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ABSTRACT 

Storylines are physically plausible scenarios of future climate change, statistically 

derived from an ensemble of climate model projections and organized according to 

the magnitude of projected changes in two or more remote drivers that strongly 

influence the spatial pattern of the climate response. Here, we provide novel insights 
into the Arctic storylines identified by Levine et al. (2024), where Barents-Kara Sea 

warming and lower-tropospheric Arctic warming during the extended summer season 

(May–October) were remote drivers, as we identify a set of models from the Coupled 

Model Intercomparison Project phase 6 to represent the storylines. We do this by 

first identifying models that are similar to these storylines in terms of each remote 

driver response and quantifying this similarity. Second, we evaluate the model’s 
performance in terms of a simple performance score based on the mean normalized 

root-mean-square error for multiple climate variables of importance for the storylines. 
The normalized values vary between 0 and 1 for all variables, allowing them to 

exert a comparable influence on the score. The advantage of the score is that it 
provides an easily implementable and interpretable way of identifying models that are 

characterized by large errors relative to the rest of the ensemble. Finally, we combine 

the similarity estimate and the score to select models to represent the storylines. We 

focus on the Arctic during the extended summer season for which the storylines were 

designed, but also consider other seasons and regions. Through this exercise, we also 

document the methodology, benefits, and limitations of the score. 
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1 INTRODUCTION 

Any application of modeled climate data should be 

supported by an evaluation of the basic performance of 
the model, that is, how well it simulates the observed 

climate, for the variables, regions, and seasons of interest. 
When using multi-model ensembles such as the global 
climate model simulations from the Coupled Model 
Intercomparison Project phase 6 (CMIP6; Eyring et al., 
2016a), it can be necessary to identify models that do 

not perform as well as the rest of the ensemble and 

that warrant additional investigation or even exclusion 

from further analysis. This is particularly relevant when 

it is not desirable or even permissible to use the 

entire ensemble of models and a subset must be 

chosen instead. An example is dynamical downscaling 

of CMIP6 models, as it is computationally prohibitive to 

consider downscaling the full CMIP6 ensemble with a 

regional climate model. Another is identifying individual 
CMIP6 models that are most representative of specific 

storylines of future climate change (Williams et al., 
2024). While the final model selection tends to be 

subjective, the process can benefit from being guided by 

objective evaluations. 
A number of methods and tools for evaluating the 

simulated climate of multi-model ensembles already 

exist (e.g., Eyring et al., 2019), ranging in complexity 

from simple online applications like GCMeval (Parding 

et al., 2020) to more comprehensive evaluation systems 
like the Earth System Model Evaluation tool (ESMValTool; 
Eyring et al., 2016b; Righi et al., 2020). Methods can be 

based on basic statistical metrics like mean relative error 
(e.g., Gleckler et al., 2008), normalized error variance 

(e.g., Reichler and Kim, 2008), and root-mean-square 

error (RMSE) that has been normalized by observational 
uncertainty (e.g., Karpechko et al., 2010), or more 

complex frameworks like empirical orthogonal functions 
(e.g., Ashfaq et al., 2022; Hannachi, 2021), common 

empirical orthogonal functions (e.g., Benestad et al., 
2023; Hannachi et al., 2022; Hannachi, 2021; Sengupta 

and Boyle, 1998), atmospheric circulation-type statistics 
(e.g., Brands, 2022), or clustering (e.g., Samantaray 

et al., 2023; Yokoi et al., 2011). Furthermore, there 

are specialized diagnostics like the Taylor diagram 

(Taylor, 2001), which can summarize multiple metrics 
in one single plot. Each of these scores and diagnostics 
offers different valuable insights into the climate 

models and the ensembles, but each also has its 
limitations. Condensing model evaluation into one single 

metric remains challenging, although great progress 
has been made to combine different diagnostics 
to produce a single-value performance score for 
each model (e.g., Gleckler et al., 2008; Hu et al., 
2022; Karpechko et al., 2010; Reichler and Kim, 2008; 
Samantaray et al., 2023). 

Here, we define a novel and simple score for 
comparing data from multiple climate models to 

reference data from reanalysis and gridded observations 
that is based on average normalized RMSE (NRMSE) for 
multiple variables, the RMSE-based relative performance 

score (RRPS). Unlike previous studies, we normalize the 

RMSE values so that they vary between 0 and 1 for 
all variables. This simplifies the interpretation of the 

results as it allows for all variables to exert a comparable 

influence on the score. By design, the score provides a 

measure of the relative model performance within the 

ensemble and facilitates identifying models that stand 

out from the rest of the ensemble. 
We demonstrate the benefits and limitations of the 

score by using it to aid the selection of a single CMIP6 

model or a set of CMIP6 models to represent storylines of 
Arctic climate change previously identified by Levine et al. 
(2024). Storylines can be defined as physically plausible 

potential pathways of future climate change (Zappa and 

Shepherd, 2017). The storylines methodology provides 
a way of examining several possible future outcomes 
with distinctly different climatological characteristics in 

parallel. Levine et al. (2024) showed that during the 

extended summer season (May, June, July, August, 
September, and October; MJJASO), large parts of the 

Arctic inter-model spread can be explained by inter-
model differences in two predictors: Barents-Kara Sea 

surface warming and Arctic amplification. From this, they 

derived four storylines of summer Arctic climate based on 

the strength (weak or strong) of these predictors. 
To establish a set of CMIP6 models to represent 

each of the four storylines defined in Levine et al. 
(2024), we first identify a set of models that are 

similar to the storylines in terms of their Barents-Kara 

Sea warming and Arctic amplification and compute an 

estimate of this similarity. Then we use the score to 

evaluate the relative present-day performance of the 

models considering four impact-relevant variables used 

in Levine et al. (2024): near-surface temperature (tas), 
total (large-scale and convective) precipitation rate (pr), 
850-hPa air temperature (ta850), and 850-hPa zonal 
wind (ua850). Finally, we identify the models most 
suitable for representing the storylines by combining the 

similarity estimate and the scores. 
In what follows, we first provide an overview of the 

data used in Section 2 and a detailed description of 
the RRPS methodology in Section 3. We summarize 

pertinent information from Levine et al. (2024), introduce 

a similarity estimate, and use this estimate to establish a 

list of candidate models for each storyline in Section 4.1. 
We then consider the similarity estimate in combination 

with scores for Arctic extended summer in section 4.2 

and in combination with scores for a more comprehensive 

set of seasons and regions in Section 4.3. Finally, we 

summarize and discuss our findings in Section 5. 
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2 DATA 

We use data from CMIP6 historical experiments (Eyring 

et al., 2016a) from 50 models (see appendix A for a 

complete list). The models were selected based on: 
(1) whether they had performed the CMIP6 historical 
and the shared socioeconomic pathway scenario that 
corresponds to a 8.5 W m–1 increase in radiative forcing 

by the end of the 21st century (SSP5-8.5; O’Neill et al., 
2016); and (2) whether all necessary fields were available 

at the Earth System Grid Federation (ESGF) at the time 

of the data retrieval: monthly tas, pr, zonal wind (ua), 
air temperature (ta), and surface pressure (ps). For ua 

and ta, we extract the 850-hPa level (ua850 and ta850). 
While ps is not explicitly included in the score, it is used 

to filter out below-surface grid points from the 850-hPa 

fields for consistency across the models (this is needed as 
some models extrapolate and others assign missing/fill 
values to sub-surface grid points). Hence, we consider 
four variables for the score: tas, pr, ua850, and ta850. 

