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Abstract

Chemical pollution is identified as a significant driver of biodiversity loss, raising concerns about the effectiveness

of current environmental risk assessment (ERA) practices. Conventional ERA approaches primarily rely

on the endpoints of mortality, growth, and reproduction, often failing to capture the full scope of potential effects
that chemicals can have on organisms. This is potentially problematic in cases of chemicals causing neurotoxicity,
immunotoxicity, and metabolic toxicity, which have recently been introduced to the discussion under REACH

by the new report of the European Chemical Agency (ECHA) on Key Areas of Regulatory Challenge. For these modes
of action (MoAs), which have to date been discussed primarily in the context of human toxicity, there is currently

no established approach for addressing them in ERA. This is despite the fact that these chemicals often have
sublethal effects on traits linked to potential effects on population-relevant endpoints (e.g., foraging behaviour). In
this study, we evaluated the importance of non-conventional sublethal endpoints for hazard and risk practices. We
categorised endpoints into conventional (CE; i.e,, defined by standardised guidelines), semi-conventional (semi-CEs;
i.e, defined by standardised guidelines but only for a limited number of species), and non-conventional endpoints
(NCE; i.e,, ecotoxicological measurements not defined by standardised guidelines and so going beyond conventional
measurements). In this conceptual review, we selected case studies that evaluated both conventional and non-
conventional endpoints to evaluate the importance of NCEs for the assessment of the emerging hazards

in comparison to CEs, focusing on (1) sensitivity (effect levels), (2) mechanistic understanding, and (3) population-
level effects. Our assessment shows that using NCEs can improve mechanistic understanding of chemical hazards
and provide important information about the chemicals' MoA. Comparisons between NCEs and CEs at the individual
and population levels revealed that in 13% of cases, NCEs showed effects when CEs were unaffected. NCEs were
generally more sensitive, being on average 56 times more sensitive than mortality, 8 times than reproduction, and 2
times than growth—in 9 cases, the NCEs were more than 1000 times more sensitive than the CE. NCEs showed
unconventional links to the population level that would have gone undetected in the current ERA system (e.g.,
changes in boldness behaviour affecting reproduction in fish). We propose a first approach to address environmental
hazard identification and risk prediction for neurotoxic, immunotoxic, and metabolic toxic compounds by organising
relevant NCEs according to an Adverse-Outcome-Pathway (AOP) structure, and a MoA-based AOP framework.
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Background

Thousands of chemicals with various modes of toxic
action (MoA:s, i.e., biologically plausible sequences of key
cytological and biochemical events leading to an observed
effect supported by robust experimental observations and
mechanistic data) are designed, used, and then released
into the environment, posing an enormous challenge to
environmental risk assessment (ERA). Based on the expo-
sure assessment and hazard characterization of chemicals,
the current ERA aims to quantify the potential adverse
effects on species in the environment by monitoring dif-
ferent biological levels from molecules to local population
extinction [154]. Standardised tests, like the OECD and
ISO guidelines, were developed to ensure consistency and
reliability in ecotoxicological studies [51]. This standardi-
sation makes it possible to compare effects among differ-
ent chemicals, species, and ecosystems, which is crucial
given the vast quantity of chemicals that require assess-
ment [121]. Standardised guidelines mainly focus on the
life-cycle endpoints mortality, growth, and reproduction
(defined as conventional endpoints, CEs, in this study)
for a narrow set of model species. Guidelines for other
endpoints are limited (e.g., emergence for Chironomus
sp.. OECD TG 218; metamorphosis for Xenopus laevis:
OECD TG 241).

Despite our extensive chemical regulations, chemical
pollution has recently been identified as one of the five
main drivers of biodiversity loss in the European Union
[66, 98]. We suggest that using conventional life-cycle
endpoints as the main focus of hazard and risk assessment
may have led to an underestimation of the harm caused
by chemicals in the field. Chemicals vary in structure and
have become increasingly diverse. As a result, the amount
and complexity of the different chemical MoAs released
into the environment have increased over time [35].
Chemical MoAs may be described as either acting non-
specifically (i.e., narcotic, reactive) or specifically (e.g.,
targeting a specific receptor or biochemical pathway).
However, due to a lack of data, many chemicals cannot be
classified [104]. Compounds with specific MoAs are gen-
erally considered more potent to target species and more
persistent in the target location (e.g., hormone receptor).
These substances, which induce, for example, neurotoxic
effects, may cause adverse effects that have an ‘unconven-
tional’ connection to population dynamics, such as behav-
ioural endpoints (e.g., feeding inhibition), which may go
undetected under existing frameworks [172, 187, 196].

For plant protection products, neurotoxic active com-
pounds have been included in regulatory assessments
for several years (Commission Regulation (EU) No.
283/2013). However, to our knowledge, there is no pes-
ticide that has been regulated due to a neurotoxic MoA
based on its effects on endpoints linked to behaviour.
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Instead, decisions are made based on results due to effects
on mortality endpoints or colony-level changes (for pol-
linators) without using additional neurotoxic endpoints
(e.g., behavioural alterations), even in cases where such
effects may have been reported in scientific studies (in
cases of regulatory reassessment). Under REACH and
other chemical regulations, such compounds have not yet
been specifically addressed. ECHA, the European Chemi-
cal Agency, has acknowledged the importance of regu-
lating chemicals based on specific MoAs for human and
environmental health, beginning with endocrine disrup-
tion [56]. In its Key Areas of Regulatory Challenge report
[53], ECHA now highlights compounds with MoAs that
cause alterations in the neuronal, immune, or metabolic
systems, which potentially can lead to adverse effects on
the population level. Compounds with neurotoxic, immu-
notoxic, and metabolic toxic MoAs are introduced as
“emerging hazards” [55], defined as chemicals that have
intrinsic properties suggesting potential to cause harm
(i.e., a hazard), but for which scientific evidence is still
developing, standardised test methods or regulatory cri-
teria are lacking, and current legislation does not yet ade-
quately cover the potential risks.

It was suggested that substances exhibiting these prop-
erties might be classified as of equivalent level of concern
(ELoC) to substances of very high concern (SVHCs),
which include those classified as carcinogenic, muta-
genic, or toxic to reproduction (CMR), persistent, bioac-
cumulative and toxic (PBT), and very persistent and very
bioaccumulative (vPvB) under REACH [55]. To be clas-
sified as ELoC to an SVHC, “scientific evidence of prob-
able serious effects to human health or the environment
which give rise to an equivalent level of concern to those
of other substances” (REACH Article 57f) is needed. For
example, endocrine-disrupting chemicals (EDCs) may
be considered ELoC to SVHCs. Criteria for classifying
EDCs have recently been introduced into the CLP regula-
tion [52]. These criteria require knowledge about a sub-
stance’s MoA, its adversity on, e.g., the organ, individual,
or population level, and the ‘biologically plausible link’
between the two [52]. Therefore, it can be expected that
a similar level of evidence will be required for emerging
hazards to be identified and regulated. As the first SVHC
intention for a substance with neurotoxic properties has
now been announced [55], there is a need to incorporate
more MoA-specific and precise sublethal endpoints in
the hazard assessment of chemicals, which are currently
non-conventional.

Several studies on non-conventional endpoints (NCEs)
have revealed effects at lower exposure concentrations
(e.g., predator avoidance, locomotion) than for CEs [118,
145, 156, 170, 177]. However, in such cases, it is crucial
to establish whether such effects (1) are substantially
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different between CEs and NCEs and (2) have an adverse
impact on individuals and populations linked to the
ecological protection goals [34, 59, 68]. To make these
linkages, it is important to understand the mechanisms
by which a contaminant causes adverse effects [31, 37].
A helpful tool to unravel the mechanisms is to develop
a conceptual Adverse Outcome Pathway (AOP). AOPs
relate molecular-level effects to a series of key events
(KE) that ultimately lead to adverse outcomes (AO)
at the individual or population level [6, 181]. The
conceptual AOP is built based on gathering available data
on chemical effects across all biological levels. ECHA
[53] has recognised AOPs as a crucial step forward in
evaluating compounds associated with the emerging
hazards neurotoxicity, immunotoxicity, and metabolic
toxicity.

A potential reason that NCEs, such as behavioural
endpoints, are not included in standardised guidelines
and are rarely used for regulatory purposes may be a
lack of understanding of how behavioural effects relate
to adverse population effects [74]. There is also a lack
of robust side-by-side comparisons between CEs and
NCEs [74]. This paper aims to fill this gap by evaluating
the importance of NCEs for hazard and risk practices,
comparing them to CEs. For this purpose, the terms
conventional, semi-conventional, and non-conventional
endpoints were first defined. Next, relevant NCEs were
selected, organised, and discussed according to an AOP
structured framework focusing on the emerging hazards
proposed by ECHA: neurotoxicity, immunotoxicity,
and metabolic toxicity [53]. Case studies that evaluated
both conventional and non-conventional endpoints are
outlined with a focus on (1) sensitivity (effect levels),
(2) mechanistic understanding, and (3) population-level
effects. The findings from these studies were then used to
refine a conceptual MoA-based AOP framework for the
environmental hazard and risk assessment, incorporating
NCE:s on all biological levels for the emerging hazards.

