

Article (refereed) – postprint

Olin, Agnes B.; Banas, Neil S.; Heath, Michael R.; Wright, Peter J.; MacDonald, Alan; Wanless, Sarah; Daunt, Francis; Speakman, John R.; Nager, Ruedi G. 2026. **Prey, not temperature, is the dominant driver of juvenile growth in North Sea sandeels.**

© Inter-Research 2026

This manuscript version is made available by the University of Glasgow under the CC BY 4.0 license <https://creativecommons.org/licenses/by/4.0/>.

This version is available at: <https://nora.nerc.ac.uk/id/eprint/541023>.

Copyright and other rights for material on this site are retained by the rights owners. Users should read the terms and conditions of use of this material at <https://nora.nerc.ac.uk/policies.html#access>.

This is an unedited manuscript accepted for publication, incorporating any revisions agreed during the peer review process. There may be differences between this and the publisher's version. You are advised to consult the publisher's version if you wish to cite from this article.

The definitive version was published in *Marine Ecology Progress Series*, 776, meps15010. 18 pp. [10.3354/meps15010](https://doi.org/10.3354/meps15010).

Contact UKCEH NORA team at noraceh@ceh.ac.uk

The NERC and UKCEH trademarks and logos ('the Trademarks') are registered trademarks of NERC and UKCEH in the UK and other countries, and may not be used without the prior written consent of the Trademark owner.

1 Title: Prey not temperature dominant driver of growth in a planktivorous fish

2 Running page head: sandeel size declines

3

4 Agnes B. Olin^{1,2*†}, Neil S. Banas¹, Michael R. Heath¹, Peter J. Wright³, Alan MacDonald⁴, Sarah

5 Wanless⁵, Francis Daunt⁵, John R. Speakman^{6,7,8,9}, Ruedi G. Nager²

6 ¹Department of Mathematics and Statistics, University of Strathclyde, Glasgow G1 1XH, UK.

7 ²School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow

8 G12 8QQ, UK.

9 ³Marine Scotland Science, Aberdeen AB11 9DB, UK.

10 ⁴Scottish Association for Marine Science, Oban PA37 1QA, UK.

11 ⁵UK Centre for Ecology & Hydrology, Penicuik EH26 0QB, UK.

12 ⁶School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK

13 ⁷Shenzhen key laboratory of metabolic health, Center for Energy metabolism and Reproduction,

14 Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, and Shenzhen

15 University of Advanced Technology, Shenzhen, Guangdong province 1068, China.

16 ⁸Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101,

17 China.

18 ⁹Institute of Health Sciences, China Medical University, Shenyang 110052, China.

19 *Corresponding author: agnes.olin@slu.se

20 [†]Present address: Department of Aquatic Resources, Swedish University of Agricultural Sciences,

21 756 51 Uppsala, Sweden.

22

23

24 ABSTRACT: Declining body sizes are prevalent in marine fish and have been suggested to be a
25 response to increasing temperatures. However, the evidence is mixed and the underlying causes
26 often unknown. Here, we explore drivers of spatio-temporal patterns in size in juvenile lesser
27 sandeel (*Ammodytes marinus*), focusing on ongoing size declines in parts of the North Sea. We
28 combine experimental and field data with theory to develop a biologically realistic dynamic energy
29 budget model that explicitly models feeding, metabolism and energy allocation to produce daily
30 predictions of sandeel length during the growth season from 1979 to 2016 in four North Sea sub-
31 populations. When forced with daily temperature estimates and zooplankton data from the
32 Continuous Plankton Recorder, model predictions largely match observed spatio-temporal
33 patterns. Our results suggest that the most plausible driver of observed size declines in the western
34 North Sea is declining prey densities. In contrast, the direct effect of temperature on sandeel size
35 is small, but interacts with local prey availability so that increasing temperatures may boost growth
36 rates in areas with high food availability but reduce growth rates in areas with low food availability.
37 Our results thus suggest that to understand effects of climate change on fish size we need to account
38 for both direct physiological effects and changes in resource availability. Finally, we show that
39 early-life phenology and turbidity (via its impact on intake rates in the visually foraging sandeel)
40 may also impact sandeel size, highlighting the importance of broadening our view of potential
41 drivers of size declines.

42

43 KEY WORDS: global warming; bioenergetic model; sand lance; North Atlantic; shrinking; forage
44 fish

45 1. INTRODUCTION

46 Declining body sizes have been proposed as a third “universal response” to climate change, in
47 addition to poleward shifts in distribution and shifts in the timing of seasonal events (Daufresne et
48 al. 2009, Gardner et al. 2011, Sheridan & Bickford 2011). However, the evidence to support this
49 claim is mixed, where body sizes have been shown to both increase and decrease in response to
50 warming (Teplitsky & Millien 2014, Audzijonyte et al. 2020) and trends towards increasing body
51 sizes are equally common in most taxa (Martins et al. 2023). In contrast with other taxa, many
52 populations of marine fish do, however, show evidence of declining average body sizes (Martins
53 et al. 2023). The drivers of these declines and how temperature increases may, or may not, affect
54 fish body size is hotly debated. Several mechanisms have been invoked, such as faster
55 development rates but smaller adult sizes (temperature-size rule), and increasing metabolic rates
56 leaving less resources for growth at all ages (Gardner et al. 2011, Sheridan & Bickford 2011,
57 Cheung et al. 2013, Ikpewe et al. 2021). Several other drivers, including declines in the abundance
58 and quality of food (Korman et al. 2021, Menu et al. 2023, Queiros et al. 2024), size-selective
59 predation and fishing (Swain et al. 2007, Ohlberger et al. 2019), and increased competition
60 (Ohlberger et al. 2023) have also been proposed as key contributors to the size declines. In many
61 cases, the drivers are not yet fully understood. However, teasing apart the underlying mechanisms
62 is important, as size is strongly linked to survival (Levangie et al. 2022) and fecundity (Barneche
63 et al. 2018) and thus affects both abundance and the quality of individual fish, with implications
64 for both sustainable fisheries management (Audzijonyte et al. 2013, Persson et al. 2014) and the
65 growth, survival and reproduction of the piscivorous predators that feed on the fish (e.g. Österblom
66 et al. 2001, Engelhard et al. 2014).

68 One species of fish that has exhibited pronounced declines in size is the lesser sandeel (*Ammodytes*
69 *marinus*), a small lipid-rich shoaling fish inhabiting sandy banks in the north-east Atlantic. It is an
70 important trophic link between the zooplankton and several species of seabirds, marine mammals
71 and piscivorous fish, as well as the target of a substantial fishery (Engelhard et al. 2014). The
72 sandeel shows marked spatio-temporal variation in size-at-age in the North Sea region, with larger
73 body sizes in the north-east, and smaller and declining sizes in the western North Sea (Bergstad et
74 al. 2002, Harris & Wanless 2011, van Deurs et al. 2014, Rindorf et al. 2016, Clausen et al. 2017,
75 Wanless et al. 2018). The size declines in the western North Sea have been observed both in mature
76 adults and in juveniles. Off the coast of southeast Scotland, declining juvenile body sizes from the
77 mid-1970s to 2015 resulted in a 70% decline in energy content (Wanless et al. 2018).

78

79 The drivers behind the sandeel size declines are still unclear. Water temperatures, that are
80 increasing rapidly in the north-east Atlantic (Kessler et al. 2022), have been linked to body size in
81 both lesser sandeels and other *Ammodytes* species (Robards et al. 2002, Eliasen 2013, Rindorf et
82 al. 2016). However, the direction of the relationship is inconsistent and modelling work suggests
83 that temperature is not a strong driver of lesser sandeel growth (MacDonald et al. 2018). Variability
84 in prey availability and composition has long been proposed as the main driver of spatial patterns
85 in sandeel size (Macer 1966, Bergstad et al. 2002, Boulcott et al. 2007), with modelling work
86 suggesting that food availability is a key driver of lesser sandeel growth (MacDonald et al. 2018).
87 Prey availability has declined steeply in several of the locations where sandeel size has declined
88 (Olin et al. 2022), which could have contributed to the observed temporal trends. A shift towards
89 a later start to the growth season of juvenile sandeels has also been proposed as a potential driver
90 of the size declines (Frederiksen et al. 2011), possibly driven by temperature-driven delays in

91 spawning (Wright et al. 2017) and a mismatch between sandeel phenology and peak availability
92 of larval food (Régnier et al. 2019, 2024). Finally, turbidity has increased within the sandeel's
93 range due to intensified winds and waves resuspending more sediment, coastal erosion, and bottom
94 trawlers stirring up sediment and destroying beds of water-filtering bivalves (Capuzzo et al. 2015,
95 Wilson & Heath 2019). As light conditions have been identified as a key driver of intake rates in
96 the visually foraging sandeel (Winslade 1974b, van Deurs et al. 2015), this may therefore have
97 contributed to the observed size declines. In contrast, neither competition (Rindorf et al. 2016,
98 Henriksen et al. 2021) nor predation (Rindorf et al. 2016) or fishing (Bergstad et al. 2002, Wanless
99 et al. 2004, Rindorf et al. 2016) appear strongly linked to lesser sandeel size.

100

101 This study aims to provide insight into causes of the changing growth rates of juvenile sandeel,
102 improving our understanding of drivers of size declines in fish in marine ecosystems under
103 anthropogenic change. To do so, we use a dynamic energy budget model to explore drivers of
104 growth in juvenile lesser sandeels in their first summer. Dynamic energy budget models track
105 energy gains and losses as a function of environmental conditions (e.g. temperature, food,
106 turbidity) and then translate this into changes in body size and energy reserves (Kooijman 2000,
107 Lika & Nisbet 2000). Such mechanistic models are helpful for teasing apart the roles played by
108 different drivers, enabling us to gain a better insight into the impact of ongoing environmental
109 change on fish body sizes. The model builds on a dynamic energy budget model developed by
110 MacDonald et al. (2018). However, the MacDonald model was parameterised specifically for the
111 north-western North Sea over a short time scale, requiring us to make adjustments in order to allow
112 us to study the large-scale, long-term patterns we were interested in here. This involved breaking
113 processes into tractable sub-processes that could be parameterised using data from experiments

114 and measurements from the field, providing us with a biologically realistic model that can be more
115 readily extended across space and time. We validate model predictions against field data and then
116 use the model to explore to what degree observed spatio-temporal variation in juvenile sandeel
117 length-at-age and wet weight in the North Sea can be explained by the candidate drivers introduced
118 above — (i) sea surface temperatures, (ii) food availability and composition, (iii) sandeel
119 phenology and (iv) turbidity.

120 2. MATERIALS AND METHODS

121 2.1. Dynamic energy budget model

122 Here, we develop a dynamic energy budget model that covers the first growth season, from
123 metamorphosis to winter dormancy, when the sandeels cease feeding and bury into the sand
124 (MacDonald 2017, van Deurs et al. 2011b). As only a small proportion of sandeels spawn in their
125 first year (<5 % in most areas; Boulcott et al. 2007), reproduction is not included in the model.

126

127 The model is constructed around two state variables: reserve energy R (kJ, remobilisable tissue,
128 mostly fat) and structural energy S (kJ, non-remobilisable tissue, such as skeletal tissue). The basic
129 structure involves the allocation of net energy gain (assimilated energy A [kJ day $^{-1}$], minus
130 metabolic costs M [kJ day $^{-1}$]) to reserve energy and structural energy (see Figure 1). Assimilated
131 energy is the energy from ingested food, after accounting for assimilation efficiency. The model
132 assumes that metabolic costs are subtracted from assimilated energy and that if the assimilated
133 energy is not enough to meet metabolic costs, the rest is subtracted from reserves. If the assimilated
134 energy is larger than the metabolic cost, a certain proportion f_S of this net energy gain is allocated

135 to structural energy and the rest $(1 - f_S)$ to reserve energy. Reserve energy R (kJ) thus changes as
136 follows:

$$\frac{dR}{dt} = A - M - \frac{dS}{dt} \quad (1)$$

137

138 Structural energy S (kJ) then follows:

$$\frac{dS}{dt} = f_S[A - M]^+ \quad (2)$$

139

140 where $[A - M]^+$ signifies that allocation to structural energy only occurs if net energy gain is
141 positive. The equations are discretised assuming time steps of one day, thus providing daily
142 estimates of reserve and structural energy. To be able to compare the model output to field
143 observations, we translated reserve and structural energy into length and wet weight (see SI1).

