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ABSTRACT

Aim: To examine how butterfly population trends respond to climate change and urbanisation at a continental scale, and
whether responses differ between urban and rural environments.

Location: 869 sites across 12 European countries, spanning six bioclimatic zones.

Time Period: 1976-2021.

Major Taxa Studied: Butterflies (Lepidoptera).

Methods: We analysed long-term monitoring data from >8400 populations of 145 species representing a wide range of eco-
logical and life-history traits. Population trends were modelled in relation to climate variables (temperature, precipitation and
aridity), urbanisation (built-up surface), and their interactions with urban context (urban vs. rural) and species traits (trophic
specialisation, body size, reproductive rate and thermal adaptation).

Results: Climate warming and aridification were consistently linked to population declines in both rural and urban contexts,
while precipitation effects varied by location and species. Urbanisation alone did not predict trends, but the urban-rural context
strongly modulated species' responses to warming, indicating potential synergies between climate change and urbanisation. The
stronger impact of warming in urban populations likely reflects elevated baseline temperatures and reduced habitat suitability
and connectivity in urban landscapes, limiting thermal buffering. Species with colder thermal niches and lower reproductive
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rates were most vulnerable to warming, as warming exceeds the thermal optima of cold-adapted species and lower reproductive

rates limit their capacity to buffer climate-driven population declines. Under aridification, which can reduce host-plant availa-

bility, trophic specialists declined more in urban areas, whereas generalists unexpectedly declined more in rural sites, suggesting

context-dependent constraints under increasing water limitation.

Main Conclusions: Our findings highlight the complex interplay between climate change, urban context, and species traits

in driving population dynamics. Importantly, our results suggest that urbanisation generally amplifies the negative impact of

climate change on insect population trends.

1 | Introduction

Urbanisation and climate change are accelerating biodiver-
sity shifts in the Anthropocene (van Moorsel et al. 2022; Urban
et al. 2024). In Europe, built-up surface area increased from 173.6
billion m? (ca. 4% of total land area) in 1975 to 464.6 billion m?
(ca. 10.7%) in 2020 (EU Commission 2023); a tendency that has
expanded worldwide and is projected to increase sixfold by 2050
(Gao and O'Neill 2020). In parallel, global temperatures have risen
by 0.15°C-0.2°C per decade, and other climatic patterns (e.g., sea-
sonality and precipitation patterns, including extreme events) have
shifted in different directions across regions (Gulev et al. 2021).

Urbanisation generally results in small and isolated habitat
patches, surrounded by a built matrix largely inhospitable to wild-
life (Liu et al. 2016). The associated habitat loss and increased frag-
mentation can significantly restrict dispersal, establishment and
persistence across suitable habitats, driving declines in diversity
and abundance of many taxa, with specialist species being partic-
ularly affected and, consequently, communities becoming dispro-
portionately dominated by generalist species (Fenoglio et al. 2020;
Piano et al. 2020; Dri et al. 2021; Hou et al. 2023). Likewise, cli-
mate change also disrupts the environmental conditions species
are adapted to, and hence population viability (Root et al. 2003;
Parmesan 2006; Bellard et al. 2012; Cahill et al. 2013). Because
the impact of climate change on local conditions is complex and
depends on many factors affecting energy accumulations and dif-
fusion, it is reasonable to expect that the impact of climate warm-
ing interacts with urbanisation, leading to contrasting population
responses depending on the degree of urban development in the
environments where species occur (Chapman et al. 2017; Urban
et al. 2024). Climate-driven population declines may be intensi-
fied in urban environments due to the urban heat island effect and
the limited availability of cold microclimates to buffer warming
(Kaiser et al. 2016; Audusseau et al. 2024; Ganuza et al. 2025).
Moreover, by increasing the areas of impervious surfaces, ur-
banisation has a direct impact on local water regimes, reducing
groundwater recharge, limiting infiltration, and increasing the
risk of drought (McGrane 2016; Pumo et al. 2017; Zhou et al. 2019).
By altering the water cycle, urbanisation will influence the effect
of precipitation and aridity on population responses.

Understanding how urbanisation and climate change interact and
influence population changes over time is critical, as the processes
that affect the intrinsic population growth rates precede coloniza-
tions, extinctions and changes in community composition (Collen
et al. 2011). Extensive research has examined the effects of habitat
loss, fragmentation and climate change on population trends, often
supported by national monitoring programs and global reposito-
ries (e.g., Martay et al. 2017; Williams et al. 2022). However, among

the relatively few studies that have specifically examined the im-
pacts of urbanisation and its interaction with climate change, most
have focused on species occupancies based on presence/absence
data or opportunistic counts (but see Dennis et al. 2017; Griinwald
et al. 2024), limiting insights on long-term population responses.