Methodology

Definition of conventional, semi-conventional endpoints
and non-conventional endpoints

To develop a consistent basis for the distinction of con-
ventional, semi-conventional, and non-conventional
endpoints, we analysed the OECD and ISO guidelines
for the European ERA for animals, focusing on spe-
cies, model ecosystem, animal group, test duration, and
observed endpoint (Fig. 1, Table S1; last updated: July
2025). Our results show that standardised guidelines
have been published for 37 animal species/groups, cov-
ering the freshwater (13), soil (8), terrestrial (7), marine
(6), and sediment (3) ecosystems. Of these guidelines, 21
describe acute experiments with durations ranging from
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24 h to 14 days, and a further 25 chronic experiments
with durations between 48 h and 65 days. The primary
ecotoxicological endpoints described in these guidelines
are mortality (27), including its proxy, immobilisation (2),
and the sublethal endpoints reproduction (19) and growth
(14). As standardised measurements, these effects were
defined as “conventional endpoints” (CEs) in the present
study.

Next to mortality, growth, and reproduction, OECD
and ISO guidelines also describe measurements of 17
other endpoints (see Table S1) for tests using one or
two species, with a main focus on endpoints in fish test
guidelines: intoxication, life cycle assessment, emergence,
avoidance behaviour, locomotion, population growth
inhibition, behavioural abnormalities, morphological
abnormalities, (embryonic and larval) development,
sexual development, sex ratio, metamorphosis,
vitellogenin, secondary sexual characteristics, biomarkers
for endocrine disruption (e.g., oestrogens, aromatase
inhibitors), multigenerational assessment and thyroid
activity screening. We defined these endpoints that are
recognised in standard tests but restricted in their usage
domain (i.e., species), as “semi-conventional endpoints”
(semi-CEs).

Most CEs and semi-CEs are based on individual level
measures that can be linked to population level effects.
The direct assessment of population responses in animal
species is only described in one guideline for the rotifer
Brachionus calyciflorus as population growth inhibition
(ISO 20666:2008).

Avoidance behaviour endpoints, described for
two soil species, Eisenia fetida/andrei and Folsomia
candida/fimetaria (ISO 17512), are the only quantifiable
behavioural endpoints at the individual level. Behavioural
abnormalities are assessed in eleven species (Eisenia
fetida/andrei, fish, Enchytraeus sp., Apis Mellifera, Osmia
sp., Chironomus sp., Hypoaspis (Geolaelaps) aculeifer,
and in the avian guideline; see Table S1). However,
behavioural abnormalities are made alongside CEs and
are often related to signs of mortality (e.g., inability to dig
into the soil or lying motionless; OECD TG 220 and 222).
Furthermore, details for how to assess abnormalities
can be vague, lacking a standardised description, and
so varying significantly between species [51]. This
lack of clarity increases the challenge of applying such
measurements for risk assessors. For fish and bees,
behavioural abnormality endpoints are described in
greater detail. However, these stated endpoints are still
challenging to quantify and aid the interpretation of CEs
such as mortality (fish: OECD TG 210 and 212; bees:
OECD TG 245). The standard test for Daphnia magna
(OECD TG 202) includes immobilisation and locomotion
as endpoints, but they are solely used as a proxy for
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Fig. 1 Schematic overview of CEs and semi-CEs described in standardised guidelines (see summary in Table S1), highlighting their use
for the assessment of the MoAs related to endocrine disruption and the emerging hazards, neurotoxicity, immunotoxicity, and metabolic toxicity,

and illustrating gaps in current ERA practices by the question marks

mortality, as indicated by a lack of movement. In some
cases, behavioural endpoints are included for animal
welfare reasons (e.g., OECD TG 210 and 239), where
behavioural changes become so severe that they cause
considerable suffering, and the individual must be
removed from the test system.

Endpoints on the molecular, cellular, and organ levels,
as well as behavioural endpoints on the individual
and population level, are still underrepresented—the
exception being for chemicals with endocrine-disrupting
properties (see Sect. "Implementing non-conventional
endpoints in ERA guidelines: the example of endocrine
disruption”). The absence of information is particularly
noteworthy for the emerging hazards neurotoxicity,
immunotoxicity, and metabolic toxicity [53], for which
standardised guidelines and current ERA practices
are absent (Fig. 1). Such emerging hazards need
ecotoxicological measurements beyond CE and semi-
CEs, defining them as “non-conventional endpoints”
(NCEs). NCEs can provide additional information about
the potential risks of environmental contaminants by

(1) giving a mechanistic understanding of chemical
effects and (2) detecting adverse outcomes on the
population level (e.g., behavioural changes described
in Sect. "Individual-level endpoints to assess adverse
outcomes", Fig. 2).

Comparison of conventional, semi-conventional,

and non-conventional endpoints

Bridging the gaps in current ERA practices relating to
NCEs would help finding suitable approaches to identify
hazards such as neurotoxicity, immunotoxicity, and
metabolic toxicity [53]. To address the key steps and
pathways, we conducted a conceptual review based on
the relevant scientific literature. A conceptual review
focuses on hypotheses, ideas, theories, and conceptual
frameworks rather than presenting a comprehensive
quantitative summary of empirical data or systematically
summarising existing studies, as in a systematic review
[95]. Therefore, this review does not aim to provide an
exhaustive overview of all NCEs used in ecotoxicology
but rather to illustrate their potential and limitations
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within ERA. Thus, we focused on establishing the
downstream consequence of the molecular changes (e.g.,
related to accumulation, genomics, transcriptomics,
proteomics, and metabolomics) that underlie key NCEs
and how these endpoints may be linked to impacts on
population-relevant responses (e.g., behaviour linked to
mortality through reduced predator avoidance).

Our approach was to first examine the literature
discussing suitable NCEs for hazard assessment (e.g., [3,
74, 108]) for relevant endpoint groups. These endpoints
were then categorised into KEs on the three main levels,
following the AOP framework [129]: (1) Molecular/
cellular/organ-level endpoints are, by their nature, more
directly linked to the key chemical MoAs (neurotoxicity,
immunotoxicity, and metabolic toxicity) and can be
challenging to connect directly to adverse population
outcomes; (2)—(3) Individual- and population-level
endpoints, although less specific regarding mechanism,
can be more directly associated with AOs and ecological
protection goals. Individual-level endpoints include
behavioural responses such as mobility, phototaxis, and
foraging behaviour. At the population level, we focus on
social behaviour and predator—prey interactions.

Upon identifying the relevant NCE groups, we selected
representative and illustrative case studies that met the
criterion of being supported by peer-reviewed evidence,
thereby allowing us to discuss each endpoint type.
Case studies were identified through searches in major
scientific databases (Google Scholar, Scopus, Web of
Science) using both non-conventional and conventional
endpoint names as search terms, as well as by screening
the reference lists of key publications. Case studies were
chosen based on the following criteria: (1) inclusion of
both CEs and NCEs, (2) laboratory-based (excluding field
studies), (3) use of species relevant for ERA (excluding
livestock and human health studies), and (4) assessment
of chemicals relevant for ERA (i.e., chemicals detected as
contaminants in the environment). For some endpoints,
studies measuring both NCEs and CEs were challenging
to find. In such cases, separate studies were selected for
comparison, each using the same species, life stage, and
chemical.

The search was restricted to peer-reviewed studies
written in English and focused on empirical data rather
than reviews. Case studies relying primarily on omics
or genetic measurements were excluded. Between four
and ten case studies were selected for each endpoint
group. These case studies were selected to represent a
conceptual review of the relevance of non-conventional
endpoints for the protection goals (population-level
impact; [34]), taking point of departure in three overall
AOP levels (molecular/cellular/organ, individual, and
population).
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For each case, the NCEs are assessed in relation to CEs
with respect to (1) effect concentrations (sensitivity),
(2) information provided for mechanistic understand-
ing, and (3) relevance of NCEs for adverse population
outcomes and environmental protection goals. Table S2
summarises all discussed case studies, providing detailed
information about endpoints, model compounds, model
species, study duration, and effect concentrations. To
evaluate the relative sensitivity of NCEs compared to
CEs, focusing on individual- and population-level end-
points, a ratio was generated to determine the fold
increase in NCE sensitivity:

Effect concentration CE

Fold increase = -
Effect concentration NCE

As the data spans several orders of magnitude, we
calculated the geometric mean of the fold increase
for mortality, reproduction, and growth, respectively,
for each group of individual-level endpoints and
all individual NCEs together (see Table 1 for all
comparisons). Due to data limitations, it was necessary
to compare effect concentrations determined by using
different methodological approaches (e.g., lowest
observed effect concentration (LOEC); effective
concentration for 50% of the population (EC50)). The
use of NOEC (No Observed Effect Concentration) and
LOEC values has long been debated in ecotoxicology.
However, when assessing NCEs that show high variability
(e.g., behavioural alterations), data may not be suitable
for fitting with the models used for EC50 estimation.
Moreover, the presence of non-monotonic dose-response
curves (NMDRCs) further complicates the model fitting
process. Nevertheless, it is common practice in academic
studies to compare effect concentrations obtained using
both approaches. To highlight the methodological
limitations of our study, we included the information on
the different endpoints (LOEC, AC50, EC50, LC50) in
Table 1.