144

145 The model is run from metamorphosis (generally mid-May, day 141, see “Initial conditions”) until
146 early August (day 212), which is roughly when the growth season ends and the sandeels bury into
147 the sand for winter (van Deurs et al. 2011b, MacDonald 2017). Most of the predictions in the
148 Results thus represent length at overwintering, unless predictions are made for an earlier day in
149 order for it to be comparable to observed lengths in field data collected on a specific day (see 2.5).
150 Each model component (ingestion, metabolism, energy allocation) is described briefly in the
151 following subsections, with details provided in the SI (see also Olin 2020). Model parameters are
152 presented in SI2 with descriptions of how the values were derived and an analysis of how sensitive
153 model predictions are to choices of parameter values. All model parameters were derived from the
154 literature or available data, apart from three parameters relating to ingestion which were tuned

155 manually (see SI2 and 2.1.1). The model is implemented in the C programming language, based
156 on an adaptation of the growth component of the model presented in MacDonald et al. (2018). R
157 3.5.2 (R Core Team 2018) was used for data processing and visualisation.

158

159 2.1.1. Assimilated energy

160 Prey availability and composition appear to be a major determinant of growth rates in lesser
161 sandeels (van Deurs et al. 2014, 2015, MacDonald et al. 2018), and several studies indicate that
162 sandeels feed selectively (Godiksen et al. 2006, Christensen 2010, Eliasen 2013). Therefore,
163 particular attention was paid to modelling ingestion (see SI3 for details). This is where the main
164 modifications to the MacDonald model were made, where sub-processes were isolated and
165 modelled explicitly (see Olin 2020 for a detailed comparison of the models). Ingestion is modelled
166 on an hourly basis, assuming a daily feeding window covering the hours of light (Freeman et al.
167 2004, Johnsen et al. 2017), minus one hour for school aggregation in the morning and one hour
168 for school disintegration before the sandeels bury into the sediment for the night (see van Deurs et
169 al. 2011a). Total assimilated energy per day A is then obtained by adding up the ingested energy
170 for each hour of feeding, and multiplying it by the assimilation efficiency (proportion of energy
171 remaining after faecal losses and nitrogenous excretion; Jobling 1993). Based on observations of
172 other *Ammodytes* species, assimilation efficiency is assumed to increase linearly with temperature
173 (Larimer 1992, Gilman 1994; SI3.1). Based on experimental observations, it is also assumed that
174 the sandeels do not feed if there is not enough food to account for the metabolic costs of feeding
175 (Winslade 1974a, van Deurs et al. 2011a). Total assimilated energy A (kJ day^{-1}) is thus calculated
176 as:

$$A = \begin{cases} \epsilon \sum_{h=1}^{h_{active}} i_h, & \epsilon \sum_{h=1}^{h_{active}} i_h - (M_{feed} + M_{SDA}) > 0 \\ 0, & \epsilon \sum_{h=1}^{h_{active}} i_h - (M_{feed} + M_{SDA}) \leq 0 \end{cases} \quad (3)$$

177

178 where ϵ is the assimilation efficiency, h_{active} the number of hours feeding, i_h the energy ingested
 179 during a given hour, and M_{feed} and M_{SDA} the cost of feeding and synthesising tissue, respectively
 180 (see below).

181

182 Hourly ingested energy i_h is limited by the available prey as well as gut capacity. To incorporate
 183 this, we first modelled the maximum potential intake rate i_{max} (kJ h⁻¹; SI3.2) in response to the
 184 prey field, and then, if necessary, down-adjusted this according to remaining gut space (SI3.10).
 185 Gut content was therefore also modelled on an hourly basis, based on ingestion and digestion, the
 186 latter depending on both temperature and prey energy density (SI3.9). The response to the prey
 187 field was modelled as a Holling type II functional response (Holling 1959) into which we
 188 incorporated three forms of prey selectivity (Eggers 1977): (1) a prey size-, sandeel length- and
 189 light-dependent prey detection distance (SI3.4; this built on a sandeel foraging model by van Deurs
 190 et al. 2015), (2) a prey size-dependent capture probability (SI3.6) and (3) active switching
 191 (assuming switching behaviour is based on the profitability of each prey search class; see Visser
 192 & Fiksen 2013; SI3.2). All these forms of selectivity are supported by observations of sandeels
 193 (e.g. Godiksen et al. 2006, Christensen 2010, see Olin 2020 for details). As there were no data to
 194 inform the two parameter values that govern capture success, these were tuned to align with
 195 observed ratios between size of ingested prey and size of available prey, based on data from
 196 Godiksen et al. (2006). For handling time, the third parameter that we tuned manually, we tuned it
 197 so that the mean predicted and observed lengths for the years of overlapping data were equal in a

198 time series of measured lengths. See SI2 for details on how the tuning was carried out, and 2.5 for
199 more details on the time series of lengths used.

200 2.1.2. Metabolism

201 The model includes three types of metabolic costs: (i) standard metabolic rate (SMR), which is the
202 energy required to cover basic maintenance, (ii) costs associated with feeding behaviour and (iii)
203 costs of synthesising tissue (specific dynamic action, SDA). Total metabolic costs M (kJ day⁻¹) are
204 calculated as:

$$M = \underbrace{\alpha_{met} W^{\beta_{met}} Q_{10}^{T/10}}_{SMR} + \underbrace{FW h_{day}}_{feeding} + \underbrace{\zeta_{SDA} A / \epsilon}_{SDA} \quad (4)$$

205
206 where α_{met} is the SMR coefficient, W is sandeel wet weight (g), β_{met} is the weight-scaling
207 exponent of SMR, T is temperature (°C), Q_{10} describes how the SMR increases with temperature,
208 F is the foraging cost per hour per gram of sandeel, h_{day} is the total number of hours spent out of
209 the sand each day (thus assuming that the cost of school aggregation and disintegration is the same
210 as the cost of foraging), ζ_{SDA} is the SDA coefficient, A is the assimilated energy per day (kJ day⁻¹)
211 and ϵ the assimilation efficiency. It is thus assumed that SMR is a function of sandeel weight and
212 temperature, the main predictors of SMR in fish (Clarke & Johnston 1999), that feeding costs are
213 a function of activity and sandeel length, and that SDA is a function of the amount of ingested
214 energy (see SI4 for details).

215 2.1.3. Energy allocation

216 Each day, if the net assimilated energy ($A - M$) is positive, a proportion f_S of this is allocated to
217 structural energy (Eq. 2), and the rest to reserves (Eq. 1). Based on observations in *A. marinus*

218 (Hislop et al. 1991) and other *Ammodytes* species (Sekiguchi et al. 1976, Robards et al. 1999,
219 Danielsen et al. 2016), we assumed that allocation to structural energy decreases as the length of
220 the sandeel increases (see SI5). Further, as the lipid content of *A. marinus* increases rapidly after a
221 winter of fasting (Hislop et al. 1991, Rindorf et al. 2016), we assumed that allocating energy to
222 reserves is prioritised when reserves are below a certain threshold (see SI5).

223 2.2. Locations

224 We ran the model in four locations (Figure 2): Dogger Bank (54.7°N 1.5°E), Firth of Forth (56.3°N
225 2°W), the East Central Grounds (hereafter: ECG; 57.6°N 4°E) and Shetland (59.8°N 1.3°W). The
226 locations were chosen to represent a range of growth conditions, where the ECG is expected to
227 show the fastest growth and Firth of Forth the slowest (Bergstad et al. 2002, Boulcott et al. 2007),
228 and size declines have been reported in all locations (Harris & Wanless 2011, van Deurs et al.
229 2014, Clausen et al. 2017, Wanless et al. 2018). The locations represent different sub-populations
230 and separate fisheries management areas, based on evidence from tagging, otolith microchemistry,
231 larval drift modelling and genetic studies (ICES 2024).

232

233 2.3. Environmental drivers

234 The model requires the following environmental drivers: abundances, energy content, image area
235 and length of each prey type, sea surface temperatures, day length, average surface solar irradiance
236 and the diffuse attenuation coefficient a_d , which depends on turbidity.

237

238 Daily prey abundances were based on data collected by the Continuous Plankton Recorder (see
239 Olin et al. 2022 for methods; dataset available at doi.org/10.17031/1673). Based on prey found in

240 sandeel stomachs, the prey taxa included copepods, Euphausiacea, Hyperiidea, Decapoda larvae,
241 Appendicularia, fish eggs, fish larvae, *Evadne* spp. and *Podon* spp. A full list of prey taxa with
242 energy content, prey image area, length and search class can be found in Table S2. The prey fields
243 were based on data aggregated over a 135 km radius circle centred on each study location (see
244 Olin et al. 2022; Figure 2). The chosen size of the area results from a trade-off between sample
245 size and the homogeneity of the area it represents. The size of the area, and the between-sample
246 variability in the alignment of zooplankton patches and the Continuous Plankton Recorder
247 transects, means that the prey field input is not an exact representation of available prey in the
248 study location for that year. Therefore, we would not necessarily expect the model to reproduce
249 observed sandeel lengths in a given year, even if the model would correctly capture all relevant
250 mechanisms. Instead, the model should be judged by its ability to capture long-term and large-
251 scale spatio-temporal patterns.

252

253 We obtained temperature estimates from the ERA5 Climate Reanalysis, providing hourly sea
254 surface temperature with a 31×31 km resolution (Copernicus Climate Change Service C3S 2017),
255 averaged to daily values. As sandeels may forage throughout the water column and reside in
256 hydrographically dynamic areas (Tien et al. 2017), it was assumed that surface temperatures were
257 representative for the experienced temperatures at all depths. Hours of daylight were obtained
258 using the function “daylength” in the R-package “geosphere” (Hijmans 2017). Average daily
259 surface irradiance (SI3.5) was calculated using a Fortran subroutine (see Ljungström et al. 2020).
260 The diffuse attenuation coefficient a_d was obtained from observations in hydrodynamic regions
261 corresponding to sandeel habitat (see supplementary materials in Capuzzo et al. 2018) and was
262 assumed to be constant.

263 2.4. Initial conditions

264 The initial conditions of the model include length at metamorphosis and day of year at
265 metamorphosis. We used day 141 (21 May in a regular year) as the default starting date and 4 cm
266 as the default starting length, chosen to be broadly representative for the study locations (Wright
267 & Bailey 1996, Jensen 2000, Régnier et al. 2017).

268 2.5. Model validation

269 The model was run in all four locations for the years 1979–2016, excluding location-years in which
270 insufficient zooplankton data (fewer than three samples per month) were available (Dogger Bank
271 N = 33, Firth of Forth N = 23, ECG N = 23, Shetland N = 36). We then assessed whether the model
272 could recreate observed large-scale and long-term spatio-temporal patterns in sandeel length,
273 making use of all juvenile length observations we could locate from our study locations. This
274 included (i) fisheries data from Shetland and the ECG collected in 1979 (Bergstad et al. 2002), (ii)
275 dredge surveys in the Firth of Forth, Dogger Bank and a location slightly south of the ECG in 1999
276 (Boulcott et al. 2007), (iii) dredge surveys since 2006 in the ECG and since 2004 in Dogger Bank
277 (ICES 2024), (iv) sandeels brought in by Atlantic puffins (*Fratercula arctica*) to the Isle of May
278 in the Firth of Forth (Wanless et al. 2018) and (v) corresponding datasets of sandeels collected
279 from puffins in the Shetland area, one from Fair Isle, south of Shetland, and one from Hermaness,
280 in the north of Shetland (Harris & Wanless 2011). The first three datasets are representative of
281 length at overwintering, while the latter two are standardised to the 1st of July. The puffin dataset
282 from the Firth of Forth was used to tune handling time to achieve the same mean length in the
283 predictions as in the observations (see 2.1.1 and SI2), as this is our longest time series and as the
284 area is well-sampled in terms of CPR data. Note that tuning handling time to this time series does

285 not affect the predicted temporal trend or predicted relative differences in sandeel length between
286 locations, only the absolute length. For this reason, the Firth of Forth dataset is only used to assess
287 whether our predictions reproduce temporal trends, not whether the absolute values match.
288 Temporal trends were assessed using linear regression.