While urbanisation and climate change represent broad-scale
drivers of population decline, their impacts are rarely uniform
across species. Some species may adapt and even thrive in urban
environments by exploiting new resources or niches (i.e., urban ex-
ploiters; Kordnyi et al. 2021; Kurucz et al. 2021; Santana Marques
et al. 2020). Similarly, climate change may allow some species
to establish and expand populations in newly favourable condi-
tions (Crossley et al. 2021; Jackson et al. 2022; Fiirst et al. 2023).
Ecological and life-history traits are key to understanding how
species respond to pressures and changing environments.
Thereby, variation in species traits can result in contrasting re-
sponses to urbanisation and climate change. For example, trophic
generalist species may better cope with the reduced and shifting
resources in novel and changing environments, while special-
ists that rely on specific resources are more vulnerable to these
changes (Callaghan et al. 2020; Colom et al. 2022; Pla-Narbona
et al. 2022). Dispersal capacity may also be critical: species with
high mobility are predicted to move through fragmented habitats
more easily, whereas less mobile species often confined to isolated
patches are like to be more affected by habitat loss (Bommarco
et al. 2010; Ockinger et al. 2010; Niebuhr et al. 2015). Thermal
adaptation plays a crucial role in shaping species responses to cli-
mate change and urban warming (Audusseau et al. 2024). Species
with narrow thermal niches centered in colder regions (i.e., cold-
adapted species) are expected to be more negatively affected by
climate warming and aridification (i.e., increasing aridity over
the long-term), as conditions shift beyond their optimal range
(Diamond et al. 2012; Engelhardt et al. 2022; Shirey et al. 2024).
Lastly, species with longer active periods or multiple reproductive
cycles per year experience a wider range of climatic conditions,
which may provide them with a broader environmental niche
(Franzén et al. 2020; Callaghan et al. 2021). Ultimately, species
whose traits confer greater flexibility are more likely to thrive in
changing environments and be more resilient to pressures exac-
erbated by urbanisation and climate change, providing them with
a competitive advantage in an increasingly unpredictable world
(Hahs et al. 2023; Sol et al. 2024).

In this study, we investigate whether long-term population
trends are associated with climate change (climate warming,
reduced precipitation and aridification) and urban intensifica-
tion (i.e., increasing built-up surface), and whether their effects
depend on the spatial context and species traits. Specifically,
we assess whether climatic responses differ between rural and
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urban environments—anticipating that contrasts in landscape
structure, microclimates, and hydrological conditions may mod-
ulate population responses. In addition, we evaluate whether
species traits related to trophic specialisation, dispersal capac-
ity, reproductive rate, and thermal adaptation explain hetero-
geneity in population responses to climate change and urban
intensification (Table 1). Butterflies are particularly suitable for
this purpose because they are extensively monitored, and have
well-characterised life-history traits and climatic distributions
(Schweiger et al. 2014; Middleton-Welling et al. 2020; Shirey
et al. 2022). Therefore, to achieve these objectives, we analysed
long-term time series of butterfly counts recorded by national
and regional Butterfly Monitoring Schemes established across
Europe (Sevilleja et al. 2020). Together, this framework allows
us to assess population trends as the outcome of multiple en-
vironmental drivers, disentangling the independent effects of
climate change and urban intensification from their modulation
by urban context and species traits.

2 | Methods
2.1 | Butterfly Population Trend

We used the European Butterfly Monitoring Scheme (eBMS
v5.0) dataset, which includes standardised butterfly count data
from 19 countries, leveraging the collaborative work of 21 citizen
science monitoring projects (Roy et al. 2020). This version of the
eBMS dataset spans the period 1976 to 2021 (varying depending
on the scheme, with a mean of 16 + 11.3years of data), covering
12,033 sites and 318 butterfly species across Europe (Figure S1a).
Each monitoring scheme contributing to the eBMS database in-
volves a network of sites where professional or skilled volunteers
conduct regular (from weekly to monthly) butterfly counts along
fixed transects, following the standardised ‘Pollard Walk’ proto-
col (Pollard and Yates 1993). Along these transects, all butterfly
species are monitored during the butterfly flight season, which
varies by climatic region from March to October.

To calculate annual abundance estimates for species popula-
tions, we used the regional GAM approach (Dennis et al. 2013;
Schmucki et al. 2016). This two-stage method first fits a gen-
eralised additive model (GAM) with a Poisson distribution and
log link function, capturing the seasonal variation in abundance
counts of butterfly species over time within a specific region and
year (i.e., the phenological flight curve). In the second stage,
the standardised flight curve is used as an offset to account for
species’ phenology in a log-linear model to predict the values
of missing weekly counts for each site and year. This approach
produces a complete time series of weekly counts—combining
observed and imputed data—to calculate an annual abundance
index for each species-site-year combination, thus minimising
biases due to inter-annual variation in sampling effort.