Outcome of comparison of conventional,
semi-conventional, and non-conventional
endpoints

Implementing non-conventional endpoints in ERA
guidelines: the example of endocrine disruption

There has been a growing concern about chemicals with
endocrine-disrupting properties [56, 65]. Endocrine dis-
ruptors can have adverse effects on reproduction and
development and are, therefore, relevant to population-
level ecological protection goals [103, 106]. Within the
new CLP guidance, the classification of endocrine dis-
ruption is considered the first hazard class that refers to
a specific subgroup of endocrine MoAs, i.e., altering the
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function(s) of the endocrine system with focus on dif-
ferent hormone systems and pathways (e.g., oestrogen,
androgen, thyroid, steroidogenesis (EATS modalities))
[52]. Under this regime, it is now necessary to test the
molecular event, the adverse effect (e.g., organ, indi-
vidual, and population level), and the ‘biologically plau-
sible link’ between both in order to classify a substance
as an endocrine disruptor [52]. Already prior to these
classification criteria, several guidelines were developed
to assess the impact on sexual hormones, sex ratio, and
secondary sexual characteristics for fish (OECD TG 229,
230, 234, 250), and reproduction and sex ratio in 12 other
aquatic and terrestrial species (e.g., OECD TG 218, 219,
232; see complete list in Table S1). The Japanese rice fish,
Oryzias latipes, is assessed using a multigenerational
approach (OECD TG 240). An extensive list of guidelines
and AOPs (e.g., AOP 346) can be found in OECD [130]
and at https://www.oecd.org/en/topics/sub-issues/testi
ng-of-chemicals/endocrine-disrupters.html.

Given that tests for vertebrates dominate those
validated test methods, there have been some criticisms
of the absence of invertebrate species in the assessment
of endocrine disruption [42]. Nonetheless, although gaps
exist, the inclusion of endocrine endpoints in current
guidelines represents a step forward in the acceptance of
non-apical endpoints for their relevance for regulatory
frameworks. Overall, endocrine disruption can be seen
as a good example of how endpoints for the emerging
hazards, neurotoxicity, immunotoxicity, and metabolic
toxicity, can be integrated into environmental hazard
assessment practice based on mechanistic understanding
and linkage to higher-tier effects.

Molecular/cellular/organ-level endpoints for mechanistic
understanding

Measuring molecular, cellular, and organ-level endpoints
can provide enhanced mechanistic understanding for the
emerging hazards, neurotoxicity, immunotoxicity, and
metabolic toxicity [53]. Such lower organisation effects
also play a crucial role in constructing AOPs [53]. As
such, they offer valuable insights that less specific CEs
may not be able to detect. Below, we highlight specific
molecular/cellular/organ-level NCEs and their potential
contribution to a greater understanding of emerging
hazards compared to CEs.

Neurotoxicity

All complex organisms rely on neural activity, and any
chemicals affecting nerve functionality can adversely
affect an organism’s biology. The morphology of the
nervous system and neurotransmitter functioning

can be impacted through various mechanisms,
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including direct damage to neurons, interference with
neurotransmitter synthesis or release, disruption of ion
channels, post-synaptic receptor interactions, and the
induction of oxidative stress or inflammation, which
alters nerve cell membrane integrity [109]. Perhaps
the most direct pathways leading to neurotoxicity are
through interactions with neuronal targets, including
cholinesterase (ChE), glutamate decarboxylase (GABA),
nicotinic acetylcholine receptor (nAChR), or dopamine
and serotonin modulations [111, 123]. ChEs are crucial
in the nervous system as they regulate the breakdown
of their respective choline neurotransmitter [139].
Inhibition of these enzymes leads to neurotransmitter
accumulation at the synapse and neurotoxicity due to
nerve overstimulation. Acetylcholinesterase (AChE)
activity has been a major focus as a biomarker for
measuring neurotoxic effects [45], e.g., for carbamate
or organophosphate insecticides [111], and so has the
strongest basis from which they can be assessed as an
early detection method for neurotoxic MoAs [76].

Two standardised guidelines exist for assessing
neurotoxic compounds in human and mammal risk and
hazard assessment (OECD TG 424 and 426). The OECD
has also provided initial recommendations on in vitro
testing for developmental neurotoxicity [135]. Similar
guidelines remain absent for environmental risk and
hazard assessment (see Table S1) [108]. With 18% of
the organic chemicals found in European waterbodies
being linked to a neurotoxic MoA [35], understanding
how underlying mechanisms result in neurotoxicity
and, ultimately, adverse effects on the individual and
population level, is crucial to environmental hazard
assessment.

In Table S2, we summarised five case studies measur-
ing AChE inhibition [86, 101, 102, 165, 195], and one case
study additionally measuring serotonergic, dopaminer-
gic, and GABAergic neuron damage to assess neurotox-
icity [183, 185]. The case studies show that measuring
neurotoxic endpoints like ChE inhibition can be used
to verify a neurotoxic MoA. The cellular measurements
made could further be linked to mortality. Sismeiro-Vivas
et al. [165] studied the interaction between AChE inhibi-
tion and mortality following exposure to the organophos-
phate chlorfenvinphos. They observed that in eastern
mosquitofish (Gambusia holbrooki), mortality would
occur only after AChE inhibition exceeded 80%. Key &
Fulton [101] experimented with larval grass shrimp (Pal-
aemon paludosus) to determine if AChE activity at 24 h of
exposure could also be used to predict mortality at 96 h
of exposure to organophosphates. These results showed
strong correlations between the EC50 for both endpoints,
indicating the link between AChE activity and mortality.
Effects on AChE can also be much more sensitive than
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mortality effects, as seen in the study by Khalil [102]. The
author observed effects on AChE at 0.01 mg/kg, while the
corresponding LC50 was 145.36 mg/kg.

Changes to AChE activity can be temporary, returning
to baseline over time, even in the presence of the stressor.
For instance, in the topmouth gudgeon (Pseudorasbora
parva), exposure to 200 pg/L of fluoxetine increased
ACHhE activity after 4 h, but activity was similar to controls
after 42 days of exposure [38]. In mussels (Mytilus
galloprovincialis), exposure to 75 ng/L of fluoxetine led to
a spike in AChE activity after 3 days, which returned to
baseline after 7 days, but then showed further inhibition
after 15 days. Such results indicate a complex temporal
effect dynamic [81]. While these findings suggest a
potential neurotoxic MoA, their variability makes linking
them to population-level outcomes difficult. However,
the multi-biomarker approach in Gonzalez-Rey &
Bebianno [81] indicated that fluoxetine not only acts on
neurotoxic endpoints but also works as an endocrine
disruptor. This highlights the importance of considering
(A)ChE activity and neurotoxic endpoints in the context
of other effect mechanisms to gain sufficient mechanistic
understanding of interrelated effects.

Measuring neurotoxic endpoints in hazard assessment
practices is highly relevant to neuronally linked MoAs.
However, due to the biological variability of nervous
systems, incorporating the MoAs into ERA remains
challenging. Moreover, neurotoxicity can be found
outside of cholinergic neurotransmission targets.
For instance, Wang & Wang [186] demonstrated
that Bisphenol-A exposure did not affect cholinergic
neurotransmission but did affect other neurological
targets in a study using multiple transgenic C. elegans
strains. Bisphenol-A was found to block serotonin and
dopamine synthesis, with the latter being affected in
a dose-dependent manner, and reduced the number
of GABAergic neurons, in addition to its effects on
neurobehavioural and growth endpoints. This example
demonstrates that markers other than (A)ChE are more
complex to measure and less easily adapted to different
model species, emphasizing the need for further
development of neurotoxicity endpoints for ERA.

Furthermore, neurotoxicity is not always linked to
direct effects on neural receptors but can also result
from more generalised effects such as oxidative
stress and subsequent effects on cell physiology (see
Sect. "Immunotoxicity”). He & Liu [86] found that
oxidative stress-related damage reduced AChE activity
in Eisenia fetida worms exposed to phenanthrene in
soil. This led to neurotoxicity by ACh accumulation at
the nicotinic postsynaptic membrane. Similar pathways
have been observed in response to titanium dioxide
nanoparticle exposure in the worm Pheretima hawayana
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in soil [102]. Such examples highlight the relevance of
measuring biochemical markers and alternative MoAs
to distinguish neurotoxic-acting compounds more
effectively.

Changes to neurotransmitter release, their enzymes,
or upregulation of neurotransmitter pathways have also
been linked to behavioural endpoints. For example,
Sismeiro-Vivas et al. [165] found a significant correlation
between AChE inhibition by the organophosphate
chlorfenvinphos and behavioural change in the fish
Gambusia holbrooki: effects occurring at>40% AChE
inhibition compared to the>80% inhibition needed for
a mortality response. Métais et al. [115] linked AChE
inhibition in the ragworm Hediste diversicolor in a multi-
contaminated estuary (diffuse pollution due to heavy
metals, pesticides, PAHs, and PCBs) to an impairment
of the burrowing activity and a lower population density
and biomass. Chemicals that work through neurotoxic
mechanisms other than AChE inhibition have also been
linked to behavioural effects. Wang & Wang [186] found
that Bisphenol-A (BPA) exposure in transgenic C. elegans
damaged serotonergic, dopaminergic, and GABAergic
neurons, without affecting cholinergic activity, and this
was linked to reduced growth, shorter lifespan, and
altered behaviour. Conversely, Heredia-Garcia et al. [90]
found that exposure to BPA led to AChE inhibition and
altered the swimming behaviour in zebrafish. Together,
these examples illustrate the limitations of relying on
single biomarker approaches in complex and variable
neurological systems. Further research is needed to
elucidate the links between neurotoxic endpoints and
NCE:s linked to behavioural changes.