289 2.6. Drivers of growth

290 The sensitivity of length predictions to our hypothesised drivers (temperature, food, phenology,
291 light) was then investigated, quantified as the percentage difference in length at overwintering
292 compared to a baseline scenario. To do this, the model was run for all location-years with data,
293 varying one driver at a time while keeping the remaining input at their original values. This
294 approach isolates the effect of individual drivers while also ensuring that the full range of
295 environmental conditions are captured.

296 To examine the impact of temperature, a baseline annual cycle was established for each location
297 by averaging the sea surface temperature for each day of the year across years. A range of
298 temperature conditions were then examined by adjusting this baseline, from subtracting 3°C
299 (corresponding to coldest year in dataset) to adding 4.5°C (similar to the temperature anomaly of
300 the 2023 heatwave, Berthou et al. 2023). We also compared the average temperature over the
301 growth season for a given year with (i) predicted lengths at overwintering, to assess the relative
302 importance of temperature in driving model predictions, and (ii) actual observed lengths, to
303 determine whether similar patterns are present in field data. As a humped relationship emerged
304 when varying temperature across our defined range (see Results), this was done using both a simple
305 linear regression and a second-order polynomial. To account for any temporal autocorrelation, the

306 models were fitted with a first order auto-regressive error structure. The models were compared
307 using ΔAIC_C .

308 To investigate the role of food, we focused on three aspects: the total amount of available energy,
309 the density of *Calanus finmarchicus* (often identified as a key driver of bottom-up dynamics in
310 this region; Frederiksen et al. 2013, van Deurs et al. 2014) and the prey size, where the availability
311 of large prey is thought to boost sandeel ingestion and growth rates (van Deurs et al. 2015,
312 MacDonald et al. 2018). First, for each location, we varied the total amount of energy available
313 throughout the whole season from the lowest to the highest observed value in the time series by
314 applying a year-specific scalar to daily zooplankton densities in each year with available
315 zooplankton data, thus maintaining seasonal patterns and keeping the relative density of each taxa
316 constant within each year but standardising the amount of energy across years. Predictions were
317 then averaged across years for each location, at each level of available energy, to obtain the
318 location-specific relationship between available energy and predicted length. Then, we repeated
319 this approach but instead varied only the density of *C. finmarchicus*, from the lowest to the highest
320 mean density observed in each location, keeping all other prey types at their original densities.
321 Again, the seasonal pattern was preserved. For the prey size we took a different approach,
322 exploring the effect of keeping the total available energy for a given day unchanged, but having
323 all energy in just one prey type. The prey types we explored included *Oithona* spp. (0.68 mm),
324 *Acartia* spp. (1.15 mm) and *C. finmarchicus* (2.7 mm), considered representative of small, medium
325 and large prey, respectively. As for temperature, we compared the daily energy availability,
326 average daily *C. finmarchicus* densities and average prey size over the growth season for a given
327 year with (i) predicted lengths at overwintering and (ii) actual observed lengths. This was done
328 using both a simple linear regression and a \log_{10} -transformation, as the positive effects were

329 expected to level out. Again, the models were fitted with a first order auto-regressive error structure
330 and were compared using ΔAIC_C . For (ii), we note again that the representativeness of prey field
331 data may vary between years, so results should be interpreted with caution.

332 To assess the impact of phenology and larval growth processes on predicted length, the impact of
333 date of metamorphosis and length at metamorphosis was examined. The day of the year on which
334 the model runs were initiated (equivalent to the metamorphosis date) was varied from 121 to 181,
335 and the initial length (equivalent to the metamorphosis length) was varied from 3.5 to 5.5 cm based
336 on observed ranges (Wright & Bailey 1996, Jensen 2000, Régnier et al. 2017, 2024). As the prey
337 field input was kept constant, varying the model start date is equivalent to examining the role of
338 variation in sandeel phenology relative to prey phenology.

339 Finally, to examine the impact of light conditions, the diffuse attenuation coefficient a_d was varied
340 over the range 0 (completely clear waters) to 0.3, based on a range of values commonly observed
341 in the type of hydrodynamic region corresponding to sandeel habitat (see supplementary materials
342 in Capuzzo et al. 2018).

343 3. RESULTS

344 3.1. Model validation

345 While tuned only to length data from the Firth of Forth, the model also produced realistic
346 predictions for the other locations and reproduced spatial differences in length (Figure 3). Both
347 observations and predictions suggest that (i) in the late 1970s, growth conditions in the ECG were
348 better than in Shetland, (ii) in the late 1990s, growth conditions were better in the ECG than in
349 Dogger Bank, which in turn were better than in the Firth of Forth, and (iii) the better growth

350 conditions in the ECG compared to the Dogger Bank were maintained in the 2000s and 2010s
351 (Figure 3a–d).

352

353 The model predictions also did well in reproducing the temporal trend in the Firth of Forth (Figure
354 3e). Observations showed a decline in sandeel length between 1982 and 2015 of -0.06 [95 % CI: -
355 0.08; -0.04] cm per year. Predictions over the same time period also showed some evidence of a
356 decline, and although a weaker decline of -0.03 [95 % CI: -0.07; 0] cm per year, the 95 %
357 confidence intervals of the two slopes overlapped. In Shetland, predictions pointed to an increase
358 in length by 0.05 [95 % CI: 0.02; 0.09] cm per year (Figure 3f) over the time period 1979–2009
359 (the years for which we had both predictions and observations). This does not align with the
360 observations from Fair Isle, which instead showed a decline of -0.12 [95 % CI: -0.19; -0.06] cm
361 per year, or from Hermaness, where no trend was observed [estimate: 0.02; 95 % CI: -0.15; 0.19].

362

363 In Dogger Bank for the period 2004–2016 when both predictions and observations are available,
364 neither observations [estimate: 0; 95 % CI: -0.08; 0.07] nor predictions [estimate: -0.03; 95 % CI:
365 -0.16; 0.09] showed any trend. There was also no trend in predicted length over the time period
366 1988–2011 during which size declines have been reported in older age groups (van Deurs et al.
367 2014) [estimate: 0.02; 95 % CI: -0.02; 0.05]. In the ECG for the period 2006–2016 when
368 predictions and observations are both available, neither observations [estimate: -0.14; 95 % CI: -
369 0.35; 0.07] nor predictions [estimate: 0.01; 95 % CI: -0.43; 0.45] showed any trend.

370

371 3.2. Drivers of growth

372 3.2.1. Temperature

373 Varying the temperature had a minor impact on predicted sandeel length (<1 % compared to
374 baseline, Figure 4a). The effect was nonlinear, with increased temperatures resulting in increased
375 predicted lengths up to an optimum after which predicted lengths instead decreased. The location
376 of the optima in relation to the baseline varied between locations, so that a temperature increase
377 would likely result in a small decline in body length in the Firth of Forth and Dogger Bank (optima
378 just below average temperatures over the study period), whereas increased lengths were predicted
379 for the ECG and Shetland (optima close to maximal warming). There were no relationships
380 between observed growth season temperatures and predicted length at overwintering (Table S3;
381 Figure 4b). However, in Fair Isle, we saw a negative linear relationship between growth season
382 temperatures and actual observed lengths, where length decreased by 1.6 [95 % CI: 0.92; 2.2] cm
383 per 1°C increase (Table S3; Figure 4c).

384 3.2.2. Food

385 Predicted length was sensitive to average daily energy availability, where a shift from mean to
386 maximum values resulted in a predicted increase in length of up to 14 % and a shift from mean to
387 minimum values resulted in a predicted decrease of up to 38 % (Figure 5a). There were positive,
388 log-shaped relationships between observed average daily energy availability in a given year and
389 predicted length in the same year in the ECG and in Shetland (Table S4; Figure 5b). There was a
390 positive, log-shaped relationship between observed average daily energy availability in a given
391 year and observed length in the same year in Dogger Bank (Table S4; Figure 5c).

392

393 For *Calanus finmarchicus*, there were clear differences between locations in the role it played. In
394 the Firth of Forth and Dogger Bank, shifting densities over the range observed only resulted in a
395 change in predicted length of ca. 1–5 %, whereas in the ECG, a shift from mean to maximum
396 values resulted in a predicted increase of 16 % and a shift from mean to minimum values resulted
397 in a predicted decrease of 10 %, and the corresponding values for Shetland were 16 % and 2 %,
398 respectively (Figure 5d). There were positive, log-shaped relationships between observed *C.*
399 *finmarchicus* densities and predicted length in the ECG and in Shetland (Table S4; Figure 5e). We
400 saw no relationships between observed *C. finmarchicus* densities and observed length (Table S4;
401 Figure 5f).

402

403 Prey type had a large effect on predicted lengths. For all three prey size classes examined, the
404 predicted sandeel lengths increased with total available energy, but at peak energy availability, the
405 predicted length for sandeels was ca. 15 cm when prey was supplied as large *C. finmarchicus*,
406 whereas it was only ca. 6 cm when prey was supplied as small *Oithona* spp. (Figure 5g). There
407 was a positive, linear relationship between observed average prey size during the growth season
408 and predicted length in the ECG, and a negative, linear relationship in the Firth of Forth (Table
409 S4; Figure 5h). In Hermaness, there was a positive, linear relationship between average prey size
410 and observed length (Table S4; Figure 5i).

411 3.2.3. Timing and length at metamorphosis

412 The effect of timing of metamorphosis was larger than the effect of length at metamorphosis
413 (Figure 6). For the nominal value of length at metamorphosis (4 cm), a shift to the earliest date
414 examined (day 121) resulted in a predicted increase in length at overwintering of 4–7 %, whereas
415 a shift to the latest date examined (day 181) resulted in a decrease of 10–23 %. For the nominal

416 value of timing of metamorphosis (day 141), a shift to the smallest length examined (3.5 cm)
417 resulted in a predicted decrease in length at overwintering of 1–2 %, whereas a shift to the largest
418 examined (5.5 cm) resulted in an increase of 3–7 %.

419 3.2.4. Light conditions

420 A shift towards increased turbidity (higher values for the diffuse attenuation coefficient a_d)
421 resulted in a decline in predicted sandeel length of up to ca. 50–60 % (Figure 7). A shift to
422 completely clear waters only increased predicted length by ca. 3 %.

423

424

425 4. DISCUSSION

426 This study used a dynamic energy budget model to explore plausible drivers of spatio-temporal
427 variation in the growth of juvenile lesser sandeels in the North Sea region, with a particular focus
428 on observed size declines. Model predictions matched observed spatio-temporal patterns well. Our
429 results suggest that the effect of temperature on sandeel growth was minor, but varies in direction
430 over space, and that it is unlikely that direct effects of increasing temperatures explain the size
431 declines. In contrast, our results indicate that composition and density of prey are important drivers
432 of sandeel growth rates. Variation in the timing of metamorphosis, and thus the start of the growth
433 season, may also play a role in driving variation in size. Finally, turbidity could potentially have a
434 large impact on sandeel growth via its effect on prey detectability.

435

436 As the direct effect of temperature was small, and light conditions as well as size at
437 metamorphosis and timing of metamorphosis were kept constant, the model's ability to reproduce

438 the decline in size observed in the Firth of Forth suggests that trends in the composition and
439 abundance of prey were sufficient to explain the observed size decline. This supports the
440 hypothesis that a change in food conditions may be one of the key mechanisms behind the
441 widespread declines in size observed in many organisms (Gardner et al. 2011), including fish
442 (Korman et al. 2021, Menu et al. 2023). The decline in available food for the sandeels is primarily
443 driven by declining abundances of small copepods (Olin et al. 2022). This explains the negative
444 correlation between prey size and predicted sandeel length in the Firth of Forth (Figure 5h), as the
445 larger average prey sizes result from low densities of small copepods (Olin et al. 2022). Tyldesley
446 et al. (2024) showed that these declines in small copepod densities, and in total energy available
447 to planktivorous fish, are widespread across the northwest European shelf and beyond, extending
448 as far as Iceland and the southern Bay of Biscay. The ultimate driver is not known, but it could be
449 linked to a decline in local primary productivity associated with increasing temperatures and
450 decreased nutrient input (Capuzzo et al. 2018), possibly together with reduced quality and shifting
451 phenology of the phytoplankton (Schmidt et al. 2020). The decline in sandeel size could thus still
452 be related to climate change, via a change in prey availability and composition.