Regions were defined accounting for climate and photoperiod,
both recognised as ecological determinants of butterfly phenol-
ogy (e.g., Hodgson et al. 2011). First, we classified all sites into
ten bioclimatic zones according to Metzger et al. (2013). Second,
we defined six latitudinal zones from 28.074N to 65.204N, en-
suring a maximum day length variation of approximately 1.5
h within regions, using the summer solstice (June 21st) as the

reference day (Figure Sla). Each region was thus defined as a
unique combination of bioclimatic and latitudinal zones.

To account for regional variation in species phenology, we fit-
ted the two-stage method described above for each region
(Schmucki et al. 2016), using the “flight_curve” function from
the rbms package (Schmucki et al. 2022) for each species-region-
year combination with five or more sites that met the following
criteria: a minimum of ten weekly counts and the focal species
observed in at least three different weeks. The maximum num-
ber of sites included to fit a regional GAM was 300 to balance
computational demands and maintain a consistent and repre-
sentative dataset. For cases with more than 300 available sites,
we used an algorithm to select the “best informed” 300 sites
based on the monitoring effort and each species occurrence,
and to ensure a balanced spatial distribution of the selected sites
across the region. For all species populations, we estimated and
imputed the missing counts daily over the monitoring season
using the corresponding regional flight curve with the function
“impute_count” (Schmucki et al. 2022). We calculated annual
abundance indices of species populations as the total of real and
imputed counts per site and year. Finally, population trends for
each species-site combination with ten or more years meeting
the GAM inclusion criteria (i.e., ten weekly counts and the focal
species observed in at least three different weeks) were calcu-
lated as the beta coefficient of year on the logarithm of annual
abundance using generalised least squares models (GLS). An
autoregressive correlation structure of order 1 was applied to the
residuals to account for temporal autocorrelation. The resulting
dataset included 8409 population trends for 145 species across
869 sites in 12 different countries, covering six European biocli-
matic zones (Figure S1b).

2.2 | Ecological and Life-History Species Traits

We selected five traits known to predict butterfly popula-
tion trends (Curtis et al. 2015; Eskildsen et al. 2015; Melero
et al. 2016) and species urban affinity (Franzén et al. 2020;
Callaghan et al. 2021; Pla-Narbona et al. 2022). One trait related
to trophic specialisation: (i) the host-plant specialisation index
(HSI), which quantifies the trophic specialisation of butterfly
species in the larval stage based on the number of plant fami-
lies, genera, and species they use. One trait related to body size
(which in butterflies is often correlated with dispersal capacity,
e.g., Sekar 2012): (ii) the wing index (W1), derived from forewing
length and wingspan of both females and males. Two traits re-
lated to thermal niche: (iii) the species temperature index (STI),
that is, the mean temperature within the species’ range, proxy
of the thermal niche center; and (iv) the species temperature
variation index (STVI), that is, the standard deviation of the
temperature within the species range, proxy for the species ther-
mal niche breadth. Both STI and STVI reflect species-level cli-
matic associations based on their realised niche in Europe, that
while not capturing population-level thermal limits, local adap-
tation, or microclimatic responses, allow the detection of gen-
eral interspecific patterns across a continental scale (Schweiger
et al. 2014). Finally, reproductive rate was assessed using: (v)
the flight period length (FPL), measured as the average num-
ber of months of the year a species is observed in the adult
stage. We selected this variable for its strong correlation with
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urban affinity and its advantage as a continuous proxy for re-
productive output, avoiding discrete voltinism categories while
remaining closely correlated with them (Callaghan et al. 2021;
Pla-Narbona et al. 2022). Traits related to trophic specialisation,
body size and reproductive rate were extracted from Middleton-
Welling et al. (2020) and traits related to thermal tolerance from
Schweiger et al. (2014). Out of the 145 species in our dataset, 19
lack data on thermal tolerance traits and two lack data on HSI
(Table S1).

2.3 | Urbanisation Data

To assess urbanisation and its trends, we used the Global
Human Settlement Layer (European Commission 2023). For
each butterfly monitoring site, we extracted the built-up surface
(m?) from the GHS-BUILT-S R2023A raster dataset, derived
from Sentinel-2 composite and Landsat data, using a 2 X2 km
grid centered on the centroid of the transect, with a resolution of
100 X 100 m. To calculate urbanisation trends, we first predicted
the yearly built-up surface at each site by modelling the built
data available in five-year intervals from 1975 to 2025, using
four different models (linear, polynomial, exponential, and log-
arithmic). We then selected the model with the lowest AIC, with
99.3% of cases being exponential and 0.7% linear (cases where
built-up surface remained zero over all the time series). Next,
using the predicted data from the selected models, we calculated
temporal trends for the specific subset of years corresponding
to each species-site temporal series by determining the slope of
the predicted values. This approach allows us to estimate the
rate of change in urbanisation, accurately reflecting exponential
growth patterns in the data.