Immunotoxicity
The immune system is an important target to consider
in ERA as: (1) it is an indicator of overall health and is
critical in determining individual fitness [83], (2) unlike
other systems, it is distributed throughout the body
and is well connected to other systems, making it a
highly vulnerable target [183, 185], and (3) it is directly
related to interspecific and intraspecific interactions, as
detrimental changes to the immune system can make
organisms susceptible to pathogens, thereby changing
individual/population disease susceptibility [24]. Immune
system effects have commonly been linked to oxidative
stress and reactive oxygen species. Oxidative stress is a
key initiating event for various physiological processes
as it modulates the transcription factors, including
Nrf2, NF-kB, and FoxO, which regulate inflammatory
responses and play an important role in chemical-
induced immunotoxicity [49].

To date, there are only a few standardised test
methods to screen for immunotoxicity of chemicals.
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Immunotoxicity is tested for in pre-clinical studies
during the development of pharmaceuticals and other
drugs to ensure the safety for human health [62]. The
immunotoxic potential of industrial chemicals can
be detected following reproductive toxicity testing
guidelines that investigate the T-cell-dependent
antibody response (TDAR) in rodents (e.g., OECD TG
443 (EOGRT study)) or the impact on T-cells through
impairments of cytokine signalling pathways in vitro
(OECD TG 444A). However, immune toxicity is rarely
considered in ERA [147]. This oversight may be due to
the complexity of immunotoxic effects, as chemicals
can cause immune impairments through a wide range
of mechanisms and diverse complex targets [159].
Additionally, there is a variability in responses and a
shortage of relevant studies to understand the MoA of
new chemicals [183, 185]. With the acknowledgment of
the emerging hazard immunotoxicity, there is a need to
address endpoints to measure immune effects in ERA
research and practices [26, 53].

Chemically  stimulated  immune  modulations
are present at a cellular level as well as in immune
organs [47, 192]. These modulations can be divided
into two main categories: immunosuppression and
inappropriate immune stimulation. Immunosuppression
can lead to higher susceptibility to infections, while
inappropriate immune stimulation can lead to
nonspecific inflammation, hypersensitivity (allergy), and/
or autoimmune diseases [40, 80]. In wildlife, immune
effects have been detected for various chemical groups,
notably PAHs and metals such as lead, cadmium, methyl
mercury, and nickel [153].

Studying immunotoxicity typically involves key steps
linking exposure in the organism with co-exposure to
pathogenic microorganisms or infectious agents [190].
Observations then allow study of how the immune system
responds under toxic stress through measurement of
immune markers or phenotypic observation of pathogen
effects [179]. This approach is suitable for examining sub-
lethal concentrations of chemicals during short-term or
sub-chronic exposures. The case studies summarised in
Table S2 identify several immunomodulatory effects,
such as elevated phagocytosis, reduced spleen cellularity,
increased leukocyte counts, decreased antibodies, and
effects on T-cell response after exposure to nickel,
copper, and PCB. These effects were, for example,
observed in the two fish species Colossoma macropomum
and Ameiurus nebulosus [94, 110]. The immune
effects were observed at concentrations up to 40 times
lower than CEs, with some studies showing effects on
immunotoxicity when no effects on CEs were observed at
the tested concentrations.
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Measuring immune endpoints in hazard and risk
assessment provides insights into the potential MoAs
and their interactions with other endpoints. For exam-
ple, He et al. [88], investigated the mixture effects of two
agrochemicals, imidacloprid and difenoconazole, on
endpoints in yellow croakers (Larimichthys polyactis).
Disruptions in genes related to immune function were
identified, linked to alterations in oxidative stress mark-
ers and changes in endocrine and neural development
pathways. This highlights the potential importance of
measuring immunotoxic endpoints on the molecular and
cellular level and their connectivity to other endpoints.

Immune effects can be linked to apical endpoints,
as impacts can indicate a change in the host species’
capacity to respond to or resist pathogens under
exposure. Since chemicals and pathogens frequently
coexist in the environment, studying their combined
effects reveals insights into disease outbreaks. Rodgers
et al. [149], for example, found disruptions in the
expression of five immune genes crucial for responding
to pathogenic threats. Numerous studies have also
established the adverse impacts of chemicals on the
immune system, resulting in disease outbreaks. For
example, specific amphibian populations in contaminated
environments have shown individuals with compromised
immune systems, resulting in an overall rise in parasite
[150] and fungal infections [151]. Similarly, PCB
contamination significantly affected harbour seals due to
diminished immune competence, leading to a distemper
virus outbreak [16, 120]. Comparable findings were
observed in fish inhabiting the estuary Puget Sound,
US, with increased disease incidence following exposure
to PAHs [12, 13]. Such examples indicate clearly how
chemical related immune impacts can lead to adverse
population effects.

Metabolic toxicity

Metabolism-disrupting ~ chemicals (MDCs) are
substances that interfere with metabolic processes
[157]. In recent years, MDCs have attracted scientific
and regulatory attention as emerging hazards [53] due
to their association with obesity, diabetes, and fatty
liver disease in humans [15, 169]. Although effects on
humans are increasingly being studied, there remains
uncertainty about how to evaluate MDC effects
on wildlife. Consequently, environmental risks to
metabolic endpoints are not included in standardised
guidelines (Table S1). Metabolism can be measured in
a range of ways. Direct measures can assess respiration
rate as a proxy or indirectly by analysing changes
in the energy reserves, or can assess cellular energy
allocation (CEA) based on assessments of protein,
lipids, and carbohydrate contents [44]. One example
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of MDCs raising environmental concern is succinate
dehydrogenase-inhibiting fungicides (SHDIs). This class
has the potential to affect non-target species by targeting
succinate dehydrogenase, an essential enzyme in the
Krebs cycle and respiratory electron transport chain, not
only in fungi but in almost all eukaryotes [196]. Energy
metabolism in the fish D. rerio [142, 193], the earthworm
E. fetida [87], and freshwater amphipod Gammarus
fossarum [107] was affected following exposure to
SHDIs, providing a mechanistic confirmation of the
effects of these fungicides on endpoints linked to energy
dynamics in non-target species [44, 82]. Any such change
in available energy has the clear potential to decrease
individual fitness and, ultimately, affect populations
through effects on growth and reproduction [82, 166].

In Table S2, we summarised five case studies that
analysed endpoints linked to energy metabolism, such
as the energy reserves glycogen, lipid, and protein
content, respiration rates, and aerobic energy production
(measured by estimating the electron transport system—
ETS) in comparison to CEs. These approaches have
been used to measure the effects of a range of different
chemicals, such as the insecticides endosulfan and
parathion, fungicides boscalid and tebuconazole, the
antidepressant fluoxetine, polyethylene microplastics,
and tetradifon acaricide in species, such as the terrestrial
isopod Porcellio dilatatus, the amphipod G. fossarum,
D. magna, the freshwater worm Lumbriculus variegatus
and the fish Carassius auratus [107, 114, 148, 162, 180].
Results showed a common effect on metabolic toxicity
indicating that this a widespread potential response.
Additionally, studies could establish a direct link between
short-term changes in metabolic biomarkers and long-
term effects on growth and reproduction [180]. The
effects observed on energy dynamics were noted at
concentrations orders of magnitude below those affecting
CEs. For example, Ribeiro et al. [148] found effects on
the energy metabolism of the isopod P dilatatus after
exposure to the insecticides endosulfan and parathion
at 0.1 pg/g in food, while effects on growth were only
detected at 500 pg/g of food for endosulfan and putatively
at even higher levels for parathion.

Molecular and cellular measurements of the energy
metabolism can be plausibly linked to adverse effects at
higher biological levels, indicating their relevance to the
protection goals for ERA. For example, effects on energy
metabolism have been directly linked to the CEs of
reproduction, development, and growth in D. magna [44,
180]. Energy metabolism has also been strongly linked
to foraging behaviour [173]. For instance, insecticides
that affect energy metabolism can cause changes in
foraging in bees exposed to imidacloprid [194]. This link
to foraging behaviour indicates the complex connections
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between different NCEs linked to metabolic toxic
compounds and how these interact through AOPs to
affect apical CEs.

Individual-level endpoints to assess adverse outcomes
Individual-level behavioural measurements are of
recognised relevance as endpoints for chemical effect
assessment [3, 60, 74]. As such, their use in ecotoxicology
has increased significantly in recent years [20]. Drivers
for a greater focus on behaviour are that they are: (1)
generally more sensitive than CEs [113], (2) can be
informative of MoA [2], and (3) can reveal adverse
population-level effects that would go undetected with
CEs [1, 2, 79]. The relevance of behavioural effects has
been recognised by the European Medicines Agency
(EMA) [63] for neuroactive medicinal products and by
ECHA [54] for endocrine-disrupting and neurotoxic
compounds. Despite this, they remain rarely used for
regulatory purposes because most studies are non-
standardised, often lacking relevant information or
are questioned for their reliability or methodology
[3]. Currently, there is a lack of understanding of how
behavioural effects relate to population fitness and
ecosystem-level impacts, which leads to questioning
of their use in ERA [74]. Furthermore, the lack of
benchmarking between behavioural testing and CEs is
a major reason why behavioural studies are commonly
viewed as having low regulatory relevance [74]. However,
new research indicates that the majority of scientists
now believe that behavioural experiments are repeatable,
reliable, and relevant regulatory authorities should
consider behavioural endpoints [73]. Below, we discuss
behavioural endpoints and their relationships with CEs
to evaluate their relevance in ERA.

