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Abstract 

Chemical pollution is identified as a significant driver of biodiversity loss, raising concerns about the effectiveness 
of current environmental risk assessment (ERA) practices. Conventional ERA approaches primarily rely 
on the endpoints of mortality, growth, and reproduction, often failing to capture the full scope of potential effects 
that chemicals can have on organisms. This is potentially problematic in cases of chemicals causing neurotoxicity, 
immunotoxicity, and metabolic toxicity, which have recently been introduced to the discussion under REACH 
by the new report of the European Chemical Agency (ECHA) on Key Areas of Regulatory Challenge. For these modes 
of action (MoAs), which have to date been discussed primarily in the context of human toxicity, there is currently 
no established approach for addressing them in ERA. This is despite the fact that these chemicals often have 
sublethal effects on traits linked to potential effects on population-relevant endpoints (e.g., foraging behaviour). In 
this study, we evaluated the importance of non-conventional sublethal endpoints for hazard and risk practices. We 
categorised endpoints into conventional (CE; i.e., defined by standardised guidelines), semi-conventional (semi-CEs; 
i.e., defined by standardised guidelines but only for a limited number of species), and non-conventional endpoints 
(NCE; i.e., ecotoxicological measurements not defined by standardised guidelines and so going beyond conventional 
measurements). In this conceptual review, we selected case studies that evaluated both conventional and non-
conventional endpoints to evaluate the importance of NCEs for the assessment of the emerging hazards 
in comparison to CEs, focusing on (1) sensitivity (effect levels), (2) mechanistic understanding, and (3) population-
level effects. Our assessment shows that using NCEs can improve mechanistic understanding of chemical hazards 
and provide important information about the chemicals’ MoA. Comparisons between NCEs and CEs at the individual 
and population levels revealed that in 13% of cases, NCEs showed effects when CEs were unaffected. NCEs were 
generally more sensitive, being on average 56 times more sensitive than mortality, 8 times than reproduction, and 2 
times than growth—in 9 cases, the NCEs were more than 1000 times more sensitive than the CE. NCEs showed 
unconventional links to the population level that would have gone undetected in the current ERA system (e.g., 
changes in boldness behaviour affecting reproduction in fish). We propose a first approach to address environmental 
hazard identification and risk prediction for neurotoxic, immunotoxic, and metabolic toxic compounds by organising 
relevant NCEs according to an Adverse-Outcome-Pathway (AOP) structure, and a MoA-based AOP framework.
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Background
Thousands of chemicals with various modes of toxic 
action (MoAs, i.e., biologically plausible sequences of key 
cytological and biochemical events leading to an observed 
effect supported by robust experimental observations and 
mechanistic data) are designed, used, and then released 
into the environment, posing an enormous challenge to 
environmental risk assessment (ERA). Based on the expo-
sure assessment and hazard characterization of chemicals, 
the current ERA aims to quantify the potential adverse 
effects on species in the environment by monitoring dif-
ferent biological levels from molecules to local population 
extinction [154]. Standardised tests, like the OECD and 
ISO guidelines, were developed to ensure consistency and 
reliability in ecotoxicological studies [51]. This standardi-
sation makes it possible to compare effects among differ-
ent chemicals, species, and ecosystems, which is crucial 
given the vast quantity of chemicals that require assess-
ment [121]. Standardised guidelines mainly focus on the 
life-cycle endpoints mortality, growth, and reproduction 
(defined as conventional endpoints, CEs, in this study) 
for a narrow set of model species. Guidelines for other 
endpoints are limited (e.g., emergence for Chironomus 
sp.: OECD TG 218;  metamorphosis for Xenopus laevis: 
OECD TG 241).

Despite our extensive chemical regulations, chemical 
pollution has recently been identified as one of the five 
main drivers of biodiversity loss in the European Union 
[66, 98]. We suggest that using conventional life-cycle 
endpoints as the main focus of hazard and risk assessment 
may have led to an underestimation of the harm caused 
by chemicals in the field. Chemicals vary in structure and 
have become increasingly diverse. As a result, the amount 
and complexity of the different chemical MoAs released 
into the environment have increased over time [35]. 
Chemical MoAs may be described as either acting non-
specifically (i.e., narcotic, reactive) or specifically (e.g., 
targeting a specific receptor or biochemical pathway). 
However, due to a lack of data, many chemicals cannot be 
classified [104]. Compounds with specific MoAs are gen-
erally considered more potent to target species and more 
persistent in the target location (e.g., hormone receptor). 
These substances, which induce, for example, neurotoxic 
effects, may cause adverse effects that have an ‘unconven-
tional’ connection to population dynamics, such as behav-
ioural endpoints (e.g., feeding inhibition), which may go 
undetected under existing frameworks [172, 187, 196].

For plant protection products, neurotoxic active com-
pounds have been included in regulatory assessments 
for several years (Commission Regulation (EU) No. 
283/2013). However, to our knowledge, there is no pes-
ticide that has been regulated due to a neurotoxic MoA 
based on its effects on endpoints linked to behaviour. 

Instead, decisions are made based on results due to effects 
on mortality endpoints or colony-level changes (for pol-
linators) without using additional neurotoxic endpoints 
(e.g., behavioural alterations), even in cases where such 
effects may have been reported in scientific studies (in 
cases of regulatory reassessment). Under REACH and 
other chemical regulations, such compounds have not yet 
been specifically addressed. ECHA, the European Chemi-
cal Agency, has acknowledged the importance of regu-
lating chemicals based on specific MoAs for human and 
environmental health, beginning with endocrine disrup-
tion [56]. In its Key Areas of Regulatory Challenge report 
[53], ECHA now highlights compounds with MoAs that 
cause alterations in the neuronal, immune, or metabolic 
systems, which potentially can lead to adverse effects on 
the population level. Compounds with neurotoxic, immu-
notoxic, and metabolic toxic MoAs are introduced as 
“emerging hazards” [55], defined as chemicals that have 
intrinsic properties suggesting potential to cause harm 
(i.e., a hazard), but for which scientific evidence is still 
developing, standardised test methods or regulatory cri-
teria are lacking, and current legislation does not yet ade-
quately cover the potential risks.

It was suggested that substances exhibiting these prop-
erties might be classified as of equivalent level of concern 
(ELoC) to substances of very high concern (SVHCs), 
which include those classified as carcinogenic, muta-
genic, or toxic to reproduction (CMR), persistent, bioac-
cumulative and toxic (PBT), and very persistent and very 
bioaccumulative (vPvB) under REACH [55]. To be clas-
sified as ELoC to an SVHC, “scientific evidence of prob-
able serious effects to human health or the environment 
which give rise to an equivalent level of concern to those 
of other substances” (REACH Article 57f) is needed. For 
example, endocrine-disrupting chemicals (EDCs) may 
be considered ELoC to SVHCs. Criteria for classifying 
EDCs have recently been introduced into the CLP regula-
tion [52]. These criteria require knowledge about a sub-
stance’s MoA, its adversity on, e.g., the organ, individual, 
or population level, and the ‘biologically plausible link’ 
between the two [52]. Therefore, it can be expected that 
a similar level of evidence will be required for emerging 
hazards to be identified and regulated. As the first SVHC 
intention for a substance with neurotoxic properties has 
now been announced [55], there is a need to incorporate 
more MoA-specific and precise sublethal endpoints in 
the hazard assessment of chemicals, which are currently 
non-conventional.

Several studies on non-conventional endpoints (NCEs) 
have revealed effects at lower exposure concentrations 
(e.g., predator avoidance, locomotion) than for CEs [118, 
145, 156, 170, 177]. However, in such cases, it is crucial 
to establish whether such effects (1) are substantially 
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different between CEs and NCEs and (2) have an adverse 
impact on individuals and populations linked to the 
ecological protection goals  [34, 59, 68]. To make these 
linkages, it is important to understand the mechanisms 
by which a contaminant causes adverse effects [31, 37]. 
A helpful tool to unravel the mechanisms is to develop 
a conceptual Adverse Outcome Pathway (AOP). AOPs 
relate molecular-level effects to  a series of key events 
(KE)  that ultimately lead to adverse outcomes (AO) 
at the individual or population level [6, 181]. The 
conceptual AOP is built based on gathering available data 
on chemical effects across all biological levels. ECHA 
[53] has recognised AOPs as a crucial step forward in 
evaluating compounds associated with the emerging 
hazards neurotoxicity, immunotoxicity, and metabolic 
toxicity.

A potential reason that NCEs, such as behavioural 
endpoints, are not included in standardised guidelines 
and are rarely used for regulatory purposes may be a 
lack of understanding of how behavioural effects relate 
to adverse population effects [74]. There is also a lack 
of robust side-by-side comparisons between CEs and 
NCEs [74]. This paper aims to fill this gap by evaluating 
the importance of NCEs for hazard and risk practices, 
comparing them to CEs. For this purpose, the terms 
conventional, semi-conventional, and non-conventional 
endpoints were first defined. Next, relevant NCEs were 
selected, organised, and discussed according to an AOP 
structured framework focusing on the emerging hazards 
proposed by ECHA: neurotoxicity, immunotoxicity, 
and metabolic toxicity [53]. Case studies that evaluated 
both conventional and non-conventional endpoints are 
outlined with a focus on (1) sensitivity (effect levels), 
(2) mechanistic understanding, and (3) population-level 
effects. The findings from these studies were then used to 
refine a conceptual MoA-based AOP framework for the 
environmental hazard and risk assessment, incorporating 
NCEs on all biological levels for the emerging hazards.

