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ABSTRACT

Storylines are physically plausible scenarios of future climate change, statistically
derived from an ensemble of climate model projections and organized according to
the magnitude of projected changes in two or more remote drivers that strongly
influence the spatial pattern of the climate response. Here, we provide novel insights
into the Arctic storylines identified by Levine et al. (2024), where Barents-Kara Sea
warming and lower-tropospheric Arctic warming during the extended summer season
(May-October) were remote drivers, as we identify a set of models from the Coupled
Model Intercomparison Project phase 6 to represent the storylines. We do this by
first identifying models that are similar to these storylines in terms of each remote
driver response and quantifying this similarity. Second, we evaluate the model’s
performance in terms of a simple performance score based on the mean normalized
root-mean-square error for multiple climate variables of importance for the storylines.
The normalized values vary between 0 and 1 for all variables, allowing them to
exert a comparable influence on the score. The advantage of the score is that it
provides an easily implementable and interpretable way of identifying models that are
characterized by large errors relative to the rest of the ensemble. Finally, we combine
the similarity estimate and the score to select models to represent the storylines. We
focus on the Arctic during the extended summer season for which the storylines were
designed, but also consider other seasons and regions. Through this exercise, we also
document the methodology, benefits, and limitations of the score.
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1 INTRODUCTION

Any application of modeled climate data should be
supported by an evaluation of the basic performance of
the model, that is, how well it simulates the observed
climate, for the variables, regions, and seasons of interest.
When using multi-model ensembles such as the global
climate model simulations from the Coupled Model
Intercomparison Project phase 6 (CMIP6; Eyring et al.,
2016q), it can be necessary to identify models that do
not perform as well as the rest of the ensemble and
that warrant additional investigation or even exclusion
from further analysis. This is particularly relevant when
it is not desirable or even permissible to use the
entire ensemble of models and a subset must be
chosen instead. An example is dynamical downscaling
of CMIP6 models, as it is computationally prohibitive to
consider downscaling the full CMIP6 ensemble with a
regional climate model. Another is identifying individual
CMIP6 models that are most representative of specific
storylines of future climate change (Williams et al.,
2024). While the final model selection tends to be
subjective, the process can benefit from being guided by
objective evaluations.

A number of methods and tools for evaluating the
simulated climate of multi-model ensembles already
exist (e.g., Eyring et al., 2019), ranging in complexity
from simple online applications like GCMeval (Parding
et al., 2020) to more comprehensive evaluation systems
like the Earth System Model Evaluation tool (ESMValTool;
Eyring et al., 2016b; Righi et al., 2020). Methods can be
based on basic statistical metrics like mean relative error
(e.g., Gleckler et al., 2008), normalized error variance
(e.g., Reichler and Kim, 2008), and root-mean-square
error (RMSE) that has been normalized by observational
uncertainty (e.g., Karpechko et al., 2010), or more
complex frameworks like empirical orthogonal functions
(e.g., Ashfaq et al., 2022; Hannachi, 2021), common
empirical orthogonal functions (e.g., Benestad et al.,
2023; Hannachi et al., 2022; Hannachi, 2021; Sengupta
and Boyle, 1998), atmospheric circulation-type statistics
(e.g., Brands, 2022), or clustering (e.g., Samantaray
et al., 2023; Yokoi et al., 2011). Furthermore, there
are specialized diagnostics like the Taylor diagram
(Taylor, 2001), which can summarize multiple metrics
in one single plot. Each of these scores and diagnostics
offers different valuable insights into the climate
models and the ensembles, but each also has its
limitations. Condensing model evaluation into one single
metric remains challenging, although great progress
has been made to combine different diagnostics
to produce a single-value performance score for
each model (e.g., Gleckler et al, 2008; Hu et al.,
2022; Karpechko et al., 2010; Reichler and Kim, 2008;
Samantaray et al., 2023).

Here, we define a novel and simple score for
comparing data from multiple climate models to
reference data from reanalysis and gridded observations
that is based on average normalized RMSE (NRMSE) for
multiple variables, the RMSE-based relative performance
score (RRPS). Unlike previous studies, we normalize the
RMSE values so that they vary between 0 and 1 for
all variables. This simplifies the interpretation of the
results as it allows for all variables to exert a comparable
influence on the score. By design, the score provides a
measure of the relative model performance within the
ensemble and facilitates identifying models that stand
out from the rest of the ensemble.

We demonstrate the benefits and limitations of the
score by using it to aid the selection of a single CMIP6
model or a set of CMIP6 models to represent storylines of
Arctic climate change previously identified by Levine et al.
(2024). Storylines can be defined as physically plausible
potential pathways of future climate change (Zappa and
Shepherd, 2017). The storylines methodology provides
a way of examining several possible future outcomes
with distinctly different climatological characteristics in
parallel. Levine et al. (2024) showed that during the
extended summer season (May, June, July, August,
September, and October; MJJASO), large parts of the
Arctic inter-model spread can be explained by inter-
model differences in two predictors: Barents-Kara Sea
surface warming and Arctic amplification. From this, they
derived four storylines of summer Arctic climate based on
the strength (weak or strong) of these predictors.

To establish a set of CMIP6 models to represent
each of the four storylines defined in Levine et al.
(2024), we first identify a set of models that are
similar to the storylines in terms of their Barents-Kara
Sea warming and Arctic amplification and compute an
estimate of this similarity. Then we use the score to
evaluate the relative present-day performance of the
models considering four impact-relevant variables used
in Levine et al. (2024): near-surface temperature (tas),
total (large-scale and convective) precipitation rate (pr),
850-hPa air temperature (ta850), and 850-hPa zonal
wind (ua850). Finally, we identify the models most
suitable for representing the storylines by combining the
similarity estimate and the scores.

In what follows, we first provide an overview of the
data used in Section 2 and a detailed description of
the RRPS methodology in Section 3. We summarize
pertinent information from Levine et al. (2024), introduce
a similarity estimate, and use this estimate to establish a
list of candidate models for each storyline in Section 4.1.
We then consider the similarity estimate in combination
with scores for Arctic extended summer in section 4.2
and in combination with scores for a more comprehensive
set of seasons and regions in Section 4.3. Finally, we
summarize and discuss our findings in Section 5.
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2 DATA

We use data from CMIP6 historical experiments (Eyring
et al., 2016a) from 50 models (see appendix A for a
complete list). The models were selected based on:
(1) whether they had performed the CMIP6 historical
and the shared socioeconomic pathway scenario that
corresponds to a 8.5 W m™ increase in radiative forcing
by the end of the 21st century (SSP5-8.5; O’Neill et al.,
2016); and (2) whether all necessary fields were available
at the Earth System Grid Federation (ESGF) at the time
of the data retrieval: monthly tas, pr, zonal wind (ua),
air temperature (ta), and surface pressure (ps). For ua
and ta, we extract the 850-hPa level (ua850 and ta850).
While ps is not explicitly included in the score, it is used
to filter out below-surface grid points from the 850-hPa
fields for consistency across the models (this is needed as
some models extrapolate and others assign missing/fill
values to sub-surface grid points). Hence, we consider
four variables for the score: tas, pr, ua850, and ta850.

To verify the models, we use reference data from the
5th generation of the European Center for Medium-Range
Weather Forecasts’ Reanalysis (ERA5; Hersbach et al.,
2020) for ps, tas, ta850, and ua850 (Hersbach et al.,
2019a,b) and from the Global Precipitation Climatology
Project precipitation analysis (GPCP; Adler et al., 2003)
for pr (Adler et al.,, 2016). We use years 1985-2014 in
all cases.

3 THE RRPS METHODOLOGY

The RRPS guantifies the model’s ability to simulate the
historical climate for the selected variables as a single
value, and is defined as the average NRMSE taken over
a set of variables. We base the score on RMSE as it is not
affected by cancellation of positive and negative errors
(like the bias) and emphasizes large errors. Here, the
score is based on tas, pr, ta850, and ua850. We consider
both annual and seasonal scores. Below, we outline the
procedure for computing the scores step by step.