To verify the models, we use reference data from the 

5th generation of the European Center for Medium-Range 

Weather Forecasts’ Reanalysis (ERA5; Hersbach et al., 
2020) for ps, tas, ta850, and ua850 (Hersbach et al., 
2019a,b) and from the Global Precipitation Climatology 

Project precipitation analysis (GPCP; Adler et al., 2003) 
for pr (Adler et al., 2016). We use years 1985–2014 in 

all cases. 

3 THE RRPS METHODOLOGY 

The RRPS quantifies the model’s ability to simulate the 

historical climate for the selected variables as a single 

value, and is defined as the average NRMSE taken over 
a set of variables. We base the score on RMSE as it is not 
affected by cancellation of positive and negative errors 
(like the bias) and emphasizes large errors. Here, the 

score is based on tas, pr, ta850, and ua850. We consider 
both annual and seasonal scores. Below, we outline the 

procedure for computing the scores step by step. 

1. As an initial step, we bilinearly interpolate all data to 

a common 1° × 1° grid in the horizontal. 
2. We then compute monthly climatologies, that is, 

multi-year mean values computed separately for 
each month of the year. 

3. To ensure consistency across the models, we mask 

out sub-surface grid points (i.e., in areas of high 

elevation) in ua850 and ta850 using ps. 
4. The RMSE values are computed as the root of the 

squared differences between the monthly 

climatological values from the CMIP6 models and the 

relevant reference data sets for the same time period, 
1985–2014. For a variable X, model c, month m, and 

reference data set denoted REF, we compute the 

RMSE values separately for each zonal grid point i and 

meridional grid point j: 

RMSEX,c,m,i,j = √(Xc,m,i,j – XREF,m,i,j)
2 

(1) 

5. To account for variations of grid-cell area with 

latitude, RMSE values are spatially averaged using a 

standard cosine weighting: 

∑i,j cos(𝜙j) × RMSEX,c,m,i,j
RMSEX,c,m = (2)∑i,j cos(𝜙j) 

where 𝜙 is latitude. 
6. We average the RMSE values temporally, using all 

months for annual values or a subset for seasonal 
values, and then normalize them so that they vary 

between 0 (for the best model) and 1 (for the worst 
model) following the approach used by Ashfaq et al. 
(2022) to normalize the absolute error (their 
equation 1): 

RMSEX,c – min(RMSEX,call )NRMSEX,c = (3)
max(RMSEX,call ) – min(RMSEX,call ) 

where the subscript call indicates that all models are 

used. 
7. Finally, the RRPS for each model (RRPSc) is computed 

as the average NRMSE across the variables X: 

X=N1
RRPSc = 

N 
∑ NRMSEX,c (4) 
X=1 

An advantage of this normalization technique is that 
the NRMSE values vary within the same range (0 to 1) 
for all variables, meaning that the importance of all 
variables is more comparable than if we use the non-
normalized RMSE. The score has the same range as 
the NRMSE, with low scores being favorable, indicating 

smaller errors than the other models, and higher values 
indicative of larger errors. The top score of 0 is only 

obtained if the same model is consistently the best 
performing model (NRMSE = 0) for all variables and the 

worst score of 1 is only obtained if the same model has 
the largest relative errors in the ensemble (NRMSE = 1) for 
all variables. Another advantage of the normalization is 
that it easily allows for different variables to be assigned 

weights if necessary. 
We compute the score separately for six geographical 

regions: the whole globe, the tropics (15°S–15°N), 
Northern Hemisphere (NH) mid-latitudes (15°N–55°N), 
Southern Hemisphere (SH) mid-latitudes (15°S–55°S), 
Arctic (55°N–90°N), and Antarctic (55°S–90°S). One 

should note that our somewhat broad definition of 
the Arctic is chosen for consistency with Levine et al. 
(2024) and includes large land areas with boreal forest, 
which have a significantly different climate (e.g., more 
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precipitation, warmer summers) than the ocean- and 

sea-ice-dominated central Arctic. For both the Arctic 

and Antarctic, the placement of the equatorward border 
means that it better captures the jet streams and storm 

tracks than other more restrictive definitions of the 

polar regions. 
We consider the annual and seasonal scores. Our main 

focus is on the extended NH warm season (MJJASO), as 
this season was used to construct the storylines in Levine 

et al. (2024). However, we also include the four standard 

three-month seasons: December, January, and February 

(DJF), March, April, and May (MAM), June, July, and August 
(JJA), and September, October, and November (SON). 

Next, we identify candidate models from the CMIP6 

ensemble to represent the storylines from Levine et al. 
(2024) and provide an estimate of how similar the 

candidate models are to the storylines. Then, we combine 

these similarity estimates with the scores to produce an 

estimate of the overall fit for each candidate model, and 

use this as a basis for selecting models to represent the 

storylines, first for Arctic MJJASO (Section 4.2) and then 

for the full set of regions and seasons (Section 4.3). 

4 RESULTS 

4.1 ARCTIC STORYLINES OF CLIMATE CHANGE 
Storylines are physically plausible scenarios of future 

climate change, statistically derived from an ensemble of 
climate model projections, which are organized according 

to the magnitude of the projected changes in two 

or more remote drivers (e.g., Arctic amplification) that 
strongly influence the spatial pattern of the climate 

response (Zappa and Shepherd, 2017). Levine et al. (2024) 
applied the storylines methodology to find potential 
future pathways of Arctic climate change based on the 

CMIP6 historical and SSP5-8.5 scenario from an ensemble 

of CMIP6 models. An extended NH warm season MJJASO 

was defined because of its importance for societal and 

ecological impacts of climate change, that is, Arctic 

wildfires and permafrost thaw, which are especially 

pronounced during the summer (e.g., Chadburn et al., 
2017; Masrur et al., 2018; McCarty et al., 2021). Using 

a multivariate linear regression framework, Levine et al. 
(2024) regressed the pattern of change in tas, ua850, 
pr, and sea-ice fraction onto two predictors that were 

found to explain most of the inter-model variability: 
Barents-Kara Sea warming and lower-tropospheric Arctic 

warming. Based on this, four storylines of future Arctic 

climate change were identified (see also Table 1): 
storyline A, weak Arctic amplification and strong Barents-
Kara Sea warming; storyline B, strong Arctic Amplification 

and strong Barents-Kara Sea warming; storyline C, weak 

Arctic amplification and weak Barents-Kara Sea warming; 
and storyline D, strong Arctic Amplification and weak 

Barents-Kara Sea warming. 