Methodology
Definition of conventional, semi‑conventional endpoints 
and non‑conventional endpoints
To develop a consistent basis for the distinction of con-
ventional, semi-conventional, and non-conventional 
endpoints, we analysed the OECD and ISO guidelines 
for the European ERA for animals, focusing on spe-
cies, model ecosystem, animal group, test duration, and 
observed endpoint (Fig.  1, Table  S1; last updated: July 
2025). Our results show that standardised guidelines 
have been published for 37 animal species/groups, cov-
ering the freshwater (13), soil (8), terrestrial (7), marine 
(6), and sediment (3) ecosystems. Of these guidelines, 21 
describe acute experiments with durations ranging from 

24  h to 14  days, and a further 25 chronic experiments 
with durations between 48  h and 65  days. The primary 
ecotoxicological endpoints described in these guidelines 
are mortality (27), including its proxy, immobilisation (2), 
and the sublethal endpoints reproduction (19) and growth 
(14). As standardised measurements, these effects were 
defined as “conventional endpoints” (CEs) in the present 
study.

Next to mortality, growth, and reproduction, OECD 
and ISO guidelines also describe measurements of 17 
other endpoints (see Table  S1) for tests using one or 
two species, with a main focus on endpoints in fish test 
guidelines: intoxication, life cycle assessment, emergence, 
avoidance behaviour, locomotion, population growth 
inhibition, behavioural abnormalities, morphological 
abnormalities, (embryonic and larval) development, 
sexual development, sex ratio, metamorphosis, 
vitellogenin, secondary sexual characteristics, biomarkers 
for endocrine disruption (e.g., oestrogens, aromatase 
inhibitors), multigenerational assessment and thyroid 
activity screening. We defined these endpoints that are 
recognised in standard tests but restricted in their usage 
domain (i.e., species), as “semi-conventional endpoints” 
(semi-CEs).

Most CEs and semi-CEs are based on individual level 
measures that can be linked to population level effects. 
The direct assessment of population responses in animal 
species is only described in one guideline for the rotifer 
Brachionus calyciflorus as population growth inhibition 
(ISO 20666:2008).

Avoidance behaviour endpoints, described for 
two soil species, Eisenia fetida/andrei and Folsomia 
candida/fimetaria (ISO 17512), are the only quantifiable 
behavioural endpoints at the individual level. Behavioural 
abnormalities are assessed in eleven species (Eisenia 
fetida/andrei, fish, Enchytraeus sp., Apis Mellifera, Osmia 
sp., Chironomus sp., Hypoaspis (Geolaelaps) aculeifer, 
and in the avian guideline; see Table  S1). However, 
behavioural abnormalities are made alongside CEs and 
are often related to signs of mortality (e.g., inability to dig 
into the soil or lying motionless; OECD TG 220 and 222). 
Furthermore, details for how to assess abnormalities 
can be vague, lacking a standardised description, and 
so varying significantly between species [51]. This 
lack of clarity increases the challenge of applying such 
measurements for risk assessors. For fish and bees, 
behavioural abnormality endpoints are described in 
greater detail. However, these stated endpoints are still 
challenging to quantify and aid the interpretation of CEs 
such as mortality (fish: OECD TG 210 and 212;  bees: 
OECD TG 245). The standard test for Daphnia magna 
(OECD TG 202) includes immobilisation and locomotion 
as endpoints, but they are solely used as a proxy for 
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mortality, as indicated by a lack of movement. In some 
cases, behavioural endpoints are included for animal 
welfare reasons (e.g., OECD TG 210 and 239), where 
behavioural changes become so severe that they cause 
considerable suffering, and the individual must be 
removed from the test system.

Endpoints on the molecular, cellular, and organ levels, 
as well as behavioural endpoints on the individual 
and population level, are still underrepresented—the 
exception being for chemicals with endocrine-disrupting 
properties (see Sect.  "Implementing non-conventional 
endpoints in ERA guidelines: the example of endocrine 
disruption"). The absence of information is particularly 
noteworthy for the emerging hazards neurotoxicity, 
immunotoxicity, and metabolic toxicity [53], for which 
standardised guidelines and current ERA practices 
are absent (Fig.  1). Such emerging hazards need 
ecotoxicological measurements beyond CE and semi-
CEs, defining them as “non-conventional endpoints” 
(NCEs). NCEs can provide additional information about 
the potential risks of environmental contaminants by 

(1) giving a mechanistic understanding of chemical 
effects and (2) detecting adverse outcomes on the 
population level (e.g., behavioural changes described 
in Sect.  "Individual-level endpoints to assess adverse 
outcomes", Fig. 2).

Comparison of conventional, semi‑conventional, 
and non‑conventional endpoints
Bridging the gaps in current ERA practices relating to 
NCEs would help finding suitable approaches to identify 
hazards such as neurotoxicity, immunotoxicity, and 
metabolic toxicity [53]. To address the key steps and 
pathways, we conducted a conceptual review based on 
the relevant scientific literature. A conceptual review 
focuses on hypotheses, ideas, theories, and conceptual 
frameworks rather than presenting a comprehensive 
quantitative summary of empirical data or systematically 
summarising existing studies, as in a systematic review 
[95]. Therefore, this review does not aim to provide an 
exhaustive overview of all NCEs used in ecotoxicology 
but rather to illustrate their potential and limitations 

Fig. 1  Schematic overview of CEs and semi-CEs described in standardised guidelines (see summary in Table S1), highlighting their use 
for the assessment of the MoAs related to endocrine disruption and the emerging hazards, neurotoxicity, immunotoxicity, and metabolic toxicity, 
and illustrating gaps in current ERA practices by the question marks
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within ERA. Thus, we focused on establishing the 
downstream consequence of the molecular changes (e.g., 
related to accumulation, genomics, transcriptomics, 
proteomics, and metabolomics) that underlie key NCEs 
and how these endpoints may be linked to impacts on 
population-relevant responses (e.g., behaviour linked to 
mortality through reduced predator avoidance).

Our approach was to first examine the literature 
discussing suitable NCEs for hazard assessment (e.g., [3, 
74, 108]) for relevant endpoint groups. These endpoints 
were then categorised into KEs on the three main levels, 
following the AOP framework [129]: (1) Molecular/
cellular/organ-level endpoints are, by their nature, more 
directly linked to the key chemical MoAs (neurotoxicity, 
immunotoxicity, and metabolic toxicity) and can be 
challenging to connect directly to adverse population 
outcomes; (2)–(3) Individual- and population-level 
endpoints, although less specific regarding mechanism, 
can be more directly associated with AOs and ecological 
protection goals. Individual-level endpoints include 
behavioural responses such as mobility, phototaxis, and 
foraging behaviour. At the population level, we focus on 
social behaviour and predator–prey interactions.

Upon identifying the relevant NCE groups, we selected 
representative and illustrative case studies that met the 
criterion of being supported by peer-reviewed evidence, 
thereby allowing us to discuss each endpoint type. 
Case studies were identified through searches in major 
scientific databases (Google Scholar, Scopus, Web of 
Science) using both non-conventional and conventional 
endpoint names as search terms, as well as by screening 
the reference lists of key publications. Case studies were 
chosen based on the following criteria: (1) inclusion of 
both CEs and NCEs, (2) laboratory-based (excluding field 
studies), (3) use of species relevant for ERA (excluding 
livestock and human health studies), and (4) assessment 
of chemicals relevant for ERA (i.e., chemicals detected as 
contaminants in the environment). For some endpoints, 
studies measuring both NCEs and CEs were challenging 
to find. In such cases, separate studies were selected for 
comparison, each using the same species, life stage, and 
chemical.

The search was restricted to peer-reviewed studies 
written in English and focused on empirical data rather 
than reviews. Case studies relying primarily on omics 
or genetic measurements were excluded. Between four 
and ten case studies were selected for each endpoint 
group. These case studies were selected to represent a 
conceptual review of the relevance of non-conventional 
endpoints for the protection goals (population-level 
impact; [34]), taking point of departure in three overall 
AOP levels (molecular/cellular/organ, individual, and 
population).

For each case, the NCEs are assessed in relation to CEs 
with respect to (1) effect concentrations (sensitivity), 
(2) information provided for mechanistic understand-
ing, and (3) relevance of NCEs for adverse population 
outcomes and environmental protection goals. Table  S2 
summarises all discussed case studies, providing detailed 
information about endpoints, model compounds, model 
species, study duration, and effect concentrations. To 
evaluate the relative sensitivity of NCEs compared to 
CEs, focusing on individual- and population-level end-
points, a ratio was generated to determine the fold 
increase in NCE sensitivity:

As the data spans several orders of magnitude, we 
calculated the geometric mean of the fold increase 
for mortality, reproduction, and growth, respectively, 
for each group of individual-level endpoints and 
all individual NCEs together (see Table  1 for all 
comparisons). Due to data limitations, it was necessary 
to compare effect concentrations determined by using 
different methodological approaches (e.g., lowest 
observed effect concentration (LOEC); effective 
concentration for 50% of the population (EC50)). The 
use of NOEC (No Observed Effect Concentration)  and 
LOEC values has long been debated in ecotoxicology. 
However, when assessing NCEs that show high variability 
(e.g., behavioural alterations), data may not be suitable 
for fitting with the models used for EC50 estimation. 
Moreover, the presence of non-monotonic dose-response 
curves (NMDRCs) further complicates the model fitting 
process. Nevertheless, it is common practice in academic 
studies to compare effect concentrations obtained using 
both approaches. To highlight the methodological 
limitations of our study, we included the information on 
the different endpoints (LOEC, AC50, EC50, LC50) in 
Table 1.