1. As an initial step, we bilinearly interpolate all data to
a common 1° x 1° grid in the horizontal.

2. We then compute monthly climatologies, that is,
multi-year mean values computed separately for
each month of the year.

3. To ensure consistency across the models, we mask
out sub-surface grid points (i.e., in areas of high
elevation) in ua850 and ta850 using ps.

4. The RMSE values are computed as the root of the
squared differences between the monthly
climatological values from the CMIP6 models and the
relevant reference data sets for the same time period,
1985-2014. For a variable X, model ¢, month m, and
reference data set denoted REF, we compute the

RMSE values separately for each zonal grid point i and
meridional grid point j:

(1)

2
RMSEx ¢ m,ij = (Xc,m,/',j - XREF,m,i,j)

5. To account for variations of grid-cell area with
latitude, RMSE values are spatially averaged using a
standard cosine weighting:

Z[J cos(¢;) X RMSEy ¢ i
> ;Cos(¢y)

RMSEx cm = (2)

where ¢ is latitude.

6. We average the RMSE values temporally, using all
months for annual values or a subset for seasonal
values, and then normalize them so that they vary
between 0 (for the best model) and 1 (for the worst
model) following the approach used by Ashfaq et al.
(2022) to normalize the absolute error (their
equation 1):

RMSEx . - min(RMSEx )
max(RMSEx ¢, ) - min(RMSEx )

NRMSEy . = (3)

where the subscript ¢ indicates that all models are
used.

7. Finally, the RRPS for each model (RRPS,) is computed
as the average NRMSE across the variables X:

1 X=N
RRPS = D NRMSEy (4)
X=1

An advantage of this normalization technique is that
the NRMSE values vary within the same range (0 to 1)
for all variables, meaning that the importance of all
variables is more comparable than if we use the non-
normalized RMSE. The score has the same range as
the NRMSE, with low scores being favorable, indicating
smaller errors than the other models, and higher values
indicative of larger errors. The top score of O is only
obtained if the same model is consistently the best
performing model (NRMSE =0) for all variables and the
worst score of 1 is only obtained if the same model has
the largest relative errors in the ensemble (NRMSE = 1) for
all variables. Another advantage of the normalization is
that it easily allows for different variables to be assigned
weights if necessary.

We compute the score separately for six geographical
regions: the whole globe, the tropics (15°S-15°N),
Northern Hemisphere (NH) mid-latitudes (15°N-55°N),
Southern Hemisphere (SH) mid-latitudes (15°S-55°S),
Arctic (55°N-90°N), and Antarctic (55°S-90°S). One
should note that our somewhat broad definition of
the Arctic is chosen for consistency with Levine et al.
(2024) and includes large land areas with boreal forest,
which have a significantly different climate (e.g., more
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precipitation, warmer summers) than the ocean- and
sea-ice-dominated central Arctic. For both the Arctic
and Antarctic, the placement of the equatorward border
means that it better captures the jet streams and storm
tracks than other more restrictive definitions of the
polar regions.

We consider the annual and seasonal scores. Our main
focus is on the extended NH warm season (MJJASO), as
this season was used to construct the storylines in Levine
et al. (2024). However, we also include the four standard
three-month seasons: December, January, and February
(DJF), March, April, and May (MAM), June, July, and August
(JJA), and September, October, and November (SON).

Next, we identify candidate models from the CMIP6
ensemble to represent the storylines from Levine et al.
(2024) and provide an estimate of how similar the
candidate models are to the storylines. Then, we combine
these similarity estimates with the scores to produce an
estimate of the overall fit for each candidate model, and
use this as a basis for selecting models to represent the
storylines, first for Arctic MJJASO (Section 4.2) and then
for the full set of regions and seasons (Section 4.3).

4 RESULTS

4.1 ARCTIC STORYLINES OF CLIMATE CHANGE
Storylines are physically plausible scenarios of future
climate change, statistically derived from an ensemble of
climate model projections, which are organized according
to the magnitude of the projected changes in two
or more remote drivers (e.g., Arctic amplification) that
strongly influence the spatial pattern of the climate
response (Zappa and Shepherd, 2017). Levine et al. (2024)
applied the storylines methodology to find potential
future pathways of Arctic climate change based on the
CMIP6 historical and SSP5-8.5 scenario from an ensemble
of CMIP6 models. An extended NH warm season MJJASO
was defined because of its importance for societal and
ecological impacts of climate change, that is, Arctic
wildfires and permafrost thaw, which are especially
pronounced during the summer (e.g., Chadburn et al.,
2017; Masrur et al., 2018; McCarty et al., 2021). Using
a multivariate linear regression framework, Levine et al.
(2024) regressed the pattern of change in tas, ua850,
pr, and sea-ice fraction onto two predictors that were
found to explain most of the inter-model variability:
Barents-Kara Sea warming and lower-tropospheric Arctic
warming. Based on this, four storylines of future Arctic
climate change were identified (see also Table 1):
storyline A, weak Arctic amplification and strong Barents-
Kara Sea warming; storyline B, strong Arctic Amplification
and strong Barents-Kara Sea warming; storyline C, weak
Arctic amplification and weak Barents-Kara Sea warming;
and storyline D, strong Arctic Amplification and weak
Barents-Kara Sea warming.

Building on the work of Levine et al. (2024), we identify
models from the CMIP6 ensemble that are representative
of the different storylines. We start by evaluating the
model’s ability to represent the Arctic storylines in terms
of their projected strengthening of Arctic amplification
and surface warming of the Barents-Kara seas (Figure 1).
For each storyline (blue and red dots in Figure 1), we
define aregion around it, constrained by the isoline where
the Euclidean distance from the storyline point is 0.75
in predictor space, and consider models that fall within
this region to be candidate models for that storyline. This
threshold is selected to ensure that the candidate models
are close to the storyline point and that all storylines
have multiple candidate models. For models with more
than one realization, we consider the realization that
is closest to the storyline point. A detailed overview of
the candidate models and realizations we use for the
different storylines is provided in Table 1.

Having defined a set of candidate models for each
storyline, we next quantify the representativeness (or
similarity) of the candidate models by computing the
Euclidean distance between the location of the candidate
models and the relevant storyline point (Figure 1). The
Euclidean distances for all candidate models are given
in Table 1. Results show that storylines B, C, and D all
have at least one candidate model that is very close to
the storyline point, with the closest models found at an
Euclidean distance of 0.12 (MIROC-ES2L), 0.09 (CESM2-
WACCM), and 0.16 (NorESM2-MM) from the storyline
points. For storyline A, the four candidate models are
all found somewhat further away, with the smallest
distance being 0.38 (CNRM-CM6-1).

In what follows, we use the score described in
Section 3 to assess the performance of the full set of
CMIP6 models (Appendix A), with particular emphasis
on the performance of candidate models relative to the
other models in the ensemble. We then use the scores
in combination with the Euclidean distance to select
a single model or a set of models to represent each
storyline. We start by considering the same region and
season as Levine et al. (2024), namely the Arctic during
MJJASO in Section 4.2.