Building on the work of Levine et al. (2024), we identify 

models from the CMIP6 ensemble that are representative 

of the different storylines. We start by evaluating the 

model’s ability to represent the Arctic storylines in terms 
of their projected strengthening of Arctic amplification 

and surface warming of the Barents-Kara seas (Figure 1). 
For each storyline (blue and red dots in Figure 1), we 

define a region around it, constrained by the isoline where 

the Euclidean distance from the storyline point is 0.75 

in predictor space, and consider models that fall within 

this region to be candidate models for that storyline. This 
threshold is selected to ensure that the candidate models 
are close to the storyline point and that all storylines 
have multiple candidate models. For models with more 

than one realization, we consider the realization that 
is closest to the storyline point. A detailed overview of 
the candidate models and realizations we use for the 

different storylines is provided in Table 1. 
Having defined a set of candidate models for each 

storyline, we next quantify the representativeness (or 
similarity) of the candidate models by computing the 

Euclidean distance between the location of the candidate 

models and the relevant storyline point (Figure 1). The 

Euclidean distances for all candidate models are given 

in Table 1. Results show that storylines B, C, and D all 
have at least one candidate model that is very close to 

the storyline point, with the closest models found at an 

Euclidean distance of 0.12 (MIROC-ES2L), 0.09 (CESM2-
WACCM), and 0.16 (NorESM2-MM) from the storyline 

points. For storyline A, the four candidate models are 

all found somewhat further away, with the smallest 
distance being 0.38 (CNRM-CM6-1). 

In what follows, we use the score described in 

Section 3 to assess the performance of the full set of 
CMIP6 models (Appendix A), with particular emphasis 
on the performance of candidate models relative to the 

other models in the ensemble. We then use the scores 
in combination with the Euclidean distance to select 
a single model or a set of models to represent each 

storyline. We start by considering the same region and 

season as Levine et al. (2024), namely the Arctic during 

MJJASO in Section 4.2. 

4.2 ARCTIC EXTENDED SUMMER 
The Arctic MJJASO (non-normalized) RMSE values for 
tas, pr, ua850, and ta850 are shown in Figure 2. 
While most values are within one standard deviation 

of the multi-model mean (white cells), others deviate 

more (blue/red cells). It is clear that some models are 

characterized by values that are favorable (low) relative 

to the rest of the multi-model ensemble (blue cells), 
while others are characterized by more disadvantageous 
(higher) values (red cells). In some cases, the RMSE 

values can deviate from the multi-model mean by 

several standard deviations. The multi-model statistics 
(yellow cells at the bottom of the table) show that 
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Figure 1 Predictor diagram for Arctic storylines showing the area-mean future change in Arctic ta850 (ArcAmp; x-axis) and 
Barents-Kara-Sea sea surface temperature (BKWarm; y-axis) for MJJASO for the models (legend) used in Levine et al. (2024). The 
future changes are computed as the difference between SSP5-8.5 (2070–2099) and the CMIP6 historical (1985–2014) normalized by 
the global-mean annual-mean change in tas. ArcAmp and BKWarm are relative to the multi-model mean and normalized by each 
model’s standard deviation; hence, a predictor value of 1 means that it deviates from the multi-model mean by 1 standard deviation. 
The ellipse shows the 80% confidence region for the predictors and the blue and red dots on the ellipse shows the four storylines (A–D) 
as in Levine et al. (2024). The circles denote where the Euclidean distance from the storyline point is 0.75. For models with multiple 
realizations, markers with two different sizes are shown: the large marker shows the realization that is closest to the relevant storyline 
point; other realizations that were also considered by Levine et al. (2024) are shown as substantially smaller markers, but with the 
same color and marker shape. 

STORYLINE PREDICTOR 1 PREDICTOR 2 CANDIDATE MODEL ABBR. REALIZATION ED 

A ArcAmp– BKWarm+ CNRM-CM6-1 A1 r1i1p1f2 0.38 

CIESM A2 r1i1p1f1 0.44 

MPI-ESM1-2-LR A3 r17i1p1f1 0.48 

CNRM-ESM2-1 A4 r1i1p1f2 0.62 

B ArcAmp+ BKWarm+ MIROC-ES2L B1 r8i1p1f2 0.12 

MIROC6 B2 r23i1p1f1 0.17 

HadGEM3-GC31-LL B3 r3i1p1f3 0.73 

UKESM1-0-LL B4 r8i1p1f2 0.74 

C ArcAmp– BKWarm– CESM2-WACCM C1 r1i1p1f1 0.09 

GISS-E2-1-H C2 r5i1p1f2 0.11 

CAMS-CSM1-0 C3 r1i1p1f1 0.14 

GISS-E2-1-G C4 r3i1p5f1 0.26 

MCM-UA-1-0 C5 r1i1p1f2 0.38 

CAS-ESM2-0 C6 r3i1p1f1 0.55 

D ArcAmp+ BKWarm– NorESM2-MM D1 r1i1p1f1 0.16 

KACE-1-0-G D2 r1i1p1f1 0.66 

Table 1 Overview of Arctic storylines (A–D) and CMIP6 candidate models. The storylines are listed in column 1 and the two predictors 
the storylines are based on, the strength (+/–) of the Arctic amplification (ArcAmp+/–) relative to the multi-model mean, and the 
strength (+/–) of the Barents-Kara Sea warming (BKWarm+/–) relative to the multi-model mean, are listed in columns 2 and 3. The 
CMIP6 candidate models are listed in column 4, their abbreviations (abbr.) in column 5, the realization that is closest to the storyline 
point in the predictor-phase diagram (Figure 1) in column 6, and the Euclidean distance (ED) between the model/realization and the 
storyline point in the predictor-phase diagram in column 7. We omit FIO-ESM-2-1 (r1i1p1f1; ED = 0.73) from storyline A due to 
technical issues and EC-Earth3 (r112i1p1f1; ED = 0.69) from storyline B as ps was not available. Note that the models are ranked by the 
Euclidean distance for each storyline. 
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Figure 2 Overview of models (sorted alphabetically; column 1) 
and Arctic MJJASO RMSE values for tas (K; column 2), pr 
(mm day–1; column 3), ua850 (m s–1; column 4), and ta850 (K; 
column 5). Cells with blue/red shading indicate that the RMSE 
values are lower/larger than the multi-model mean by one 
standard deviation or more, and the darker the shading the 
more the value deviates. The multi-model mean RMSE and 
spread (one standard deviation) is given in the two bottom rows 
(yellow shading). Candidate models for Arctic storylines are 
shown in bold with a preceding asterisk and with the storyline 
(A/B/C/D) given in a parenthesis following the model name. 

the mean and spread vary from variable to variable, 
with some variables being characterized by a more 

pronounced spread relative to the multi-model mean 

than others. The diversity between variables emphasizes 
the importance of normalizing the RMSE values before 

combining them into a single score. This is not only 

needed to achieve dimensionless numbers, but also 

prevents the score from being dominated by the presence 

of variables that are characterized by larger errors than 

the others, thus ensuring that all four variables exert a 

more comparable influence on the score. The inclusion 

of two temperature variables means that the combined 

influence of temperature on the score will be larger than 

that from precipitation or zonal wind. However, we opt 
to include both temperature fields for consistency with 

Levine et al. (2024) and because of the importance of 
these variables for impact assessments, as identified in 

Levine et al. (2024). 
It is clear that models that perform substantially 

better than the multi-model mean in terms of Arctic 

MJJASO NRMSE (blue cells in Figure 3a) tend to perform 

well in terms of the score (b) and be placed in the upper 
part of the table, and vice versa. This is in line with the 

score being positively correlated with the NRMSE of the 

individual variables, with linear correlation coefficients 
of 0.79 for tas, 0.59 for pr, 0.73 for ua850, and 0.66 

for ta850 (all values are significant at the p = 0.05 level 
following a Student’s t-test). The Arctic MJJASO scores 
range between 0.06 and 0.72. The best score is close 

to 0, meaning that the best-performing model (GFDL-
CM4) performs well for all variables, although it does not 
consistently have the lowest NRMSE (which would give a 

score of 0). The worst (highest) score, however, is quite 

a bit better than the theoretical maximum value of 1, 
meaning that the relative performance of the model in 

question varies more from variable to variable; that is, no 

single model has the poorest relative performance for all 
four variables. 

