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Abstract Traditional nadir altimeters struggle with coastal water surface elevation (WSE) measurement
and fine-scale river-estuary interactions, due to land-water signal interference and their wide inter-track spacing.
The wide-swath Surface Water and Ocean Topography (SWOT) mission, using a new Ka-band radar
interferometer, aims to address these issues by delivering 2D WSE measurements with unprecedented spatial
resolution, accuracy, and precision. However, the mission's effectiveness in coastal WSE retrieval and its error
characteristics remain unverified. This study leverages gauge and airborne LiDAR data to validate SWOT's
WSE in the Bristol Channel and Severn Estuary. Assuming error-free in situ data, SWOT ocean products exhibit
a standard deviation of difference (STD) of 13 cm within a 3 km radius of tide gauges. Compared to LiDAR,
SWOT's PIXC measurements have STD of 37 cm, improving to 14 cm over 100 m grids and 9 cm over 1 km?
areas. This meets the SWOT science requirement of 10 cm STD at 1 km? scale and extends satellite-based WSE
monitoring into complex coastal environments.

Plain Language Summary Conventional radar altimeters struggle within 5-10 km of shorelines due
to land-water interference, large footprints, and wide inter-track spacing. While SAR-mode altimetry and
waveform retracking improve near-shore (1-5 km) coverage, residual errors, and inter-track gaps limit fine-
scale coastal applications. Surface Water and Ocean Topography (SWOT)'s Ka-band radar interferometry
promises to overcome these limitations, delivering wide-swath water surface elevation (WSE) monitoring in
complex coastal systems. We validated SWOT during its March—July 2023 Calibration/Validation (Cal/Val)
phase in the macro-tidal Bristol Channel using ADCP-mounted pressure sensors, tide gauges, and ~446 million
airborne LiDAR points under varying tidal conditions. Spatial aggregation with quality control produces
accurate WSE estimates despite high pixel-level variability, demonstrating SWOT's capability to capture
coastal hydrodynamics and extend reliable WSE observations into challenging coastal environments.

1. Introduction

Rising sea levels and increasingly frequent storm surges, exacerbated by climate change, are profoundly
impacting human activities and coastal ecosystems (Calafat et al., 2022; Schuerch et al., 2018). While the impacts
of the growing frequency and devastation of climate hazards are being disproportionately felt in coastal cities
(Hauer et al., 2021; Jafarzadegan et al., 2023), the sparsity of in situ gauge data contrasts sharply with the rising
demand for precise and timely coastal sea level information (Toimil et al., 2023). The sparse distribution of tide
gauges, often located in sheltered environments unrepresentative of offshore conditions, and restricted data
availability hinder their utility in monitoring fine-scale coastal water dynamics (Vignudelli et al., 2019). Satellite
altimeter missions, initially designed for open-ocean applications (Fu & Cazenave, 2000), have emerged as a
promising alternative for offshore water level measurement (Alsdorf et al., 2007). However, conventional nadir
altimeters are suboptimal for capturing near-coastal zone surface water dynamics, given their low temporal (10—
35 days) and spatial (70-600 m) resolutions, significant vertical errors ranging from decimeters to meters
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(Altenau et al., 2017; O'Loughlin et al., 2016), and substantial gaps between orbital tracks. The altimeter data are
further compromised by waveform variability, surrounding land elevations, and specular reflections, resulting in a
dramatic decrease in valid water surface elevation (WSE) measurements when approaching coastal areas (Laignel
et al., 2015; Vignudelli et al., 2019). Whilst advances in SAR altimetry (~300 m along-track resolution) and
waveform retracking have improved WSE retrieval to within 1-5 km of coastline (Birol et al., 2021; Dinardo
etal., 2018; Peng et al., 2024; Schlembach et al., 2022), residual errors and inter-track gaps limit current altimetry
for many scientific and practical applications. Enhancing coastal observation capabilities within 10 km of
shorelines is increasingly recognized as a priority (Cipollini et al., 2017).