Outcome of comparison of conventional, 
semi‑conventional, and non‑conventional 
endpoints
Implementing non‑conventional endpoints in ERA 
guidelines: the example of endocrine disruption
There has been a growing concern about chemicals with 
endocrine-disrupting properties [56, 65]. Endocrine dis-
ruptors can have adverse effects on reproduction and 
development and are, therefore, relevant to population-
level ecological protection goals [103, 106]. Within the 
new CLP guidance, the classification of endocrine dis-
ruption is considered the first hazard class that refers to 
a specific subgroup of endocrine MoAs, i.e., altering the 

Fold increase =
Effect concentration CE

Effect concentration NCE
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function(s) of the endocrine system with focus on dif-
ferent hormone systems and pathways (e.g., oestrogen, 
androgen, thyroid, steroidogenesis  (EATS modalities)) 
[52]. Under this regime, it is now necessary to test the 
molecular event, the adverse effect (e.g., organ, indi-
vidual, and population level), and the ‘biologically plau-
sible link’ between both in order to classify a substance 
as an endocrine disruptor [52]. Already prior to these 
classification criteria, several guidelines were developed 
to assess the impact on sexual hormones, sex ratio, and 
secondary sexual characteristics for fish (OECD TG 229, 
230, 234, 250), and reproduction and sex ratio in 12 other 
aquatic and terrestrial species (e.g., OECD TG 218, 219, 
232; see complete list in Table S1). The Japanese rice fish, 
Oryzias  latipes, is assessed using a multigenerational 
approach (OECD TG 240). An extensive list of guidelines 
and AOPs (e.g., AOP 346) can be found in OECD [130] 
and at https://​www.​oecd.​org/​en/​topics/​sub-​issues/​testi​
ng-​of-​chemi​cals/​endoc​rine-​disru​pters.​html.

Given that tests for vertebrates dominate those 
validated test methods, there have been some criticisms 
of the absence of invertebrate species in the assessment 
of endocrine disruption [42]. Nonetheless, although gaps 
exist, the inclusion of endocrine endpoints in current 
guidelines represents a step forward in the acceptance of 
non-apical endpoints for their relevance for regulatory 
frameworks. Overall, endocrine disruption can be seen 
as a good example of how endpoints for the emerging 
hazards, neurotoxicity, immunotoxicity, and metabolic 
toxicity, can be integrated into environmental hazard 
assessment practice based on mechanistic understanding 
and linkage to higher-tier effects.

Molecular/cellular/organ‑level endpoints for mechanistic 
understanding
Measuring molecular, cellular, and organ-level endpoints 
can provide enhanced mechanistic understanding for the 
emerging hazards, neurotoxicity, immunotoxicity, and 
metabolic toxicity [53]. Such lower organisation effects 
also play a crucial role in constructing AOPs [53]. As 
such, they offer valuable insights that less specific CEs 
may not be able to detect. Below, we highlight specific 
molecular/cellular/organ-level NCEs and their potential 
contribution to a greater understanding of emerging 
hazards compared to CEs.

Neurotoxicity
All complex organisms rely on neural activity, and any 
chemicals affecting nerve functionality can adversely 
affect an organism’s biology. The morphology of the 
nervous system and neurotransmitter functioning 
can be impacted through various mechanisms, 

including direct damage to neurons, interference with 
neurotransmitter synthesis or release, disruption of ion 
channels, post-synaptic receptor interactions, and the 
induction of oxidative stress or inflammation, which 
alters nerve cell membrane integrity [109]. Perhaps 
the most direct pathways leading to neurotoxicity are 
through interactions with neuronal targets, including 
cholinesterase (ChE), glutamate decarboxylase (GABA), 
nicotinic acetylcholine receptor (nAChR), or dopamine 
and serotonin modulations [111, 123]. ChEs are crucial 
in the nervous system as they regulate the breakdown 
of their respective choline neurotransmitter [139]. 
Inhibition of these enzymes leads to neurotransmitter 
accumulation at the synapse and neurotoxicity due to 
nerve overstimulation. Acetylcholinesterase (AChE) 
activity has been a major focus as a biomarker for 
measuring neurotoxic effects [45], e.g., for carbamate 
or organophosphate insecticides [111], and so has the 
strongest basis from which they can be assessed as an 
early detection method for neurotoxic MoAs [76].

Two standardised guidelines exist for assessing 
neurotoxic compounds in human and mammal risk and 
hazard assessment (OECD TG 424 and 426). The OECD 
has also provided initial recommendations on in  vitro 
testing for developmental neurotoxicity [135]. Similar 
guidelines remain absent for environmental risk and 
hazard assessment (see Table  S1) [108]. With 18% of 
the organic chemicals found in European waterbodies 
being linked to a neurotoxic MoA [35], understanding 
how underlying mechanisms result in neurotoxicity 
and, ultimately, adverse effects on the individual and 
population level, is crucial to environmental hazard 
assessment.

In Table S2, we summarised five case studies measur-
ing AChE inhibition [86, 101, 102, 165, 195], and one case 
study additionally measuring serotonergic, dopaminer-
gic, and GABAergic neuron damage to assess neurotox-
icity [183, 185]. The case studies show that measuring 
neurotoxic endpoints like ChE inhibition can be used 
to verify a neurotoxic MoA. The cellular measurements 
made could further be linked to mortality. Sismeiro-Vivas 
et al. [165] studied the interaction between AChE inhibi-
tion and mortality following exposure to the organophos-
phate chlorfenvinphos. They observed that in eastern 
mosquitofish (Gambusia holbrooki), mortality would 
occur only after AChE inhibition exceeded 80%. Key & 
Fulton [101] experimented with larval grass shrimp (Pal-
aemon paludosus) to determine if AChE activity at 24 h of 
exposure could also be used to predict mortality at 96 h 
of exposure to organophosphates. These results showed 
strong correlations between the EC50 for both endpoints, 
indicating the link between AChE activity and mortality. 
Effects on AChE can also be much more sensitive than 

https://www.oecd.org/en/topics/sub-issues/testing-of-chemicals/endocrine-disrupters.html
https://www.oecd.org/en/topics/sub-issues/testing-of-chemicals/endocrine-disrupters.html
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mortality effects, as seen in the study by Khalil [102]. The 
author observed effects on AChE at 0.01 mg/kg, while the 
corresponding LC50 was 145.36 mg/kg.

Changes to AChE activity can be temporary, returning 
to baseline over time, even in the presence of the stressor. 
For instance, in the topmouth gudgeon (Pseudorasbora 
parva), exposure to 200  μg/L of fluoxetine increased 
AChE activity after 4 h, but activity was similar to controls 
after 42  days of exposure [38]. In mussels (Mytilus 
galloprovincialis), exposure to 75 ng/L of fluoxetine led to 
a spike in AChE activity after 3 days, which returned to 
baseline after 7 days, but then showed further inhibition 
after 15  days. Such results  indicate a complex temporal 
effect dynamic [81]. While these findings suggest a 
potential neurotoxic MoA, their variability makes linking 
them to population-level outcomes difficult. However, 
the multi-biomarker approach in Gonzalez-Rey & 
Bebianno [81] indicated that fluoxetine not only acts on 
neurotoxic endpoints but also works as an endocrine 
disruptor. This highlights the importance of considering 
(A)ChE activity and neurotoxic endpoints in the context 
of other effect mechanisms to gain sufficient mechanistic 
understanding of interrelated effects.

Measuring neurotoxic endpoints in hazard assessment 
practices is highly relevant to neuronally linked MoAs. 
However, due to the biological variability of nervous 
systems, incorporating the MoAs into ERA remains 
challenging. Moreover, neurotoxicity can be found 
outside of cholinergic neurotransmission targets. 
For instance, Wang & Wang [186] demonstrated 
that Bisphenol-A exposure did not affect cholinergic 
neurotransmission but did affect other neurological 
targets in a study using multiple transgenic C. elegans 
strains. Bisphenol-A was found to block serotonin and 
dopamine synthesis, with the latter being affected in 
a dose-dependent manner, and reduced the number 
of GABAergic neurons, in addition to its effects on 
neurobehavioural and growth endpoints. This example 
demonstrates that markers other than (A)ChE are more 
complex to measure and less easily adapted to different 
model species, emphasizing the need for further 
development of neurotoxicity endpoints for ERA.

Furthermore, neurotoxicity is not always linked to 
direct effects on neural receptors but can also result 
from more generalised effects such as oxidative 
stress and subsequent effects on cell physiology (see 
Sect.  "Immunotoxicity"). He & Liu [86] found that 
oxidative stress-related damage reduced AChE activity 
in Eisenia fetida worms exposed to phenanthrene in 
soil. This led to neurotoxicity by ACh accumulation at 
the nicotinic postsynaptic membrane. Similar pathways 
have been observed in response to titanium dioxide 
nanoparticle exposure in the worm Pheretima hawayana 

in soil [102]. Such examples highlight the relevance of 
measuring biochemical markers and alternative MoAs 
to distinguish neurotoxic-acting compounds more 
effectively.

Changes to neurotransmitter release, their enzymes, 
or upregulation of neurotransmitter pathways have also 
been linked to behavioural endpoints. For example, 
Sismeiro-Vivas et al. [165] found a significant correlation 
between AChE inhibition by the organophosphate 
chlorfenvinphos and behavioural change in the fish 
Gambusia holbrooki: effects occurring at > 40% AChE 
inhibition compared to the > 80% inhibition needed for 
a mortality response. Métais et  al. [115] linked AChE 
inhibition in the ragworm Hediste diversicolor in a multi-
contaminated estuary (diffuse pollution due to heavy 
metals, pesticides, PAHs, and PCBs) to an impairment 
of the burrowing activity and a lower population density 
and biomass. Chemicals that work through neurotoxic 
mechanisms other than AChE inhibition have also been 
linked to behavioural effects. Wang & Wang [186] found 
that Bisphenol-A (BPA) exposure in transgenic C. elegans 
damaged serotonergic, dopaminergic, and GABAergic 
neurons, without affecting cholinergic activity, and this 
was linked to reduced growth, shorter lifespan, and 
altered behaviour. Conversely, Heredia-García et al. [90] 
found that exposure to BPA led to AChE inhibition and 
altered the swimming behaviour in zebrafish. Together, 
these examples illustrate the limitations of relying on 
single biomarker approaches in complex and variable 
neurological systems. Further research is needed to 
elucidate the links between neurotoxic endpoints and 
NCEs linked to behavioural changes.