Using the GHS-SMOD—R2023A dataset, sites were classified
as urban if they belonged to urban clusters, defined as con-
tiguous 1 X1 km grid cells (connected by any edge or corner)
with a density of at least 300 inhabitants per km? of perma-
nent land and a total population of at least 5000 inhabitants
in the cluster (European Commission 2023). Sites were clas-
sified as rural if they were present in grid cells that did not
belong to urban clusters. Most rural sites have a population
density below 300 inhabitants per km?; however, some may
have higher densities but do not form clusters with a sufficient
total population to be considered urban. The categorization of
sites as rural or urban (rural: n =745 sites, 145 species; urban:
n =115 sites, 100 species; Figure Slc; Table S1) did not change
during the study period. See Figure S2 for urbanisation trends
for rural and urban sites.

2.4 | Climate Data

We used the ClimateDT tool (Marchi et al. 2024), which employs
dynamic lapse-rate calculations for the spatial downscaling of cli-
matic surfaces, to estimate climate trends at resolutions relevant
to individual transects. This tool leverages CHELSA v2.1 (Karger
et al. 2017), a global dataset of climatic measurements at 30 arcsec
spatial resolution (1 km up to 500 m). Its algorithm accounts for
variations in temperature with elevation and incorporates oro-
graphic effects on cloud cover and radiation, making it a highly
reliable source for climate estimations in topographically diverse

areas. This ensures that our climate analyses are both more accu-
rate and relevant to the specific conditions of our sites.

For each site and year, we extracted annual estimates of mean
temperature, precipitation, and aridity. Aridity was calculated
as the inverse of the De Martonne Index, which combines mean
annual and seasonal precipitation with temperature to represent
water availability and drought intensity (Jafarpour et al. 2023).
These three climatic variables are important for butterfly pop-
ulations as their shifts over the long term are closely associated
with key ecological processes that influence butterfly popula-
tion dynamics, such as changes in phenology, habitat suitability,
and resource availability (Hill et al. 2021; Wilson and Fox 2021).
Further, the strength of their effect can vary depending on the
species and the population (Mills et al. 2017; Colom et al. 2021;
Melero et al. 2022). We then used linear models to calculate cli-
matic trends associated with each species-site temporal series
(Figure S3).

2.5 | Statistical Analysis

Two different sets of linear mixed models were conducted to
analyse the interaction effects on butterfly population trends.
The first set of models analysed the interactions of urbanisation
and climate trends (separately) with site type (rural or urban),
including random slopes for species to account for inter-specific
variation in population responses. However, urbanisation was
only tested in already-urban sites (i.e., urban intensification) as
the increase in built-up surface was minimal in rural sites (see
Figure S2). Urbanisation trends showed very weak, nonsignif-
icant correlations with climatic trends (r=0.04-0.1, p >0.05),
whereas some climatic trends themselves were correlated (e.g.,
temperature-aridification: r=0.6; precipitation-aridification:
r = —0.87). We therefore modelled the impact of each environ-
mental driver on population trends separately to avoid multicol-
linearity and confounding effects.

The second set of models analysed the interaction between envi-
ronmental trends (urbanisation and climate) and species traits,
in the sense of the established hypothesis (Table 1). In all models,
population trend (beta coefficient of the annual abundance mod-
els) was the response variable, and species, site and climate region
were included as random factors. Additionally, we incorporated
the inverse of the variance of the population trends as weights in
the models to account for the uncertainty associated to the pop-
ulation trend estimates. First, we fitted four models in which we
tested the effects of urbanisation and climate trends (temperature,
precipitation and aridity), with site type (rural vs. urban) included
as an interacting factor for climate variables. For the climate mod-
els, we restricted the analyses to the 100 most common species in
both rural and urban sites to ensure comparability by avoiding bi-
ases due to different species composition in urban and rural sites
(but see Figure S4a-d for plot effects including all the species).
Second, we developed models for the interactions between envi-
ronmental trends and species, based on prior hypotheses (Table 1).
We conducted the models separately for rural and urban sites,
using all species with available data for all five traits (rural=126;
urban=90) to ensure comparable results between different site
types and trait models. In the trait models, all continuous variables
were standardised (mean =0, SD =1) to compare interaction effect
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sizes across traits and identify which one best explains variation in
species responses. Quadratic terms were not included in the mod-
els, as exploratory analyses did not reveal significant nonlinear
patterns between population trends and urbanisation or climate
shifts for most species. All models were fitted using the glmmTMB
package (Brooks et al. 2017) in R version 4.3.3 (R Core Team 2020).