4.2 ARCTIC EXTENDED SUMMER

The Arctic MJJASO (non-normalized) RMSE values for
tas, pr, ua850, and ta850 are shown in Figure 2.
While most values are within one standard deviation
of the multi-model mean (white cells), others deviate
more (blue/red cells). It is clear that some models are
characterized by values that are favorable (low) relative
to the rest of the multi-model ensemble (blue cells),
while others are characterized by more disadvantageous
(higher) values (red cells). In some cases, the RMSE
values can deviate from the multi-model mean by
several standard deviations. The multi-model statistics
(yellow cells at the bottom of the table) show that
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B ACCESS-CM2 NoOrESM2-LM
—1 E3SM-1-0 NoOrESM2-MM
E3SM-1-1 KACE-1-0-G
E3SM-1-1-ECA GFDL-CM4
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FIO-ESM-2-0 CIESM
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-3 -2 -1 0 1 2 3
ArcAmp

Figure 1 Predictor diagram for Arctic storylines showing the area-mean future change in Arctic ta850 (ArcAmp; x-axis) and
Barents-Kara-Sea sea surface temperature (BKWarm,; y-axis) for MJJASO for the models (legend) used in Levine et al. (2024). The
future changes are computed as the difference between SSP5-8.5 (2070-2099) and the CMIP6 historical (1985-2014) normalized by
the global-mean annual-mean change in tas. ArcAmp and BKWarm are relative to the multi-model mean and normalized by each
model’s standard deviation; hence, a predictor value of 1 means that it deviates from the multi-model mean by 1 standard deviation.
The ellipse shows the 80% confidence region for the predictors and the blue and red dots on the ellipse shows the four storylines (A-D)
as in Levine et al. (2024). The circles denote where the Euclidean distance from the storyline point is 0.75. For models with multiple
realizations, markers with two different sizes are shown: the large marker shows the realization that is closest to the relevant storyline
point; other realizations that were also considered by Levine et al. (2024) are shown as substantially smaller markers, but with the
same color and marker shape.

STORYLINE PREDICTOR1 PREDICTOR2 CANDIDATE MODEL ABBR. REALIZATION ED

A ArcAmp- BKWarm+ CNRM-CM6-1 Al rlilp1f2 0.38
CIESM A2 rlilp1fl 0.44
MPI-ESM1-2-LR A3 r17ilp1fl 0.48
CNRM-ESM2-1 A4 rlilplf2 0.62
B ArcAmp+ BKWarm+ MIROC-ES2L B1 r8ilp1f2 0.12
MIROC6 B2 r23ilpifl 0.17
HadGEM3-GC31-LL B3 r3ilp1f3 0.73
UKESM1-0-LL B4 r8ilp1f2 0.74
C ArcAmp- BKWarm- CESM2-WACCM C1 rlilp1fl 0.09
GISS-E2-1-H C2 r5i1p1f2 0.11
CAMS-CSM1-0 a rlilplfl 0.14
GISS-E2-1-G C4 r3ilp5f1 0.26
MCM-UA-1-0 C5 rlilp1f2 0.38
CAS-ESM2-0 6 r3ilplfl 0.55
D ArcAmp+ BKWarm- NorESM2-MM D1 rlilp1fl 0.16
KACE-1-0-G D2 rlilplfl 0.66

Table 1 Overview of Arctic storylines (A-D) and CMIP6 candidate models. The storylines are listed in column 1 and the two predictors
the storylines are based on, the strength (+/-) of the Arctic amplification (ArcAmp-+/-) relative to the multi-model mean, and the
strength (+/-) of the Barents-Kara Sea warming (BKWarm+/-) relative to the multi-model mean, are listed in columns 2 and 3. The
CMIP6 candidate models are listed in column 4, their abbreviations (abbr.) in column 5, the realization that is closest to the storyline
point in the predictor-phase diagram (Figure 1) in column 6, and the Euclidean distance (ED) between the model/realization and the
storyline point in the predictor-phase diagram in column 7. We omit FIO-ESM-2-1 (r1i1p1f1; ED = 0.73) from storyline A due to
technical issues and EC-Earth3 (r112i1p1f1; ED = 0.69) from storyline B as ps was not available. Note that the models are ranked by the
Euclidean distance for each storyline.
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Arctic RMSE for MITASO
Models
tas pr ua850 | ta850
ACCESS-CM2 275 | 0.54 1.10 | 2.27
ACCESS-ESM1-5 237
AWI-CM-1-1-MR 1.88
BCC-CSM2-MR 3.11
*CAMS-CSM1-0 (C) 2.96
*CAS-ESM2-0 (C) 3.29 J .
CESM2 204 | 0.56 27 1.20
*CESM2-WACCM (C) | 2.08 | 054 | 1.39 1.48
*CIESM (A) 320 | 0.56 1.03 | 271
CMCC-CM2-SR5 283 | 059 | 1.06 | 1.40
CMCC-ESM2 247 | 057 | 097 1.29
*CNRM-CM6-1 (A) 254 | 075 1.29 1.15
CNRM-CM6-1-HR 205 | 078 1.13 1.21
*CNRM-ESM2-1 (A) 292 | 079 | 1.29 A1
CanESM5 212 | 057 .05 20
CanESM5-1 215 | 057 07 26
CanESM5-CanOE 220 | 057 04 23
E3SM-1-0 254 | 0.60 1.23 1.88
E3SM-1-1 275 | 0.60 145 | 250
E3SM-1-1-ECA 3.02 | 0.58 146 | 2.87
EC-Earth3 237 | 054 1.05 1.85
EC-Earth3-CC 213 | 058 | 0.99 1.78
EC-Earth3-Veg 218 | 0.57 .05 1.74
EC-Earth3-Veg-LR 260 | 054 .09 1.88
FGOALS-f3-L 229 | 078 08 59
FGOALS-23 443 | 0.75 41 .59
GFDL-CM4 1.92 [ 052 [ 0.80 70
GFDL-ESM4 194 [ 064 | 099 | 134
*GISS-E2-1-G (C) 245 |_0.60 | 1.20 | 1.24
*GISS-E2-1-H (C) 266 | 0.7 1.26 1.37

GISS-E2-2-G |EEYM 0.7 1.13
*HadGEM3-GC3I-LL (B)| 1.94 | 0.6 1.00 1.61

HadGEM3-GC31-MM 178 | 0.69 | 0091 1.35
[ITM-ESM 284 | 066 | 1.19 | 221
INM-CM4-8 273 | 064 | 1.09 | 127
INM-CM5-0 244 | 0.65 | 099 1.31
TPSL-CM6A-LR 251 | 078 21 1.50
*KACE-1-0-G (D) 246 | 0.70 10 | 2.05
KIOST-ESM 0.59 .56
*MCM-UA-1-0 (C) 3.82 | 0.80 50 | 173
*MIROC-ES2L (B) 2.84 | 0.83 55 .88
*MIROC6 (B) 268 | 0.61 17 .62
MPI-ESM1-2-HR 1.86 | 0.68 .04 42
*MPI-ESM1-2-LR (A) 215 | 0.64 1.41 1.48
MRI-ESM2-0 1.63 | 058 | 089 | 0.82
NESM3 259 | 0.69 | 148 | 1.67
NorESM? 230 | 0.51 |Di67N 223 |

-LM
*NorESM2-MM (D) 242 0.5 1.41 1.92

TaiESM1 2.29 0.55 0.97 1.25
*UKESM1-0-LL (B) 2.72 0.57 111 2.27
Multi-model mean 2.66 0.64 1.20 .87
Multi-model spread 0.95 0.10 0.22 .07

Figure 2 Overview of models (sorted alphabetically; column 1)
and Arctic MJJASO RMSE values for tas (K; column 2), pr

(mm day1; column 3), ua850 (m s7%; column 4), and ta850 (K;
column 5). Cells with blue/red shading indicate that the RMSE
values are lower/larger than the multi-model mean by one
standard deviation or more, and the darker the shading the
more the value deviates. The multi-model mean RMSE and
spread (one standard deviation) is given in the two bottom rows
(yellow shading). Candidate models for Arctic storylines are
shown in bold with a preceding asterisk and with the storyline
(A/B/C/D) given in a parenthesis following the model name.

the mean and spread vary from variable to variable,
with some variables being characterized by a more
pronounced spread relative to the multi-model mean
than others. The diversity between variables emphasizes
the importance of normalizing the RMSE values before
combining them into a single score. This is not only
needed to achieve dimensionless numbers, but also
prevents the score from being dominated by the presence
of variables that are characterized by larger errors than
the others, thus ensuring that all four variables exert a

more comparable influence on the score. The inclusion
of two temperature variables means that the combined
influence of temperature on the score will be larger than
that from precipitation or zonal wind. However, we opt
to include both temperature fields for consistency with
Levine et al. (2024) and because of the importance of
these variables for impact assessments, as identified in
Levine et al. (2024).