Immunotoxicity
The immune system is an important target to consider 
in ERA as: (1) it is an indicator of overall health and is 
critical in determining individual fitness [83], (2) unlike 
other systems, it is distributed throughout the body 
and is well connected to other systems, making it a 
highly vulnerable target [183, 185], and (3) it is directly 
related to interspecific and intraspecific interactions, as 
detrimental changes to the immune system can make 
organisms susceptible to pathogens, thereby changing 
individual/population disease susceptibility [24]. Immune 
system effects have commonly been linked to oxidative 
stress and reactive oxygen species. Oxidative stress is a 
key initiating event for various physiological processes 
as it modulates the transcription factors, including 
Nrf2, NF-kB, and FoxO, which regulate inflammatory 
responses and play an important role in chemical-
induced immunotoxicity [49].

To date, there are only a few standardised test 
methods to screen for immunotoxicity of chemicals. 
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Immunotoxicity is tested for in pre-clinical studies 
during the development of pharmaceuticals and other 
drugs to ensure the safety for human health [62]. The 
immunotoxic potential of industrial chemicals can 
be detected following reproductive toxicity testing 
guidelines that investigate the T-cell-dependent 
antibody response (TDAR) in rodents (e.g., OECD TG 
443  (EOGRT  study)) or the impact on T-cells through 
impairments of cytokine signalling pathways in  vitro 
(OECD TG 444A). However, immune toxicity is rarely 
considered in ERA [147]. This oversight may be due to 
the complexity of immunotoxic effects, as chemicals 
can cause immune impairments through a wide range 
of mechanisms and diverse complex targets [159]. 
Additionally, there is a variability in responses and a 
shortage of relevant studies to understand the MoA of 
new chemicals [183, 185]. With the acknowledgment of 
the emerging hazard immunotoxicity, there is a need to 
address endpoints to measure immune effects in ERA 
research and practices [26, 53].

Chemically stimulated immune modulations 
are present at a cellular level as well as in immune 
organs [47, 192]. These modulations can be divided 
into two main categories: immunosuppression and 
inappropriate immune stimulation. Immunosuppression 
can lead to higher susceptibility to infections, while 
inappropriate immune stimulation can lead to 
nonspecific inflammation, hypersensitivity (allergy), and/
or autoimmune diseases [40, 80]. In wildlife, immune 
effects have been detected for various chemical groups, 
notably PAHs and metals such as lead, cadmium, methyl 
mercury, and nickel [153].

Studying immunotoxicity typically involves key steps 
linking exposure in the organism with co-exposure to 
pathogenic microorganisms or infectious agents [190]. 
Observations then allow study of how the immune system 
responds under toxic stress through measurement of 
immune markers or phenotypic observation of pathogen 
effects [179]. This approach is suitable for examining sub-
lethal concentrations of chemicals during short-term or 
sub-chronic exposures. The case studies summarised in 
Table  S2 identify several immunomodulatory effects, 
such as elevated phagocytosis, reduced spleen cellularity, 
increased leukocyte counts, decreased antibodies, and 
effects on T-cell response after exposure to nickel, 
copper, and PCB. These effects were, for example, 
observed in the two fish species Colossoma macropomum 
and Ameiurus nebulosus [94, 110]. The immune 
effects were observed at concentrations up to 40 times 
lower than CEs, with some studies showing effects on 
immunotoxicity when no effects on CEs were observed at 
the tested concentrations.

Measuring immune endpoints in hazard and risk 
assessment provides insights into the potential MoAs 
and their interactions with other endpoints. For exam-
ple, He et al. [88], investigated the mixture effects of two 
agrochemicals, imidacloprid and difenoconazole, on 
endpoints in yellow croakers  (Larimichthys polyactis). 
Disruptions in genes related to immune function were 
identified, linked to alterations in oxidative stress mark-
ers and changes in endocrine and neural development 
pathways. This highlights the potential importance of 
measuring immunotoxic endpoints on the molecular and 
cellular level and their connectivity to other endpoints.

Immune effects can be linked to apical endpoints, 
as impacts can indicate a change in the host species’ 
capacity to respond to or resist pathogens under 
exposure. Since chemicals and pathogens frequently 
coexist in the environment, studying their combined 
effects reveals insights into disease outbreaks. Rodgers 
et  al. [149], for example, found disruptions in the 
expression of five immune genes crucial for responding 
to pathogenic threats. Numerous studies have also 
established the adverse impacts of chemicals on the 
immune system, resulting in disease outbreaks. For 
example, specific amphibian populations in contaminated 
environments have shown individuals with compromised 
immune systems, resulting in an overall rise in parasite 
[150] and fungal infections [151]. Similarly, PCB 
contamination significantly affected harbour seals due to 
diminished immune competence, leading to a distemper 
virus outbreak [16, 120]. Comparable findings were 
observed in fish inhabiting the estuary  Puget Sound, 
US, with increased disease incidence following exposure 
to PAHs [12, 13]. Such examples indicate clearly how 
chemical related immune impacts can lead to adverse 
population effects.

Metabolic toxicity
Metabolism-disrupting chemicals (MDCs) are 
substances that interfere with metabolic processes 
[157]. In recent years, MDCs have attracted scientific 
and regulatory attention as emerging hazards [53] due 
to their association with obesity, diabetes, and fatty 
liver disease in humans [15, 169]. Although effects on 
humans are increasingly being studied, there remains 
uncertainty about how to evaluate MDC effects 
on wildlife. Consequently, environmental risks to 
metabolic endpoints are not included in standardised 
guidelines (Table  S1). Metabolism can be measured in 
a range of ways. Direct measures can assess respiration 
rate as a proxy or indirectly by analysing changes 
in the energy reserves, or can assess cellular energy 
allocation (CEA) based on assessments of protein, 
lipids, and carbohydrate contents [44]. One example 
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of MDCs raising environmental concern is succinate 
dehydrogenase-inhibiting fungicides (SHDIs). This class 
has the potential to affect non-target species by targeting 
succinate dehydrogenase, an essential enzyme in the 
Krebs cycle and respiratory electron transport chain, not 
only in fungi but in almost all eukaryotes [196]. Energy 
metabolism in the fish D. rerio [142, 193], the earthworm 
E. fetida [87], and freshwater amphipod Gammarus 
fossarum [107] was affected following exposure to 
SHDIs, providing a mechanistic confirmation of the 
effects of these fungicides on endpoints linked to energy 
dynamics in non-target species [44, 82]. Any such change 
in available energy has the clear potential to decrease 
individual fitness and, ultimately, affect populations 
through effects on growth and reproduction [82, 166].

In Table  S2, we summarised five case studies that 
analysed endpoints linked to energy metabolism, such 
as the energy reserves glycogen, lipid, and protein 
content, respiration rates, and aerobic energy production 
(measured by estimating the electron transport system—
ETS) in comparison to CEs. These approaches have 
been used to measure the effects of a range of different 
chemicals, such as the insecticides endosulfan and 
parathion, fungicides boscalid and tebuconazole, the 
antidepressant fluoxetine, polyethylene microplastics, 
and tetradifon acaricide in species, such as the terrestrial 
isopod Porcellio dilatatus, the amphipod G. fossarum, 
D. magna, the freshwater worm Lumbriculus variegatus 
and the fish Carassius auratus [107, 114, 148, 162, 180]. 
Results showed a common effect on metabolic toxicity 
indicating that this a widespread potential response. 
Additionally, studies could establish a direct link between 
short-term changes in metabolic biomarkers and long-
term effects on growth and reproduction [180]. The 
effects observed on energy dynamics were noted at 
concentrations orders of magnitude below those affecting 
CEs. For example, Ribeiro et  al. [148] found effects on 
the energy metabolism of the isopod P. dilatatus after 
exposure to the insecticides endosulfan and parathion 
at 0.1  µg/g in food, while effects on growth were only 
detected at 500 µg/g of food for endosulfan and putatively 
at even higher levels for parathion.

Molecular and cellular measurements of the energy 
metabolism can be plausibly linked to adverse effects at 
higher biological levels, indicating their relevance to the 
protection goals for ERA. For example, effects on energy 
metabolism have been directly linked to the CEs of 
reproduction, development, and growth in D. magna [44, 
180]. Energy metabolism has also been strongly linked 
to  foraging behaviour [173]. For instance, insecticides 
that affect energy metabolism can cause changes in 
foraging in bees exposed to imidacloprid [194]. This link 
to foraging behaviour indicates the complex connections 

between different NCEs linked to metabolic toxic 
compounds and how these interact through AOPs to 
affect apical CEs.