The Surface Water and Ocean Topography (SWOT) mission, launched in December 2022 and featuring an
advanced Ka-band Radar Interferometer (KaRIn), marks a significant step forward in extending satellite-based
WSE observations into challenging coastal environments. With its 120 km swath width, SWOT enables
detailed spatial characterization (~10-60 m resolution) of water dynamics, targeting WSE measurements with
<10 cm accuracy when averaged over a 1 km? area (Fu et al., 2024). While extensive validation of SAR-mode
altimetry has established its accuracy through crossover analysis and tide gauge comparisons (Dinardo
et al., 2021; Fenoglio et al., 2021; Kleinherenbrink et al., 2020), validating SWOT's wide-swath interferometry in
macro-tidal coastal environments presents new challenges. This requires high-quality reference data sharing the
same location and reference frame but with superior vertical accuracy, given the limited in situ observations
capable of capturing coastal spatiotemporal variability. Traditionally, validation relies on independent data sets,
such as comparisons with other satellite altimetry missions at crossover points or with in situ measurements from
nearby sites (Hart-Davis et al., 2024; Turki et al., 2015). However, comparing single-point gauge measurements
to high-resolution elevation fields is problematic in coastal areas with substantial WSE variability (Turki
etal., 2015). Whilst Salameh et al. (2024) have compared LiDAR and SWOT derived DEMs over inter-tidal areas
and Lichtman et al. (2025) provide detailed KaRIn versus tide gauge comparisons, thorough effort comparing
SWOT WSE with concurrent airborne LiDAR and gauges has not yet been conducted in the coastal zone. To
bridge this gap, this study leverages tide gauge, ADCP-mounted pressure sensor and airborne LiDAR data to
validate SWOT's performance in the Bristol Channel.

2. Methodology
2.1. Study Area

The Bristol Channel and Severn Estuary in the UK's southwest forms a large macro-tidal estuary with the world's
second-largest tidal range (~14 m). The estuary's funnel-shaped morphology (100 km long, 1-20 km wide) and
distinctive bathymetry—featuring gentle slopes and a deeper central channel (Figure 1a and Figure S1 in Sup-
porting Information S1)—amplify tidal energy, generating powerful currents, high turbidity, and regular tidal
bores (Hart-Davis et al., 2024). Wind- and pressure-driven surges, along with river discharge, further modulate
these dynamics (Uncles, 2010); their interaction, exacerbated by sea-level rise, determines extreme water levels
and flood risk, necessitating continuous, high-resolution monitoring (Lyddon et al., 2018). Covered by SWOT's
90-day daily fast-sampling orbit (Cal/Val phase, March—July 2023), overlapping swaths here deliver the
equivalent of ~3 years of the following standard science-mode passes (1-7+ per 21-day cycle). While standard
LiDAR pulses are typically absorbed by water due to its transparency, lack of visual key points, and smooth
surface, the sediment-rich waters of the Bristol Channel reflect near-nadir LiDAR pulses back to the sensor.
Depending on factors such as sensor type, flight altitude, and incidence angle, the reflected intensity values over
the site generally range from 100 to 1,000 (compared to 1,000—4,000 over land), facilitating relatively dense WSE
measurements. Figure 1a shows the SWOT swath coverage over the Bristol Channel acquired during pass 42
(blue squares), highlighting tiles 063R and 064R (red squares). A 500 m resolution NEMO-UK500 hydrodynamic
model (covering the UK coastal strip, under development in the CHAMFER project, see Supporting Informa-
tion S1) was used to temporally correct the LiDAR data to the SWOT overpass time. Figure 1b shows LiDAR-
derived WSE, and Figures 1c—1e present SWOT data sets used for validation: the SWOT High Rate Water Mask
Pixel Cloud (PIXC Version C, SWOT, 2024a), the 100 m Raster (Raster Version C, SWOT, 2024b), and the
250 m L3 Low Rate Unsmoothed Sea Surface Height (SSH Version 2.0.1, AVISO/DUACS, 2025), respectively.
The SSH data measures ocean surface height equivalent to inland high-rate WSE but uses low-rate data streaming
and a different processing approach.
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Figure 1. Bristol Channel and Severn Estuary study area. (a) Location map showing NEMO-UKS500 tidal elevation on 24 June 2023, with tide gauge (purple), ADCP
(yellow), and LiDAR survey extent (white/orange rectangles). (b—e) Show water surface elevation captured by LiDAR, Surface Water and Ocean Topography PIXC,