We tested whether species responses to environmental trends
showed significant phylogenetic signal, which would indicate
the need to account for shared evolutionary history. Using both
Blomberg's K and Pagel's A, we found no evidence of phyloge-
netic structure in species-level population trends (K=0.075,
p=0.819; 1 =0, p >0.99) or in species-level random intercepts
from GLMMs (all K <0.06 and p >0.8). This indicates that phy-
logenetic relatedness does not explain similarity in species re-
sponses to environmental change in our study system, and thus
phylogenetic correction was not necessary in our models.

To focus on ecologically meaningful patterns, we report results
from models where fixed effects explained at least 1% of the vari-
ance in population trends (marginal R? >0.01). Full results, in-
cluding models with lower explanatory power, are provided in
(Table S3).

3 | Results

3.1 | Urbanisation and Climate Effects on Rural
and Urban Populations

Contrary to our expectations, the overall effect of urban in-
tensification (i.e., urbanisation in already urban sites) on

population trends was not significant (Figure la; Table 2;
Table S2). Regarding climate change, population declines were
associated with climate warming in both urban and rural sites,
with stronger negative impacts in urban populations (Figure 1b;
Table 2; Table S2). According to our model, a temperature in-
crease of 0.02°C per year was associated with an average
decrease in butterfly abundance of 2.3% per year for rural pop-
ulations and of 5.7% per year in urban populations, meaning
that, over one decade of climate warming, urban populations
would decline by 23.4% more than rural populations. On the
other hand, precipitation had contrasting effects on population
trends in rural and urban contexts (Figure 1c; Table 2; Table S2);
for example, an increase of 10 mm/year in precipitation was as-
sociated with an average annual abundance increase of 2.3%
in rural populations, and a decrease of 6.6% per year in urban
ones. While this effect was significant, precipitation explained
less than 1% of the variance in population trends (marginal R?
<0.01). Both rural and urban populations declined with arid-
ification, with rural populations showing significantly steeper
declines (Table 2; Table S2). However, the magnitude of the dif-
ference was relatively low (Figure 1d), for example, an increase
of 0.1°C/mm was associated with an annual decline of 2.5% in
rural populations and 2.2% in urban ones.

3.2 | The Role of Traits in Species’ Response to
Urbanisation and Climate Change
3.2.1 | Inter-Specific Responses to Urbanisation Trends

None of the interactions between urban intensification and spe-
cies traits (Table 1) substantially improved explanatory power
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(marginal R? <0.01) of urban intensification, indicating that ur-
banisation was a poor predictor of population trends, even when
accounting for interspecific differences (Table 2; Table S3).

3.2.2 | Inter-Specific Responses to Temperature Trends

Warming trends had a stronger negative impact on cold-adapted
species—those with cold and narrow thermal niches (Table 1)—
although the interaction with thermal niche breadth varied by
urban context (Table 2, Table S3). In rural populations, the im-
pact of warming intensified as both the STI (thermal niche po-
sition) and STVI (thermal niche breadth) decreased (Figure 2a).
For instance, a temperature increase of 0.01°C per year led to an
average population decline of 0.72% annually for the warmest-
centered species and up to 1.56% for the coldest-centered, with
effects also stronger for species with narrower niches (1.19%
vs. 0.9% in broader-niche species). In urban sites, the warmest-
centered species declined by 1.3% annually and the coldest-
centered by 3.3%; however, in contrast to rural sites, species with
broader thermal niches declined more than those with narrower
niches (2.8% vs. 2.2% annually; Figure 2b).

In line with our hypothesis on the role of reproductive rate
(Table 1), we found a consistent pattern across both rural and
urban environments: species with longer flight periods—used
here as a proxy of reproductive rate—were less negatively af-
fected by warming than those with shorter flight periods
(Table 2, Table S3, Figure 2a,b). A temperature increase of
0.01°C per year led to annual declines of 1.04% for species with
the shortest flight periods versus 0.86% for those with the lon-
gest in rural sites, and 2.7% versus 2.4% in urban sites.

(a) Temperature - Rural  (b) Temperature - Urban (c) Precipitation - Rural
T " 2 H

(d) Precipitation - Urban

3.2.3 | Inter-Specific Responses to Precipitation Trends

The expected relationship between population responses and
precipitation trends (Table 1) was observed in urban environ-
ments but, unexpectedly, the opposite pattern was found in
rural populations (Table 2; Table S3). In rural sites, reduced
precipitation was associated with stronger declines in host plant
generalists than in specialist species (Figure 2c); with annual
declines of 13%-4.5%, respectively, with a precipitation decrease
of 10mm/year. In urban environments, however, we found
the opposite pattern with relatively large decline for host-plant
specialists (Figure 2d), with declines up to 26.9% per year for
specialists and increase of 2.3% per year for generalists when
precipitation decline by 10mm per year.