Individual‑level endpoints to assess adverse outcomes
Individual-level behavioural measurements are of 
recognised relevance as endpoints for chemical effect 
assessment [3, 60, 74]. As such, their use in ecotoxicology 
has increased significantly in recent years [20]. Drivers 
for a greater focus on behaviour are that they are: (1) 
generally more sensitive than CEs [113], (2) can be 
informative of MoA [2], and (3) can reveal adverse 
population-level effects that would go undetected with 
CEs [1, 2, 79]. The relevance of behavioural effects has 
been recognised by the European Medicines Agency 
(EMA) [63] for neuroactive medicinal products and by 
ECHA [54] for endocrine-disrupting and neurotoxic 
compounds. Despite this, they remain rarely used for 
regulatory purposes because most studies are non-
standardised, often lacking relevant information or 
are questioned for their reliability or methodology 
[3]. Currently, there is a lack of understanding of how 
behavioural effects relate to population fitness and 
ecosystem-level impacts, which leads to questioning 
of their use in ERA [74]. Furthermore, the lack of 
benchmarking between behavioural testing and CEs is 
a major reason why behavioural studies are commonly 
viewed as having low regulatory relevance [74]. However, 
new research indicates that the majority of scientists 
now believe that behavioural experiments are repeatable, 
reliable, and relevant regulatory authorities should 
consider behavioural endpoints [73]. Below, we discuss 
behavioural endpoints and their relationships with CEs 
to evaluate their relevance in ERA.

Mobility/locomotion/activity
Mobility or locomotion can be assessed by measuring the 
activity of an organism in a given period. For species with 
high mobility, like most arthropods, reptiles, and fish, 
velocity (moving speed) can be used as a fundamental 
indicator, as it is a prerequisite for other behavioural 
actions relevant to fitness, such as mate finding, feeding, 
and predator avoidance [31]. Movement velocity can also 
be further linked to other physiological functions, such 
as energy metabolism [82, 191]. Quantitative methods 
for assessing mobility beyond simple rate include 
burrowing rate, head thrashes, body bends, and number 
of turns for nematodes [25]. Initial steps have been made 
toward integrating activity-linked endpoints into current 
ERA practices. For example, activity is included in the 
assessment of D. magna through the observation of 
immobilisation or locomotion (OECD TG 202 and ISO 
6341:2012) and in the description of abnormal behaviour 
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in several guidelines (e.g., "lying motionless" in OECD 
TG 220). However, the endpoint primarily validates 
test success, is directly linked to test failure in sediment 
exposures, or acts as an indicator of mortality rather 
than an indicator of more complex population-relevant 
behaviour.

In Table S2, we summarised ten case studies that show 
how chemicals impact locomotion compared to CEs. 
Mobility endpoints measured in these studies include 
abnormal locomotory behaviour (e.g., twisting and 
contradiction of the body), activity, burrowing, crawling, 
or swimming. Chemicals assessed include PAHs, copper, 
lead, oxazepam, fluoxetine, sertraline, and different 
insecticides. Organisms tested cover both aquatic and 
terrestrial species, including Girardia tigrina, Nereis 
diversicolor, Scrobicularia plana, C. elegans, D. magna, 
Aphanius dispar, Pheretima guillelmi, Chironomus 
dilutes, Chironomus riparius and Hyalella azteca [25, 85, 
137, 145, 163, 164, 177, 198]. In a set of 39 comparisons, 
locomotion was, on average, 10 times more sensitive 
than mortality and 2 times more sensitive than growth 
(Table  1). For example, Rasmussen et  al. [145] found 
that mobility in C. riparius exposed to sulfoxaflor was 
up to 10 times more sensitive than mortality and twice 
as sensitive as the semi-CE emergence. Van der Most 
et al. [177] found effects on activity in C. elegans due to 
sertraline exposure at 0.02 mg/L, 1045 times lower than 
the LC50 (20.9  mg/L). There was only one case study 
looking at reproduction; this showed that mobility was 
four times more sensitive [164]. In 7 of the case studies, 
the mobility NCE showed significant changes when CEs 
failed to detect any effects. Such comparisons indicate 
that behavioural NCEs can identify hazards at lower 
exposure levels than for CEs.

Beyond effects on movement velocity, several 
different chemical MoAs can also impact more complex 
locomotory behaviour. Hasenbein et  al. [85] compared 
motility to growth and mortality across various 
insecticides and species. They concluded that the NCEs 
for mobility are especially relevant when investigating 
neurotoxic substances like organophosphates and 
pyrethroids (see also [145]). Various other studies have 
linked changes in locomotion to neurotoxicity induced 
by oxidative stress or disruption of energy metabolism 
[82, 177]. Measurement of these more complex mobility 
NCEs has also indicated cases showing the response 
to exposure at different concentrations, resulting in 
NMDRCs [124, 177]. This means there is a potential 
for effects to occur at lower levels, which may not be 
apparent based on results from higher concentration 
exposures.

Phototaxis
Phototaxis is the responsive movement of an organism 
either towards or away from light (i.e.,  positive and/or 
negative phototaxis [97]). For example, marine larvae use 
positive phototaxis for dispersal and negative phototaxis 
for settling [144], and some species use phototaxis 
to avoid predators [18]. Neurotoxic compounds can 
disrupt phototactic behaviour, impacting migration, 
settlement, and predator–prey dynamics [171]. However, 
standardised testing guidelines for chemical impacts 
on phototaxis are lacking, although certain case studies 
are recommended for compounds affecting thyroid 
hormones or causing developmental neurotoxicity 
[132–134].

In Table  S2, four case studies are summarised that 
observed phototactic behaviour and CEs for chemicals 
such as the herbicide linuron, metal thallium, thymol 
oil, and antidepressant fluoxetine in species such as D. 
magna and honeybees (Apis mellifera) [19, 112, 122, 171]. 
In total, 14 comparisons show that the phototaxis NCE is, 
on average, 37 times more sensitive than the CE mortality 
and often occurs at low and environmentally relevant 
concentrations (Table  1). For example, Bergougnoux 
et  al. [19] observed reduced phototactic behaviour in 
honeybees exposed to thymol at 10 ng/bee, 21,000 times 
lower than the LC50 (51250  ng/bee), highlighting an 
apparent remarkable sensitivity of this endpoint.

Phototactic effects have been linked to various MoAs, 
such as chemicals targeting histaminergic signalling in 
sensory neurons, octopamine receptors, or reductions in 
serotonin levels [19, 112, 122, 171]. Due to its sensitivity 
to chemicals with several different MoAs, phototaxis is 
also used as an endpoint in environmental monitoring 
and water quality assessment. This is done, for instance, 
with a biomonitor constructed to observe changes in the 
positive phototactic behaviour of D. magna along a light 
gradient due to chemical exposure [43, 117].

The influence of chemicals on phototactic behaviour 
holds significant implications for individual survival 
and population dynamics, particularly in predator–
prey relationships where negative phototaxis can 
correlate with effective fleeing. For example, for D. 
magna, alterations in phototactic behaviour affect their 
position in the water column, potentially exposing them 
to predators [143]. Similarly, changes in phototactic 
behaviour are critical for the health of populations like 
honeybees, where phototaxis is essential for navigating 
inside and outside the hive [171]. Therefore, phototaxis 
can be linked in a mechanistic manner to organism 
traits and behaviours that lead to population-relevant 
outcomes.
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Avoidance
Avoidance or chemotaxis tests assess the organisms’ 
ability to sense contaminant exposure (e.g., using 
olfactory and other chemoreceptor organs) and actively 
avoid exposure. Avoidance behaviour is also a proxy for 
habitat suitability [92, 93], and avoidance responses at a 
contaminated site may ultimately result in the reduction 
of local populations [7]. Numerous studies have shown 
that chemicals, like copper and antidepressants, can 
impair olfaction, behaviour, and chemo/mechanosensory 
function [84, 177]. Further, chemical avoidance has been 
shown to disrupt fish migration, for example, by causing 
salmon to alter their migration routes, e.g., in response 
to metal pollution [158]. The European Commission 
[64] has identified avoidance as an ecologically relevant 
endpoint for chemical hazard assessment. As such, 
avoidance has been included in standardised guidelines, 
but so far only for terrestrial species (ISO 17512–
1:2008: Earthworm E. fetida/andrei; ISO 17512–2:2011: 
Collembola F. candida). However, these assays have 
already been demonstrated to be highly sensitive 
compared to CEs [77].

A total of seven case studies, including ten comparisons 
measuring chemical avoidance responses relative to 
CEs, are summarised in Table  S2. These case studies 
encompass a range of model organisms, including the 
amphibian Lithobates catesbeianus, the fish Poecilia 
reticulata, and the crustacean Palaemon varians, for 
various chemicals, including herbicides (diuron and 
atrazine), the pesticide abamectin, copper, and sunscreen 
(chemical mixture including e.g., Avobenzone, TiO2) 
[8–10, 118, 177, 178, 189]. Avoidance was, on average, 
46 times more sensitive than mortality, and in many 
cases showed effects at environmentally relevant 
concentrations (Table 1). One case study examined found 
significant chemotaxis (the movement toward a chemical 
attractant) in C. elegans at 1 ng/L of fluoxetine, compared 
to mortality at 253  mg/L [177]. Avoidance has proved 
effective as an endpoint for compounds with neurotoxic, 
immunotoxic, and metabolic toxic effects. The NCE is 
especially relevant for chemicals affecting olfactory cues 
or downstream neurological systems. However, use of 
the latter should be done cautiously, as these substances 
can impair an  organisms’ ability to escape the toxic 
environment, leading to failure to detect avoidance 
effects [96].

Behavioural avoidance assays can give information 
about the ability of an organism to detect a chemical 
threat and respond. Such assays allow the determination 
of the avoidance concentration (AC), indicating 
impairment of chemosensory organs or movement. 
Moreira et  al. [118], Vasconcelos et  al. [178], and 
Araújo et  al. [9] established threshold concentrations 

for avoidance, while noting that this effect could 
be diminished at higher concentrations if exposure 
compromises sensory function. In these case studies, 
harmful effects only occurred when the capacity to avoid 
chemical contamination was compromised, indicating 
the relevance of avoidance, both as a sublethal effect 
in its own right, and a compensatory mechanism that 
organisms use to reduce further exposure.