453

454 Food conditions are also a plausible driver of the spatial patterns in sandeel size, as long
455 hypothesised (Macer 1966, Bergstad et al. 2002; Boulcott et al. 2007). Densities of *Calanus* spp.
456 are higher in the north (Olin et al. 2022), and correlate with predicted growth in the ECG and
457 Shetland (Figure 5e). Our results further suggest that a prey field composed of large, *Calanus*-like
458 prey provides better growth conditions than smaller prey types, even when the total amount of
459 energy is the same (Figure 5g), corroborating previous work showing the importance of prey size,
460 in both lesser sandeels and other species (van Deurs et al. 2015, MacDonald et al. 2018,

461 Ljungström et al. 2020). It is thus likely that the high densities of *Calanus* spp. explain why the
462 sandeels grow so fast in the ECG. Previously, *C. finmarchicus* dominated the study area, but since
463 the early 2000s, they are increasingly being replaced by *C. helgolandicus* (Olin et al. 2022,
464 Tyldesley et al. 2024). This is likely the result of an ongoing temperature-driven northward
465 distribution shift of both *Calanus* species (Edwards et al. 2020). In the northern North Sea, this
466 shift may have a negative effect on sandeel growth in the long term, as the phenology of *C.*
467 *helgolandicus* is less well matched with the sandeel growth season, and as, at least so far, peak
468 densities of *C. helgolandicus* in the study area do not match those of *C. finmarchicus* (see Edwards
469 et al. 2020, Olin et al. 2022). In comparison, densities of *C. finmarchicus* are, and have been, lower
470 in the western North Sea (which is further away from where *C. finmarchicus* enter the North Sea
471 from the north; Heath et al. 1999), and are not positively correlated with predicted or observed
472 sandeel growth in this area (Figure 5e–f). This may result from the low densities in the area and is
473 in line with recent evidence from Dogger Bank (Henriksen et al. 2018) and the Firth of Forth
474 (Régnier et al. 2017, MacDonald et al. 2018), suggesting that the role of *C. finmarchicus* in driving
475 sandeel dynamics may have been overestimated in these areas in previous studies (see e.g. van
476 Deurs et al. 2009, 2014, Frederiksen et al. 2013).

477

478 The direct effect of temperature on sandeel growth was minor, resulting in a 1% difference
479 in predicted size at most, even at a 4.5°C increase (Figure 4a). Our approach relied on the
480 assumption that sea surface temperatures are indicative of temperatures throughout the water
481 column. How valid this assumption is likely varies over both space and time (see van Leeuwen et
482 al. 2015), which may have affected our predictions slightly, and also the identified relationships
483 between temperature and observed lengths. However, importantly, this does not affect our

484 conclusion that the direct effect of temperature is minor, as this emerges from the mechanisms
485 included in the model, not the data used to run it. The small direct effect of temperature is in line
486 with results presented by MacDonald et al. (2018), which were also based on a dynamic energy
487 budget model of lesser sandeel, as well as work on other fish species (e.g. Menu et al. 2023). This
488 suggests that temperature-driven increases in metabolic costs, which have been proposed as one
489 of the mechanisms behind climate change-associated body size declines (Sheridan & Bickford
490 2011), are not the main cause of sandeel size declines.

491

492 In our model, warmer temperatures lead to greater assimilation efficiency and faster
493 digestion rates, which allows for higher intake and growth rates. However, warmer temperatures
494 also lead to increased metabolic costs, which result in a negative net energy gain if the increased
495 costs are not outweighed by increased energy assimilation, which may be the case if food
496 conditions are poor. This is why our study locations responded differently to temperature, where
497 warmer temperatures led to higher growth rates in locations where food conditions are good (ECG,
498 Shetland, high densities of *Calanus* spp.), but reduced growth rates where food conditions are
499 poorer (Firth of Forth, Dogger Bank). This means that if a changing climate results in poorer food
500 conditions, declines in growth rates may be mildly exacerbated by the increased metabolic costs
501 of higher temperatures. Régnier et al. (2024) identified a similar pattern in sandeel larvae, where
502 temperature had a positive effect on growth when the match between sandeel hatching and the
503 peak availability of larval food was good, while the effect was instead negative when the match
504 was poor. This type of interaction has also been noted in other fish species (Brett et al. 1969, Allen
505 & Wootton 1982, Ohlberger 2013). Our study thus supports the claim that to understand effects of

506 climate change on fish, we need to account for both direct physiological effects and changes in
507 resource availability (Huey & Kingsolver 2019, Lindmark et al. 2022).

508

509 Our model only covered the first growth season, and therefore we could not fully evaluate
510 the support for the temperature-size rule (i.e. fast development and smaller size-at-maturation, e.g.
511 Gardner et al. 2011, Ikpewe et al. 2021). However, our model did suggest that if food is sufficient,
512 temperature increases do result in boosted juvenile growth, in line with the temperature-size rule.
513 As for size-at-maturation, a study from 1999 showed that Firth of Forth sandeels matured at a
514 smaller size than Dogger Bank sandeels, which in turn matured at a smaller size than ECG sandeels
515 (Boulcott et al. 2007). As the average annual temperature in the Firth of Forth was lower than in
516 the other two locations, this does not fit with a smaller size-at-maturation in warmer temperatures.
517 However, a more recent study found no significant differences in the relationship between size and
518 maturation rates in these locations (Wright et al. 2019), and the difference in average annual
519 temperatures between the locations is small (usually $<1^{\circ}\text{C}$), so a broader geographical area would
520 likely be needed to evaluate the support for the temperature-size rule in lesser sandeels.

521

522 While the potential effect of timing of metamorphosis on sandeel length-at-age was
523 considerable, it cannot explain the size declines in the Firth of Forth on its own: the model predicts
524 that a shift from the earliest to the latest observed date of metamorphosis in the Firth of Forth
525 (Régnier et al. 2017) only results in a length difference of around 12% and thus cannot alone
526 explain the decline in length of 28% over the study period. Further, there is no marked temporal
527 trend (or spatial pattern) in larval or settlement phenology within the study area (Lynam et al.
528 2013, Régnier et al. 2019, 2024), and estimates of date at settlement for the Firth of Forth from

529 recent years actually suggest that they are rather in the earlier part of the range we examined
530 (Régnier et al. 2024). This provides further support for deteriorating food conditions as the most
531 plausible driver of observed sandeel size declines in the Firth of Forth. Still, considering that
532 phenology shifts are a common response to climate change in marine ecosystems (Poloczanska et
533 al. 2013), temporal mismatch with prey may be a useful driver to consider in other cases of marine
534 fish size declines.

535

536 As for the effect of turbidity, the potential role played was large. The findings here echo
537 those based on studies of visually foraging fish in general (Aksnes 2007, Ljungström et al. 2020,
538 Korman et al. 2021) and of *A. marinus* in particular (van Deurs et al. 2015). Turbidity in the North
539 Sea varies seasonally and over space (e.g. Capuzzo et al. 2013) and has increased over time
540 (Capuzzo et al. 2015, Wilson & Heath 2019). While satellite- and model-based estimates of
541 turbidity are available for the North Sea, they do not extend far enough back in time to use them
542 as input for the model. An interesting avenue for future research would be to explore spatio-
543 temporal patterns in turbidity in sandeel grounds using these datasets. Increasing turbidity may
544 also impair the foraging success of visually foraging sandeel predators (Finney et al. 1999, Lewis
545 et al. 2015, Darby et al. 2022), suggesting that impacts could amplify up the trophic chain.

546

547 While the model predictions generally agreed with observations, this was not the case in
548 Shetland. However, while predicted lengths were greater than those of the sandeels collected by
549 puffins, they do match observations from trawl surveys from 1990–1992 (Wright & Bailey 1996;
550 see Figure 4.2 in Olin, 2020) and from 2002–2007 (Marine Scotland Science, unpubl. data), the
551 latter estimating mean juvenile lengths in August to 8–10.5 cm, overlapping with our predictions

552 at overwintering for the same time period (9.6–11.5 cm). As the time series from Fair Isle and
553 Hermaness show different trends, possibly since the Fair Isle puffins may go south to Orkney to
554 forage that is a different sandeel population (Olin et al. 2020), it is also difficult to know from the
555 Fair Isle data whether the size of Shetland sandeels have changed over time. Still, there is no
556 empirical data that support the predicted increase, which is driven by an increased availability of
557 food (Olin et al. 2022). Possibly, the benefits of increasing food availability during the juvenile
558 feeding season have been cancelled out by a decline in food availability for fish larvae in the early
559 2000s (see Alvarez-Fernandez et al. 2012). Interestingly, poor breeding success and delayed
560 breeding of sandeel-eating seabirds was also observed in the early 2000s in this region (JNCC
561 2016, Maniszewska 2019, Olin et al. 2020) suggesting that this time period warrants further study.
562 The negative relationship between observed length and growth season temperatures in Fair Isle
563 may also be worth exploring further.

564

565 In Dogger Bank, the predictions did not show evidence of a decline over the time period
566 during which size declines have been reported in age 1 and age 2 sandeels (1988–2011; van Deurs
567 et al. 2014). However, a closer examination of the published time series suggests that a significant
568 decline only occurred in age 2 sandeel (see Figure S3 in SI6). No data exist on juvenile sandeel
569 from the same time period, so it is unclear whether a size decline in juvenile sandeels has actually
570 occurred in Dogger Bank. Over the time period for which we have both observations and
571 predictions, no decline was evident (Figure 3a). Similarly, we observed no clear decline in the
572 predicted or observed size of sandeels in the ECG (Figure 3c), while a shift from larger to smaller
573 sizes was observed in the 1990s in the eastern North Sea (Clausen et al. 2017) based on sandeels
574 from the fishery, which usually catches older age groups. A difference in trends between age

575 groups may imply that additional mechanisms are at play in older, mature sandeels, for example
576 increased investment into reproduction as temperatures increase (see Wootton et al. 2022; but see
577 also Wright et al. 2017).

578

579 The environmental drivers included were chosen to reflect the current state of knowledge of drivers
580 of sandeel size and growth. However, there are additional drivers that may also have contributed
581 to the observed patterns. Increased predator pressure may result in the sandeels spending less time
582 feeding (see van Deurs et al. 2010) or spend more time engaged in costly predator avoidance
583 behaviour (see Pitcher & Wyche 1983), which would both contribute to reduced intake rates and
584 subsequent growth. These mechanisms could act throughout the feeding season, but may also mean
585 that overwintering is initiated earlier than in other locations (see van Deurs et al. 2010). As sandeel
586 predators are more abundant further north (ICES 2017), this could be another potential contributor
587 to the disparity between observed and predicted length in Shetland. The initiation of overwintering
588 may depend not only on predation risk, but also on the attainment of sufficient resources
589 (MacDonald 2017, van Deurs et al. 2011b). This mechanism may act as a buffer on overwintering
590 lengths, as the sandeels may cease feeding earlier (and thus at a smaller size) if food availability
591 is high and extend the feeding window (and thus increase their size) if food availability is low.
592 This could mean that our simplifying assumption of a constant overwintering date could have
593 resulted in slightly exaggerated relationships between prey and sandeel size as this buffering
594 mechanism is not accounted for.

595

596 In summary, our results suggest that if we continue on the current trajectory of increasing
597 temperatures (Kessler et al. 2022) prompting delays in phenology (see Wright et al. 2017, Régnier

598 et al. 2019), increasing turbidity (Capuzzo et al. 2015, Wilson & Heath 2019), as well as shifts
599 from *C. finmarchicus* to *C. helgolandicus* in the northernmost areas and declining densities of
600 small copepods in the southernmost areas (Edwards et al. 2020), sandeel sizes may decline further.
601 Our results suggest that sandeel growth conditions have deteriorated in the western North Sea,
602 which have long been important sandeel fishing grounds, and as smaller sandeels have higher
603 mortality rates, lower maturation rates and lower fecundity (Boulcott et al. 2007, Boulcott &
604 Wright 2011, MacDonald et al. 2018) this may make the sandeel stock vulnerable to additional
605 mortality from fishing. While one could expect that reduced densities as a result of fishing could
606 contribute to increased growth rates via reduced competition, earlier studies of North Sea sandeels
607 do not support any negative relationship between density and growth (Bergstad et al. 2002, Eliasen
608 2013; Rindorf et al. 2016, Henriksen et al. 2021). As such, a precautionary approach to fishing that
609 takes the changing growth conditions into account may become increasingly important.