Raster, and Unsmoothed Sea Surface Height, respectively.
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2.2. SWOT Data

Validation used three SWOT data sets: PIXC, Raster, and Unsmoothed SSH. The PIXC product provides
adaptively averaged, ellipsoid-relative WSE at ~10-60 m resolution, using the geolocation_gual bitwise flag
for data quality. The Raster product aggregates pixel measurements onto a uniform 100 m grid to mitigate
random noise, with the wse_qual aggregated flag as quality indicator. Bitwise flags contain granular information
(up to 31 bits) enabling superior quality control compared to aggregated flags, though initial assessment with
aggregated flags is recommended before detailed bitwise analysis.

The L3 Unsmoothed SSH data set is derived from the corresponding L2 product by integrating KaRIn mea-
surements and nadir altimetry data, reducing noise and filling data gaps through a multi-mission framework that
incorporates data from ~20 satellite missions (Dibarboure et al., 2024). To ensure compatibility with the in situ
gauge data, which measures tide and atmospheric pressure effects, the Total Water Level was calculated from the
sea surface height anomaly (Equation 1). This calculation utilized the corrections provided with the SWOT
Unsmoothed data, resulting in a data set that matches the tide gauges.

Total Water Level = Sea Surface Height Anomaly + Ocean tide + Mean Sea Surface

+ Dynamic Atmospheric Correction @)

2.3. Tide Gauge and ADCP-Mounted Pressure Sensors

Figure 1a illustrates the water level monitoring network along the Bristol Channel coastlines, comprising four
gauges that have recorded high-frequency measurements at 10—15 min intervals (Environment Agency, 2024;
Lichtman et al., 2024). To address spatial coverage gaps, two additional GNSS-Interferometric Reflectometry
gauges (Williams et al., 2020) were installed at Nells Point and Weston-super-Mare (Weston). Overall, the gauge
network's leveling accuracy is better than 0.1 m, while GNSS-equipped gauges deliver even higher precision
(https://www.ordnancesurvey.co.uk/geodesy-positioning/os-net/accuracy). Two seabed-mounted ADCPs
(Sentinel V20) equipped with pressure sensors were deployed offshore to capture instantaneous SSH measure-
ments, each providing a 0-300 m measurement range with 0.1% full-scale accuracy.

2.4. Airborne LiDAR Surveys

Five airborne LiDAR surveys were conducted between April and June 2023, using two airborne LiDAR systems
collecting high-accuracy WSE measurements (~0.5 m resolution) coincident with SWOT overpasses. These
measurements encompassed a wide range of tidal conditions, from low tides at —5.1 m relative to the EGM2008
geoid to high tides reaching +5.4 m and including both incoming and outgoing tides (Table S1 in Supporting
Information S1). As shown in Figure la, three along-estuary flights on 16 May, 24 June, and 29 June were
orientated longitudinal to the estuary along a 55 km track and utilized a Leica Hyperon LiDAR system. The
remaining two cross-estuary flights on 7 and 25 April were orientated perpendicular to the estuary along a 35 km
track, utilizing a Leica T500 LiDAR system. Each flight lasted up to 20 min with a ~1 km swath width at ~3 km
altitude, achieving point densities of 410 points/m>. Validation against 549 UK Environment Agency ground-
control points showed Root Mean Squared Error (RMSE) below 15 cm and STD under 10 cm across terrestrial
targets. Theoretically, individual LiDAR returns are expected to have error budgets within 10 cm (Zlinszky
et al., 2017) and this has previously been found to be the case in multiple validation studies with the above two
instruments.