Avoidance assays can provide crucial ecological 
information. By using a multi-compartment system 
with several chambers that allow organisms to move 
between concentrations, avoidance studies have shown 
that chemical exposure can have important implications 
for habitat suitability [118]. Such effects can be linked to 
adverse population-level outcomes (e.g., loss of available 
habitat range), even if growth and reproduction are 
unaffected [178]. Thus, chemical avoidance could explain 
the local extinction or fragmentation of populations. 
For example, in a study by West & Ankley [189], growth 
and/or survival tests with contaminated sediments 
failed to reveal chemical effects, while avoidance tests 
with  Lumbriculus variegatus  showed responses that 
could explain the degraded state of benthic communities 
in the field through emigration to cleaner sediment.

Exploratory behaviour (boldness)
Exploration behaviour (boldness) is the individual’s 
willingness to take risks, including exploring new 
environments [39]. This behaviour is known to be 
affected by the chemical exposure at environmental 
concentrations, e.g., pharmaceuticals [31]. As an endpoint 
in ecotoxicology studies, boldness can be directly linked 
to effects on organism survival by influencing the ability 
to find food and mates or by increasing predation risk 
[11, 31, 146]. Exploratory behaviour can be measured in 
assays that assess the time required for an individual to 
visit all zones within a new environment, often referred 
to as an open field test [146]. Such an approach can be 
adapted to behaviour for different species​ (e.g. great tits, 
zebrafish) [36, 48]. For now, measures of boldness are not 
implemented in current environmental risk and hazard 
practices (Table S1). However, when addressing emerging 
hazards, particularly neurotoxicity, boldness can be 
considered relevant for future integration.

Table  S2 summarised four case studies with five 
comparisons of chemical effects on exploratory behaviour 
or boldness with CEs [75, 125, 161, 175]. These studies 
assess the effects of the neurotoxic drugs sertraline, 
escitalopram, fluoxetine, and cadmium on the fish species 
fathead minnow (Pimephales promelas), and zebrafish 
(D. rerio) [30, 124, 156, 161, 175]. Studies showed that 
the NCE is more sensitive, being on average 617 times 
more so than mortality and 6.6  times growth (Table  1), 
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although based on a more limited dataset than for some 
other NCEs. Within specific studies, Shelton et al. [161] 
found that cadmium impacted boldness behaviour in 
D. rerio at 1  µg/L, at a concentration 9680  times lower 
than for mortality, as observed by Al-sawafi et  al. [5]. 
A study by Nielsen et  al. [125], exposed D. rerio to the 
psychoactive drug escitalopram. Both behaviour and 
size were significantly altered at 1.5  µg/L. However, 
behavioural changes were gender-specific, with female 
boldness being significantly affected and males not, 
indicating the need to consider both male and female 
effects in studies. Changes in boldness due to pollutant 
effects pose risks not only for individuals,  but also for 
populations. For example, Shelton et  al. [161] found 
that a few individuals exposed to cadmium influenced 
the boldness of the unexposed majority, as even at low 
concentrations, cadmium exposed pairs caused changes 
in shoal boldness behaviour.

Foraging and feeding behaviour
Foraging behaviour, including foraging efficacy, 
search time, and feeding rate, has been used in several 
ecotoxicological studies. In the current ERA guidelines, 
foraging-related endpoints are currently only used as 
a validation criterion in studies that expose the model 
organisms through chemicals in their diet, such as 
birds (e.g., OECD TG 205), but not as a standardised 
and quantifiable behavioural endpoint. Several studies 
have shown chemical impacts on the ability to identify 
or reach food and feed [41, 84, 85]. Effects on foraging 
can be directly linked to population-relevant endpoints 
[41]. For example, extended periods of limited food 
intake can lead to starvation and ultimately to reduced 
growth, reproduction, and survival [1, 127] through 
linkage to energy budgets [2, 41]. Chemical effects on 
foraging can occur through multiple pathways, for 
example, modulating sensory organs, impacting neuronal 
pathways supporting food detection and by affecting 
foraging behaviour itself [46, 84, 177].

Table S2 summarises seven case studies with a total of 
15 comparisons between NCEs for foraging behaviour, 
such as feeding inhibition and foraging rate/speed, and 
different CEs. These cases cover various contaminants 
such as copper, imidacloprid, fluoxetine, and PAHs, in 
species such as Pimephales promelas, G tigrina, or G. 
pulex [1, 2, 84, 127, 163, 177, 188]. Compared to CEs, 
the NCE linked to foraging were, on average, 275 times 
more sensitive than mortality and 4 times more sensitive 
than reproduction (Table  1). Van der Most et  al. [177] 
showed that feeding was especially sensitive in C. elegans 
exposed to antidepressants, with significant changes at 
0.39 µg/L for fluoxetine and 0.89 ng/L for sertraline and 
with effects following complex NMDRCs. These effects 

were compared to LC50s for fluoxetine of 253  mg/
kg and sertraline of 209  mg/kg. The case studies show 
that foraging behaviour is relevant for a range of MoAs, 
revealing, for example, effects on olfactory senses. Green 
et  al. [84] demonstrated that copper affects feeding not 
by inhibition but rather by loss of sensory perception. 
This phenomenon was also observed by van der Most 
et al. [177], who linked the feeding impacts of sertraline 
and fluoxetine to chemosensory organ changes.

For four of the comparisons, feeding was inhibited 
when the CE mortality was not affected  at any 
concentration in the exposure range. Previous studies 
have shown that some chemicals, such as PAHs or 
imidacloprid, may inhibit feeding behaviour at low 
concentrations, leading to mortality through starvation 
[1, 163]. Given that mortality due to starvation occurs 
over a longer timeframe than for standard mortality tests 
[61, 91, 128], conventional acute studies are insufficient to 
quantify such impacts [163]. Foraging behaviour can also 
have important implications for survival, growth, and 
reproduction, indicating a need to consider the impacts 
of feeding inhibition in ERA practices. The development 
of feeding inhibition tests, such as for D. magna, offer the 
potential to conduct such screening studies [2].

Population‑level endpoints to assess adverse outcomes
The primary goal of the ERA is to identify chemical 
effects that may lead to adverse population outcomes [34, 
59, 68]. As outlined above, lower-tier NCEs can be linked 
to adverse population-level effects. However, some NCEs 
can also serve as direct measurements of population 
outcomes. Examples include observing dispersal or 
migratory behaviour, assessing group effects through 
social behaviour (e.g., mating, shoaling, aggressiveness), 
or evaluating multi-species endpoints like predator–
prey interactions [27–29, 116]. While these higher 
organisation-level endpoints are more complex and costly 
to assess, they offer valuable insights that individual-level 
endpoints, by their reductionist nature, do not provide 
[71]. This makes such endpoints of significant value for 
future ecological hazard and risk assessment [32]. As 
social behaviour and predator–prey interactions are 
endpoints frequently observed in ecotoxicological studies 
and assessed under laboratory conditions, we focused on 
these two in the Sects. “Social behaviour” and “Predator–
prey interactions”.

Social behaviour
Social behaviours in animals, such as mating or 
aggression, are directly tied to the survival of both the 
individual and the group and consequently to adverse 
outcomes for the population [116, 155]. Given this link, 
including social behaviour in hazard assessment has 
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already been a topic of extended discussion [21, 116, 
197]. NCEs for social behaviour can be measured at the 
individual (e.g., aggression measurements in individuals 
of D.  rerio) or group level (e.g., shoaling behaviour in a 
group of fish). Studies using such methods have shown 
that social behaviours can be altered by environmentally 
relevant concentrations of chemicals, such as 
antidepressants [116], which can increase aggression in 
fish [170], make individual fish generally less social [188], 
or disrupt collective behaviours like shoaling [14, 99]. 
Chemical exposure can also lead to changes in the group 
competence of organisms through effects on mating 
or communication [116], for example, by  affecting 
aggregation behaviour in the terrestrial isopod 
Porcellionides pruinosus [70]. Chemical-associated 
effects on such behaviours can have implications for 
ecological interactions, making them explicitly relevant 
at the population level and, therefore, for hazard and risk 
assessment. As such, integrating social behaviour 
endpoints into toxicity assessments helps to capture the 
complex interactions and real-world ecological impacts 
of chemical exposure that CEs fail to address [21].

Table  S2 summarises four case studies observing 
chemical effects on social behaviour. Generally, these 
studies show that effects on these endpoints are 
significantly more sensitive than CEs. For example, effects 
have been seen for oxazepam, cyprodinil, fluoxetine, 
and benzyl butyl phthalate on social behaviour such as 
shoaling behaviour and aggressiveness of the fish species 
Fundulus heteroclitus, Perca fluviatilis, Pimephales 
promelas, and D. rerio [75, 99, 170, 188]. These NCE 
effects were, on average, 387 times more sensitive 
than mortality and 10 times more than reproduction 
(Table  1). For instance, Tang et  al. [170] found that 
changes in aggressive behaviour in D. rerio exposed to 
environmentally relevant concentrations of cyprodinil 
(0.1  µg/L) were 12,600  times more sensitive than the 
LC50 [184]. Similar to exploratory behaviour, the dataset 
for this endpoint was too limited in size to draw robust 
conclusions.

Measurements of social behaviour in hazard assessment 
can provide further information on the ecological 
relevance of disruptions in social behaviour responses 
caused by chemicals. For example, Weinberger & 
Klaper [188] found that fluoxetine exposure significantly 
increased aggression in male fish, resulting in a reduction 
of female survival and reproductive success. Armstrong 
et  al. [14] demonstrated that the shoaling behaviour of 
the Atlantic croaker (Micropogonias undulatus) was 
notably disrupted when just one individual was exposed 
to oil. Kaplan et al. [99] found that fish exposed to benzyl 
butyl phthalate preferred smaller shoals, potentially 
losing the advantages of critical ecological behaviours.