Storylines A, B, and C all have candidate models within 

the upper tail of the distribution (Figure 3b), defined 

as the range between the upper quartile (Q2) and Q2 

plus 1.5 times the inter-quartile range (IQR). Storyline C 

also has a candidate model that is defined as an outlier 
(score exceeding Q2 plus 1.5 times the IQR). Only a 

single candidate model, HadGEM3-GC31-LL (a candidate 

for storyline B), places within the lower tail, defined as 
the range between the first quartile (Q1) and Q1 minus 
1.5 times the IQR. The remaining candidate models are 

within the IQR. 
In line with the score being a measure of relative 

model performance and the goal being to identify 

models with large errors compared to the rest of the 

multi-model ensemble, we consider candidate models 
with scores that are within the upper tail (including 

outliers) to be less preferable based on the relative 

performance for the variables, region, and season of 
primary interest. 

To determine which model is most suited to represent 
the four storylines, we consider the Arctic MJJASO scores 
in combination with the Euclidean distance between the 

models and relevant storyline point in predictor space 

(Figure 1; Table 1). Specifically, we use the product of 
these two quantities to produce a measure of the overall 
fit for each model: 

fit = RRPSc(s, r) × EDc(s = MJJASO, r = Arctic) (5) 
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Figure 3 Overview of Arctic MJJASO NRMSE values, ranks, scores (RRPS), storylines, and quartile bins. Panel a is the same as Figure 2, 
but for the normalized RMSE (NRMSE) values. Panel b shows the ranks (column 1), scores (defined in section 3; column 2), the 
storylines for which the model is a candidate for (if any; column 3), and quartile bins (stats; column 4), indicating whether the model 
belongs to the lower tail, the IQR, the upper tail, or is an outlier. The IQR and outliers are highlighted in gray for readability. The models 
are sorted by the score, with the best model (lowest score) at the top. 

where fit is the overall fit, s is the season, and r is 
the region. 

Hence, the overall fit combines the relative present-
day model performance with the representativeness 
of the candidate models into a single value. Values for 
the overall fit, based on the Arctic MJJASO scores for 
the candidate models and the Euclidean distances from 

Table 1, are illustrated in Figure 4 (blue curves) and given 

in Table 2. 

For storyline A, CIESM (brown downward-pointing 

triangle) is the best-performing candidate model, 
while CNRM-CM6-1 (green filled circle) is slightly more 

representative of the storyline, having a smaller Euclidean 

distance (Figure 4a). The overall fit is best (smallest) for 
CIESM, meaning that even though CIESM is somewhat 
further away from the storyline point, it has a slightly 

better overall fit due to its present-day performance 

(i.e, score) for Arctic MJJASO. The overall fit for CIESM 
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Figure 4 The Arctic MJJASO scores (RRPS) shown against the Euclidean distance (ED; Table 1) for candidate models (legends) for 
storyline A (panel a), B (panel b), C (panel c), and D (panel d). Also shown are isolines for the overall fit (blue curves with blue numbers), 
defined as the product of the score and the Euclidean distance (equation 5). 

is nevertheless very similar to that for CNRM-CM6-1 

and MPI-ESM1-2-LR (purple upward-pointing triangle). 
These three candidate models for storyline A are more or 
less clustered together with both scores and Euclidean 

distance that are relatively similar; we therefore argue 

that they should all be considered acceptable choices 
for storyline A. The last candidate model, CNRM-ESM2-1, 
is also relatively similar to the other three, but is further 
away from the storyline point and has a score exceeding 

the 75th percentile (Figure 3). 
For storyline B (Figure 4b), MIROC-ES2L (green filled 

circle) and MIROC6 (brown downward-pointing triangle) 
stand out from the other candidate models due to 

their small Euclidean distances. While HadGEM3-GC31-LL 

(purple upward pointing triangle) and UKESM1-0-LL (pink 

square) have the smallest and second smallest scores, 
they are both much further away from the storyline 

point. MIROC6 stands out as the best candidate, having 

a small Euclidean distance and a relatively low score, 
and the best overall fit. MIROC-ES2L has the second-
best fit, but it also has one of the largest scores 
of all the models considered (0.51) with high relative 

errors for both pr and ua850 (Figure 3). To choose a 

second model for storyline B, one will have to prioritize 

between having a small Euclidean distance and a low 

score. As MIROC-ES2L is in the far end of the upper 
tail, we argue that HadGEM3-GC31-LL is preferable in 

this case. 
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For storyline C (Figure 4c), it is clear what while CESM2-
WACCM (green filled circle) has the smallest Euclidean 

distance and the second lowest score, yielding the 

best overall fit, results are very similar for GISS-E2-1-H 

(brown downward-pointing triangle), CAMS-CSM1-0 

(purple upward-pointing triangle), and GISS-E2-1-G 

(pink square); hence, all these four models are good 

representatives for storyline C. The other two candidate 

models are less preferable, as they have larger Euclidean 

distances and substantially larger scores. 
Storyline D has only two candidate models, which 

are more or less indistinguishable in terms of the Arctic 

MJJASO score alone; the models are both within the 

IQR, with the relative performance of NorESM2-MM being 

slightly better than for KACE-1-0-G (RRPS 0.26 and rank 

27 vs. RRPS 0.29 and rank 30; Figure 3). While it is difficult 
to select one over the other based on the score alone, 
Figure 4d clearly shows NorESM2-MM (green filled circle) 
is much closer to the storyline point than KACE-1-0-G 

(brown downward-pointing triangle), resulting in the best 
overall fit. NorESM2-MM is therefore the preferred choice 

for storyline D. 
In summary, based on a combination of (1) how 

well the models represent the present-day state of 
four key variables in the Arctic during MJJASO and (2) 

the models’ proximity to the relevant storyline point in 

predictor space, we select CIESM, CNRM-CM6-1, and MPI-
ESM1-2-LR to represent storyline A, MIROC6 to represent 
storyline B, CESM2-WACCM, GISS-E2-1-H, CAMS-CSM1-0, 
and GISS-E2-1-G to represent storyline C, and NorESM2-
MM to represent storyline D. Storylines A and C both have 

multiple candidate models that are very similar, and we 

therefore recommend a set of models in these cases. 