It is clear that models that perform substantially
better than the multi-model mean in terms of Arctic
MJJASO NRMSE (blue cells in Figure 3a) tend to perform
well in terms of the score (b) and be placed in the upper
part of the table, and vice versa. This is in line with the
score being positively correlated with the NRMSE of the
individual variables, with linear correlation coefficients
of 0.79 for tas, 0.59 for pr, 0.73 for ua850, and 0.66
for ta850 (all values are significant at the p=0.05 level
following a Student’s t-test). The Arctic MJJASO scores
range between 0.06 and 0.72. The best score is close
to 0, meaning that the best-performing model (GFDL-
CM4) performs well for all variables, although it does not
consistently have the lowest NRMSE (which would give a
score of 0). The worst (highest) score, however, is quite
a bit better than the theoretical maximum value of 1,
meaning that the relative performance of the model in
question varies more from variable to variable; that is, no
single model has the poorest relative performance for all
four variables.

Storylines A, B, and C all have candidate models within
the upper tail of the distribution (Figure 3b), defined
as the range between the upper quartile (Q2) and Q2
plus 1.5 times the inter-quartile range (IQR). Storyline C
also has a candidate model that is defined as an outlier
(score exceeding Q2 plus 1.5 times the IQR). Only a
single candidate model, HQdGEM3-GC31-LL (a candidate
for storyline B), places within the lower tail, defined as
the range between the first quartile (Q1) and Q1 minus
1.5 times the IQR. The remaining candidate models are
within the IQR.

In line with the score being a measure of relative
model performance and the goal being to identify
models with large errors compared to the rest of the
multi-model ensemble, we consider candidate models
with scores that are within the upper tail (including
outliers) to be less preferable based on the relative
performance for the variables, region, and season of
primary interest.

To determine which model is most suited to represent
the four storylines, we consider the Arctic MJJASO scores
in combination with the Euclidean distance between the
models and relevant storyline point in predictor space
(Figure 1; Table 1). Specifically, we use the product of
these two quantities to produce a measure of the overall
fit for each model:

fit = RRPS(s, r) x ED.(s = MJJASO, r = Arctic) (5)
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(@) (b)
Arctic NRMSE for MJJASO Summary statistics
Models -
tas pr ua850 ta850 rank RRPS | Storyline | Stats
GFDL-CM4 0.05 0.04 0.00 0.15 1 0.06 Lower tail
MRI-ESM2-0 0.00 0.19 0.10 0.00 2 0.07 >
TaiESM1 0.11 0.10 0.19 0.08 3 0.12 »
CMCC-ESM2 0.15 0.16 0.19 0.08 4 0.14 ’?
CanESM5 0.08 0.15 0.28 0.07 5 0.14 22
CanESM5-CanOE 0.10 0.15 0.27 0.07 6 0.15 >
CanESM5-1 0.09 0.16 0.30 0.08 7 0.16 4
EC-Earth3-CC 0.09 0.19 0.21 0.17 8 0.16 22
*HadGEM3-GC31-LL (B) 0.05 0.25 0.22 0.14 9 0.16 B >
EC-Earth3 0.13 0.08 0.28 0.18 10 0.17 i
HadGEM3-GC31-MM 0.03 0.44 0.12 0.09 11 0.17 ’2
EC-Earth3-Veg 0.09 0.15 0.28 0.16 12 0.17 IQR
GFDL-ESM4 0.05 0.33 0.21 0.09 13 0.17 o9
EC-Earth3-Veg-LR 0.17 0.08 0.33 0.18 14 0.19 o9
INM-CM5-0 0.14 0.35 0.21 0.08 15 0.20 22
CESM2 0.07 0.13 0.53 0.07 16 0.20 99
CMCC-CM2-SR5 0.21 0.21 0.29 0.10 17 0.20 2
MPI-ESM1-2-HR 0.04 0.42 0.27 0.10 18 0.21 22
ACCESS-CM2 0.19 0.10 0.34 0.25 19 0.22 20
*GISS-E2-1-G (C) 0.14 0.22 0.45 0.07 20 0.22 C 09
INM-CM4-8 0.19 0.34 0.33 0.08 21 0.23 2
*CESM2-WACCM (C) 0.08 0.08 0.67 0.11 22 0.23 C 29
AWI-CM-1-1-MR 0.04 0.45 0.29 0.15 23 0.23 o9
*UKESM1-0-LL (B) 0.19 0.15 0.35 0.25 24 0.23 B o9
*MIROC6 (B) 0.18 0.24 0.42 0.14 25 0.25 B P9
*CIESM (A) 0.27 0.12 0.26 0.33 26 0.25 A 00
*NorESM2-MM (D) 0.14 0.00 0.70 0.19 27 0.26 D 29
E3SM-1-0 0.16 0.22 0.49 0.18 28 0.26 »
*CAMS-CSM1-0 (C) 0.23 0.33 0.35 0.20 29 0.28 C 2
*KACE-1-0-G (D) 0.14 0.47 0.34 0.21 30 0.29 D 99
CNRM-CM6-1-HR 0.07 0.68 0.38 0.07 31 0.30 »
FGOALS-f3-L 0.11 0.66 0.32 0.13 32 0.31 22
*MPI-ESM1-2-LR (A) 0.09 0.33 0.70 0.11 33 0.31 A o9
IITM-ESM 0.21 0.38 0.44 0.24 34 0.32 2
*GISS-E2-1-H (C) 0.18 0.50 0.52 0.10 35 0.32 C o9
NorESM2-LM 0.11 0.01 0.24 36 0.34 20
*CNRM-CM6-1 (A) 0.16 0.60 0.55 0.06 37 0.34 A »
IPSL-CM6A-LR 0.15 0.67 0.47 0.12 38 0.35 Upper tail
E3SM-1-1 0.19 0.22 0.74 0.29 39 0.36 22
E3SM-1-1-ECA 0.24 0.18 0.75 0.35 40 0.38 >
NESM3 0.17 0.44 0.77 0.15 41 0.38 i
*CNRM-ESM2-1 (A) 0.22 0.69 0.55 0.10 42 0.39 A ’?
BCC-CSM2-MR 0.26 0.10 0.23 43 0.40 22
ACCESS-ESM1-5 0.13 0.66 0.15 44 0.46 >
FGOALS-g3 0.48 0.59 0.69 0.13 45 0.47 i
*MIROC-ES2L (B) 0.21 0.80 0.85 0.18 46 0.51 B 4
*MCM-UA-1-0 (C) 0.38 0.72 0.80 0.16 47 0.51 C >
*CAS-ESM2-0 (C) 0.29 0.93 0.22 48 0.61 C Outliers
KIOST-ESM 0.21 0.86 00 49 0.68 22
GISS-E2-2-G 00 0.50 0.37 00 50 0.72 99
Multi-model mean 0.17 0.32 0.43 0.17 0.27
Multi-model spread 0.16 0.25 0.26 0.18 0.15

Figure 3 Overview of Arctic MJJASO NRMSE values, ranks, scores (RRPS), storylines, and quartile bins. Panel a is the same as Figure 2,
but for the normalized RMSE (NRMSE) values. Panel b shows the ranks (column 1), scores (defined in section 3; column 2), the
storylines for which the model is a candidate for (if any; column 3), and quartile bins (stats; column 4), indicating whether the model
belongs to the lower tail, the IQR, the upper tail, or is an outlier. The IQR and outliers are highlighted in gray for readability. The models

are sorted by the score, with the best model (lowest score) at the top.

where fit is the overall fit, s is the season, and r is
the region.

Hence, the overall fit combines the relative present-
day model performance with the representativeness
of the candidate models into a single value. Values for
the overall fit, based on the Arctic MJJASO scores for
the candidate models and the Euclidean distances from
Table 1, are illustrated in Figure 4 (blue curves) and given
in Table 2.