3.2.4 | Inter-Specific Responses to Aridity Trends

We found support for the predicted relationship between tro-
phic specialisation and aridity trends (Table 1) only in urban
populations (Table 2; Table S3). In urban sites, increasing
aridity was associated with stronger declines in host-plant
specialists than in generalists (Figure 2f); for instance, a
0.1°C/mm per year increase in aridity led to annual pop-
ulation declines ranging from 1.9% in generalists to 5.1% in
specialists. In contrast, rural populations showed the oppo-
site trend (Figure 2e), with generalists declining more than
specialists (2.4% vs. 1.6%). Regarding thermal adaptation,
we expected cold-adapted species—those with narrower and
colder-centered thermal niches—to be more sensitive to arid-
ity (Table 1). Species with colder thermal niche centers consis-
tently declined more than warm-adapted species in both rural
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Relationships between butterfly population trends (Y-axis) and environmental trends (X-axis) interacting with species traits. Each

row corresponds to a specific species trait: HSI (host-plant specialisation index), FPL (flight month average), STI (species temperature index), and
STVI (species temperature variation index). Each column pair represents a unique predictor (temperature) (a, b), precipitation (c, d), aridity (e, ), for
rural and urban sites separated in different models. Lines represent model predictions for 20 intervals of the species trait range, with shaded areas

representing 95% confidence intervals. Dashed lines indicate a trend value of 0, separating positive from negative trends (e.g., warming vs. cooling for

temperature trends in X-axis). Models included only species with available data for all five species traits (rural = 126; urban =90).
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and urban environments (Figure 2e,f). For example, an aridity
increase of 0.1°C/mm per year led to declines ranging from
1.4% to 3.4% in rural sites and from 2.4% to 3.6% in urban sites,
for the warmest- to coldest-centered species, respectively.
However, contrary to expectations, species with broader ther-
mal niches experienced greater declines than those with nar-
rower ones in both contexts (e.g., 2.5% vs. 1.8% in rural sites,
and 3.4% vs. 1.8% in urban sites; Figure 2e,f).

4 | Discussion

Climate warming and aridification were the main drivers of
butterfly population declines across Europe, while precipitation
trends alone showed little explanatory power. Urban intensifica-
tion did not have a direct effect on population trends. However,
the urban-rural context played a critical role in shaping spe-
cies responses to climate warming, suggesting a potential syn-
ergy between warming and urbanisation. Trait-based analyses
further revealed that species’ thermal affinities and ecological
traits modulate their sensitivity to climate change, helping to ex-
plain the variability in population responses across species and
environments.

4.1 | General Effects of Urbanisation and Climate
on Urban and Rural Populations

The stronger impact of warming on urban populations sup-
ports the hypothesis that urban areas generally exacerbate
thermal constraints on insects. While some species may pos-
sess pre-adaptations or evolved traits in urban environments
(e.g., heat tolerance in a common European moth; Merckx
et al. 2024) that may help to cope with thermal stress, most in-
sects rely on adjusting their behaviour and finding cold micro-
climates to optimise thermoregulation and buffer the impact
of warming (Suggitt et al. 2018; Bladon et al. 2020; Vives-Ingla
et al. 2023). Yet in urban environments, the effectiveness of
these strategies may be limited due to elevated baseline tem-
peratures from the urban heat island effect and high habitat
fragmentation (Urban et al. 2024), which can intensify pop-
ulation collapses during climate extremes and hinder recov-
ery by limiting dispersal and connectivity (Oliver et al. 2015).
Overall, our results suggest that the impact of warming will
escalate as urban expansion continues, imposing greater ther-
mal stress on insect populations.

While climate warming, precipitation change, and aridifica-
tion are interrelated components of climate change, they im-
pose distinct climatic pressures for butterflies (Roy et al. 2001;
WallisDeVries et al. 2011; Ubach et al. 2022), showing distinct
relationships with butterfly population trends and their interac-
tions with urban context. Aridification, reflecting the combined
effects of increased temperature and reduced precipitation, was
associated with population declines in both rural and urban en-
vironments, though with slightly stronger effects in rural sites.
Over the long term, an increase in aridity leads to a reduction
of water availability, impacting the quality and availability of
their nectar and host plants (Carnicer et al. 2019; van Bergen
et al. 2020; Brunet et al. 2025), as well as shifts in the timing
of plant growth and flowering—key processes that support

butterfly development and adult foraging (Dalton et al. 2023;
Donoso et al. 2016; Gil-Tapetado et al. 2023). Although the neg-
ative effects of aridity may be partially buffered in urban envi-
ronments through active management of green spaces—such as
irrigation in parks and gardens that help sustain floral resources
and reduce water stress (Baldock et al. 2019)—our results show
that aridity still had a similarly negative impact on butterfly pop-
ulations across both environments, with only slightly weaker ef-
fects in urban environments.