2.5. LiDAR and Gauge Data Processing

For accurate spatial alignment with SWOT data, gauge and LiDAR measurements were transformed from
Ordnance Datum Newlyn (ODN) orthometric heights to EGM2008 geoid heights using PyProj (v3.6.1) and
Ordnance Survey National Transformation version 2 grids. While the tool's accuracy is not validated beyond
1-2 km offshore (Greaves, 2016), it remains the best available method for converting ODN orthometric heights to
geodetic heights. Additionally, abnormal LiDAR points, such as those representing island surfaces and boat
reflections significantly higher than their surroundings, were filtered out using a coastline mask and some manual
processing. Data with elevations >6 m or <—6 m were rejected as outside expected water levels for the survey
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periods. This approach confined the validation to open water surfaces, thereby avoiding comparisons over land
(including small islands and areas within 50 m of the shore).

All tide gauge data sampled at 10-15 min intervals were temporally interpolated to match the timing of SWOT
overpasses using MATLAB's modified Akima method, which effectively handles both curved and flat segments
typical of riverine or intertidal sites (Lichtman et al., 2025). For seabed-mounted ADCP moorings, 2 Hz pressure
measurements from Sentinel V20 ADCP sensors were processed to derive 10-min mean SSH. Atmospheric
pressure was corrected using data from nearby Penarth and Weston stations, assuming constant seawater density
due to limited ancillary profiles. The 10-min mean immediately preceding each SWOT overpass was used for
validation, as high-frequency fluctuations preclude reliable interpolation, unlike tide gauge measurements. In
contrast, synchronizing LiDAR measurement with the SWOT overpass is challenging. LiDAR surveys (~20 min)
only partially overlap with the SWOT's 21-s data collection period, and high tidal variability during this window
(up to 60 cm) complicates direct comparisons. To address this, NEMO-UK500 hydrodynamic model tidal ele-
vations were used for temporal alignment, providing predictions every 10 min at 500 m intervals across the
estuary. Over the five-flight survey, NEMO-UKS500 compared to SWOT Raster data shows a STD of 0.15 m and a
bias of —0.35 m, systematically underestimating water levels relative to both SWOT and tide gauges (Figure S2 in
Supporting Information S1). These discrepancies partly reflect that SWOT records total water levels while
NEMO-UKS500 used in the paper represents tidal elevation only (excluding surge and river influences). However,
since only relative SSH changes are required to adjust the LiDAR-derived WSE, a linear regression was applied to
interpolate and extrapolate the NEMO-UKS500 data, aligning the LIDAR WSE with the SWOT overpass time.

To address spatial resolution differences, LIDAR points within each 100 m raster cell were averaged for grid-by-
grid comparison. For PIXC, given variable pixel footprints, LIiDAR data were aggregated using four radius
buffers (10-40 m) centered on each pixel. For comparing SWOT SSH with tide gauges, all SSH data within a
3-km radius of each gauge were compiled, and the median total water level for each overpass was compared
against the corresponding gauge observation (Lichtman et al., 2025). The within-radius standard deviation,
relative to each median, remained below 0.1 m for most overpasses. The 3-km radius was selected to account for
potential spatial variability in the SWOT observations while maintaining proximity to the gauge location, given
the observed phase lag discrepancies between SWOT and gauge measurements (Hart-Davis et al., 2024). Median
values were used to reduce outlier influence, particularly near land-sea interfaces where degraded altimeter data
quality can occur. For offshore SSH comparison, ADCP-derived water levels were directly compared with
corresponding SSH grids.

The error metrics included are the RMSE, STD, Bias, and the coefficient of determination (R2). For data sets
X = {x;,%0,....x,} and Y = {y,,¥2,.- .V}

—_— 1 N 2
RMSE = /;llzz;(xi—yi)
St = |3 (4, - a2

. 1<
Bias = ;;dl

@

n 2
R2 =1- Zi:l ('xi _yl)
,, \2
Y (i =3)

where d; = x; — y; and d is the mean of d; (Bias).