For storyline A, CIESM (brown downward-pointing
triangle) is the best-performing candidate model,
while CNRM-CM6-1 (green filled circle) is slightly more
representative of the storyline, having a smaller Euclidean
distance (Figure 4a). The overall fit is best (smallest) for
CIESM, meaning that even though CIESM is somewhat
further away from the storyline point, it has a slightly
better overall fit due to its present-day performance
(i.e, score) for Arctic MJJASO. The overall fit for CIESM
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(a) Storyline A: Arctic MJJASO RRPS vs ED

(b) Storyline B: Arctic MJJASO RRPS vs ED

RMSE-based relative performance score (RRPS)

(c) Storyline C: Arctic MJJASO RRPS vs ED
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(d) Storyline D: Arctic MJJASO RRPS vs ED

RMSE-based relative performance score (RRPS)
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Figure & The Arctic MJJASO scores (RRPS) shown against the Euclidean distance (ED; Table 1) for candidate models (legends) for
storyline A (panel a), B (panel b), C (panel c), and D (panel d). Also shown are isolines for the overall fit (blue curves with blue numbers),
defined as the product of the score and the Euclidean distance (equation 5).

is nevertheless very similar to that for CNRM-CM6-1
and MPI-ESM1-2-LR (purple upward-pointing triangle).
These three candidate models for storyline A are more or
less clustered together with both scores and Euclidean
distance that are relatively similar; we therefore argue
that they should all be considered acceptable choices
for storyline A. The last candidate model, CNRM-ESM2-1,
is also relatively similar to the other three, but is further
away from the storyline point and has a score exceeding
the 75th percentile (Figure 3).

For storyline B (Figure 4b), MIROC-ES2L (green filled
circle) and MIROC6 (brown downward-pointing triangle)
stand out from the other candidate models due to
their small Euclidean distances. While HadGEM3-GC31-LL

(purple upward pointing triangle) and UKESM1-0-LL (pink
square) have the smallest and second smallest scores,
they are both much further away from the storyline
point. MIROC6 stands out as the best candidate, having
a small Euclidean distance and a relatively low score,
and the best overall fit. MIROC-ES2L has the second-
best fit, but it also has one of the largest scores
of all the models considered (0.51) with high relative
errors for both pr and ua850 (Figure 3). To choose a
second model for storyline B, one will have to prioritize
between having a small Euclidean distance and a low
score. As MIROC-ES2L is in the far end of the upper
tail, we argue that HadGEM3-GC31-LL is preferable in
this case.
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For storyline C (Figure 4c), itis clear what while CESM2-
WACCM (green filled circle) has the smallest Euclidean
distance and the second lowest score, yielding the
best overall fit, results are very similar for GISS-E2-1-H
(brown downward-pointing triangle), CAMS-CSM1-0
(purple upward-pointing triangle), and GISS-E2-1-G
(pink square); hence, all these four models are good
representatives for storyline C. The other two candidate
models are less preferable, as they have larger Euclidean
distances and substantially larger scores.

Storyline D has only two candidate models, which
are more or less indistinguishable in terms of the Arctic
MJJASO score alone; the models are both within the
IQR, with the relative performance of NorESM2-MM being
slightly better than for KACE-1-0-G (RRPS 0.26 and rank
27 vs. RRPS 0.29 and rank 30; Figure 3). While it is difficult
to select one over the other based on the score alone,
Figure 4d clearly shows NorESM2-MM (green filled circle)
is much closer to the storyline point than KACE-1-0-G
(brown downward-pointing triangle), resulting in the best
overall fit. NorESM2-MM is therefore the preferred choice
for storyline D.

In summary, based on a combination of (1) how
well the models represent the present-day state of
four key variables in the Arctic during MJJASO and (2)

the models’ proximity to the relevant storyline point in
predictor space, we select CIESM, CNRM-CM6-1, and MPI-
ESM1-2-LR to represent storyline A, MIROC6 to represent
storyline B, CESM2-WACCM, GISS-E2-1-H, CAMS-CSM1-0,
and GISS-E2-1-G to represent storyline C, and NorESM2-
MM to represent storyline D. Storylines A and C both have
multiple candidate models that are very similar, and we
therefore recommend a set of models in these cases.

4.2.1 Performance for Arctic land and Arctic sea

Arctic climate change is associated with a wide range of
impacts, some tied to processes over the land surface,
such as wildfires and permafrost thaw (e.g., Chadburn
et al., 2017; Masrur et al., 2018; McCarty et al., 2021),
and others to changes in marine areas, such as sea-
ice loss (e.g., Gulev et al., 2021; Screen and Simmonds,
2010). To assess how sensitive the model selection is to
whether we base the score on NRMSE values for the whole
Arctic, Arctic land, or Arctic sea, we compute the score
and overall fit separately for these three regions (Table 2).
Results show that the model with the best overall fit for
the whole Arctic is generally also the model with the best
fit for Arctic sea and Arctic land for all four storylines. For
storyline A, CIESM has the best value for whole region and
over the sea, while over land, CNRM-CM6-1 is marginally

STORYLINE  ARCTIC MJJASO RRPS ARCTIC MJJASO OVERALL FIT
TOTAL LAND SEA TOTAL LAND SEA

A A2 (0.25) A2(0.24) A3(0.23) A2(0.11) A1(0.10) A2(0.10)
A3(0.31) A1(0.27) A2(0.24) A1(0.13) A2(0.10) A3(0.11)
A1(0.34) A3(0.32) A1(0.35) A3(0.15) A3(0.15 A1(0.13)
A4(0.39) A4(0.33) A4(0.38) A4(0.24) A4(0.20) A4(0.23)

B B3 (0.16) B3(0.15) B2(0.16) B2(0.04) B2(0.05) B2(0.03)
B4(0.23) B4(0.21) B3(0.17) B1(0.06) B1(0.07) B1(0.04)
B2 (0.25) B2(0.29) B4(0.24) B3(0.12) B3(0.11) B3(0.12)
B1(0.51) B1(0.55) B1(0.36) B4(0.17) B4(0.16) B4(0.18)

C C4(0.22) C4(0.21) (C1(0.20)0 C1(0.02) (C1(0.02) (C1(0.02)
C1(0.23) (C1(0.22) C4(0.23) C2(0.04) (C2(0.03) (C2(0.04)
C3(0.28) (C3(0.25) (C3(0.28) (C3(0.04) (C3(0.04) (C3(0.04)
C2(0.32) C2(0.30) (C2(0.33) C4(0.06) C4(0.05)  C4(0.06)
C5(0.51) C6(0.52) C5(0.40) (C5(0.19) (C5(0.21) (C5(0.15)
C6(0.61) C5(0.54) (C6(0.62) (C6(0.33) (C6(0.29) C6(0.34)

D D1(0.26) D1(0.21) D1(0.27) D1(0.04) D1(0.03) D1(0.04)
D2(0.29) D2(0.26) D2(0.31) D2(0.19) D2(0.17) D2(0.20)

Table 2 Overview of MJJASO scores (RRPS) and overall fit for the whole (total) Arctic, Arctic land, and Arctic sea for the storyline
candidate models. We use the model abbreviations defined in Table 1, repeated here for convenience: A1 (CNRM-CM6-1), A2 (CIESM),
A3 (MPI-ESM1-2-LR), A4 (CNRM-ESM2-1), B1 (MIROC-ES2L), B2 (MIROC6), B3 (HadGEM3-GC31-LL), B4 (UKESM1-0-LL), C1
(CESM2-WACCM), C2 (GISS-E2-1-H), C3 (CAMS-CSM1-0), C4 (GISS-E2-1-G), C5 (MCM-UA-1-0), C6 (CAS-ESM2-0), D1 (NorESM2-MM), and
D2 (KACE-1-0-G). For each storyline (column 1), the candidate-model abbreviations and their scores and overall fit for the whole Arctic,
Arctic land, and Arctic sea are given in columns 2-4 and 5-7; the models are sorted by the score (columns 2-4) and overall fit

(columns 5-7) with the best values on top.
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better (however, at two decimal precision, the overall fit
is the same).