Precipitation changes alone, independent of temperature, ex-
plained little of the variation in butterfly population trends on
the European scale. This likely reflects the high spatiotempo-
ral variability of precipitation patterns across the continent, as
well as the context-dependent nature of its ecological impacts.
Precipitation can influence butterflies in multiple, sometimes
opposing ways depending on species phenology, seasonality,
and local conditions (Roy et al. 2001; Ubach et al. 2022), making
its effects less consistent and generalizable than those of tem-
perature and aridity, which show clearer and more directional
trends over time in Europe (Gulev et al. 2021).

While climate shifts had clear, generalised impacts on butter-
fly populations, urbanisation itself did not significantly in-
fluence the overall population trends in our continental-scale
study system. This result contrasts with several studies show-
ing that urbanisation is a major factor shaping insect species
composition and population abundance across spatial gradi-
ents (Knop 2016; Merckx and Van Dyck 2019; Tzortzakaki
et al. 2019; Kuussaari et al. 2021; Maes et al. 2022; Pla-Narbona
et al. 2022). However, there has been no prior evidence of the
impact of urban intensification on decadal population trends.
In our system, the absence of an urbanisation effect may be
explained by the fact that urban communities represent a pre-
filtered subset of the regional species pool (Gathof et al. 2022;
Pla-Narbona et al. 2022; Roper-Edwards and Hurlbert 2024),
where the most sensitive taxa have already been lost due to
earlier habitat loss and fragmentation. Because systematic
butterfly monitoring expanded across Europe mainly from
the 1990s onwards, our analyses capture population trends
during a period when substantial declines and community
shifts driven by land-use change had likely already occurred,
meaning that the trends reported in our study operate on al-
ready strongly altered assemblages (Habel et al. 2016, 2024).
Moreover, the lack of data of rural sites experiencing signifi-
cant long-term urbanisation over our study period (Figure S2),
limited the possibility to test the impact of rural-urbanisation
on butterfly population trends. This highlights the importance
of maintaining long-term monitoring in areas potentially sen-
sitive to urban development.

4.2 | The Role of Species Traits to Shape
Population Responses to Climate Shifts

Our results demonstrate that thermal niche characteristics of
species are key predictors of population responses to climate
shifts at a continental scale. We found that in rural environ-
ments, climate warming had the strongest negative impact
on cold-adapted species—those with narrow thermal niches
centered in colder regions. These findings align with growing
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evidence that cold-adapted species are particularly vulnerable
to climate warming, as rising temperatures push them beyond
their thermal limits (Trisos et al. 2020), contributing to steeper
declines and range contractions compared to warm-adapted spe-
cies (Bowler et al. 2015; Héllfors et al. 2024; Shirey et al. 2024).
In urban environments, we found a consistent interaction with
thermal niche position—indicating stronger declines in cold-
centered species. However, our hypothesis was not fully sup-
ported, as species with broader rather than narrower thermal
niches were more negatively affected by warming. A similar pat-
tern emerged in response to aridification across both rural and
urban populations. These results suggest a complex interaction
between niche position and breadth but may partly result from a
confounding effect. In our European multi-species dataset, but-
terfly species with broader niches tend to be centered in colder
regions. This moderate correlation (r =—0.29, p=0.001, n =126;
Figure S5) likely arises because thermal niche traits were cal-
culated based only on the European distributions of these spe-
cies (Schweiger et al. 2014). Cold-centered species—such as
Coenonympha tullia, Lasiommata petropolitana, or Lycaena
hippothoe (Table S1)—mainly occupy northern latitudes that are
well represented within Europe, while warm-centered species—
such as Pyronia cecilia, Zerynthia rumina, or Glaucopsyche
melanops (Table S1)—extend further south into Africa, beyond
the European boundaries. Consequently, niche breadths for spe-
cies centered in warmer regions may be underestimated relative
to those centered in cooler regions (Barbet-Massin et al. 2010;
Titeux et al. 2017). Further, species adaptations (at the popula-
tion level) to local climatic conditions occur in many butterfly
species (Roy et al. 2015; Melero et al. 2022), making them espe-
cially vulnerable to climate independently of their climatic niche
center and breadth (which are defined at the species level), and
of their location (Melero et al. 2025).

We found strong evidence that species with lower reproductive
rates were more negatively affected by climate warming, con-
sistently across both rural and urban environments. While but-
terflies generally have high reproductive rates, those with even
higher potential—such as species capable of producing multi-
ple generations per year—have often more positive population
trends compared to species producing single generations per
year (Macgregor et al. 2019; Wepprich et al. 2019; Michielini
et al. 2021; Colom et al. 2022). Species producing multiple repro-
ductive outputs during the season have the potential of falling
into evolutionary traps under warming by initiating additional
late-season generations that fail to complete development before
winter (Van Dyck et al. 2015). However, populations that in-
crease their reproductive outputs later in the season often expe-
rience population growth in the following year (Kerr et al. 2020;
Wepprich et al. 2025), suggesting that increasing the number of
generations under warming represents an adaptive response to
climate change.