610

611 The study provides some lessons of general interest. First, it lends support to the idea of
612 temperature not as a driver that directly and uniformly pushes fish towards smaller body sizes, but
613 rather a driver with complex direct and indirect effects, which may ultimately also result in
614 increases in size in some contexts (see also Audzijonyte et al. 2020). Second, it highlights the
615 importance of considering the prey field from the point of view of the predator, with a local
616 perspective. It is tempting to identify key metrics such as, for example, the abundance of key prey
617 taxa or average size of the prey to try to explain variation in growth. However, due to complex
618 interactions depending on both prey and predator size and acting via, for example, capture success
619 and switching mechanisms, the relationship between these metrics and predator growth may not
620 always play out in a linear fashion, and may break down when extrapolating across space. For

621 example, variation in *C. finmarchicus* densities is a good predictor of growth in the northern North
622 Sea, but not in the western North Sea. Resolving these foraging dynamics may thus improve our
623 understanding of how oceanographic change travels up the food chain all the way to top predators.
624 Finally, the results also highlight the importance of broadening our view when it comes to
625 identifying drivers of size declines. Our oceans are not only becoming warmer, but there are also
626 trends, in various directions, in top predator densities, nutrient levels and fishing pressure, just to
627 mention a few examples. A broader view of potential drivers helps to better partition variation
628 between different mechanisms, ultimately improving our understanding of how marine ecosystems
629 are responding to an increasingly changing environment.

630 **Acknowledgements**

631 We want to thank Anna Rindorf, Dougie Speirs, Mikael van Deurs, Quentin Quieros and Max
632 Lindmark for valuable input. We are also grateful to Espen Johnsen and Mikael van Deurs for
633 providing sandeel data. A.B.O. was funded by a doctoral fellowship from the Marine Alliance for
634 Science and Technology Scotland (MASTS), in partnership with the University of Strathclyde and
635 the University of Glasgow. The present work was part of A.B.O.'s PhD thesis and is also available
636 as a preprint at doi.org/10.1101/2025.03.25.643521. N.S.B. was supported by the UK Missing
637 Salmon Alliance under the Likely Suspects Framework project and the Natural Environment
638 Research Council (Grant Number NE/X008983/1). R.G.N. was supported by the Natural
639 Environment Research Council and the Department for Environment, Food, and Rural Affairs
640 (Grant Number NE/L003090/1). We thank Mike Harris, Mark Newell and all members of the Isle
641 of May field teams for the collection of puffin prey data. The Isle of May study was funded by
642 NERC Award number NE/R016429/1 as part of the UK-SCaPE programme delivering National
643 Capability.

644 **LITERATURE CITED**

645 Aksnes DL (2007) Evidence for visual constraints in large marine fish stocks. Limnol Oceanogr
646 52:198–203.

647 Allen JRM, Wootton RJ (1982) The effect of ration and temperature on the growth of the three-
648 spined stickleback, *Gasterosteus aculeatus* L. J Fish Biol 20:409–422.

649 Alvarez-Fernandez S, Lindeboom H, Meesters E (2012) Temporal changes in plankton of the
650 North Sea: community shifts and environmental drivers. Mar Ecol Prog Ser 462:21–38.

651 Audzijonyte A, Kuparinen A, Gorton R, Fulton EA (2013) Ecological consequences of body size
652 decline in harvested fish species: positive feedback loops in trophic interactions amplify
653 human impact. Biol Lett 9:20121103.

654 Audzijonyte A, Richards SA, Stuart-Smith RD, Pecl G, Edgar GJ, Barrett NS, Payne N,
655 Blanchard JL (2020) Fish body sizes change with temperature but not all species shrink
656 with warming. Nat Ecol Evol 4:809–814.

657 Barneche DR, Robertson DR, White CR, Marshall DJ (2018) Fish reproductive-energy output
658 increases disproportionately with body size. Science 360:642–645.

659 Bergstad OA, Høines ÅS, Jørgensen T (2002) Growth of sandeel, *Ammodytes marinus*, in the
660 northern North Sea and Norwegian coastal waters. Fish Res 56:9–23.

661 Berthou S, Renshaw R, Smyth T, Tinker JP, Grist J, Wihs Gott JU, Jones S, Inall M, Nolan G,
662 Berx B, Arnold A, Blunn LP, Castillo JM, Cotterill D, Daly E, Dow G, Gómez B, Fraser-
663 Leonhardt V, Hirschi JJ-M, Lewis HW, Mahmood S, Worsford M (2024) Exceptional
664 atmospheric conditions in June 2023 generated a northwest European marine heatwave
665 which contributed to breaking land temperature records. Commun Earth Environ 5:287

666

667 Boulcott P, Wright PJ, Gibb FM, Jensen H, Gibb IM (2007) Regional variation in maturation of
668 sandeels in the North Sea. *ICES J Mar Sci* 64:369–376.

669 Boulcott P, Wright PJ (2011) Variation in fecundity in the lesser sandeel: implications for
670 regional management. *J Mar Biol Assoc UK* 91: 1273–1280.

671 Brett JR, Shelbourn JE, Shoop CT (1969) Growth Rate and Body Composition of Fingerling
672 Sockeye Salmon, *Oncorhynchus nerka*, in relation to Temperature and Ration Size. *J Fish*
673 *Board Can* 26:2363–2394.

674 Capuzzo E, Lynam CP, Barry J, Stephens D, Forster RM, Greenwood N, McQuatters-Gollop A,
675 Silva T, van Leeuwen SM, Engelhard GH (2018) A decline in primary production in the
676 North Sea over 25 years, associated with reductions in zooplankton abundance and fish
677 stock recruitment. *Glob Change Biol* 24:e352–e364.

678 Capuzzo E, Painting SJ, Forster RM, Greenwood N, Stephens DT, Mikkelsen OA (2013)
679 Variability in the sub-surface light climate at ecohydrodynamically distinct sites in the
680 North Sea. *Biogeochemistry* 113:85–103.

681 Capuzzo E, Stephens D, Silva T, Barry J, Forster RM (2015) Decrease in water clarity of the
682 southern and central North Sea during the 20th century. *Glob Change Biol* 21:2206–
683 2214.

684 Christensen V (2010) Behavior of Sandeels Feeding on Herring Larvae. *Open Fish Sci J* 3:164–
685 168.

686 Clarke A, Johnston NM (1999) Scaling of metabolic rate with body mass and temperature in
687 teleost fish. *J Anim Ecol* 68:893–905.

688 Clausen LW, Rindorf A, van Deurs M, Dickey-Collas M, Hintzen NT (2018) Shifts in North Sea
689 forage fish productivity and potential fisheries yield. *J Appl Ecol* 55:1092–1101.

690 Copernicus Climate Change Service C3S (2017) ERA5: Fifth generation of ECMWF
691 atmospheric reanalyses of the global climate.

692 Danielsen N, Hedeholm R, Grønkjær P (2016) Seasonal changes in diet and lipid content of
693 northern sand lance *Ammodytes dubius* on Fyllas Bank, West Greenland. Mar Ecol Prog
694 Ser 558:97–113.

695 Darby J, Clairbaux M, Bennison A, Quinn JL, Jessopp MJ (2022) Underwater visibility
696 constrains the foraging behaviour of a diving pelagic seabird. Proc R Soc B Biol Sci
697 289:20220862.

698 Daufresne M, Lengfellner K, Sommer U (2009) Global warming benefits the small in aquatic
699 ecosystems. Proc Natl Acad Sci 106:12788–12793.

700 van Deurs M, Behrens JW, Warnar T, Steffensen JF (2011a) Primary versus secondary drivers of
701 foraging activity in sandeel schools (*Ammodytes tobianus*). Mar Biol 158:1781–1789.

702 van Deurs M, Christensen A, Frisk C, Mosegaard, H (2010) Overwintering strategy of sandeel
703 ecotypes from an energy/predation trade-off perspective. Mar Ecol Prog Ser 416: 201–
704 214.

705 van Deurs M, van Hal R, Tomczak M, Jónasdóttir S, Dolmer P (2009) Recruitment of lesser
706 sandeel *Ammodytes marinus* in relation to density dependence and zooplankton
707 composition. Mar Ecol Prog Ser 381:249–258.

708 van Deurs M, Hartvig M, Steffensen JF (2011b) Critical threshold size for overwintering
709 sandeels (*Ammodytes marinus*). Mar Biol 158:2755–2764.

710 van Deurs M, Jørgensen C, Fiksen Ø (2015) Effects of copepod size on fish growth: a model
711 based on data for North Sea sandeel. Mar Ecol Prog Ser 520:235–243.

712 van Deurs M, Koski M, Rindorf A (2014) Does copepod size determine food consumption of

713 particulate feeding fish? ICES J Mar Sci 71:35–43.

714 Edwards M, Atkinson A, Bresnan E, Helaouet P, McQuatters-Gollop A, Ostle C, Pitois S,
715 Widdicombe C (2020) Plankton, jellyfish and climate in the North-East Atlantic. MCCIP
716 Sci Rev 2020:32 pages.

717 Eggers DM (1977) The nature of prey selection by planktivorous fish. Ecology 58:46–59.

718 Eliasen K (2013) Sandeel, *Ammodytes* spp., as a link between climate and higher trophic levels
719 on the Faroe shelf. PhD, University of Aarhus, Aarhus

720 Engelhard GH, Peck MA, Rindorf A, Smout S, van Deurs M, Raab K, Andersen KH, Garthe S,
721 Lauerburg RAM, Scott F, Brunel T, Aarts G, van Kooten T, Dickey-Collas M (2014)
722 Forage fish, their fisheries, and their predators: who drives whom? ICES J Mar Sci
723 71:90–104.

724 Finney SK, Wanless S, Harris MP (1999) The effect of weather conditions on the feeding
725 behaviour of a diving bird, the Common Guillemot *Uria aalge*. J Avian Biol: 30 23–30.

726 Frederiksen M, Anker-Nilssen T, Beaugrand G, Wanless S (2013) Climate, copepods and
727 seabirds in the boreal Northeast Atlantic - current state and future outlook. Glob Change
728 Biol 19:364–372.

729 Frederiksen M, Elston D, Edwards M, Mann A, Wanless S (2011) Mechanisms of long-term
730 decline in size of lesser sandeels in the North Sea explored using a growth and phenology
731 model. Mar Ecol Prog Ser 432:137–147.

732 Freeman S, Mackinson S, Flatt R (2004) Diel patterns in the habitat utilisation of sandeels
733 revealed using integrated acoustic surveys. J Exp Mar Biol Ecol 305:141–154.

734 Gardner JL, Peters A, Kearney MR, Joseph L, Heinsohn R (2011) Declining body size: a third
735 universal response to warming? Trends Ecol Evol 26:285–291.

736 Gilman SL (1994) An energy budget for northern sand lance, *Ammodytes dubius*, on Georges
737 Bank, 1977-1986. Fish Bull 92:647–654.

738 Godiksen JA, Hallfredsson EH, Pedersen T (2006) Effects of alternative prey on predation
739 intensity from herring *Clupea harengus* and sandeel *Ammodytes marinus* on capelin
740 *Mallotus villosus* larvae in the Barents Sea. J Fish Biol 69:1807–1823.

741 Harris MP, Wanless S (2011) The Puffin. T & AD Poyser, London.

742 Heath MR, Backhaus JO, Richardson K, McKenzie E, Slagstad D, Beare D, Dunn J, Fraser JG,
743 Gallego A., Hainbucher D, Hay S, Jónasdóttir S, Madden H, Mardaljevic J, Schacht A
744 (1999). Climate fluctuations and the spring invasion of the North Sea by *Calanus*
745 *finmarchicus*. Fish Oceanogr 8:163–176.

746 Henriksen O, Christensen A, Jonasdottir S, MacKenzie BR, Nielsen K, Mosegaard H, van Deurs
747 M (2018) Oceanographic flow regime and fish recruitment: reversed circulation in the
748 North Sea coincides with unusually strong sandeel recruitment. Mar Ecol Prog Ser
749 607:187–205.

750 Henriksen O, Rindorf A, Brooks ME, Lindegren M, van Deurs M (2021) Temperature and body
751 size affect recruitment and survival of sandeel across the North Sea. ICES J Mar Sci
752 78:1409–1420.