Predator–prey interactions
Predator–prey behaviours are pivotal species 
interactions, influencing population and community 
structure [29]. Chemical contamination can impact 
these trophic interactions [30, 31, 182]. Various methods, 
such as predation cues, have been developed to measure 
predator–prey interactions following chemical exposure 
in multifactorial or mesocosm studies [89, 167]. 
Currently, though, there are no standardised guidelines 
for these assays (Table  S1) for application in regulatory 
risk assessment [3, 141].

Table  S2 summarises five case studies that have 
assessed the effects of a wide range of chemicals such 
as cadmium, cyprodinil, and fluoxetine by measuring 
effects on antipredator behaviour in fish species, such 
as D.  rerio and P. promelas [75, 105, 170, 182, 188]. On 
average in these studies, the predator–prey interaction 
endpoints were 317 times more sensitive than mortality 
(Table 1). As examples, Tang et al. [170] found that anti-
predator behaviour in D. rerio exposed to cyprodinil 
was significantly altered at 0.1  µg/L compared to the 
corresponding LC50 of 1260  µg/L [184]. Similarly, 
a further study found that predator avoidance in P. 
promelas exposed to fluoxetine [188] was 100 times 
more sensitive than reproductive effects [33]. The case 
studies demonstrate that measurements of antipredator 
behaviour may occur at environmentally relevant 
concentrations, in some cases following NMDRCs [188].

It is possible to link predator–prey interactions to 
biochemical, physiological, and behavioural processes 
linked to underpinning MoAs. For example, a study by 
Volz et  al. [182] linked antipredator responses directly 
to the disruption of the olfactory system in D. rerio after 
exposure to cadmium. This impairment was found to be 
retained even after a 14-day recovery period [105]. Tang 
et  al. [170] showed how a neurotoxic MoA can lead to 
changes in predator–prey interactions. Thus, exposure of 
D. rerio to the fungicide cyprodinil led to the disruption 
of hypothalamic function, which caused an increase in 
cortisol levels that can alter antipredator behaviour at 
low concentrations.

Another aspect of predator–prey interactions is related 
to the potential for asymmetric effects between spe-
cies [31, 89]. For example, Brodin et  al. [31] found that 
exposure to oxazepam (2  µg/L) increased activity in 
perch (predators), but did not affect damselflies (prey), 
altering trophic interactions and, consequently, ecologi-
cal systems. A further and potentially common effect on 
predator–prey relationships is through the effects of prey 
abundance. Conventional chemical assessments may 
overlook these indirect effects, underestimating their 
impact on populations and ecosystems. Fleeger et al. [71] 
emphasise the indirect effects of pollutants on aquatic 
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ecosystems through trophic cascades, highlighting the 
need for a comprehensive understanding of chemical 
impacts on ecological systems, especially in predator–
prey interactions. Kidd et al. [103] studied the effects of 
EE2 (synthetic oestrogen 17a-ethynylestradiol) on a lake 
ecosystem, observing a 42% decrease in the top predator 
biomass due to population declines in prey species. Such 
indirect effects can even be considered early stages of 
community-level effects, which underscores the impor-
tance of considering trophic interactions in chemical 
impact assessments.

Reflection on ERA
A conceptual AOP‑structured, MoA‑based framework 
for emerging hazards
Currently, the emerging hazards, neurotoxicity, immu-
notoxicity, and metabolic toxicity, are primarily consid-
ered within the context of human RA. However, there is 
a significant knowledge gap regarding how to integrate 
these effects into environmental RA. We present here a 
first approach to addressing this challenge, outlining also 
possible directions for development. For any assessment, 
it is crucial to link the mechanistic understanding NCEs 
provide to population-level outcomes [52, 53]. The AOP 

Fig. 2  This conceptual framework for a mode of action (MoA)-based environmental risk assessment (ERA) incorporates both conventional, 
semi-conventional, and non-conventional endpoints following the adverse outcome pathway (AOP) structure from MoA (top) to population level 
(bottom) for the emerging hazards neurotoxicity, immunotoxicity, and metabolic toxicity, as well as endocrine disruption. Effects through each MoA 
can also influence other pathways, such as oxidative stress, which may lead to immunotoxicity or neurotoxicity. Pathways converge at the individual 
level, where multiple causes can contribute to observed effects. These individual-level effects can then be connected to population-level 
outcomes through two routes: the conventional link (undashed arrow), which includes conventional endpoints such as effects on mortality, 
growth, and reproduction, or the unconventional link (dashed arrow) through non-conventional endpoints that links to apical effects. The figure 
is a conceptual example and is not exhaustive, as it does not include all possible links between MoAs, key events (KE), and adverse outcomes (AO)
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framework is designed to address this question of link-
age [52, 53]. The information from the described CEs 
and NCEs in Tables 1, S1 and S2 has been used to cre-
ate an AOP-structured, MoA-based hazard assessment 
framework using conventional, semi-conventional, and 
non-conventional endpoints encompassing effects from 
the molecular to the population level for neurotoxicity, 
immunotoxicity, metabolic toxicity, and the already inte-
grated hazard class, endocrine disruption (Fig. 2). Effects 
through each MoA can influence multiple pathways, such 
as oxidative stress, which may lead to neurotoxicity and 
immune effects. Pathways converge at the individual 
level, where multiple causes can contribute to observed 
effects. These individual-level effects are connected to 
population-level outcomes through effects on the CEs 
of mortality, growth, and reproduction, or via uncon-
ventional links to apical effects (e.g., chemical avoidance 
leading to displacement of populations).

Establishing quantitative links across molecular, indi-
vidual, and population levels further provides predictive 
power. For example, small perturbations at the molecular 
level often do not translate linearly into higher levels, as 
the population one. Moreover, traditional AOPs typically 
assume a monotonic or linear relationship between key 
events. However, most of the time, biological systems are 
characterised by nonlinearities, thresholds, and context-
dependent interactions, which can profoundly modu-
late the propagation of effects across levels. Quantitative 
Adverse Outcome Pathways (qAOPs) in this context can 
help extend the classical AOP framework by introduc-
ing mathematical and computational representations of 
the relationships between key events, enabling predic-
tions of AOs from molecular perturbations [138]. Unlike 
qualitative AOPs, qAOPs aim to capture dose–response 
relationships, temporal dynamics, and nonlinear interac-
tions at AOP levels. This quantitative approach enhances 
the predictive power of AOPs, potentially improv-
ing risk assessment decisions and the identification of 
critical thresholds for intervention [58]. Tools to estab-
lish these quantitative relationships are, for instance, 
Structural Equation Modeling or Bayesian Neural Net-
works (BNNs). Further information can be found in, for 
instance, Semenova et al. [160].

Mechanistic understanding through NCEs
Through development in their measurement it has now 
come to the point where in many cases low-level NCEs 
have reached a status in development where they can 
be considered as: (1) cost-effective and easy to measure, 
(2) established protocols exist in many ecotoxicological 

laboratories for various model species, and (3) responsive 
enough that effects can be detected at lower concentra-
tions and at earlier time points than is the case for CEs. 
Our case studies provide further examples of endpoints 
that fulfill these criteria and could be considered for 
hazard assessment. The primary biomarker to measure 
neurotoxic effects is (A)ChE, which has been applied to 
several contaminants [45]. This NCE can provide sen-
sitivity and informative mechanistic information, as it 
can be linked to behavioural and mortality effects in the 
observed case studies [101, 165]. Other neurotoxic end-
points, such as GABA receptor modulation  [183, 185], 
are more complex to measure and less easily adapted to 
different model species, emphasizing the need for further 
development of neurotoxicity endpoints for ERA. For 
immunotoxicity, several linked biochemical endpoints 
can be measured, such as increased neutrophils and lym-
phocytes, increased phagocytes, a decrease in circulating 
antibodies, T-cell response, and phytohemagglutinin-P 
increases [94, 110]. For metabolic toxicity, the aerobic 
energy production (estimated from electron transport 
system (ETS) activity), respiration, and cellular energy 
allocation have been shown to be sensitive markers for 
chemicals known to cause metabolic toxicity, such as 
SDHIs [107]. Regarding immunotoxicity and neurotox-
icity, biochemical measurements of oxidative stress (e.g., 
catalase, lipid peroxidation) can also be crucial, as oxida-
tive stress can serve as a key event within these MoAs 
[49, 102].

We would like to emphasise that the nervous, immune, 
and metabolic systems are complex, highly intercon-
nected networks, similar to the endocrine system. For 
instance, interspecific differences in physiology—particu-
larly in neuronal, immune, and metabolic systems—can 
strongly influence how chemicals affect organisms. For 
example, the type of ChE present in a species can sig-
nificantly determine its sensitivity to certain compounds 
[126]. To reflect this diversity, we aimed to include a 
range of species when selecting case studies for com-
parison. More information about how the reliance on a 
limited number of model species constrains our under-
standing of chemical risks and how ERA could benefit 
from incorporating a broader diversity of test organisms 
can be found in, for instance, Rosner et al. [152].

We want to point out that the biochemical endpoints 
discussed in this conceptual review are not the only ones 
required to capture all relevant MoAs, but rather serve 
to illustrate a conceptual approach for addressing these 
emerging hazards at their respective biological levels. 
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In this context, new approach methodologies (NAMs), 
including in chemico, in silico, and in vitro models, rep-
resent promising approaches to verify mechanisms of 
action to support the regulation of neurotoxic, immuno-
toxic, and metabolic toxic compounds [53]. The “Road-
map for phasing out animal testing”, which is going to be 
published in early 2026, is expected to further underpin 
the regulatory acceptance of these alternative methods in 
ERA [67]. However, completely phasing out animal test-
ing remains challenging at the current stage of our sci-
entific knowledge. In line with the principles of the 3Rs 
(replacement, reduction, refinement), our review aims to 
contribute by proposing ways to refine existing standard-
ised guidelines to better integrate NCEs.