Mobility/locomotion/activity

Mobility or locomotion can be assessed by measuring the
activity of an organism in a given period. For species with
high mobility, like most arthropods, reptiles, and fish,
velocity (moving speed) can be used as a fundamental
indicator, as it is a prerequisite for other behavioural
actions relevant to fitness, such as mate finding, feeding,
and predator avoidance [31]. Movement velocity can also
be further linked to other physiological functions, such
as energy metabolism [82, 191]. Quantitative methods
for assessing mobility beyond simple rate include
burrowing rate, head thrashes, body bends, and number
of turns for nematodes [25]. Initial steps have been made
toward integrating activity-linked endpoints into current
ERA practices. For example, activity is included in the
assessment of D. magna through the observation of
immobilisation or locomotion (OECD TG 202 and ISO
6341:2012) and in the description of abnormal behaviour
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in several guidelines (e.g., "lying motionless” in OECD
TG 220). However, the endpoint primarily validates
test success, is directly linked to test failure in sediment
exposures, or acts as an indicator of mortality rather
than an indicator of more complex population-relevant
behaviour.

In Table S2, we summarised ten case studies that show
how chemicals impact locomotion compared to CEs.
Mobility endpoints measured in these studies include
abnormal locomotory behaviour (e.g., twisting and
contradiction of the body), activity, burrowing, crawling,
or swimming. Chemicals assessed include PAHs, copper,
lead, oxazepam, fluoxetine, sertraline, and different
insecticides. Organisms tested cover both aquatic and
terrestrial species, including Girardia tigrina, Nereis
diversicolor, Scrobicularia plana, C. elegans, D. magna,
Aphanius dispar, Pheretima guillelmi, Chironomus
dilutes, Chironomus riparius and Hyalella azteca (25, 85,
137, 145, 163, 164, 177, 198]. In a set of 39 comparisons,
locomotion was, on average, 10 times more sensitive
than mortality and 2 times more sensitive than growth
(Table 1). For example, Rasmussen et al. [145] found
that mobility in C. riparius exposed to sulfoxaflor was
up to 10 times more sensitive than mortality and twice
as sensitive as the semi-CE emergence. Van der Most
et al. [177] found effects on activity in C. elegans due to
sertraline exposure at 0.02 mg/L, 1045 times lower than
the LC50 (20.9 mg/L). There was only one case study
looking at reproduction; this showed that mobility was
four times more sensitive [164]. In 7 of the case studies,
the mobility NCE showed significant changes when CEs
failed to detect any effects. Such comparisons indicate
that behavioural NCEs can identify hazards at lower
exposure levels than for CEs.

Beyond effects on movement velocity, several
different chemical MoAs can also impact more complex
locomotory behaviour. Hasenbein et al. [85] compared
motility to growth and mortality across various
insecticides and species. They concluded that the NCEs
for mobility are especially relevant when investigating
neurotoxic substances like organophosphates and
pyrethroids (see also [145]). Various other studies have
linked changes in locomotion to neurotoxicity induced
by oxidative stress or disruption of energy metabolism
[82, 177]. Measurement of these more complex mobility
NCEs has also indicated cases showing the response
to exposure at different concentrations, resulting in
NMDRCs [124, 177]. This means there is a potential
for effects to occur at lower levels, which may not be
apparent based on results from higher concentration
exposures.
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Phototaxis

Phototaxis is the responsive movement of an organism
either towards or away from light (i.e., positive and/or
negative phototaxis [97]). For example, marine larvae use
positive phototaxis for dispersal and negative phototaxis
for settling [144], and some species use phototaxis
to avoid predators [18]. Neurotoxic compounds can
disrupt phototactic behaviour, impacting migration,
settlement, and predator—prey dynamics [171]. However,
standardised testing guidelines for chemical impacts
on phototaxis are lacking, although certain case studies
are recommended for compounds affecting thyroid
hormones or causing developmental neurotoxicity
[132-134].

In Table S2, four case studies are summarised that
observed phototactic behaviour and CEs for chemicals
such as the herbicide linuron, metal thallium, thymol
oil, and antidepressant fluoxetine in species such as D.
magna and honeybees (Apis mellifera) [19, 112, 122, 171].
In total, 14 comparisons show that the phototaxis NCE is,
on average, 37 times more sensitive than the CE mortality
and often occurs at low and environmentally relevant
concentrations (Table 1). For example, Bergougnoux
et al. [19] observed reduced phototactic behaviour in
honeybees exposed to thymol at 10 ng/bee, 21,000 times
lower than the LC50 (51250 ng/bee), highlighting an
apparent remarkable sensitivity of this endpoint.

Phototactic effects have been linked to various MoAs,
such as chemicals targeting histaminergic signalling in
sensory neurons, octopamine receptors, or reductions in
serotonin levels [19, 112, 122, 171]. Due to its sensitivity
to chemicals with several different MoAs, phototaxis is
also used as an endpoint in environmental monitoring
and water quality assessment. This is done, for instance,
with a biomonitor constructed to observe changes in the
positive phototactic behaviour of D. magna along a light
gradient due to chemical exposure [43, 117].

The influence of chemicals on phototactic behaviour
holds significant implications for individual survival
and population dynamics, particularly in predator—
prey relationships where negative phototaxis can
correlate with effective fleeing. For example, for D.
magna, alterations in phototactic behaviour affect their
position in the water column, potentially exposing them
to predators [143]. Similarly, changes in phototactic
behaviour are critical for the health of populations like
honeybees, where phototaxis is essential for navigating
inside and outside the hive [171]. Therefore, phototaxis
can be linked in a mechanistic manner to organism
traits and behaviours that lead to population-relevant
outcomes.
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Avoidance

Avoidance or chemotaxis tests assess the organisms’
ability to sense contaminant exposure (e.g., using
olfactory and other chemoreceptor organs) and actively
avoid exposure. Avoidance behaviour is also a proxy for
habitat suitability [92, 93], and avoidance responses at a
contaminated site may ultimately result in the reduction
of local populations [7]. Numerous studies have shown
that chemicals, like copper and antidepressants, can
impair olfaction, behaviour, and chemo/mechanosensory
function [84, 177]. Further, chemical avoidance has been
shown to disrupt fish migration, for example, by causing
salmon to alter their migration routes, e.g., in response
to metal pollution [158]. The European Commission
[64] has identified avoidance as an ecologically relevant
endpoint for chemical hazard assessment. As such,
avoidance has been included in standardised guidelines,
but so far only for terrestrial species (ISO 17512—
1:2008: Earthworm E. fetida/andrei; ISO 17512-2:2011:
Collembola E candida). However, these assays have
already been demonstrated to be highly sensitive
compared to CEs [77].

A total of seven case studies, including ten comparisons
measuring chemical avoidance responses relative to
CEs, are summarised in Table S2. These case studies
encompass a range of model organisms, including the
amphibian Lithobates catesbeianus, the fish Poecilia
reticulata, and the crustacean Palaemon varians, for
various chemicals, including herbicides (diuron and
atrazine), the pesticide abamectin, copper, and sunscreen
(chemical mixture including e.g., Avobenzone, TiO2)
[8-10, 118, 177, 178, 189]. Avoidance was, on average,
46 times more sensitive than mortality, and in many
cases showed effects at environmentally relevant
concentrations (Table 1). One case study examined found
significant chemotaxis (the movement toward a chemical
attractant) in C. elegans at 1 ng/L of fluoxetine, compared
to mortality at 253 mg/L [177]. Avoidance has proved
effective as an endpoint for compounds with neurotoxic,
immunotoxic, and metabolic toxic effects. The NCE is
especially relevant for chemicals affecting olfactory cues
or downstream neurological systems. However, use of
the latter should be done cautiously, as these substances
can impair an organisms’ ability to escape the toxic
environment, leading to failure to detect avoidance
effects [96].

Behavioural avoidance assays can give information
about the ability of an organism to detect a chemical
threat and respond. Such assays allow the determination
of the avoidance concentration (AC), indicating
impairment of chemosensory organs or movement.
Moreira et al. [118], Vasconcelos et al. [178], and
Aradjo et al. [9] established threshold concentrations
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for avoidance, while noting that this effect could
be diminished at higher concentrations if exposure
compromises sensory function. In these case studies,
harmful effects only occurred when the capacity to avoid
chemical contamination was compromised, indicating
the relevance of avoidance, both as a sublethal effect
in its own right, and a compensatory mechanism that
organisms use to reduce further exposure.