4.2.1 Performance for Arctic land and Arctic sea 
Arctic climate change is associated with a wide range of 
impacts, some tied to processes over the land surface, 
such as wildfires and permafrost thaw (e.g., Chadburn 

et al., 2017; Masrur et al., 2018; McCarty et al., 2021), 
and others to changes in marine areas, such as sea-
ice loss (e.g., Gulev et al., 2021; Screen and Simmonds, 
2010). To assess how sensitive the model selection is to 

whether we base the score on NRMSE values for the whole 

Arctic, Arctic land, or Arctic sea, we compute the score 

and overall fit separately for these three regions (Table 2). 
Results show that the model with the best overall fit for 
the whole Arctic is generally also the model with the best 
fit for Arctic sea and Arctic land for all four storylines. For 
storyline A, CIESM has the best value for whole region and 

over the sea, while over land, CNRM-CM6-1 is marginally 

STORYLINE ARCTIC MJJASO RRPS ARCTIC MJJASO OVERALL FIT 

TOTAL LAND SEA TOTAL LAND SEA 

A A2 (0.25) A2 (0.24) A3 (0.23) A2 (0.11) A1 (0.10) A2 (0.10) 

A3 (0.31) A1 (0.27) A2 (0.24) A1 (0.13) A2 (0.10) A3 (0.11) 

A1 (0.34) A3 (0.32) A1 (0.35) A3 (0.15) A3 (0.15) A1 (0.13) 

A4 (0.39) A4 (0.33) A4 (0.38) A4 (0.24) A4 (0.20) A4 (0.23) 

B B3 (0.16) B3 (0.15) B2 (0.16) B2 (0.04) B2 (0.05) B2 (0.03) 

B4 (0.23) B4 (0.21) B3 (0.17) B1 (0.06) B1 (0.07) B1 (0.04) 

B2 (0.25) B2 (0.29) B4 (0.24) B3 (0.12) B3 (0.11) B3 (0.12) 

B1 (0.51) B1 (0.55) B1 (0.36) B4 (0.17) B4 (0.16) B4 (0.18) 

C C4 (0.22) C4 (0.21) C1 (0.20) C1 (0.02) C1 (0.02) C1 (0.02) 

C1 (0.23) C1 (0.22) C4 (0.23) C2 (0.04) C2 (0.03) C2 (0.04) 

C3 (0.28) C3 (0.25) C3 (0.28) C3 (0.04) C3 (0.04) C3 (0.04) 

C2 (0.32) C2 (0.30) C2 (0.33) C4 (0.06) C4 (0.05) C4 (0.06) 

C5 (0.51) C6 (0.52) C5 (0.40) C5 (0.19) C5 (0.21) C5 (0.15) 

C6 (0.61) C5 (0.54) C6 (0.62) C6 (0.33) C6 (0.29) C6 (0.34) 

D D1 (0.26) D1 (0.21) D1 (0.27) D1 (0.04) D1 (0.03) D1 (0.04) 

D2 (0.29) D2 (0.26) D2 (0.31) D2 (0.19) D2 (0.17) D2 (0.20) 

Table 2 Overview of MJJASO scores (RRPS) and overall fit for the whole (total) Arctic, Arctic land, and Arctic sea for the storyline 
candidate models. We use the model abbreviations defined in Table 1, repeated here for convenience: A1 (CNRM-CM6-1), A2 (CIESM), 
A3 (MPI-ESM1-2-LR), A4 (CNRM-ESM2-1), B1 (MIROC-ES2L), B2 (MIROC6), B3 (HadGEM3-GC31-LL), B4 (UKESM1-0-LL), C1 
(CESM2-WACCM), C2 (GISS-E2-1-H), C3 (CAMS-CSM1-0), C4 (GISS-E2-1-G), C5 (MCM-UA-1-0), C6 (CAS-ESM2-0), D1 (NorESM2-MM), and 
D2 (KACE-1-0-G). For each storyline (column 1), the candidate-model abbreviations and their scores and overall fit for the whole Arctic, 
Arctic land, and Arctic sea are given in columns 2–4 and 5–7; the models are sorted by the score (columns 2–4) and overall fit 
(columns 5–7) with the best values on top. 
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better (however, at two decimal precision, the overall fit 
is the same). 

While this shows that our model selection for Arctic 

MJJASO holds regardless of whether we focus on the 

whole Arctic, Arctic land, or Arctic ocean, it is clear that 
the scores display some sensitivity to which part of the 

Arctic they are computed for. Next, we examine the 

sensitivity of the score further, comparing results for 
Arctic MJJASO to results from other regions and seasons. 
This will allow us to further investigate how robust 
our selection is, that is, whether the model selection 

based on the Arctic MJJASO scores still holds for other 
regions and seasons, or whether other candidate models 
are preferable. 

4.3 SEASONAL AND REGIONAL SENSITIVITY 
Figure 5a compares the Arctic MJJASO scores (black dots 
in a) to the Arctic scores for the whole year and the four 

traditional three-month seasons (orange, blue, and red 

symbols), showing that the relative model performance 

can vary considerably throughout the year. The largest 
range (between the season with the worst and best score; 
numbers in the rightmost part of panel a) is found for 
GISS-E2-2-G, which has a range of 0.4 between the best-
performing season (JJA; dark red square) and the worst 
(DJF; dark blue asterisk). There are no indications that the 

seasonal sensitivity increases linearly with the score, as 
large ranges are found for the models with low scores, 
small ranges are found for models with high scores, and 

vice versa. 
Interestingly, the relative performance of the models 

varies more across regions than across seasons. 
Comparing the seasonal variability (for Arctic scores 
across seasons; Figure 5a) to the regional variability (for 
MJJASO scores across regions; Figure 5b) clearly shows 
that the regional variability is larger. This is not only 

Figure 5 Arctic scores (RRPS) for different seasons (a) and MJJASO scores for different regions (b). In (a), Arctic scores are shown for 
MJJASO (black dots), annual (orange diamonds), DJF (dark blue asterisks), MAM (light red plus signs), JJA (dark red squares), and SON 
(cyan open circles). In (b), MJJASO scores are shown for the Arctic (black dots), globe (red diamonds), NH mid-latitudes (NH ML; blue 
asterisk), tropics (green plus signs), SH mid-latitudes (SH ML; purple squares), and Antarctic (orange triangles). In both panels, the 
range between the smallest and largest scores for each model is given on the right side, and the models are sorted by the Arctic 
MJJASO scores (black dots). Models that are candidates for Arctic storylines are denoted as in Figure 2. 
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Figure 6 Distributions of the range of scores (RRPS) across seasons (a) and regions (b). In (a), the ranges are defined as the difference 
between the season with the largest and smallest score for each model (as in Figure 5a), with the distributions based on the values 
from the 50 models shown separately for each region (orange boxes). In (b), the ranges are defined as the difference between the 
region with the largest and smallest score for each model (as in Figure 5b), with the distributions shown separately for each season 
(green boxes). The box and whiskers show the distribution for the 50 models with the boxes extending from the first to the third 
quartiles, the median shown as a white horizontal line, and the whiskers extending to the farthest data point or maximum 1.5 times 
the inter-quartile range. Scores that are more than 1.5 times the inter-quartile range from the box edge are defined as outliers and 
drawn as open circles. 

evident when comparing the regional spread for a single 

season (Figure 5b) to the seasonal scores for a single 

region (Figure 5a), but is a general result found when 

considering the seasonal spread for all regions (Figure 6a) 
to the regional spread for all seasons at the same time 

(Figure 6b). 
To further examine the regional sensitivity of the 

candidate models, we consider the MJJASO scores and 

ranks for these models for the different regions in 

Figure 7. While such an evaluation of the relative model 
performance is useful, it is important to keep in mind that 
both the scores and ranks are sensitive to the results for 
the other models, and that the sensitivity to the rest of 
the ensemble is stronger for the ranks. The score for an 

individual model is only affected by the subset of models 
that have the smallest or largest NRMSE value for one or 
more fields (equation 3). To find the ranking value of an 

individual model, on the other hand, the performance of 
the full set must be taken into account. Therefore, when 

comparing scores between regions for a single model, 
improved (lower) scores do not always translate to better 
(lower) ranking values, nor do worse scores always yield 

higher ranking values. For example, CNRM-ESM2-1 has a 

better score for the Antarctic (0.16) than for the SH mid-
latitudes (0.23), but the ranking value is 17 in both cases. 
This happens because there are 16 better-performing 

models in both cases. 