753 Hijnmans RJ (2017) Geosphere: Spherical trigonometry.

754 Hislop JRG, Harris MP, Smith JGM (1991) Variation in the calorific value and total energy
755 content of the lesser sandeel (*Ammodytes marinus*) and other fish preyed on by seabird. J
756 Zool 224:501–517.

757 Holling CS (1959) Some characteristics of simple types of predation and parasitism. Can
758 Entomol 91:385–398.

759 Huey RB, Kingsolver JG (2019) Climate Warming, Resource Availability, and the Metabolic
760 Meltdown of Ectotherms. *Am Nat* 194:E140–E150.

761 ICES. (2017) Report of the Benchmark Workshop on Sandeel (WKSand 2016), 31 October - 4
762 November 2016. Bergen, Norway. ICES CM 2016/ACOM:33.

763 ICES (2024) Benchmark Workshop on Sandeel (*Ammodytes* spp.) (Outputs from 2022 and 2023
764 meetings) (WKSANDEEL). ICES Scientific Reports.

765 Ikpewe IE, Baudron AR, Ponchon A, Fernandes PG (2021) Bigger juveniles and smaller adults:
766 Changes in fish size correlate with warming seas. *J Appl Ecol* 58:847–856.

767 Jensen H (2000) Settlement dynamics in the lesser sandeel *Ammodytes marinus* in the North Sea.
768 PhD, University of Aberdeen

769 Jensen H, Rindorf A, Wright PJ, Mosegaard H (2011) Inferring the location and scale of mixing
770 between habitat areas of lesser sandeel through information from the fishery. *ICES J Mar*
771 *Sci* 68:43–51.

772 JNCC (2016) Seabird population trends and causes of change: 1986-2015 Report.

773 Jobling M (1993) Bioenergetics: feed intake and energy partitioning. In: *Fish ecophysiology*.
774 Rankin JC, Jensen FB (eds) Springer, Dordrecht, p 1–44

775 Johnsen E, Rieucau G, Ona E, Skaret G (2017) Collective structures anchor massive schools of
776 lesser sandeel to the seabed, increasing vulnerability to fishery. *Mar Ecol Prog Ser*
777 573:229–236.

778 Kessler A, Goris N, Lauvset SK (2022) Observation-based sea surface temperature trends in
779 Atlantic large marine ecosystems. *Prog Oceanogr* 208:102902.

780 Kooijman SALM (2000) Dynamic energy and mass budgets in biological systems, 2nd ed.
781 Cambridge University Press, Cambridge.

782 Korman J, Yard MD, Dzul MC, Yackulic CB, Dodrill MJ, Deemer BR, Kennedy TA (2021)

783 Changes in prey, turbidity, and competition reduce somatic growth and cause the collapse

784 of a fish population. *Ecol Monogr* 91:e01427.

785 Larimer S (1992) Aspects of the bioenergetics and ecology of sand lance of Georges Bank. PhD,

786 University of Rhode Island

787 van Leeuwen SP, Tett P, Mills D, van der Molen J (2015) Stratified and nonstratified areas in the

788 North Sea: Long-term variability and biological and policy implications. *J Geophys Res*

789 Oceans 120:4670–4686.

790 Levangie PEL, Blanchfield PJ, Hutchings JA (2022) The influence of ocean warming on the

791 natural mortality of marine fishes. *Environ Biol Fishes* 105:1447–1461.

792 Lewis S, Phillips RA, Burthe SJ, Wanless S, Daunt F. (2015) Contrasting responses of male and

793 female foraging effort to year-round wind conditions. *J Anim Ecol* 84:1490–6.

794 Lika K, Nisbet RM (2000) A Dynamic Energy Budget model based on partitioning of net

795 production. *J Math Biol* 41:361–386.

796 Lindmark M, Audzijonyte A, Blanchard JL, Gårdmark A (2022) Temperature impacts on fish

797 physiology and resource abundance lead to faster growth but smaller fish sizes and yields

798 under warming. *Glob Change Biol* 28:6239–6253.

799 Ljungström G, Claireaux M, Fiksen Ø, Jørgensen C (2020) Body size adaptions under climate

800 change: zooplankton community more important than temperature or food abundance in

801 model of a zooplanktivorous fish. *Mar Ecol Prog Ser* 636:1–18.

802 Lynam CP, Halliday NC, Höffle H, Wright PJ, Van Damme CJG, Edwards M, Pitois SG (2013)

803 Spatial patterns and trends in abundance of larval sandeels in the North Sea: 1950–2005.

804 *ICES J Mar Sci* 70:540–553.

805 MacDonald A (2017) Modelling the impact of environmental change on the physiology and
806 ecology of sandeels. PhD, University of Strathclyde, Glasgow

807 MacDonald A, Speirs DC, Greenstreet SPR, Heath MR (2018) Exploring the Influence of Food
808 and Temperature on North Sea Sandeels Using a New Dynamic Energy Budget Model.
809 Front Mar Sci 5:339.

810 Macer CT (1966) Sand eels (Ammodytidae) in the south-western North Sea; their biology and
811 fishery.

812 Maniszewska K (2019) Black-legged kittiwake (*Rissa tridactyla*) synchronic delay in laying
813 phenology distribution, its effect on reproductive performance, and relationships with
814 changing environmental conditions. MRes, University of Glasgow

815 Martins IS, Schrot F, Blowes SA, Bates AE, Bjorkman AD, Brambilla V, Carvajal-Quintero J,
816 Chow CFY, Daskalova GN, Edwards K, Eisenhauer N, Field R, Fontrodona-Eslava A,
817 Henn JJ, Van Klink R, Madin JS, Magurran AE, McWilliam M, Moyes F, Pugh B,
818 Sagouis A, Trindade-Santos I, McGill BJ, Chase JM, Dornelas M (2023) Widespread
819 shifts in body size within populations and assemblages. Science 381:1067–1071.

820 Menu C, Pecquerie L, Bacher C, Doray M, Hattab T, Van Der Kooij J, Huret M (2023) Testing
821 the bottom-up hypothesis for the decline in size of anchovy and sardine across European
822 waters through a bioenergetic modeling approach. Prog Oceanogr 210:102943.

823 Ohlberger J (2013) Climate warming and ectotherm body size - from individual physiology to
824 community ecology. Funct Ecol 27:991–1001.

825 Ohlberger J, Cline TJ, Schindler DE, Lewis B (2023) Declines in body size of sockeye salmon
826 associated with increased competition in the ocean. Proc R Soc B Biol Sci 290:20222248.

827 Ohlberger J, Schindler DE, Ward EJ, Walsworth TE, Essington TE (2019) Resurgence of an

828 apex marine predator and the decline in prey body size. Proc Natl Acad Sci 116:26682–
829 26689.

830 Olin AB (2020) Spatio-temporal variation in lesser sandeel growth and demography: causes and
831 consequences. PhD, University of Strathclyde, Glasgow

832 Olin AB, Banas N, Wright P, Heath M, Nager R (2020) Spatial synchrony of breeding success in
833 the blacklegged kittiwake *Rissa tridactyla* reflects the spatial dynamics of its sandeel
834 prey. Mar Ecol Prog Ser 638:177–190.

835 Olin AB, Banas NS, Johns DG, Heath MR, Wright PJ, Nager RG (2022) Spatio-temporal
836 variation in the zooplankton prey of lesser sandeels: species and community trait patterns
837 from the Continuous Plankton Recorder. ICES J Mar Sci 79:1649–1661.

838 Österblom H, Bignert A, Fransson T, Olsson O (2001) A decrease in fledging body mass in
839 common guillemot *Uria aalge* chicks in the Baltic Sea. Mar Ecol Prog Ser 224:305–309.

840 Persson L, van Leeuwen A, De Roos AM (2014) The ecological foundation for ecosystem-based
841 management of fisheries: mechanistic linkages between the individual-, population-, and
842 community-level dynamics. ICES J Mar Sci 71:2268–2280.

843 Pitcher TJ, Wyche CJ (1983) Predator-avoidance behaviours of sand-eel schools: why schools
844 seldom split. In: Noakes DLG, Lindquist DG, Helfman GS, Ward JA (eds) Predators and
845 prey in fishes. Springer, Dordrecht., p 193–204.

846 Poloczanska ES, Brown CJ, Sydeman WJ, Kiessling W, Schoeman DS, Moore PJ, Brander K,
847 Bruno JF, Buckley LB, Burrows MT, Duarte CM, Halpern BS, Holding J, Kappel CV,
848 O'Connor MI, Pandolfi JM, Parmesan C, Schwing F, Thompson SA, Richardson AJ
849 (2013) Global imprint of climate change on marine life. Nat Clim Change 3:919–925.

850 Queiros Q, McKenzie DJ, Dutto G, Killen S, Saraux C, Schull Q (2024) Fish shrinking, energy

851 balance and climate change. *Sci Total Environ* 906:167310.

852 R Core Team (2018) R: A language and environment for statistical computing.

853 Régnier T, Gibb FM, Wright PJ (2017) Importance of trophic mismatch in a winter- hatching

854 species: evidence from lesser sandeel. *Mar Ecol Prog Ser* 567:185–197.

855 Régnier T, Gibb FM, Wright PJ (2019) Understanding temperature effects on recruitment in the

856 context of trophic mismatch. *Sci Rep* 9:15179.

857 Régnier T, Wright P, Harris M, Gibb F, Newell M, Eerkes-Medrano D, Daunt F, Wanless S

858 (2024) Effect of timing and abundance of lesser sandeel on the breeding success of a

859 North Sea seabird community. *Mar Ecol Prog Ser* 727:1–17.

860 Rindorf A, Wright PJ, Jensen H, Maar M (2016) Spatial differences in growth of lesser sandeel

861 in the North Sea. *J Exp Mar Biol Ecol* 479:9–19.

862 Robards MD, Anthony JA, Rose GA, Piatt JF (1999) Changes in proximate composition and

863 somatic energy content for Pacific sand lance (*Ammodytes hexapterus*) from Kachemak

864 Bay, Alaska relative to maturity and season. *J Exp Mar Biol Ecol* 242:245–258.

865 Robards MD, Rose GA, Piatt JF (2002) Growth and Abundance of Pacific Sand Lance,

866 *Ammodytes hexapterus*, under differing Oceanographic Regimes. *Environ Biol Fishes*

867 64:429–441.

868 Schmidt K, Birchill AJ, Atkinson A, Brewin RJW, Clark JR, Hickman AE, Johns DG, Lohan

869 MC, Milne A, Pardo S, Polimene L, Smyth TJ, Tarran GA, Widdicombe CE, Woodward

870 EMS, Ussher SJ (2020) Increasing picocyanobacteria success in shelf waters contributes

871 to long-term food web degradation. *Glob Change Biol* 26:5574–5587.

872 Sekiguchi H, Nagoshi M, Horiuchi K, Nakanishi N (1976) Feeding, fat deposits and growth of

873 sand-eels in Ise bay, central Japan. *Bull Jpn Soc Sci Fish* 42:831–835.

874 Sheridan JA, Bickford D (2011) Shrinking body size as an ecological response to climate
875 change. *Nat Clim Change* 1:401–406.

876 Swain DP, Sinclair AF, Mark Hanson J (2007) Evolutionary response to size-selective mortality
877 in an exploited fish population. *Proc R Soc B Biol Sci* 274:1015–1022.

878 Teplitsky C, Millien V (2014) Climate warming and Bergmann's rule through time: is there any
879 evidence? *Evol Appl* 7:156–168.

880 Tien NSH, Craeymeersch J, Van Damme C, Couperus AS, Adema J, Tulp I (2017) Burrow
881 distribution of three sandeel species relates to beam trawl fishing, sediment composition
882 and water velocity, in Dutch coastal waters. *J Sea Res* 127:194–202.

883 Tyldesley E, Banas NS, Diack G, Kennedy R, Gillson J, Johns DG, Bull C (2024) Patterns of
884 declining zooplankton energy in the northeast Atlantic as an indicator for marine survival
885 of Atlantic salmon. *ICES J Mar Sci* 81:1164–1184.

886 Visser AW, Fiksen Ø (2013) Optimal foraging in marine ecosystem models: selectivity,
887 profitability and switching. *Mar Ecol Prog Ser* 473:91–101.