3. Results
3.1. Temporal Comparison Between Gauge and SWOT Total Water Level

SWOT's temporal capabilities for monitoring coastal water dynamics were validated using six tide gauges
(98 measurements) and two pressure gauges (58 measurements) from March to July 2023. Data limitations arose
from fill values in the original SWOT SSH data set, with missing reference surface data in high-latitude and
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Figure 2. Surface Water and Ocean Topography coastal water dynamics monitoring evaluation. (a) SWOT-derived water surface elevation (WSE) compared with tide
gauge data. (d) SWOT-derived WSE compared with ADCP-mounted pressure sensor data. Panels (b, ¢) and (e, f) show time periods for tide and pressure gauge

comparisons, respectively.

coastal regions resulting in the exclusion of some validation pairs, precluding the application of quality flags.
Figure 2a shows a linear regression fitted to the paired gauge measurements with a slope of 0.99. An RMSE of
0.13 m quantifies the average measurement uncertainty, while the consistent STD of 0.13 m across all stations and
low bias demonstrates reliable performance in one of Earth's most extreme tidal environments. Offshore, ADCP
sensors recorded water level with a higher RMSE of 0.35 m (Figure 2d), attributable to floating mooring os-
cillations induced by local waves and currents. While 10-min averaging of high-frequency height data reduces
surface wave variability, it introduces a temporal mismatch with SWOT overpasses since high-frequency fluc-
tuations within that interval prevents reliable temporal interpolation. Overall, the analysis confirms SWOT's
ability to capture the full spectrum of tidal variations with accuracy comparable to in situ measurements,
maintaining a consistently small bias across tidal ranges (4—12 m). This performance is particularly notable given
the complex interactions between tidal forces, wind-induced waves, and bathymetric features in the coastal
environment.

3.2. Spatial Comparison Between LiDAR and SWOT

The spatial accuracy of SWOT WSE was evaluated using LIDAR measurements at both pixel and raster scales.
Validation utilized 25,871 SWOT raster grids and 838,569 pixels, benchmarked against ~446 million LiDAR
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points. Quality assessment revealed 74% of raster grids classified as nominal, 9% as suspect, and 17% as
degraded. For PIXC data, ~90% were nominal and ~10% degraded. The high proportion of nominal data (74%—
90%) suggests validation should yield reliable results if quality indicators accurately reflect actual data quality.

Sensitivity of the SWOT performance to variations in quality flag reveals minor RMSE fluctuations (Tables S2—
S4 in Supporting Information S1), indicating negligible impact on validation in this study area, though effects
may intensify in regions with more degraded data. Similarly, temporal offsets of £10-60 s between SWOT and
LiDAR acquisitions showed no statistically significant effect on performance (Figure 3e). Moreover, buffer radii
ranging from 10 to 40 m centered on each pixel demonstrated minimal impact; while larger radii reduced LiDAR
measurement variability (Figure S4 and Table S4 in Supporting Information S1), the RMSE remained stable,
underscoring the robustness of spatial averaging. These findings confirm the site-specific reliability of SWOT
data under tested conditions and self-reported quality flags while highlighting contextual dependencies for
broader applications.

LiDAR-derived WSE were compared against SWOT Raster for each 100 m grid. Figure 3a employs LiDAR data
with a £60 s temporal offset relative to the SWOT overpass, while Figure 3¢ incorporates LIDAR data corrected
via the NEMO-UKS500 model. Linear regression reveals near-ideal proportionality between data sets, with slopes
of 1.0 (uncorrected) and 1.01 (corrected) and a consistent intercept of —0.07 m. Statistical agreement is robust for
both analyses, as evidenced by RMSE values of 0.16 m (uncorrected) and 0.17 m (corrected). The marginal
histogram (top axis) further quantifies residuals (SWOT-LiDAR), showing ~98% of errors within £0.35 m. A
left-skewed distribution underscores LiDAR's systematic tendency to report marginally higher WSE values,
likely due to its superior spatial resolution (~0.5 m) that captures fine-scale wave dynamics and surface het-
erogeneities. Additionally, the absence of some wave troughs in the LIDAR data may aggravate this discrepancy
(Figure 1b).