4.3.1 Storyline A 
The models that were selected to represent storyline 

A based on the Arctic MJJASO scores, CNRM-CM6-
1, CIESM, and MPI-ESM1-2-LR (Section 4.2), all have 

relatively consistent performance for the other regions 
(Figure 7a). Overall, the performance is best for CIESM, 
which has Arctic, global, NH mid-latitude, and Antarctic 

scores within the IQR (yellow cells) and tropical and SH 

mid-latitude scores below the 25th percentile (blue cells). 
CIESM is also the most consistent performer with a range 

of scores of 0.12. The second-best model is CNRM-CM6-1, 
which has scores within the IQR for every region except 
the Antarctic, where it is within the lower tail. MPI-ESM1-
2-LR has scores within the IQR for all regions except the 

Antarctic, where it is ranked 40th with scores exceeding 

the 75th percentile (red cells). The last candidate model, 
CNRM-ESM2-1, is within the upper tail in the Arctic, but 
performs better for all other regions with scores within 

the IQR in all cases. 
The overall fit for all seasons and regions (Figure 8a) 

shows that the CIESM (A2) is the overall best choice for 
storyline A, being either the best-performing model, or 
comparable to the best-performing model (e.g., in the 

Antarctic). To accentuate models with relatively good 

scores, we show markers for models with scores below 

the 75th percentile in strong colors (reds, blues, orange, 
and black), while markers for models whose scores 
exceed the 75th percentile are shown in light gray. The 

colors of the markers reveal that CIESM has no scores 
exceeding the 75th percentile. 

While the overall fit for the candidate models for 
storyline A is best for CIESM, values for CNRM-CM6-1 

and MPI-ESM1-2-LR are largely similar. CNRM-ESM2-1, 
however, tends to have slightly higher values, particularly 

in the tropics, and has Arctic scores exceeding the 75th 

percentile during MJJASO, JJA, and SON (gray markers). 
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Figure 7 MJJASO scores (RRPS; a) and ranks (b) for the storyline candidate models for the Arctic (column 1), globe (column 2), NH 
mid-latitudes (NH ML; column 3), tropics (column 4), SH mid-latitudes (SH ML; column 5), and the Antarctic (column 6). Also shown is 
the range of values for each model (column 7), computed as the difference between the largest and smallest scores (a) and ranks (b) 
for each model. The colors indicate whether the values are within the lower tail (blue cells), within the IQR (yellow cells), within the 
upper tail (light red cells), or outlier values (dark red cells) based on percentiles computed separately for each region, using values from 
the full set of models. Bold values indicate that the scores (a) or ranks (b) exceed the 75th percentile. The model names follow the 
convention from Figure 2 and the sorting is as in Table 1. Note that the scores and ranks are relative to the full set of models. 

4.3.2 Storyline B 
MIROC6, the selected model for storyline B based on 

the Arctic MJJASO results (Section 4.2), consistently 

performs worse for the other regions, with MJJASO 

scores (Figure 7a) exceeding the 75th percentile for 
the globe, NH mid-latitudes, SH mid-latitudes, and the 

Antarctic, with the latter furthermore being an outlier. 
Similarly, the MJJASO scores for MIROC-ES2L exceed 

the 75th percentile for every region except the tropics, 
with the global, SH mid-latitude, and Antarctic scores 
being outliers. This suggests that when considering other 
regions than the Arctic, it is preferable to use one of the 

three other candidate models for storyline B, even though 

they all have larger distances to the storyline point 
(Table 1). Based on the MJJASO scores for the six regions 
(Figure 7a), HadGEM3-GC31-LL and UKESM1-0-LL are 

the best and second-best candidates. HadGEM3-GC31-LL 

consistently has scores in the lower tail for every region 

and also the smallest range of scores of the candidate 

models for storyline B. The ranks (Figure 7b) show that 
HadGEM3-GC31-LL is among the best 10 models for 
all regions. UKESM1-0-LL has scores in the IQR in the 

Arctic, NH mid-latitudes, and tropics and below the 25th 

percentile in the SH mid-latitudes, Antarctic, and globally, 
and is among the 24 best models in all cases. 

Considering the overall fit for all seasons and regions 
(Figure 8b) reveals that MIROC6 (B2) generally has the 

best fit among the storyline B models or is comparable 

to MIROC-ES2L (B1), except in the Antarctic, where the 

overall fit of the four candidate models is relatively 

similar, with HadGEM3-CG31-LL (B3) and UKESM1-0-LL 

(B4) having somewhat better values for most seasons. 
However, the large scores seen for MJJASO outside the 

Arctic in Figure 7a are also found for other seasons. 
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Figure 8 Overview of the overall fit (equation 5) for the candidate models for storylines A (panel a), B (panel b), C (panel c), and D 
(panel d) for all regions (Arctic, global, NH mid-latitudes (ML), tropics, SH ML, and Antarctic) and seasons (MJJASO, annual, DJF, MAM, 
JJA, and SON). We use the model abbreviations defined in Table 1, repeated here for convenience: A1 (CNRM-CM6-1), A2 (CIESM), A3 
(MPI-ESM1-2-LR), A4 (CNRM-ESM2-1), B1 (MIROC-ES2L), B1 (MIROC6), B3 (HadGEM3-GC31-LL), B4 (UKESM1-0-LL), C1 (CESM2-WACCM), 
C2 (GISS-E2-1-H), C3 (CAMS-CSM1-0), C4 (GISS-E2-1-G), C5 (MCM-UA-1-0), C6 (CAS-ESM2-0), D1 (NorESM2-MM), and D2 (KACE-1-0-G). 
For each storyline, region, and candidate model, the overall fit for the whole year and the different seasons (legend in d) are shown in 
separate vertical stacks. To highlight the overall fit for models with relatively low scores, markers are shown in gray when the 
associated scores exceed the 75th percentile for the relevant region and season. Note that the y-axis varies between panels. 