888 Wanless S, Harris MP, Newell MA, Speakman JR, Daunt F (2018) Community-wide decline in
889 the occurrence of lesser sandeels *Ammodytes marinus* in seabird chick diets at a North
890 Sea colony. *Mar Ecol Prog Ser* 600:193–206.

891 Wanless S, Wright PJ, Harris MP, Elston DA (2004) Evidence for decrease in size of lesser
892 sandeels *Ammodytes marinus* in a North Sea aggregation over a 30-yr period. *Mar Ecol
893 Prog Ser* 279:237–246.

894 Wilson RJ, Heath MR (2019) Increasing turbidity in the North Sea during the 20th century due
895 to changing wave climate. *Ocean Sci* 15:1615–1625.

896 Winslade P (1974a) Behavioural studies on the lesser sandeel *Ammodytes marinus* (Raitt) I. The

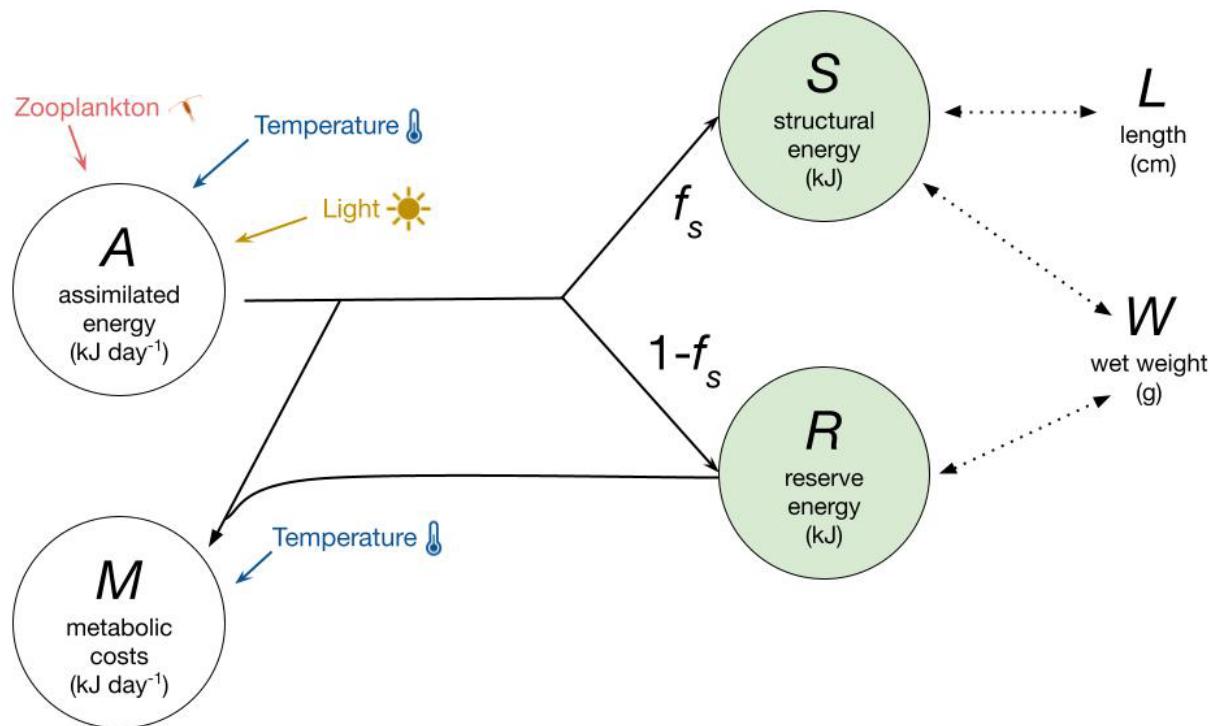
897 effect of food availability on activity and the role of olfaction in food detection. *J Fish*
898 *Biol* 6:565–576.

899 Winslade P (1974b) Behavioural studies on the lesser sandeel *Ammodytes marinus* (Raitt) II. The
900 effect of light intensity on activity. *J Fish Biol* 6:577–586.

901 Wootton HF, Morrongiello JR, Schmitt T, Audzijonyte A (2022) Smaller adult fish size in
902 warmer water is not explained by elevated metabolism. *Ecol Lett* 25: 1177–1188.

903 Wright PJ, Bailey MC (1996) Timing of hatching in *Ammodytes marinus* from Shetland waters
904 and its significance to early growth and survivorship. *Mar Biol* 126:143–152.

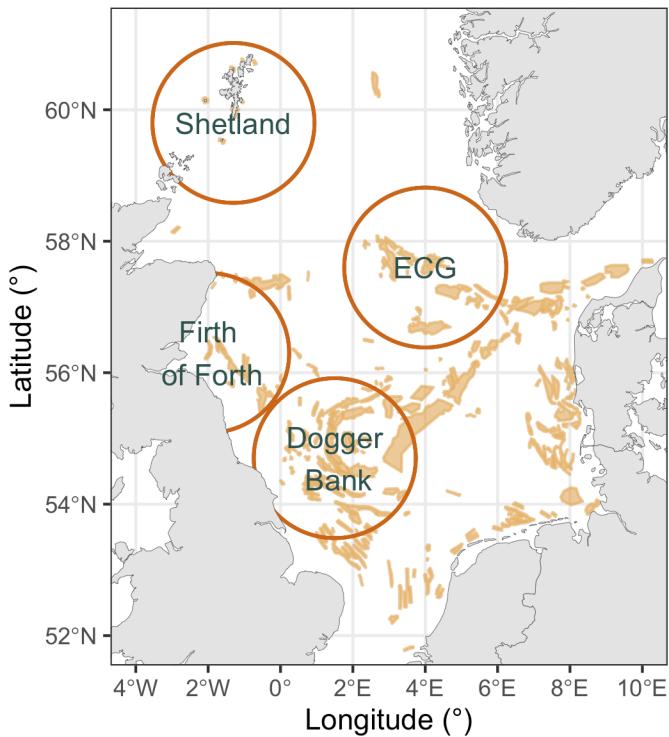
905 Wright PJ, Christensen A, Régnier T, Rindorf A, Van Deurs M (2019) Integrating the scale of
906 population processes into fisheries management, as illustrated in the sandeel, *Ammodytes*
907 *marinus*. *ICES J Mar Sci* 76:1453–1463.


908 Wright PJ, Orpwood JE, Boulcott P (2017) Warming delays ovarian development in a capital
909 breeder. *Mar Biol* 164:80.

910 Wright PJ, Orpwood JE, Scott BE (2017) Impact of rising temperature on reproductive
911 investment in a capital breeder: The lesser sandeel. *J Exp Mar Biol Ecol* 486:52–8.