While this shows that our model selection for Arctic
MJJASO holds regardless of whether we focus on the
whole Arctic, Arctic land, or Arctic ocean, it is clear that
the scores display some sensitivity to which part of the
Arctic they are computed for. Next, we examine the
sensitivity of the score further, comparing results for
Arctic MJJASO to results from other regions and seasons.
This will allow us to further investigate how robust
our selection is, that is, whether the model selection
based on the Arctic MJJASO scores still holds for other
regions and seasons, or whether other candidate models
are preferable.

4.3 SEASONAL AND REGIONAL SENSITIVITY
Figure 5a compares the Arctic MJJASO scores (black dots
in a) to the Arctic scores for the whole year and the four

traditional three-month seasons (orange, blue, and red
symbols), showing that the relative model performance
can vary considerably throughout the year. The largest
range (between the season with the worst and best score;
numbers in the rightmost part of panel a) is found for
GISS-E2-2-G, which has a range of 0.4 between the best-
performing season (JJA; dark red square) and the worst
(DJF; dark blue asterisk). There are no indications that the
seasonal sensitivity increases linearly with the score, as
large ranges are found for the models with low scores,
small ranges are found for models with high scores, and
vice versa.

Interestingly, the relative performance of the models
varies more across regions than across seasons.
Comparing the seasonal variability (for Arctic scores
across seasons; Figure 5a) to the regional variability (for
MJJASO scores across regions; Figure 5b) clearly shows
that the regional variability is larger. This is not only

(a) Arctic RRPS values across seasons

(b) MJJASO RRPS values across reglons

O Arctic SON

O Arctic JJA
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Figure 5 Arctic scores (RRPS) for different seasons (a) and MJJASO scores for different regions (b). In (a), Arctic scores are shown for
MJJASO (black dots), annual (orange diamonds), DJF (dark blue asterisks), MAM (light red plus signs), JJA (dark red squares), and SON
(cyan open circles). In (b), MJJASO scores are shown for the Arctic (black dots), globe (red diamonds), NH mid-latitudes (NH ML; blue
asterisk), tropics (green plus signs), SH mid-latitudes (SH ML; purple squares), and Antarctic (orange triangles). In both panels, the
range between the smallest and largest scores for each model is given on the right side, and the models are sorted by the Arctic
MJJASO scores (black dots). Models that are candidates for Arctic storylines are denoted as in Figure 2.
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Figure 6 Distributions of the range of scores (RRPS) across seasons (a) and regions (b). In (a), the ranges are defined as the difference
between the season with the largest and smallest score for each model (as in Figure 5a), with the distributions based on the values
from the 50 models shown separately for each region (orange boxes). In (b), the ranges are defined as the difference between the
region with the largest and smallest score for each model (as in Figure 5b), with the distributions shown separately for each season
(green boxes). The box and whiskers show the distribution for the 50 models with the boxes extending from the first to the third
quartiles, the median shown as a white horizontal line, and the whiskers extending to the farthest data point or maximum 1.5 times
the inter-quartile range. Scores that are more than 1.5 times the inter-quartile range from the box edge are defined as outliers and

drawn as open circles.

evident when comparing the regional spread for a single
season (Figure 5b) to the seasonal scores for a single
region (Figure 5a), but is a general result found when
considering the seasonal spread for all regions (Figure 6a)
to the regional spread for all seasons at the same time
(Figure 6b).

To further examine the regional sensitivity of the
candidate models, we consider the MJJASO scores and
ranks for these models for the different regions in
Figure 7. While such an evaluation of the relative model
performance is useful, it is important to keep in mind that
both the scores and ranks are sensitive to the results for
the other models, and that the sensitivity to the rest of
the ensemble is stronger for the ranks. The score for an
individual model is only affected by the subset of models
that have the smallest or largest NRMSE value for one or
more fields (equation 3). To find the ranking value of an
individual model, on the other hand, the performance of
the full set must be taken into account. Therefore, when
comparing scores between regions for a single model,
improved (lower) scores do not always translate to better
(lower) ranking values, nor do worse scores always yield
higher ranking values. For example, CNRM-ESM2-1 has a
better score for the Antarctic (0.16) than for the SH mid-
latitudes (0.23), but the ranking value is 17 in both cases.
This happens because there are 16 better-performing
models in both cases.

4.3.1 Storyline A

The models that were selected to represent storyline
A based on the Arctic MJJASO scores, CNRM-CM6-
1, CIESM, and MPI-ESM1-2-LR (Section 4.2), all have

relatively consistent performance for the other regions
(Figure 7a). Overall, the performance is best for CIESM,
which has Arctic, global, NH mid-latitude, and Antarctic
scores within the IQR (yellow cells) and tropical and SH
mid-latitude scores below the 25th percentile (blue cells).
CIESMis also the most consistent performer with a range
of scores of 0.12. The second-best model is CNRM-CM6-1,
which has scores within the IQR for every region except
the Antarctic, where it is within the lower tail. MPI-ESM1-
2-LR has scores within the IQR for all regions except the
Antarctic, where it is ranked 40th with scores exceeding
the 75th percentile (red cells). The last candidate model,
CNRM-ESM2-1, is within the upper tail in the Arctic, but
performs better for all other regions with scores within
the IQRin all cases.

The overall fit for all seasons and regions (Figure 8a)
shows that the CIESM (A2) is the overall best choice for
storyline A, being either the best-performing model, or
comparable to the best-performing model (e.g., in the
Antarctic). To accentuate models with relatively good
scores, we show markers for models with scores below
the 75th percentile in strong colors (reds, blues, orange,
and black), while markers for models whose scores
exceed the 75th percentile are shown in light gray. The
colors of the markers reveal that CIESM has no scores
exceeding the 75th percentile.

While the overall fit for the candidate models for
storyline A is best for CIESM, values for CNRM-CM6-1
and MPI-ESM1-2-LR are largely similar. CNRM-ESM2-1,
however, tends to have slightly higher values, particularly
in the tropics, and has Arctic scores exceeding the 75th
percentile during MJJASO, JJA, and SON (gray markers).
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Figure 7 MJJASO scores (RRPS; a) and ranks (b) for the storyline candidate models for the Arctic (column 1), globe (column 2), NH

mid-latitudes (NH ML; column 3), tropics (column &), SH mid-lati

tudes (SH ML; column 5), and the Antarctic (column 6). Also shown is

the range of values for each model (column 7), computed as the difference between the largest and smallest scores (a) and ranks (b)

for each model. The colors indicate whether the values are within the lower tail (blue cells), within the IQR (yellow cells), within the
upper tail (light red cells), or outlier values (dark red cells) based on percentiles computed separately for each region, using values from
the full set of models. Bold values indicate that the scores (a) or ranks (b) exceed the 75th percentile. The model names follow the
convention from Figure 2 and the sorting is as in Table 1. Note that the scores and ranks are relative to the full set of models.