MIROC6 has scores above the 75th percentile (gray 

symbols) for one or more seasons for the global, NH and 

SH mid-latitude, and Antarctic regions. MIROC-ES2L has 
scores exceeding the 75th percentile for all regions and 

seasons except the tropics, where it is below the 75th 

percentile for all seasons. 
While the MIROC models are both very close to the 

storyline point with small Euclidean distances, resulting 

in low (good) values for the overall fit, the relative 

model performance renders them less favorable for 
many regions. MIROC6 is the ideal choice for storyline B 

when considering the Arctic. For the tropics, MIROC6 and 

MIROC-ES2L are both good choices. For the other regions, 
HadGEM-GC-31-LL and UKESM1-0-LL are the preferred 

choices; these two models have scores below the 75th 

percentile for all seasons and regions. While HadGEM-GC-
31-LL tends to have slightly better overall performance, 
the values for UKESM1-0-LL are generally similar. 

4.3.3 Storyline C 
For storyline C, CESM2-WACCM, GISS-E2-1-H, CAMS-
CSM1-0, and GISS-E2-1-G were selected based on the 
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Arctic MJJASO scores and overall fit. Considering MJJASO 

scores for all regions (Figure 7a), CESM2-WACCM is 
the best performer overall with scores below the 25th 

percentile in the tropics and globally and within the IQR 

in the other regions. CESM2-WACCM is also the most 
consistent performer of all the candidate models for 
storyline C, with a range of 0.12. The other candidate 

models for storyline C all exceed the 75th percentile for 
at least one region. 

The overall fit (Figure 8c) is consistently better for the 

four models that were selected to represent storyline C 

based on the Arctic MJJASO results (C1–C4) compared to 

the other models (C5–C6). However, CESM2-WACCM (C1) 
is the only model for which the scores stay below the 75th 

percentile across all regions and seasons. CESM2-WACCM 

therefore stands out as the best choice for storyline 

C based on the overall fit and scores for all seasons 
and regions. 

4.3.4 Storyline D 
Storyline D stands out from the others in that it only 

has two candidate models, NorESM2-MM and KACE-
1-0-G (Table 1). While the Arctic MJJASO scores are 

similar for these two models, NorESM2-MM has the best 
overall fit and was selected to represent storyline D 

in Section 4.2. Considering the MJJASO scores for all 
regions (Figure 7a) shows that while the scores are 

similar for many regions, including the Arctic, NorESM2-
MM consistently has better (lower) scores, particularly 

in the NH mid-latitudes, tropics, Antarctic, and globally. 
The ranks (b) show that NorESM2-MM is the best-ranking 

model in terms of the global scores, the third-best 
ranking model in the tropics, and the sixth-best ranking 

model in the NH mid-latitudes. Based on MJJASO scores 
for the globe, NH mid-latitudes, tropics, and Antarctic, 
NorESM2-MM is the preferred model for storyline D with 

scores below the 25th percentile for all regions except 
the Arctic. For the Arctic and SH mid-latitudes, while 

NorESM2-MM has slightly better scores than KACE-1-0-
G, the models are relatively similar in terms of their 
relative performance. 

When considering the overall fit for all seasons and 

regions (Figure 8d), NorESM2-MM (D1) clearly stands out 
as the best choice in all cases. This is in line with the 

NorESM2-MM being closer to the storyline point and 

hence having a smaller Euclidean distance than KACE-
1-0-G (Table 1) and with the scores generally being 

similar for the two models or better for the NorESM2-
MM. Both models consistently have scores below the 75th 

percentile (i.e., no gray symbols). 

5 SUMMARY AND DISCUSSION 

This study presents a novel framework for evaluating 

the historical representation of climate models, based 

on NRMSE (normalized RMSE) for multiple variables of 
particular interest, yielding a single number, or score, 
per model: the RMSE-based relative performance score 

(RRPS). The novelty lies in the way the normalization is 
performed, forcing all variables to vary within the exact 
same range (0 to 1), thus exerting a comparable influence 

on the score. Some differences between variables, 
however, remain, as the NRMSE distributions themselves 
are different. The score is an easily understandable 

and implementable way of evaluating relative model 
performance for variables, regions, and seasons of 
particular interest. It is inherently flexible in that different 
variables and statistics that underpin a specific study 

can be used, as long as they are normalized in the 

same way. The results highlight models with large errors 
relative to the multi-model ensemble, and facilitate 

identifying models that perform less favorably relative 

to other models within the ensemble, thus providing a 

quantifiable and objective approach to narrowing the 

selection of models in studies that cannot use all models, 
even though all models may perform acceptably well. 

We demonstrate the benefits and limitations of the 

score through the selection of specific CMIP6 models that 
represent previously defined storylines of Arctic climate 

change (Levine et al., 2024): weak Arctic amplification 

and strong Barents-Kara Sea warming (storyline A), 
strong Arctic amplification and strong Barents-Kara Sea 

warming (storyline B), weak Arctic amplification and 

weak Barents-Kara Sea warming (storyline C), and strong 

Arctic amplification and weak Barents-Kara Sea warming 

(storyline D). We achieve this through a three-step process: 

1. We identify a set of CMIP6 models that are close to 

the storylines in terms of their future changes in 

Arctic amplification and Barents-Kara Sea warming 

and estimate this closeness in terms of the Euclidean 

distance between the storyline point and the models 
in predictor space (Table 1). 

2. We use the score to evaluate the models’ 
present-day performance, considering data from the 

historical experiments from 50 CMIP6 models and 

reference data from ERA5 and GPCP for four key 

variables used in Levine et al. (2024): tas, pr, ta850, 
and ua850 for 1985–2014. 

3. We combine the Euclidean distance and the scores to 

produce an estimate of the overall fit of each model 
(equation 5) and use this as a basis for the final 
model selection. 

We focus on the Arctic during the extended summer 
season (MJJASO), in line with the region and season used 

in Levine et al. (2024), and find CIESM, CNRM-CM6-1, and 

MPI-ESM1-2-LR to be the best models for representing 

storyline A, MIROC6 for storyline B, CESM2-WACCM, GISS-
E2-1-H, CAMS-CSM1-0, and GISS-E2-1-G for storyline C, 
and NorESM2-MM for storyline D. 



15 Graff et al. Tellus A: Dynamic Meteorology and Oceanography DOI: 10.16993/tellusa.4111 

Assessing the robustness of our results, we also 

consider scores for a comprehensive set of regions 
and seasons. The score exhibits both seasonal and 

regional sensitivity, with the regional sensitivity being 

larger than the seasonal sensitivity. For storyline A, the 

selection based on Arctic MJJASO results holds across 
regions and seasons, albeit with the CIESM standing 

out as a somewhat better choice than CNRM-CM6-
1 and MPI-ESM1-2-LR. For storyline B, we find the 

best choices to be MIROC6 for the Arctic, MIROC6 and 

MIROC-ES2L for the tropics, and HadGEM-GC-21-LL and 

UKESM1-0-LL for the other regions (global, NH and SH 

extratropics, and Antarctic). For storylines C and D, we find 

CESM2-WACCM and NorESM2-MM, respectively, to be the 

best choices. 
For any application of the score, the variables must be 

carefully selected to capture the most important aspects 
of the research topic. The set considered here is tailored 

for the Arctic storylines in Levine et al. (2024); many other 
properties of the modeled climate system could have 

been evaluated, and the analysis presented here is not 
an exhaustive investigation of the general performance 