Avoidance assays can provide crucial ecological
information. By using a multi-compartment system
with several chambers that allow organisms to move
between concentrations, avoidance studies have shown
that chemical exposure can have important implications
for habitat suitability [118]. Such effects can be linked to
adverse population-level outcomes (e.g., loss of available
habitat range), even if growth and reproduction are
unaffected [178]. Thus, chemical avoidance could explain
the local extinction or fragmentation of populations.
For example, in a study by West & Ankley [189], growth
and/or survival tests with contaminated sediments
failed to reveal chemical effects, while avoidance tests
with Lumbriculus variegatus showed responses that
could explain the degraded state of benthic communities
in the field through emigration to cleaner sediment.

Exploratory behaviour (boldness)

Exploration behaviour (boldness) is the individual’s
willingness to take risks, including exploring new
environments [39]. This behaviour is known to be
affected by the chemical exposure at environmental
concentrations, e.g., pharmaceuticals [31]. As an endpoint
in ecotoxicology studies, boldness can be directly linked
to effects on organism survival by influencing the ability
to find food and mates or by increasing predation risk
[11, 31, 146]. Exploratory behaviour can be measured in
assays that assess the time required for an individual to
visit all zones within a new environment, often referred
to as an open field test [146]. Such an approach can be
adapted to behaviour for different species (e.g. great tits,
zebrafish) [36, 48]. For now, measures of boldness are not
implemented in current environmental risk and hazard
practices (Table S1). However, when addressing emerging
hazards, particularly neurotoxicity, boldness can be
considered relevant for future integration.

Table S2 summarised four case studies with five
comparisons of chemical effects on exploratory behaviour
or boldness with CEs [75, 125, 161, 175]. These studies
assess the effects of the neurotoxic drugs sertraline,
escitalopram, fluoxetine, and cadmium on the fish species
fathead minnow (Pimephales promelas), and zebrafish
(D. rerio) [30, 124, 156, 161, 175]. Studies showed that
the NCE is more sensitive, being on average 617 times
more so than mortality and 6.6 times growth (Table 1),
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although based on a more limited dataset than for some
other NCEs. Within specific studies, Shelton et al. [161]
found that cadmium impacted boldness behaviour in
D. rerio at 1 ug/L, at a concentration 9680 times lower
than for mortality, as observed by Al-sawafi et al. [5].
A study by Nielsen et al. [125], exposed D. rerio to the
psychoactive drug escitalopram. Both behaviour and
size were significantly altered at 1.5 pg/L. However,
behavioural changes were gender-specific, with female
boldness being significantly affected and males not,
indicating the need to consider both male and female
effects in studies. Changes in boldness due to pollutant
effects pose risks not only for individuals, but also for
populations. For example, Shelton et al. [161] found
that a few individuals exposed to cadmium influenced
the boldness of the unexposed majority, as even at low
concentrations, cadmium exposed pairs caused changes
in shoal boldness behaviour.

Foraging and feeding behaviour

Foraging behaviour, including foraging efficacy,
search time, and feeding rate, has been used in several
ecotoxicological studies. In the current ERA guidelines,
foraging-related endpoints are currently only used as
a validation criterion in studies that expose the model
organisms through chemicals in their diet, such as
birds (e.g., OECD TG 205), but not as a standardised
and quantifiable behavioural endpoint. Several studies
have shown chemical impacts on the ability to identify
or reach food and feed [41, 84, 85]. Effects on foraging
can be directly linked to population-relevant endpoints
[41]. For example, extended periods of limited food
intake can lead to starvation and ultimately to reduced
growth, reproduction, and survival [1, 127] through
linkage to energy budgets [2, 41]. Chemical effects on
foraging can occur through multiple pathways, for
example, modulating sensory organs, impacting neuronal
pathways supporting food detection and by affecting
foraging behaviour itself [46, 84, 177].

Table S2 summarises seven case studies with a total of
15 comparisons between NCEs for foraging behaviour,
such as feeding inhibition and foraging rate/speed, and
different CEs. These cases cover various contaminants
such as copper, imidacloprid, fluoxetine, and PAHs, in
species such as Pimephales promelas, G tigrina, or G.
pulex [1, 2, 84, 127, 163, 177, 188]. Compared to CEs,
the NCE linked to foraging were, on average, 275 times
more sensitive than mortality and 4 times more sensitive
than reproduction (Table 1). Van der Most et al. [177]
showed that feeding was especially sensitive in C. elegans
exposed to antidepressants, with significant changes at
0.39 pg/L for fluoxetine and 0.89 ng/L for sertraline and
with effects following complex NMDRCs. These effects
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were compared to LC50s for fluoxetine of 253 mg/
kg and sertraline of 209 mg/kg. The case studies show
that foraging behaviour is relevant for a range of MoAs,
revealing, for example, effects on olfactory senses. Green
et al. [84] demonstrated that copper affects feeding not
by inhibition but rather by loss of sensory perception.
This phenomenon was also observed by van der Most
et al. [177], who linked the feeding impacts of sertraline
and fluoxetine to chemosensory organ changes.

For four of the comparisons, feeding was inhibited
when the CE mortality was not affected at any
concentration in the exposure range. Previous studies
have shown that some chemicals, such as PAHs or
imidacloprid, may inhibit feeding behaviour at low
concentrations, leading to mortality through starvation
[1, 163]. Given that mortality due to starvation occurs
over a longer timeframe than for standard mortality tests
[61, 91, 128], conventional acute studies are insufficient to
quantify such impacts [163]. Foraging behaviour can also
have important implications for survival, growth, and
reproduction, indicating a need to consider the impacts
of feeding inhibition in ERA practices. The development
of feeding inhibition tests, such as for D. magna, offer the
potential to conduct such screening studies [2].

Population-level endpoints to assess adverse outcomes
The primary goal of the ERA is to identify chemical
effects that may lead to adverse population outcomes [34,
59, 68]. As outlined above, lower-tier NCEs can be linked
to adverse population-level effects. However, some NCEs
can also serve as direct measurements of population
outcomes. Examples include observing dispersal or
migratory behaviour, assessing group effects through
social behaviour (e.g., mating, shoaling, aggressiveness),
or evaluating multi-species endpoints like predator—
prey interactions [27-29, 116]. While these higher
organisation-level endpoints are more complex and costly
to assess, they offer valuable insights that individual-level
endpoints, by their reductionist nature, do not provide
[71]. This makes such endpoints of significant value for
future ecological hazard and risk assessment [32]. As
social behaviour and predator—prey interactions are
endpoints frequently observed in ecotoxicological studies
and assessed under laboratory conditions, we focused on
these two in the Sects. “Social behaviour” and “Predator—
prey interactions”.

Social behaviour

Social behaviours in animals, such as mating or
aggression, are directly tied to the survival of both the
individual and the group and consequently to adverse
outcomes for the population [116, 155]. Given this link,
including social behaviour in hazard assessment has
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already been a topic of extended discussion [21, 116,
197]. NCEs for social behaviour can be measured at the
individual (e.g., aggression measurements in individuals
of D. rerio) or group level (e.g., shoaling behaviour in a
group of fish). Studies using such methods have shown
that social behaviours can be altered by environmentally
relevant concentrations of chemicals, such as
antidepressants [116], which can increase aggression in
fish [170], make individual fish generally less social [188],
or disrupt collective behaviours like shoaling [14, 99].
Chemical exposure can also lead to changes in the group
competence of organisms through effects on mating
or communication [116], for example, by affecting
aggregation behaviour in the terrestrial isopod
Porcellionides  pruinosus [70]. Chemical-associated
effects on such behaviours can have implications for
ecological interactions, making them explicitly relevant
at the population level and, therefore, for hazard and risk
assessment. As such, integrating social behaviour
endpoints into toxicity assessments helps to capture the
complex interactions and real-world ecological impacts
of chemical exposure that CEs fail to address [21].

Table S2 summarises four case studies observing
chemical effects on social behaviour. Generally, these
studies show that effects on these endpoints are
significantly more sensitive than CEs. For example, effects
have been seen for oxazepam, cyprodinil, fluoxetine,
and benzyl butyl phthalate on social behaviour such as
shoaling behaviour and aggressiveness of the fish species
Fundulus heteroclitus, Perca fluviatilis, Pimephales
promelas, and D. rerio [75, 99, 170, 188]. These NCE
effects were, on average, 387 times more sensitive
than mortality and 10 times more than reproduction
(Table 1). For instance, Tang et al. [170] found that
changes in aggressive behaviour in D. rerio exposed to
environmentally relevant concentrations of cyprodinil
(0.1 pg/L) were 12,600 times more sensitive than the
LC50 [184]. Similar to exploratory behaviour, the dataset
for this endpoint was too limited in size to draw robust
conclusions.

Measurements of social behaviour in hazard assessment
can provide further information on the ecological
relevance of disruptions in social behaviour responses
caused by chemicals. For example, Weinberger &
Klaper [188] found that fluoxetine exposure significantly
increased aggression in male fish, resulting in a reduction
of female survival and reproductive success. Armstrong
et al. [14] demonstrated that the shoaling behaviour of
the Atlantic croaker (Micropogonias undulatus) was
notably disrupted when just one individual was exposed
to oil. Kaplan et al. [99] found that fish exposed to benzyl
butyl phthalate preferred smaller shoals, potentially
losing the advantages of critical ecological behaviours.
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Predator-prey interactions

Predator—prey  behaviours are pivotal species
interactions, influencing population and community
structure [29]. Chemical contamination can impact
these trophic interactions [30, 31, 182]. Various methods,
such as predation cues, have been developed to measure
predator—prey interactions following chemical exposure
in multifactorial or mesocosm studies [89, 167].
Currently, though, there are no standardised guidelines
for these assays (Table S1) for application in regulatory
risk assessment [3, 141].