4.3.2 Storyline B

MIROC6, the selected model for storyline B based on
the Arctic MJJASO results (Section 4.2), consistently
performs worse for the other regions, with MJJASO
scores (Figure 7a) exceeding the 75th percentile for
the globe, NH mid-latitudes, SH mid-latitudes, and the
Antarctic, with the latter furthermore being an outlier.
Similarly, the MJJASO scores for MIROC-ES2L exceed
the 75th percentile for every region except the tropics,
with the global, SH mid-latitude, and Antarctic scores
being outliers. This suggests that when considering other
regions than the Arctic, it is preferable to use one of the
three other candidate models for storyline B, even though
they all have larger distances to the storyline point
(Table 1). Based on the MJJASO scores for the six regions
(Figure 7a), HadGEM3-GC31-LL and UKESM1-O-LL are
the best and second-best candidates. HadGEM3-GC31-LL

consistently has scores in the lower tail for every region
and also the smallest range of scores of the candidate
models for storyline B. The ranks (Figure 7b) show that
HadGEM3-GC31-LL is among the best 10 models for
all regions. UKESM1-0-LL has scores in the IQR in the
Arctic, NH mid-latitudes, and tropics and below the 25th
percentile in the SH mid-latitudes, Antarctic, and globally,
and is among the 24 best models in all cases.
Considering the overall fit for all seasons and regions
(Figure 8b) reveals that MIROC6 (B2) generally has the
best fit among the storyline B models or is comparable
to MIROC-ES2L (B1), except in the Antarctic, where the
overall fit of the four candidate models is relatively
similar, with HadGEM3-CG31-LL (B3) and UKESM1-0-LL
(B4) having somewhat better values for most seasons.
However, the large scores seen for MJJASO outside the
Arctic in Figure 7a are also found for other seasons.
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Figure 8 Overview of the overall fit (equation 5) for the candidate models for storylines A (panel a), B (panel b), C (panel c), and D
(panel d) for all regions (Arctic, global, NH mid-latitudes (ML), tropics, SH ML, and Antarctic) and seasons (MJJASO, annual, DJF, MAM,
JJA, and SON). We use the model abbreviations defined in Table 1, repeated here for convenience: A1 (CNRM-CM6-1), A2 (CIESM), A3
(MPI-ESM1-2-LR), A4 (CNRM-ESM2-1), B1 (MIROC-ES2L), B1 (MIROC6), B3 (HadGEM3-GC31-LL), B4 (UKESM1-0-LL), C1 (CESM2-WACCM),
C2 (GISS-E2-1-H), C3 (CAMS-CSM1-0), C4 (GISS-E2-1-G), C5 (MCM-UA-1-0), C6 (CAS-ESM2-0), D1 (NorESM2-MM), and D2 (KACE-1-0-G).
For each storyline, region, and candidate model, the overall fit for the whole year and the different seasons (legend in d) are shown in
separate vertical stacks. To highlight the overall fit for models with relatively low scores, markers are shown in gray when the
associated scores exceed the 75th percentile for the relevant region and season. Note that the y-axis varies between panels.

MIROC6 has scores above the 75th percentile (gray
symbols) for one or more seasons for the global, NH and
SH mid-latitude, and Antarctic regions. MIROC-ES2L has
scores exceeding the 75th percentile for all regions and
seasons except the tropics, where it is below the 75th
percentile for all seasons.

While the MIROC models are both very close to the
storyline point with small Euclidean distances, resulting
in low (good) values for the overall fit, the relative
model performance renders them less favorable for
many regions. MIROC6 is the ideal choice for storyline B

when considering the Arctic. For the tropics, MIROC6 and
MIROC-ES2L are both good choices. For the other regions,
HadGEM-GC-31-LL and UKESM1-O-LL are the preferred
choices; these two models have scores below the 75th
percentile for all seasons and regions. While HadGEM-GC-
31-LL tends to have slightly better overall performance,
the values for UKESM1-0-LL are generally similar.

4.3.3 Storyline C
For storyline C, CESM2-WACCM, GISS-E2-1-H, CAMS-
CSM1-0, and GISS-E2-1-G were selected based on the
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Arctic MJJASO scores and overall fit. Considering MJJASO
scores for all regions (Figure 7a), CESM2-WACCM is
the best performer overall with scores below the 25th
percentile in the tropics and globally and within the IQR
in the other regions. CESM2-WACCM is also the most
consistent performer of all the candidate models for
storyline C, with a range of 0.12. The other candidate
models for storyline C all exceed the 75th percentile for
at least one region.

The overall fit (Figure 8c) is consistently better for the
four models that were selected to represent storyline C
based on the Arctic MJJASO results (C1-C4) compared to
the other models (C5-C6). However, CESM2-WACCM (C1)
is the only model for which the scores stay below the 75th
percentile across all regions and seasons. CESM2-WACCM
therefore stands out as the best choice for storyline
C based on the overall fit and scores for all seasons
and regions.

4.3.4 Storyline D

Storyline D stands out from the others in that it only
has two candidate models, NorESM2-MM and KACE-
1-0-G (Table 1). While the Arctic MJJASO scores are
similar for these two models, NorESM2-MM has the best
overall fit and was selected to represent storyline D
in Section 4.2. Considering the MJJASO scores for all
regions (Figure 7a) shows that while the scores are
similar for many regions, including the Arctic, NorESM2-
MM consistently has better (lower) scores, particularly
in the NH mid-latitudes, tropics, Antarctic, and globally.
The ranks (b) show that NorESM2-MM is the best-ranking
model in terms of the global scores, the third-best
ranking model in the tropics, and the sixth-best ranking
model in the NH mid-latitudes. Based on MJJASO scores
for the globe, NH mid-latitudes, tropics, and Antarctic,
NorESM2-MM is the preferred model for storyline D with
scores below the 25th percentile for all regions except
the Arctic. For the Arctic and SH mid-latitudes, while
NorESM2-MM has slightly better scores than KACE-1-0-
G, the models are relatively similar in terms of their
relative performance.

When considering the overall fit for all seasons and
regions (Figure 8d), NorESM2-MM (D1) clearly stands out
as the best choice in all cases. This is in line with the
NorESM2-MM being closer to the storyline point and
hence having a smaller Euclidean distance than KACE-
1-0-G (Table 1) and with the scores generally being
similar for the two models or better for the NorESM2-
MM. Both models consistently have scores below the 75th
percentile (i.e., no gray symbols).

5 SUMMARY AND DISCUSSION

This study presents a novel framework for evaluating
the historical representation of climate models, based

on NRMSE (normalized RMSE) for multiple variables of
particular interest, yielding a single number, or score,
per model: the RMSE-based relative performance score
(RRPS). The novelty lies in the way the normalization is
performed, forcing all variables to vary within the exact
samerange (0 to 1), thus exerting a comparable influence
on the score. Some differences between variables,
however, remain, as the NRMSE distributions themselves
are different. The score is an easily understandable
and implementable way of evaluating relative model
performance for variables, regions, and seasons of
particular interest. It is inherently flexible in that different
variables and statistics that underpin a specific study
can be used, as long as they are normalized in the
same way. The results highlight models with large errors
relative to the multi-model ensemble, and facilitate
identifying models that perform less favorably relative
to other models within the ensemble, thus providing a
quantifiable and objective approach to narrowing the
selection of models in studies that cannot use all models,
even though all models may perform acceptably well.
We demonstrate the benefits and limitations of the
score through the selection of specific CMIP6 models that
represent previously defined storylines of Arctic climate
change (Levine et al., 2024): weak Arctic amplification
and strong Barents-Kara Sea warming (storyline A),
strong Arctic amplification and strong Barents-Kara Sea
warming (storyline B), weak Arctic amplification and
weak Barents-Kara Sea warming (storyline C), and strong
Arctic amplification and weak Barents-Kara Sea warming
(storyline D). We achieve this through a three-step process:

1. We identify a set of CMIP6 models that are close to
the storylines in terms of their future changes in
Arctic amplification and Barents-Kara Sea warming
and estimate this closeness in terms of the Euclidean
distance between the storyline point and the models
in predictor space (Table 1).

2. We use the score to evaluate the models’
present-day performance, considering data from the
historical experiments from 50 CMIP6 models and
reference data from ERA5 and GPCP for four key
variables used in Levine et al. (2024): tas, pr, ta850,
and ua850 for 1985-2014.

3. We combine the Euclidean distance and the scores to
produce an estimate of the overall fit of each model
(equation 5) and use this as a basis for the final
model selection.