of the models. While we wanted the variables considered 

to have a comparable influence on the score, it can 

be desirable to amplify or lessen the influence of some 

variables, for example, based on skill, observational 
uncertainty, or co-variability between variable pairs, for 
other applications. While beyond the scope of this 
study, such adjustments can be incorporated in the 

normalization itself or as weights assigned to the NRMSE 

values before averaging. The weights must, however, 
be tailored for the season and region of interest, as 
co-variability between variables can have pronounced 

seasonal and regional sensitivity. 
In some cases, it can be deemed necessary to 

exclude outlier models from the ensemble. This can 

have a considerable impact on the score considered 

here, as the largest (and smallest) RMSE values are used 

in the normalization (equation 3), hence affecting the 

scoring values of all models. The score is, on the other 
hand, relatively insensitive to the inclusion of multiple 

models with similar errors, in contrast to ranking-based 

methods. Here, we opt for considering the full multi-
model ensemble to ensure that the same set of models is 
examined for all regions and seasons and that all relevant 
candidate models are always included. As mentioned 

above, model performance can vary substantially from 

region to region and season to season, resulting in 

different outlier models for different regions and seasons. 
We use the score and Euclidean distance to identify 

a subset of the candidate models that we consider to 

be more suitable than the others. However, for some 

applications of the storylines, it can be necessary to 

introduce other or additional criteria that can modify 

the outcome. An example of this is the availability of 
high-frequency data for downscaling. 

The purpose of the score is not to identify the 

best-performing models, but to identify models whose 

performance deviates from the rest of the multi-model 
ensemble for the variables, regions, and seasons of 
interest. The score presented here provides a relative 

measure of quality compared to other models, and 

hence does not say anything about how good or bad a 

model is in absolute terms. In an ensemble of excellent 
performing models, the worst can still be well-suited, and 

in a group of models that perform terribly, even the best 
may represent the climate so poorly that it should be 

used with caution. 

APPENDIX A: CMIP6 MODELS 

In this study, we use data from the CMIP6 historical 
experiments of the following 50 models (the 

realization/variant label and data citation are provided 

in parenthesis): ACCESS-CM2 (r1i1p1f1; Dix et al., 
2019); ACCESS-ESM1-5 (r1i1p1f1; Ziehn et al., 2019); 
AWI-CM-1-1-MR (r1i1p1f1; Semmler et al., 2018); 
BCC-CSM2-MR (r1i1p1f1; Wu et al., 2018); CAMS-
CSM1-0 (r1i1p1f1; Rong, 2019); CAS-ESM2-0 (r3i1p1f1; 
Chai, 2020); CESM2 (r1i1p1f1; Danabasoglu, 2019a); 
CESM2-WACCM (r1i1p1f1; Danabasoglu, 2019b); CIESM 

(r1i1p1f1; Huang, 2019); CMCC-CM2-SR5 (r1i1p1f1; 
Lovato and Peano, 2020); CMCC-ESM2 (r1i1p1f1; Lovato 

et al., 2021); CNRM-CM6-1 (r1i1p1f2; Voldoire, 2018); 
CNRM-CM6-1-HR (r1i1p1f2; Voldoire, 2019); CNRM-
ESM2-1 (r1i1p1f2; Seferian, 2018); CanESM5 (r1i1p1f1; 
Swart et al., 2019b); CanESM5-1 (r1i1p1f1; Swart et al., 
2019c); CanESM5-CanOE (r1i1p2f1; Swart et al., 2019a); 
E3SM-1-0 (r1i1p1f1; Stevenson et al., 2023); E3SM-1-1 

(r1i1p1f1; Bader et al., 2019); E3SM-1-1-ECA (r1i1p1f1; 
Bader et al., 2020); EC-Earth3 (r1i1p1f1; EC-Earth 

Consortium (EC-Earth), 2019a); EC-Earth3-CC (r1i1p1f1; 
EC-Earth Consortium (EC-Earth), 2021); EC-Earth3-Veg 

(r1i1p1f1; EC-Earth Consortium (EC-Earth), 2019b); EC-
Earth3-Veg-L (r1i1p1f1; EC-Earth Consortium (EC-Earth), 
2020); FGOALS-f3-L (r1i1p1f1; Yu, 2019); FGOALS-g3 

(r1i1p1f1; Li, 2019); GFDL-CM4 (r1i1p1f1; Guo et al., 
2018); GFDL-ESM4 (r1i1p1f1; Krasting et al., 2018); 
GISS-E2-1-G (r3i1p5f1; NASA Goddard Institute for Space 

Studies (NASA/GISS), 2018); GISS-E2-1-H (r5i1p1f2; NASA 

Goddard Institute for Space Studies (NASA/GISS), 2019b); 
GISS-E2-2-G (r1i1p3f1; NASA Goddard Institute for 
Space Studies (NASA/GISS), 2019a); HadGEM3-GC31-LL 

(r3i1p1f3; Ridley et al., 2019a); HadGEM3-GC31-MM 

(r1i1p1f3; Ridley et al., 2019b); IITM-ESM (r1i1p1f1; 
Choudhury et al., 2019); INM-CM4-8 (r1i1p1f1; Volodin 

et al., 2019a); INM-CM5-0 (r1i1p1f1; Volodin et al., 
2019b); IPSL-CM6A-LR (r1i1p1f1; Boucher et al., 2018); 
KACE-1-0-G (r1i1p1f1; Byun et al., 2019); KIOST-ESM 

(r1i1p1f1; Kim et al., 2019); MCM-UA-1-0 (r1i1p1f2; 
Stouffer, 2019); MIROC-ES2L (r8i1p1f2; Hajima et al., 
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2019); MIROC6 (r23i1p1f1; Tatebe and Watanabe, 2018); 
MRI-ESM1-2-HR (r1i1p1f1; Jungclaus et al., 2019); MPI-
ESM1-2-LR (r17i1p1f1; Wieners et al., 2019); MRI-ESM2-0 

(r1i1p1f1; Yukimoto et al., 2019); NESM3 (r1i1p1f1; Cao 

and Wang, 2019); NorESM2-LM (r1i1p1f1; Seland et al., 
2019); NorESM2-MM (r1i1p1f1; Bentsen et al., 2019); 
TaiESM1 (r1i1p1f1; Lee and Liang, 2020); UKESM1-0-LL 

(r8i1p1f2; Tang et al., 2019). 
Note that we use the first realization (r1), except for the 

candidate models for Arctic storylines, where we use the 

realization that is closest to the storyline point in predictor 
space (Section 4.1 and Table 1). 

DATA ACCESSIBILITY STATEMENT 

An overview of the CMIP6 data is provided in Appendix A. 
The CMIP6 data is freely available through the Earth 

System Grid Federation, see for instance https://esgf. 
github.io/nodes.html. Data from ERA5 can be retrieved 

through the Copernicus Climate Data Store (https:/ 
/cds.climate.copernicus.eu) and the GPCP data from 
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gov). Data citations are provided in Section 2 and 

Appendix A. 
Regridding the CMIP6 data to a 1 × 1 common grid 

and computing monthly climatologies (steps 1 and 2 in 

Section 3) was carried out in ESMValTool version 2.10 

(Eyring et al., 2016b; Righi et al., 2020). Subsequently, the 

remaining steps (3–7 in Section 3) were carried out in NCL. 
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