Table S2 summarises five case studies that have
assessed the effects of a wide range of chemicals such
as cadmium, cyprodinil, and fluoxetine by measuring
effects on antipredator behaviour in fish species, such
as D. rerio and P. promelas [75, 105, 170, 182, 188]. On
average in these studies, the predator—prey interaction
endpoints were 317 times more sensitive than mortality
(Table 1). As examples, Tang et al. [170] found that anti-
predator behaviour in D. rerio exposed to cyprodinil
was significantly altered at 0.1 pg/L compared to the
corresponding LC50 of 1260 pg/L [184]. Similarly,
a further study found that predator avoidance in P
promelas exposed to fluoxetine [188] was 100 times
more sensitive than reproductive effects [33]. The case
studies demonstrate that measurements of antipredator
behaviour may occur at environmentally relevant
concentrations, in some cases following NMDRCs [188].

It is possible to link predator—prey interactions to
biochemical, physiological, and behavioural processes
linked to underpinning MoAs. For example, a study by
Volz et al. [182] linked antipredator responses directly
to the disruption of the olfactory system in D. rerio after
exposure to cadmium. This impairment was found to be
retained even after a 14-day recovery period [105]. Tang
et al. [170] showed how a neurotoxic MoA can lead to
changes in predator—prey interactions. Thus, exposure of
D. rerio to the fungicide cyprodinil led to the disruption
of hypothalamic function, which caused an increase in
cortisol levels that can alter antipredator behaviour at
low concentrations.

Another aspect of predator—prey interactions is related
to the potential for asymmetric effects between spe-
cies [31, 89]. For example, Brodin et al. [31] found that
exposure to oxazepam (2 pg/L) increased activity in
perch (predators), but did not affect damselflies (prey),
altering trophic interactions and, consequently, ecologi-
cal systems. A further and potentially common effect on
predator—prey relationships is through the effects of prey
abundance. Conventional chemical assessments may
overlook these indirect effects, underestimating their
impact on populations and ecosystems. Fleeger et al. [71]
emphasise the indirect effects of pollutants on aquatic
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ecosystems through trophic cascades, highlighting the
need for a comprehensive understanding of chemical
impacts on ecological systems, especially in predator—
prey interactions. Kidd et al. [103] studied the effects of
EE2 (synthetic oestrogen 17a-ethynylestradiol) on a lake
ecosystem, observing a 42% decrease in the top predator
biomass due to population declines in prey species. Such
indirect effects can even be considered early stages of
community-level effects, which underscores the impor-
tance of considering trophic interactions in chemical
impact assessments.
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Reflection on ERA

A conceptual AOP-structured, MoA-based framework

for emerging hazards

Currently, the emerging hazards, neurotoxicity, immu-
notoxicity, and metabolic toxicity, are primarily consid-
ered within the context of human RA. However, there is
a significant knowledge gap regarding how to integrate
these effects into environmental RA. We present here a
first approach to addressing this challenge, outlining also
possible directions for development. For any assessment,
it is crucial to link the mechanistic understanding NCEs
provide to population-level outcomes [52, 53]. The AOP
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Fig. 2 This conceptual framework for a mode of action (MoA)-based environmental risk assessment (ERA) incorporates both conventional,
semi-conventional, and non-conventional endpoints following the adverse outcome pathway (AOP) structure from MoA (top) to population level
(bottom) for the emerging hazards neurotoxicity, immunotoxicity, and metabolic toxicity, as well as endocrine disruption. Effects through each MoA
can also influence other pathways, such as oxidative stress, which may lead to immunotoxicity or neurotoxicity. Pathways converge at the individual
level, where multiple causes can contribute to observed effects. These individual-level effects can then be connected to population-level

outcomes through two routes: the conventional link (undashed arrow), which includes conventional endpoints such as effects on mortality,
growth, and reproduction, or the unconventional link (dashed arrow) through non-conventional endpoints that links to apical effects. The figure

is a conceptual example and is not exhaustive, as it does not include all possible links between MoAs, key events (KE), and adverse outcomes (AO)
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framework is designed to address this question of link-
age [52, 53]. The information from the described CEs
and NCEs in Tables 1, S1 and S2 has been used to cre-
ate an AOP-structured, MoA-based hazard assessment
framework using conventional, semi-conventional, and
non-conventional endpoints encompassing effects from
the molecular to the population level for neurotoxicity,
immunotoxicity, metabolic toxicity, and the already inte-
grated hazard class, endocrine disruption (Fig. 2). Effects
through each MoA can influence multiple pathways, such
as oxidative stress, which may lead to neurotoxicity and
immune effects. Pathways converge at the individual
level, where multiple causes can contribute to observed
effects. These individual-level effects are connected to
population-level outcomes through effects on the CEs
of mortality, growth, and reproduction, or via uncon-
ventional links to apical effects (e.g., chemical avoidance
leading to displacement of populations).

Establishing quantitative links across molecular, indi-
vidual, and population levels further provides predictive
power. For example, small perturbations at the molecular
level often do not translate linearly into higher levels, as
the population one. Moreover, traditional AOPs typically
assume a monotonic or linear relationship between key
events. However, most of the time, biological systems are
characterised by nonlinearities, thresholds, and context-
dependent interactions, which can profoundly modu-
late the propagation of effects across levels. Quantitative
Adverse Outcome Pathways (qQAOPs) in this context can
help extend the classical AOP framework by introduc-
ing mathematical and computational representations of
the relationships between key events, enabling predic-
tions of AOs from molecular perturbations [138]. Unlike
qualitative AOPs, gAOPs aim to capture dose—response
relationships, temporal dynamics, and nonlinear interac-
tions at AOP levels. This quantitative approach enhances
the predictive power of AOPs, potentially improv-
ing risk assessment decisions and the identification of
critical thresholds for intervention [58]. Tools to estab-
lish these quantitative relationships are, for instance,
Structural Equation Modeling or Bayesian Neural Net-
works (BNNs). Further information can be found in, for
instance, Semenova et al. [160].

Mechanistic understanding through NCEs

Through development in their measurement it has now
come to the point where in many cases low-level NCEs
have reached a status in development where they can
be considered as: (1) cost-effective and easy to measure,
(2) established protocols exist in many ecotoxicological
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laboratories for various model species, and (3) responsive
enough that effects can be detected at lower concentra-
tions and at earlier time points than is the case for CEs.
Our case studies provide further examples of endpoints
that fulfill these criteria and could be considered for
hazard assessment. The primary biomarker to measure
neurotoxic effects is (A)ChE, which has been applied to
several contaminants [45]. This NCE can provide sen-
sitivity and informative mechanistic information, as it
can be linked to behavioural and mortality effects in the
observed case studies [101, 165]. Other neurotoxic end-
points, such as GABA receptor modulation [183, 185],
are more complex to measure and less easily adapted to
different model species, emphasizing the need for further
development of neurotoxicity endpoints for ERA. For
immunotoxicity, several linked biochemical endpoints
can be measured, such as increased neutrophils and lym-
phocytes, increased phagocytes, a decrease in circulating
antibodies, T-cell response, and phytohemagglutinin-P
increases [94, 110]. For metabolic toxicity, the aerobic
energy production (estimated from electron transport
system (ETS) activity), respiration, and cellular energy
allocation have been shown to be sensitive markers for
chemicals known to cause metabolic toxicity, such as
SDHIs [107]. Regarding immunotoxicity and neurotox-
icity, biochemical measurements of oxidative stress (e.g.,
catalase, lipid peroxidation) can also be crucial, as oxida-
tive stress can serve as a key event within these MoAs
[49, 102].

We would like to emphasise that the nervous, immune,
and metabolic systems are complex, highly intercon-
nected networks, similar to the endocrine system. For
instance, interspecific differences in physiology—particu-
larly in neuronal, immune, and metabolic systems—can
strongly influence how chemicals affect organisms. For
example, the type of ChE present in a species can sig-
nificantly determine its sensitivity to certain compounds
[126]. To reflect this diversity, we aimed to include a
range of species when selecting case studies for com-
parison. More information about how the reliance on a
limited number of model species constrains our under-
standing of chemical risks and how ERA could benefit
from incorporating a broader diversity of test organisms
can be found in, for instance, Rosner et al. [152].

We want to point out that the biochemical endpoints
discussed in this conceptual review are not the only ones
required to capture all relevant MoAs, but rather serve
to illustrate a conceptual approach for addressing these
emerging hazards at their respective biological levels.
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In this context, new approach methodologies (NAMs),
including in chemico, in silico, and in vitro models, rep-
resent promising approaches to verify mechanisms of
action to support the regulation of neurotoxic, immuno-
toxic, and metabolic toxic compounds [53]. The “Road-
map for phasing out animal testing’, which is going to be
published in early 2026, is expected to further underpin
the regulatory acceptance of these alternative methods in
ERA [67]. However, completely phasing out animal test-
ing remains challenging at the current stage of our sci-
entific knowledge. In line with the principles of the 3Rs
(replacement, reduction, refinement), our review aims to
contribute by proposing ways to refine existing standard-
ised guidelines to better integrate NCEs.