We focus on the Arctic during the extended summer
season (MJJASO), in line with the region and season used
in Levine et al. (2024), and find CIESM, CNRM-CM6-1, and
MPI-ESM1-2-LR to be the best models for representing
storyline A, MIROCE for storyline B, CESM2-WACCM, GISS-
E2-1-H, CAMS-CSM1-0, and GISS-E2-1-G for storyline C,
and NorESM2-MM for storyline D.
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Assessing the robustness of our results, we also
consider scores for a comprehensive set of regions
and seasons. The score exhibits both seasonal and
regional sensitivity, with the regional sensitivity being
larger than the seasonal sensitivity. For storyline A, the
selection based on Arctic MJJASO results holds across
regions and seasons, albeit with the CIESM standing
out as a somewhat better choice than CNRM-CM6-
1 and MPI-ESM1-2-LR. For storyline B, we find the
best choices to be MIROC6 for the Arctic, MIROC6 and
MIROC-ES2L for the tropics, and HadGEM-GC-21-LL and
UKESM1-0-LL for the other regions (global, NH and SH
extratropics, and Antarctic). For storylines C and D, we find
CESM2-WACCM and NorESM2-MM, respectively, to be the
best choices.

For any application of the score, the variables must be
carefully selected to capture the most important aspects
of the research topic. The set considered here is tailored
for the Arctic storylines in Levine et al. (2024); many other
properties of the modeled climate system could have
been evaluated, and the analysis presented here is not
an exhaustive investigation of the general performance
of the models. While we wanted the variables considered
to have a comparable influence on the score, it can
be desirable to amplify or lessen the influence of some
variables, for example, based on skill, observational
uncertainty, or co-variability between variable pairs, for
other applications. While beyond the scope of this
study, such adjustments can be incorporated in the
normalization itself or as weights assigned to the NRMSE
values before averaging. The weights must, however,
be tailored for the season and region of interest, as
co-variability between variables can have pronounced
seasonal and regional sensitivity.

In some cases, it can be deemed necessary to
exclude outlier models from the ensemble. This can
have a considerable impact on the score considered
here, as the largest (and smallest) RMSE values are used
in the normalization (equation 3), hence affecting the
scoring values of all models. The score is, on the other
hand, relatively insensitive to the inclusion of multiple
models with similar errors, in contrast to ranking-based
methods. Here, we opt for considering the full multi-
model ensemble to ensure that the same set of models is
examined for all regions and seasons and that all relevant
candidate models are always included. As mentioned
above, model performance can vary substantially from
region to region and season to season, resulting in
different outlier models for different regions and seasons.

We use the score and Euclidean distance to identify
a subset of the candidate models that we consider to
be more suitable than the others. However, for some
applications of the storylines, it can be necessary to
introduce other or additional criteria that can modify
the outcome. An example of this is the availability of
high-frequency data for downscaling.

The purpose of the score is not to identify the
best-performing models, but to identify models whose
performance deviates from the rest of the multi-model
ensemble for the variables, regions, and seasons of
interest. The score presented here provides a relative
measure of quality compared to other models, and
hence does not say anything about how good or bad a
model is in absolute terms. In an ensemble of excellent
performing models, the worst can still be well-suited, and
in a group of models that perform terribly, even the best
may represent the climate so poorly that it should be
used with caution.

APPENDIX A: CMIP6 MODELS

In this study, we use data from the CMIP6 historical
experiments of the following 50 models (the
realization/variant label and data citation are provided
in parenthesis): ACCESS-CM2 (rlilplfl; Dix et al,
2019); ACCESS-ESM1-5 (rlilp1fl; Ziehn et al., 2019);
AWI-CM-1-1-MR  (rlilp1fl; Semmler et al., 2018);
BCC-CSM2-MR  (rlilp1fl; Wu et al, 2018); CAMS-
CSM1-0 (r1i1p1f1l; Rong, 2019); CAS-ESM2-0 (r3i1p1f1;
Chai, 2020); CESM2 (rlilp1fl; Danabasoglu, 2019a);
CESM2-WACCM (r1i1p1f1; Danabasoglu, 2019b); CIESM
(rlilp1fl; Huang, 2019); CMCC-CM2-SR5 (r1ilp1fl;
Lovato and Peano, 2020); CMCC-ESM2 (r1i1p1f1; Lovato
et al., 2021); CNRM-CM6-1 (r1i1p1f2; Voldoire, 2018);
CNRM-CM6-1-HR  (rlilp1f2; Voldoire, 2019); CNRM-
ESM2-1 (rlilp1f2; Seferian, 2018); CanESM5 (rlilp1fl;
Swart et al.,, 2019b); CanESM5-1 (rlilp1fl; Swart et al.,
2019¢); CanESM5-CanOE (rl1i1p2f1; Swart et al., 2019a);
E3SM-1-0 (rlilp1f1; Stevenson et al., 2023); E3SM-1-1
(rlilp1f1; Bader et al., 2019); E3SM-1-1-ECA (r1i1p1fl;
Bader et al, 2020); EC-Earth3 (rlilp1fl; EC-Earth
Consortium (EC-Earth), 2019a); EC-Earth3-CC (rlilp1fi,
EC-Earth Consortium (EC-Earth), 2021); EC-Earth3-Veg
(r1ilp1fl; EC-Earth Consortium (EC-Earth), 2019b); EC-
Earth3-Veg-L (r1ilp1f1; EC-Earth Consortium (EC-Earth),
2020); FGOALS-f3-L (rlilp1fl; Yu, 2019); FGOALS-g3
(rlilp1f1; Li, 2019); GFDL-CM& (rlilp1fl; Guo et al,
2018); GFDL-ESM4 (rlilp1fl; Krasting et al, 2018);
GISS-E2-1-G (r3i1p5f1; NASA Goddard Institute for Space
Studies (NASA/GISS), 2018); GISS-E2-1-H (r5i1p1f2; NASA
Goddard Institute for Space Studies (NASA/GISS), 2019b);
GISS-E2-2-G (r1i1p3f1; NASA Goddard Institute for
Space Studies (NASA/GISS), 2019a); HadGEM3-GC31-LL
(r3ilp1f3; Ridley et al, 2019a); HadGEM3-GC31-MM
(rlilp1f3; Ridley et al., 2019b); IITM-ESM (r1ilp1fl;
Choudhury et al., 2019); INM-CM4-8 (r1i1p1f1; Volodin
et al, 2019a); INM-CM5-0 (rli1p1f1; Volodin et al.,
2019b); IPSL-CM6A-LR (r1ilp1fl; Boucher et al., 2018);
KACE-1-0-G (r1ilp1fl; Byun et al, 2019); KIOST-ESM
(rlilp1fl; Kim et al, 2019); MCM-UA-1-0 (rlilp1f2;
Stouffer, 2019); MIROC-ES2L (r8ilp1f2; Hajima et al.,
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2019); MIROC6 (r23i1p1f1; Tatebe and Watanabe, 2018);
MRI-ESM1-2-HR (rlilp1f1; Jungclaus et al., 2019); MPI-
ESM1-2-LR (r17i1p1fl; Wieners et al., 2019); MRI-ESM2-0
(rlilp1fl; Yukimoto et al., 2019); NESM3 (r1ilp1fl; Cao
and Wang, 2019); NorESM2-LM (r1i1p1f1; Seland et al.,
2019); NorESM2-MM (rli1p1f1; Bentsen et al., 2019);
TaiESM1 (r1ilp1fl; Lee and Liang, 2020); UKESM1-0-LL
(r8i1p1f2; Tang et al., 2019).

Note that we use the first realization (r1), except for the
candidate models for Arctic storylines, where we use the
realization that is closest to the storyline point in predictor
space (Section 4.1 and Table 1).

DATA ACCESSIBILITY STATEMENT

An overview of the CMIP6 data is provided in Appendix A.
The CMIP6 data is freely available through the Earth
System Grid Federation, see for instance https://esgf.
github.io/nodes.html. Data from ERA5 can be retrieved
through the Copernicus Climate Data Store (https:/
/cds.climate.copernicus.eu) and the GPCP data from
the National Oceanic and Atmospheric Administration
Physical Science Laboratory website (https://psl.noaa.
gov). Data citations are provided in Section 2 and
Appendix A.

Regridding the CMIP6 data to a 1 x 1 common grid
and computing monthly climatologies (steps 1 and 2 in
Section 3) was carried out in ESMValTool version 2.10
(Eyring et al., 2016b; Righi et al., 2020). Subsequently, the
remaining steps (3-7 in Section 3) were carried out in NCL.
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