We expected trophic specialists (i.e., butterflies whose larvae
feed on a few plant species) to be especially impacted by a pro-
gressive reduction in precipitation and increasing aridity, as
their limited diet makes them more sensitive to host plant de-
clines under water stress. In contrast, generalist species, which
exploit a broader array of host plants, may better buffer these
changes by shifting to more drought-tolerant or persistent
plant species within their diet. This pattern was only found in

urban populations, suggesting that the reduction of native host
plant richness with increasing urbanisation (Clark et al. 2007;
Miles et al. 2019; Hou et al. 2023) may amplify the impact of
precipitation reduction and aridity on specialist species, leaving
them particularly exposed to resource decline in these envi-
ronments. Surprisingly, we found the opposite pattern in rural
environments, with generalists being more negatively affected
by increasing drought conditions. One possible explanation is
that under environmental stress, generalists may face ecologi-
cal trade-offs that limit their performance compared to special-
ists. Theoretical and empirical studies have shown that niche
breadth is often constrained by trade-offs, such that generalists
perform less efficiently than specialists on any given resource
(Futuyma and Moreno 1988; Ravigné et al. 2009). Under in-
creasing water limitation, generalists may struggle to maintain
performance when multiple resource options decline simulta-
neously in availability or quality (Carvajal Acosta et al. 2023),
whereas specialists may possess finer-tuned physiological
or behavioural adaptations to cope with host plant decline
or chemical changes (Gely et al. 2020; Gutbrodt et al. 2011).
Further research is needed to evaluate whether generalists are
systematically more vulnerable to increasing drought in rural
environments due to ecological trade-offs. Future studies could
refine our predictions by incorporating additional traits, such as
habitat specialisation or species’ biogeographic distributions, al-
though these trait dimensions are likely partly captured by the
traits considered here.

4.3 | The Role of Species Traits in Modulating
Population Responses to Urbanisation

We explored several traits previously shown to influence spe-
cies' sensitivity to urbanisation (Franzén et al. 2020; Callaghan
et al. 2021). For example, body size has been positively linked
to urban tolerance in butterflies and moths, presumably due
to the higher dispersal capacity it confers in fragmented land-
scapes (Merckx et al. 2018; Kuussaari et al. 2021; Pla-Narbona
et al. 2022). However, despite the ecological plausibility of
these traits, their inclusion did not substantially improve the
explanatory power of urban intensification on population
trends.

This lack of strong, trait-based patterns suggests that species
responses to urbanisation are difficult to capture through
broad species-level traits alone. Urban environments are in-
herently heterogeneous, shaped by local management, land-
use history, and spatial context (McDonnell and Hahs 2015;
Aronson et al. 2016), which likely interact in complex and
region-specific ways with species ecology and life-history
(Diamond et al. 2015). In this light, the lack of clear trait-based
predictors does not undermine the ecological importance of the
traits themselves but highlights the context-dependence and
multi-dimensionality of urban pressures (Piano et al. 2020).
Trait-based approaches may yield clearer insights when ap-
plied at finer spatial scales or when combined with more de-
tailed descriptors of urban landscape structure, management,
and connectivity. Nevertheless, our findings reinforce that the
urban context remains critical, as it strongly modulates spe-
cies responses to climate change, a key driver of population
declines across a continental scale.
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Additional supporting information can be found online in the
Supporting Information section. Figure S1: Spatial distribution of
study sites across Europe categorised by climatic regions and site types.
Figure S2: Temporal trends in the proportion of urbanised area for rural
(green colour) and urban sites (red colour) from 1975 to 2025. Figure
S3: Boxplots showing the variation in (a) temperature trend, (b) precip-
itation trend, and (c) aridity trend across rural and urban sites. Figure
S4: Relationships between butterfly population trends and urbanisation
and climate trends across rural (orange) and urban (blue) sites using all
species available (i.e., not only common species in rural and urban sites:
145 species in rural sites and 100 species in urban sites). Figure S5:
Correlation heatmap among species traits based on Pearson correlation
coefficients. Table S1: Summary of the 145 butterfly species and their
traits used in the analyses. Table S2: Complete results of the GLMMs
testing interaction effects of environmental trends and site type (rural
vs. urban) on butterfly population trends. Table S3: Complete results of
the GLMMs testing interaction effects of environmental trends and spe-
cies traits on butterfly population trends. Each interaction was tested
separately for rural and urban sites.
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