Undetected adverse outcomes on individual

and population level

To be relevant in ecological risk assessment, it is essential
that neurotoxicity, immunotoxicity, and metabolic NCEs
are qualitatively and quantitatively linkable to popula-
tion-level effects. As detailed, chemical impacts on pho-
totaxis, locomotion, avoidance, exploratory behaviour,
foraging behaviour, social behaviour, and predator—prey
interactions can all be linked to adverse outcomes at
the population level through impacts on ecological and
trophic interactions [1, 2, 10, 118, 163]. These NCEs are
also now more broadly operational, as they: (1) can be
effectively measured in several model species (e.g., loco-
motion, phototaxis, foraging), (2) can be quick and cost-
efficient to assess (e.g., locomotion, phototaxis, foraging),
(3) can be robustly quantified (locomotion, phototaxis,
foraging), (4) can be influenced by multiple chemical
MoAs (locomotion, phototaxis, chemical avoidance,
predator—prey interaction), and (5) can be measured in
a non-invasive assessment (aligning with the principles
of refinement within the 3Rs). These NCEs can also pro-
vide more ecologically relevant information by identify-
ing gender-specific responses relevant to mortality and
reproductive behaviours, such as territoriality, courtship,
and boldness [125]. Group effects can be studied through
changes in behaviour, like social and exploratory behav-
iour endpoints affecting group dynamics and social hier-
archy [161]. Further by incorporating social behaviour
or predator—prey interactions, it is possible to provide a
better understanding of species dynamics and asymmet-
ric effects that can affect the stability and energy flows of
trophic networks [31]. Finally, our comparisons showed
that NCE effects were often observed when there was no
significant change in the CE (13 cases, Table 1), show-
ing that the NCEs revealed population-level effects that
would have gone undetected under current standardised
testing methods [98].
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However, the regulatory value of endpoints depends
on demonstrating a consistent and predictive linkage to
adverse outcomes of ecological significance. For now, the
individual and population-level NCEs should be consid-
ered complementary diagnostic tools within a tiered or
AOP-based framework. In the long run, we aim for these
endpoints to be considered as stand-alone adverse out-
comes on the population level, having similar weight as
measurements based on conventional endpoints.

Sensitivity of NCEs
A key aim of the conceptual review was to evaluate
the sensitivity of NCEs compared to CEs, focusing
on individual- and population-level endpoints. To
summarise the results: Table 1 gives an overview of 43
case studies that measured individual- and population-
level NCEs (locomotion, phototaxis, avoidance,
exploratory behaviour, foraging, social behaviour,
predator—prey interaction) alongside CEs (mortality,
growth, and reproduction). As some studies included
several species, chemicals, and NCEs/CEs, we were
able to make a total of 96 comparisons of CE and
NCEs in terms of their response sensitivity. In 13 cases
(i.e., 13.5%), significant effects were observed for the
NCEs, while no effects on the CE were seen in any test
treatment. Many of the changes in NCEs were observed
at environmentally relevant concentrations, indicating
their real-world relevance [10, 85, 171]. One reason
why these effects go undetected in some assessments
and observations is that the NCE shows effects at low
concentrations not evident at higher concentrations
due to the complex NMDRC response [124, 188]. This
points to a need to conserve a range of exposure levels,
including low concentrations in studies of such NCEs.
For those remaining comparisons where studies found
effects both for the CE and NCE, we determined the fold
increase in NCE sensitivity. In nine cases (i.e., 9.4%), the
NCE was more than 1,000 times more sensitive than the
CE. As the data spans several orders of magnitude, we
calculated the geometric mean of the fold increase for
mortality, reproduction, and growth, respectively. The
comparative analysis showed that NCEs were, on aver-
age, 56 times more sensitive than mortality (GSD =55.9,
n=>59), 8 times more sensitive than reproduction
(GSD=7.6, n=8), and 2 times more sensitive than
growth (GSD=1.7, n=15) (Table 1; Fig. 3). Although few
review papers directly compare NCEs and CEs, the range
of relative sensitivity is consistent with that of Melvin
and Wilson [113], who found through meta-analysis that
behavioural endpoints (mainly locomotive endpoints)
were 4 times more sensitive than the CE development
(which can be related to growth), and 2 times more
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Fig. 3 Comparison of effect levels of the conventional- (CE; mortality,
reproduction, growth) and non-conventional endpoints (NCEs)
on the individual- and population-level (locomotion, phototaxis,
avoidance, exploratory behaviour, foraging, social behaviour,
predator—prey interaction) in fold increase. Excluded from this graph
were studies where no effects were observed for CEs (i.e., 24.2%
of the cases). In 9.4% of all 96 comparisons, the NCE was 1000 times
more sensitive than the CE (range 1045-253000000 times higher).
The red line represents the assessment factor of 10 to account
for differences in acute-chronic effects

sensitive than reproductive endpoints. Faimali et al. [69]
also found in their reviewed literature that swimming
behaviour was, on average, 16 times more sensitive than
mortality/immobility.

The greater sensitivity of NCEs raises the question of
how behavioural NCEs should be considered in ERA
practices, especially given that many such endpoints
can be readily related to population-relevant outcomes
(mating, trophic interactions, predation, etc.). Differences
in acute-chronic effects are usually covered by an
assessment factor of 10 [50]. However, if the behaviour
is, on average, 56 times more sensitive than mortality or
8 times more sensitive than reproduction, this identifies
that placing an assessment factor of 10 on reproduction
data would often, but not always, be sufficient to account
for links through NCE, but for mortality would not be
sufficient in the majority of cases. It should be noted
that the comparative analysis is based on averages and
will, as such, not cover the species where NCEs are
impacted at concentrations more than 10 times (i.e., up
to>1000 times) lower than the CE, or cases where no
effects on CEs were observed at all. Similar to Forbes
et al. [72], we conclude that the assessment factor seems
to be protective, but we also identified scenarios in our
system where it is highly underprotective, and we raise
the question whether these outliers (>1000 times higher
effect concentration) should be given more attention.

Food for thought for scientists and regulators

Including NCEs, building on standardised guidelines,
into risk assessment research to refine ERA practices
has the potential to improve understanding of chemical
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impacts on species in a manner in line with the 3Rs. A
transition to their greater integration into ERA would
support more ecologically relevant hazard assessments,
ultimately leading to more robust environmental risk
assessment. NCEs should only be included in ERA prac-
tices if they provide a higher sensitivity than CEs, speci-
ficity and accuracy. While sensitivity and specificity were
discussed in the prior sections, we still need to address
accuracy, which is provided by the validation of the cho-
sen endpoint and standardisation of methods. Some end-
points are already ahead of the curve, showing greater
readiness for standardisation of methods. Quantified
effects on locomotion, for instance, are already partially
integrated into existing guidelines (see Sect. "Defini-
tion of conventional, semi-conventional endpoints and
non-conventional endpoints"). This is, therefore, an end-
point that could be more immediately integrated. Simi-
larly, for phototaxis, which is reproducible and readily
analysed, established protocols are already available for
several model species (e.g., D. magna, [112]). Avoidance
is already included in standardised guidelines for soil
organisms [92, 93], which could be extended to further
species and ecosystem compartments (e.g., sediment
organisms). Social behaviour could be included by inte-
grating shoaling endpoints into testing protocols, such as
OECD TG 210, as proposed by Frese & Braunbeck [75].
However, to include these endpoints, further develop-
ment and ring-testing would be necessary. Integration
of NCEs in hazard assessment within IATAs (Integrated
Approaches to Testing and Assessment) is also a way in
which these approaches can be integrated with more rec-
ognised ERA practice [131].

The greater research use of NCE studies has the poten-
tial to support regulatory decisions about chemical risks.
However, such endpoints are often excluded due to con-
cerns about reliability and ecological relevance [3]. Espe-
cially the evaluation framework Klimisch, used for the
weight of evidence approach under REACH, does not
consider non-standard studies as reliable without restric-
tions (Klimisch Category 1). Therefore, they always get
less weight in regulatory decision-making than standard
studies, for instance, when they are handed in as support-
ing studies as part of the registration dossier. To address
this, researchers can follow the Criteria for Reporting and
Evaluating Ecotoxicity Data (CRED) or EthoCRED for
behavioural studies, ensuring a robust evaluation of eco-
logical relevance and reliability [20, 100]. A detailed guid-
ance for integrating non-standard studies in regulatory
risk assessment has now also been presented in the new
OECD Guidance document on the Generation, Report-
ing and Use of Research Data for Regulatory Assessment
[136]. Developed non-conventional methods can also be
submitted in the OECD’s Standard Project Submission
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Form (SPSF) to make these methods both more trans-
parent and accessible for their use. Progress through the
combined action can support the greater uptake and use
of NCEs to understand the wider hazards of chemicals
not fully understood through current testing. Some-
thing that will benefit knowledge and capacity to manage
chemical hazards in the environment, especially for the
emerging hazards, neurotoxicity, immunotoxicity, and
metabolic toxicity.
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