 518 

Pro for further spatial analysis. Continuous Cloglog outputs were reclassified using the 519 

maximum training sensitivity plus specificity (MTSPS) threshold to delineate suitable 520 

habitat areas. In ArcGIS, the Reclassification Tool was used to divide habitats into 521 

non-suitable (0-MTSPS value) and suitable (MTSPS value-1). The future suitable 522 

habitats were generated by overlaying habitats using the “Intersect” function. 523 

Maps and additional spatial analysis were executed using ArcGIS Pro v3.4.2. All other 524 

data was visualised using Rstudio (v 2024.09.0+375) and ggplot2. 525 

Differences between bioclimatic variables were assessed via One-way ANOVA with 526 

post-hoc Tukey’s Honest Significant Difference. P<0.05 was considered significant. 527 

 528 

Figure legends 529 

Figure 1 MaxENT model accurate described Aspergillus global distributions. A 530 

Habitat suitability for three Aspergillus species from the MaxENT model. Least suitable 531 

is 0 and most suitable is 1. B Correlation plots of frequency of each Aspergillus species 532 

found in the literature compared to the median suitability for that particular country in 533 
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the MaxENT model. Shaded region represents the 95% confidence interval. C 534 

Boxplots showing environmental differences between A. flavus, A. fumigatus and A. 535 

niger among three environmental variables used for SDM. Species marked with the 536 

same letter are not significantly different at P < 0.05 with regards to each 537 

environmental variable. Boxplot shows the median and interquartile ranges. Whiskers 538 

represent lower and higher quartile range. a shows significance (p<0.05) versus the 539 

two other groups, b significance (p<0.05) versus Aspergillus fumigatus and c versus 540 

Aspergilllus flavus as determined by one-way ANOVA. 541 

Figure 2 Climate change will shift distributions of Aspergillus species. The 542 

SSP245 model is shown here as a representative across three different time horizons 543 

(2041-2060, 2051-200 and 2081-2100). Red is considered suitable habitat according 544 

to the cut-off from the MTSPS analysis.  545 

Figure 3 Suitable habitat will have lower overlap with crop growing regions. A 546 

Quantification of the km2 overlap between crop growing regions from CROPGRIDS 547 

and the suitable habitat for A. niger and A. flavus. ND is not done as Aspergillus niger 548 

has not been reported to cause wheat infection. B Map overviews of A. flavus and A. 549 

niger across three different time horizons for the SSP585 model. Red is the overlap 550 

between habitat suitability and the crop growing region for maize. 551 

Figure 4 The epidemiological landscape of invasive aspergillosis is predicted to 552 

shift due to climate change. A Correlation of the relative frequency of Aspergillus 553 

species found in the literature where one report of clinical frequencies and one of 554 

environmental frequencies could be found. Blue is A. niger, Orange A. fumigatus and 555 

grey A. flavus. Shaded bands are the 95% confidence intervals. B People living in 556 

suitable habitat for the three Aspergillus species until the 2100 time horizon. The solid 557 
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line is the moderate scenario SSP245, while the bands represent the SSP585 and 558 

SSP126 models. C People living in suitable habitat broken down into continents for 559 

the three Aspergillus species until the 2100 time horizon. Australia was considered 560 

separate in this analysis. The solid line is the moderate scenario SSP245, while the 561 

bands represent the SSP585 and SSP126 models.    562 

 563 

 564 
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Highlights 

 

• MaxEnt models reveal poleward habitat shifts of Aspergillus spp. under 
climate change 

• A fumigatus prefers temperate, while A. flavus and A. niger thrive in warmer 
climates 

• Climate-driven habitat shifts reduce overlap with maize and rice crop-growing 
areas 

• Clinical prevalence of aspergillosis mirrors environmental suitability patterns 

• Over 2 billion people currently live in areas suitable for pathogenic Aspergillus 
species 
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