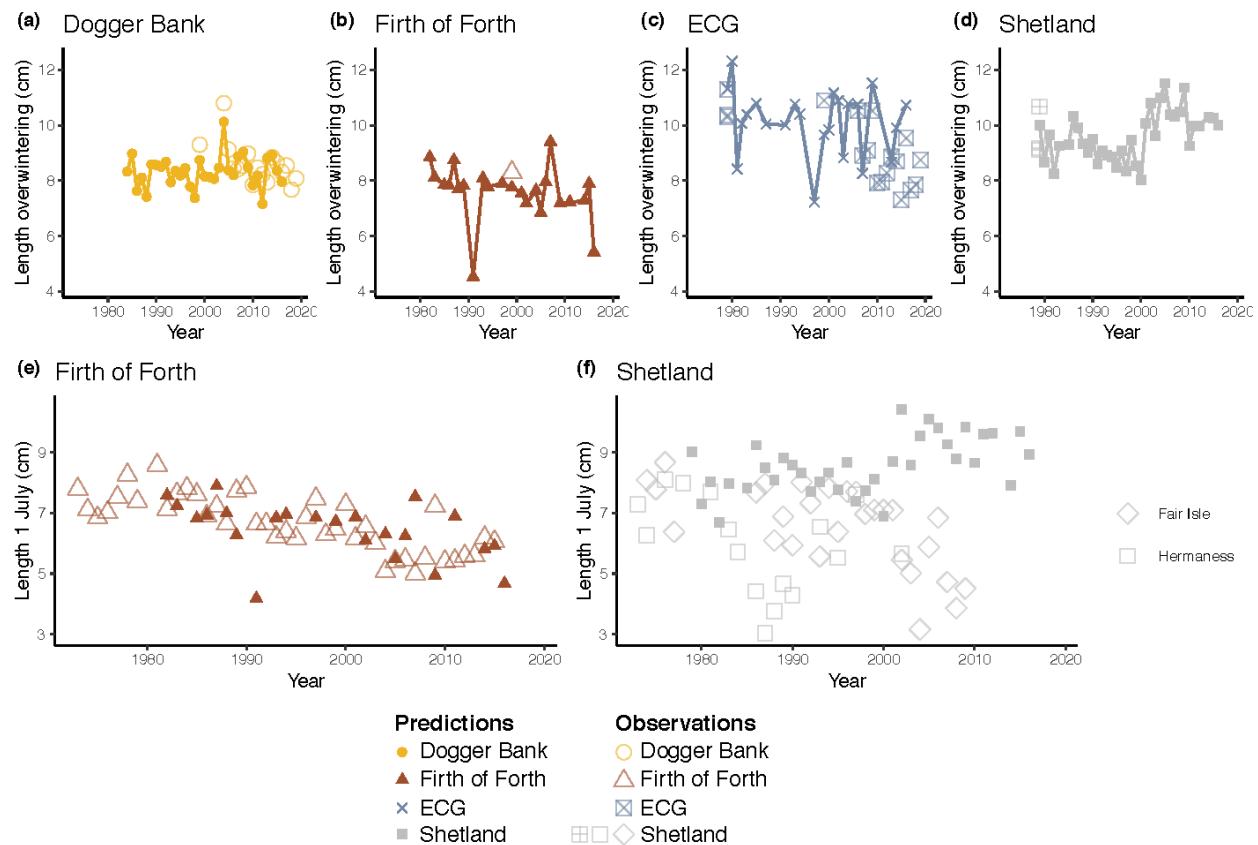
912

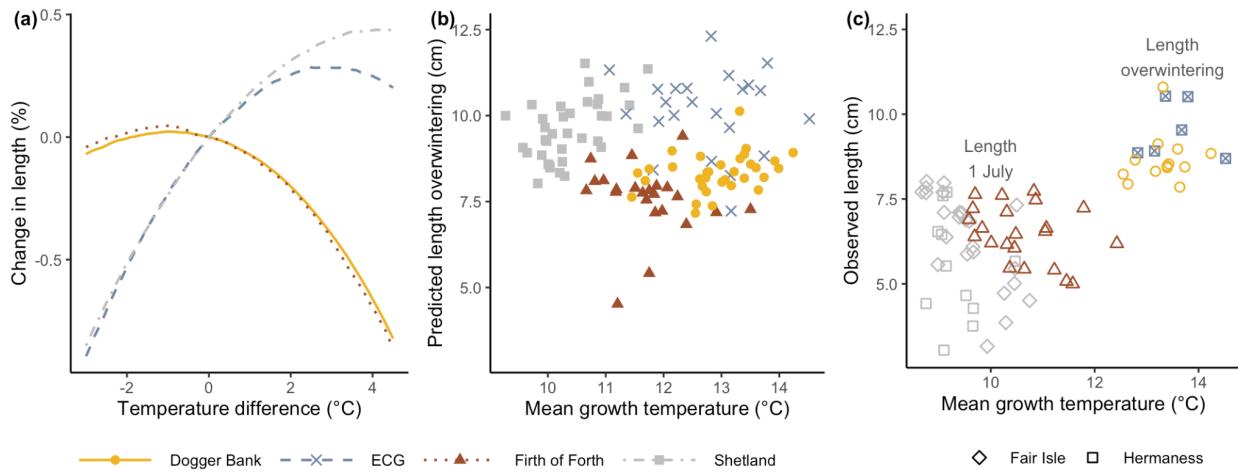
913 Figures


914

915

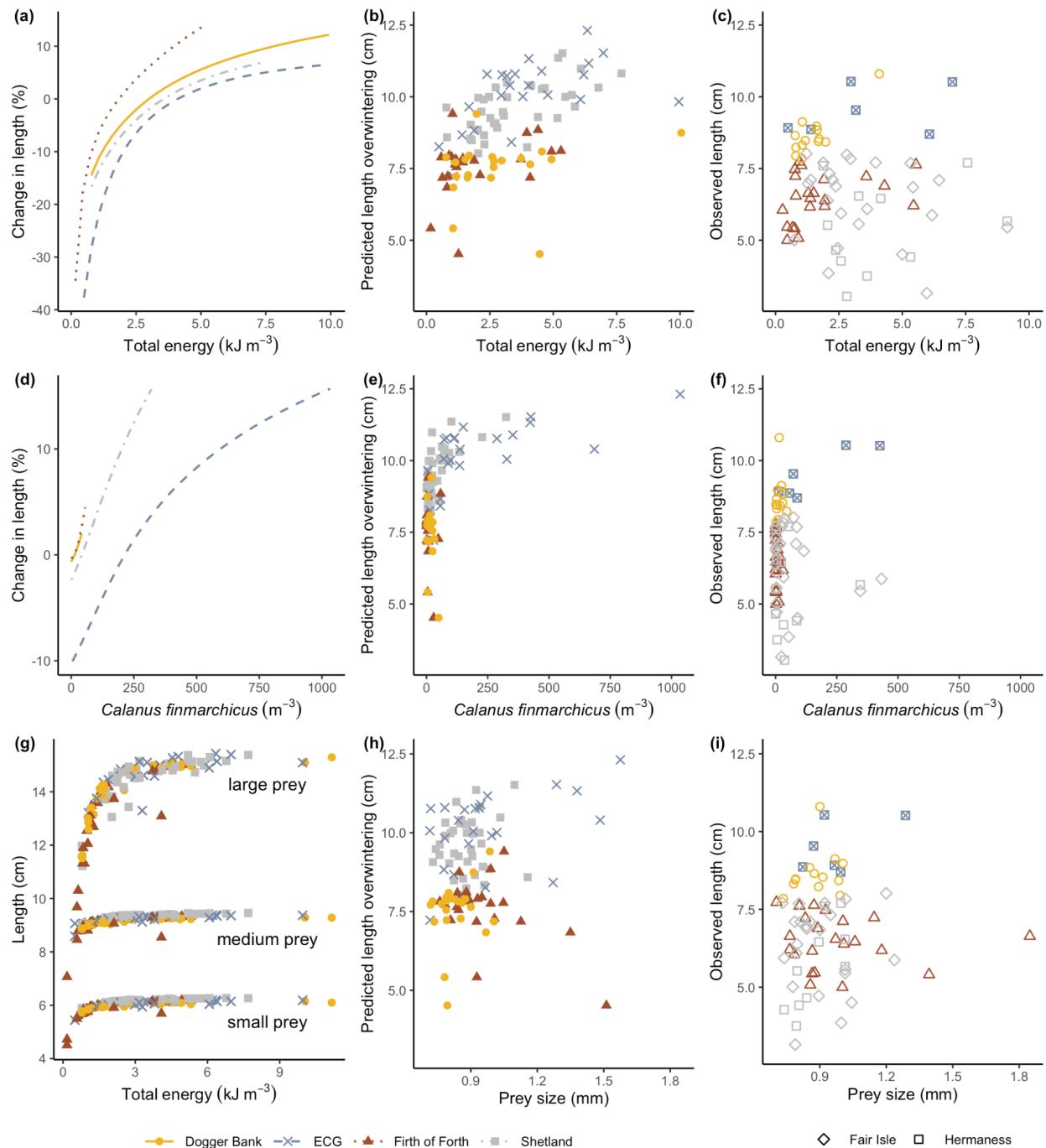
916 Fig. 1. State variables and key processes in the dynamic energy budget model. Solid black arrows
917 represent energy flows, coloured arrows environmental effects and dotted arrows the relationship
918 between the state variables (**S** and **R**) and sandeel length **L** and wet weight **W**. f_s is the proportion
919 of net energy gain allocated to structural energy.


920


921

922 Fig. 2. Study area, with each location marked with a circle indicating the area from which
 923 zooplankton data were sourced (see “Environmental data”). ECG = East Central Grounds. Shaded
 924 yellow areas indicate sandeel grounds (Jensen et al. 2011; data from Shetland from Marine
 925 Science).

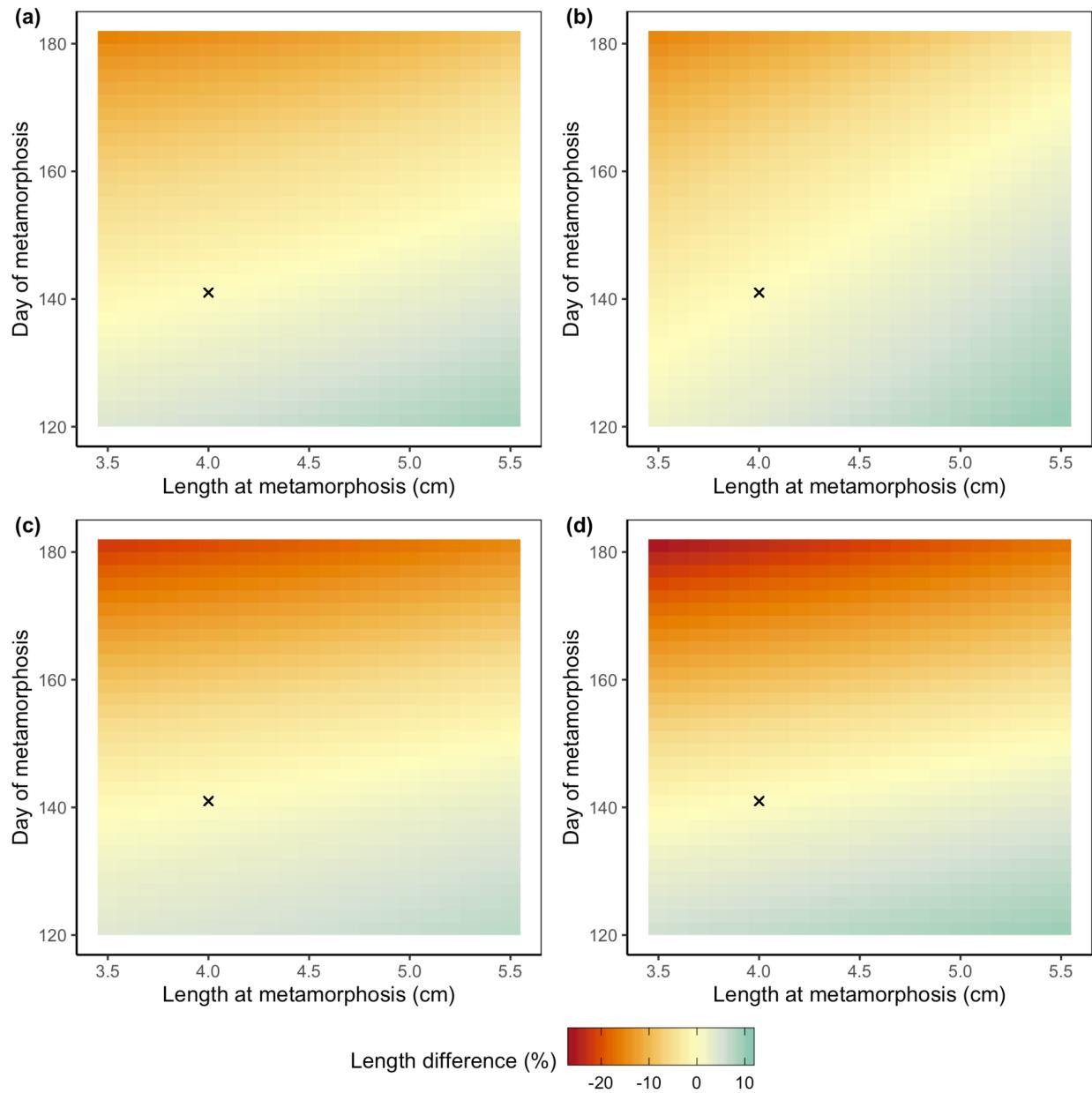
926



929 Fig. 3. (a-d) predicted lengths at overwintering for (a) Dogger Bank, (b) Firth of Forth, (c) ECG
 930 (East Central Grounds) and (d) Shetland, with corresponding observational data as described in
 931 the Methods. (e-f) predicted lengths on the 1st of July for (e) Firth of Forth and (f) Shetland, with
 932 corresponding observational data as described in the Methods.

934

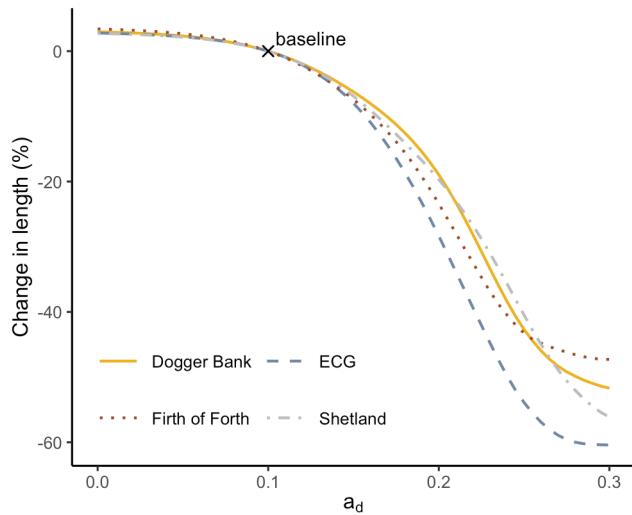
935 Fig. 4. Effect of temperature on sandeel length. (a) effect of temperature on predicted lengths at
 936 overwintering, in relation to predictions at average temperatures (temperature difference = 0°C).
 937 (b) average temperature across the growth season compared to predicted length at overwintering.
 938 (c) average temperature from metamorphosis until date of length observations against observed
 939 length from field data. Note that for (c), the date of observation varies between locations so that
 940 values cannot be compared across locations. Closed symbols are predicted length (b), open
 941 symbols observed length (c). ECG = East Central Grounds.


942

943 Fig. 5. Effect of food conditions on sandeel growth. (a;d;g) effect of (a) average daily energy
 944 availability, (d) density of *Calanus finmarchicus* and (g) prey type on predicted lengths at
 945 overwintering. For (a) and (d) length predictions were averaged across years, and predictions are
 946 presented in relation to average values. For (g) total available energy for a given day was kept

947 unchanged, but all energy was provided in the form of large (2.70 mm), medium (1.15 mm), or
948 small (0.16 mm) prey. (b;e;h) predicted length at overwintering compared to (b) average daily
949 energy availability, (e) density of *Calanus finmarchicus* and (h) average prey size across the
950 growth season. (c;f;i) actual length observations from field data compared with (c) average daily
951 energy availability, (f) density of *Calanus finmarchicus* and (i) average prey size across the growth
952 season from metamorphosis until date of length observations. Note that for (c;f;i), the date of
953 observation varies between locations so that values cannot be compared across locations. Closed
954 symbols are predicted length (b;e;h) and open symbols observed length (c;f;i).

955


956

957

958 Fig. 6. Effect of size at metamorphosis and timing of metamorphosis on predicted lengths at
 959 overwintering, in relation to predictions for nominal values (marked with x) for (a) Dogger Bank,
 960 (b) Firth of Forth, (c) ECG (East Central Grounds) and (d) Shetland.

961

962

963

964 Fig. 7. Effect of turbidity on predicted lengths at overwintering, in relation to predictions for the
 965 nominal value ($a_d = 0.1$). ECG = East Central Grounds.

966

Olin, Agnes B., Banas, Neil S., Heath, Michael R., Wright, Peter J., MacDonald, Alan, Wanless, Sarah, Daunt, Francis, Speakman, John R. and Nager, Ruedi G. (2025) Prey, not temperature, is the dominant driver of juvenile growth in North Sea sandeels. *Marine Ecology Progress Series*, (doi: [10.3354/meps15010](https://doi.org/10.3354/meps15010))

This is the author version of the work. There may be differences between this version and the published version. You are advised to consult the publisher's version if you wish to cite from it.

<http://eprints.gla.ac.uk/373516/>

Deposited on 5 December 2025

Enlighten – Research publications by members of the University of Glasgow
<http://eprints.gla.ac.uk>