Undetected adverse outcomes on individual 
and population level
To be relevant in ecological risk assessment, it is essential 
that neurotoxicity, immunotoxicity, and metabolic NCEs 
are qualitatively and quantitatively linkable to popula-
tion-level effects. As detailed, chemical impacts on pho-
totaxis, locomotion, avoidance, exploratory behaviour, 
foraging behaviour, social behaviour, and predator–prey 
interactions can all be linked to adverse outcomes at 
the population level through impacts on ecological and 
trophic interactions [1, 2, 10, 118, 163]. These NCEs are 
also now more broadly operational, as they: (1) can be 
effectively measured in several model species (e.g., loco-
motion, phototaxis, foraging), (2) can be quick and cost-
efficient to assess (e.g., locomotion, phototaxis, foraging), 
(3) can be robustly quantified (locomotion, phototaxis, 
foraging), (4) can be influenced by multiple chemical 
MoAs (locomotion, phototaxis, chemical avoidance, 
predator–prey interaction), and (5) can be measured in 
a non-invasive assessment (aligning with the principles 
of refinement within the 3Rs). These NCEs can also pro-
vide more ecologically relevant information by identify-
ing gender-specific responses relevant to mortality and 
reproductive behaviours, such as territoriality, courtship, 
and boldness [125]. Group effects can be studied through 
changes in behaviour, like social and exploratory behav-
iour endpoints affecting group dynamics and social hier-
archy [161]. Further by incorporating social behaviour 
or predator–prey interactions, it is possible to provide a 
better understanding of species dynamics and asymmet-
ric effects that can affect the stability and energy flows of 
trophic networks [31]. Finally, our comparisons showed 
that NCE effects were often observed when there was no 
significant change in the CE (13 cases,  Table  1), show-
ing that the NCEs revealed population-level effects that 
would have gone undetected under current standardised 
testing methods [98].

However, the regulatory value of endpoints depends 
on demonstrating a consistent and predictive linkage to 
adverse outcomes of ecological significance. For now, the 
individual and population-level NCEs should be consid-
ered complementary diagnostic tools within a tiered or 
AOP-based framework. In the long run, we aim for these 
endpoints to be considered as stand-alone adverse out-
comes on the population level, having similar weight as 
measurements based on conventional endpoints.

Sensitivity of NCEs
A key aim of the conceptual review was to evaluate 
the sensitivity of NCEs compared to CEs, focusing 
on individual- and population-level endpoints. To 
summarise the results: Table  1 gives an overview of 43 
case studies that measured individual- and population-
level NCEs (locomotion, phototaxis, avoidance, 
exploratory behaviour, foraging, social behaviour, 
predator–prey interaction) alongside CEs (mortality, 
growth, and reproduction). As some studies included 
several species, chemicals, and NCEs/CEs, we were 
able to make a total of 96 comparisons of CE and 
NCEs in terms of their response sensitivity. In 13 cases 
(i.e., 13.5%), significant effects were observed for the 
NCEs, while no effects on the CE were seen in any test 
treatment. Many of the changes in NCEs were observed 
at environmentally relevant concentrations, indicating 
their real-world relevance [10, 85, 171]. One reason 
why these effects go undetected in some assessments 
and observations is that the NCE shows effects at low 
concentrations not evident at higher concentrations 
due to the complex NMDRC response [124, 188]. This 
points to a need to conserve a range of exposure levels, 
including low concentrations in studies of such NCEs.

For those remaining comparisons where studies found 
effects both for the CE and NCE, we determined the fold 
increase in NCE sensitivity. In nine cases (i.e., 9.4%), the 
NCE was more than 1,000 times more sensitive than the 
CE. As the data spans several orders of magnitude, we 
calculated the geometric mean of the fold increase for 
mortality, reproduction, and growth, respectively. The 
comparative analysis showed that NCEs were, on aver-
age, 56 times more sensitive than mortality (GSD = 55.9, 
n = 59), 8  times more sensitive than reproduction 
(GSD = 7.6, n = 8), and 2  times more sensitive than 
growth (GSD = 1.7, n = 15) (Table 1; Fig. 3). Although few 
review papers directly compare NCEs and CEs, the range 
of relative sensitivity is consistent with that of Melvin 
and Wilson [113], who found through meta-analysis that 
behavioural endpoints (mainly locomotive endpoints) 
were 4 times more sensitive than the CE development 
(which can be related to growth), and 2 times more 
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sensitive than reproductive endpoints. Faimali et al. [69] 
also found in their reviewed literature that swimming 
behaviour was, on average, 16 times more sensitive than 
mortality/immobility.

The greater sensitivity of NCEs raises the question of 
how behavioural NCEs should be considered in ERA 
practices, especially given that many such endpoints 
can be readily related to population-relevant outcomes 
(mating, trophic interactions, predation, etc.). Differences 
in acute-chronic effects are usually covered by an 
assessment factor of 10 [50]. However, if the behaviour 
is, on average, 56 times more sensitive than mortality or 
8 times more sensitive than reproduction, this identifies 
that placing an assessment factor of 10 on reproduction 
data would often, but not always, be sufficient to account 
for links through NCE, but for mortality would not be 
sufficient in the majority of cases. It should be noted 
that the comparative analysis is based on averages and 
will, as such, not cover the species where NCEs are 
impacted at concentrations more than 10 times (i.e., up 
to > 1000 times) lower than the CE, or cases where no 
effects on CEs were observed at all. Similar to Forbes 
et al. [72], we conclude that the assessment factor seems 
to be protective, but we also identified scenarios in our 
system where it is highly underprotective, and we raise 
the question whether these outliers (> 1000 times higher 
effect concentration) should be given more attention.

Food for thought for scientists and regulators
Including NCEs, building on standardised guidelines, 
into risk assessment research to refine ERA practices 
has the potential to improve understanding of chemical 

impacts on species in a manner in line with the 3Rs. A 
transition to their greater integration into ERA would 
support more ecologically relevant hazard assessments, 
ultimately leading to more robust environmental risk 
assessment. NCEs should only be included in ERA prac-
tices if they provide a higher sensitivity than CEs, speci-
ficity and accuracy. While sensitivity and specificity were 
discussed in the prior sections, we still need to address 
accuracy, which is provided by the validation of the cho-
sen endpoint and standardisation of methods. Some end-
points are already ahead of the curve, showing greater 
readiness for standardisation of methods. Quantified 
effects on locomotion, for instance, are already partially 
integrated into existing guidelines (see Sect.  "Defini-
tion of conventional, semi-conventional endpoints and 
non-conventional endpoints"). This is, therefore, an end-
point that could be more immediately integrated. Simi-
larly, for phototaxis, which is reproducible and readily 
analysed, established protocols are already available for 
several model species (e.g., D. magna, [112]). Avoidance 
is already included in standardised guidelines for soil 
organisms [92, 93], which could be extended to further 
species and ecosystem compartments (e.g., sediment 
organisms). Social behaviour could be included by inte-
grating shoaling endpoints into testing protocols, such as 
OECD TG 210, as proposed by Frese & Braunbeck [75]. 
However, to include these endpoints, further develop-
ment and ring-testing would be necessary. Integration 
of NCEs in hazard assessment within IATAs (Integrated 
Approaches to Testing and Assessment) is also a way in 
which these approaches can be integrated with more rec-
ognised ERA practice [131].

The greater research use of NCE studies has the poten-
tial to support regulatory decisions about chemical risks. 
However, such endpoints are often excluded due to con-
cerns about reliability and ecological relevance [3]. Espe-
cially the evaluation framework Klimisch, used for the 
weight of evidence approach under REACH, does not 
consider non-standard studies as reliable without restric-
tions (Klimisch Category 1). Therefore, they always get 
less weight in regulatory decision-making than standard 
studies, for instance, when they are handed in as support-
ing studies as part of the registration dossier. To address 
this, researchers can follow the Criteria for Reporting and 
Evaluating Ecotoxicity Data (CRED) or EthoCRED for 
behavioural studies, ensuring a robust evaluation of eco-
logical relevance and reliability [20, 100]. A detailed guid-
ance for integrating non-standard studies in regulatory 
risk assessment has now also been presented in the new 
OECD Guidance document on the Generation, Report-
ing and Use of Research Data for Regulatory Assessment 
[136]. Developed non-conventional methods can also be 
submitted in the OECD’s Standard Project Submission 

Fig. 3  Comparison of effect levels of the conventional- (CE; mortality, 
reproduction, growth) and non-conventional endpoints (NCEs) 
on the individual- and population-level (locomotion, phototaxis, 
avoidance, exploratory behaviour, foraging, social behaviour, 
predator–prey interaction) in fold increase. Excluded from this graph 
were studies where no effects were observed for CEs (i.e., 24.2% 
of the cases). In 9.4% of all 96 comparisons, the NCE was 1000 times 
more sensitive than the CE (range 1045–253000000 times higher). 
The red line represents the assessment factor of 10 to account 
for differences in acute-chronic effects
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Form (SPSF) to make these methods both more trans-
parent and accessible for their use. Progress through the 
combined action can support the greater uptake and use 
of NCEs to understand the wider hazards of chemicals 
not fully understood through current testing. Some-
thing that will benefit knowledge and capacity to manage 
chemical hazards in the environment, especially for the 
emerging hazards, neurotoxicity, immunotoxicity, and 
metabolic toxicity.
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