Figure 3b (uncorrected, 60 s offset) and Figure 3d (corrected) compare SWOT PIXC with LiDAR using a 10 m
radius surrounding each SWOT pixel. The vertical distribution in these scatter plots indicates significant vari-
ability in PIXC WSE, with LiDAR variability smoothed through radius averaging and distribution narrowing as
radius increases from 10 to 40 m (Figure S4 in Supporting Information S1). Despite a determination coefficient of
0.98, the analysis shows increased variability with RMSE values of 0.43/0.40 m and STD of 0.40/0.37 m. Scatter
outliers exceeding 0.5 m contribute to a bias of —0.14 m (Figure 3d), improving to —0.08 m when considering the
82.6% of pixel pairs within 0.5 m. This increased variability demonstrates the trade-off in SWOT!'s finer spatial
resolution, where greater spatial detail comes at the cost of increased susceptibility to localized measurement
uncertainties.

The cumulative distribution for the NEMO-UKS500-corrected LiDAR data in Figures 3e and 3f reveal scale-
dependent error patterns. Raster-scale differences exhibit a steeper gradient around the median compared to
the more gradual slope at the pixel scale, resulting in superior performance metrics for Raster (RMSE: 0.16 m,
Bias: —0.07 m) versus PIXC (RMSE: 0.40 m, Bias: —0.14 m). Further analysis within 1 km? areas shows that the
STD between SWOT and LiDAR measurements remains within 0.09 m (Figure S3 in Supporting Informa-
tion S1), confirming SWOT achieves its target accuracy specification, even in a challenging coastal environment.

3.3. Spatial Error Characteristics of SWOT WSE

Figure 4a shows a typical spatial error map (SWOT-LiDAR) with coherent ~50 m banding and residuals up to
+2 m. This pattern arises because SWOT's interferometric sampling interval can intersect wave trains, alternately
hitting crests and troughs; slight timing or geolocation offsets (e.g., 0.5 arcmin geoid offset issue in Version C)
relative to LiDAR then yield successive over- and underestimates. Strong tidal currents and variable bathymetry
further alter wave speeds and slopes along the channel, reinforcing these bands.

Variogram analysis of SWOT-LiDAR WSE residuals were performed by binning residual pairs into 20-200 m
separation bins at 0.25 m intervals and computing semivariance as half the mean squared difference within each
bin. The variogram analysis shows cross-estuary flights with semivariance rising from ~20 to 50 m distance and
stabilizing near ~0.1 m* (Figure 4b), indicating small, quickly decorrelating errors, while along-estuary flights
exhibit higher semivariance (~0.2-0.4 m?) with cyclical, non-stabilizing patterns (Figure 4c). This reflects Bristol
Channel dynamics: cross-estuary tracks sample relatively uniform water levels transversely, yielding low, pre-
dictable semivariance, whereas along-estuary tracks encounter persistent tidal slopes, strong currents,
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Figure 3. Validation of Surface Water and Ocean Topography water surface elevation (WSE) spatial accuracy using LIDAR data. (a) LIDAR versus Raster within +60s
of overpass. (b) LiDAR versus PIXC within 10 m radius and +60 s of overpass. (¢) NEMO-UK500 corrected LiDAR versus Raster (60 s). (d) NEMO-UKS500
corrected LiDAR versus PIXC (10 m radius, +60 s). Panels (e, f) CDFs of SWOT-LiDAR WSE differences at raster and pixel scales; shadow in panel (¢) shows time
sensitivity while panel (f) shows radius sensitivity.
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Figure 4. Spatial characteristics of water surface elevation differences (SWOT-LiDAR), with semivariance in (b) cross-estuary and (c) along-estuary directions.

bathymetry-driven gradients, and wave trains aligned with the sampling direction. These factors produce alter-
nating over- and underestimates that reinforce coherent spatial structures and elevate semivariance.

Beyond this physical hydrodynamic effect, error patterns depend on SWOT swath orientation: cross-estuary
(parallel to the SWOT swath) yields more stable, predictable errors, while along-estuary shows greater vari-
ability and complex correlations. This reflects SWOT's sensitivity to the geometry between its sampling direction
and the waterbody orientation (Domeneghetti et al., 2018). Lower semivariance in the cross-estuary direction
likely arises from better alignment with the swath, whereas higher variability along-estuary stems from across-
track sampling challenges compounded by tidal currents and bathymetry-driven slopes.

4. Discussion and Conclusions

This study evaluates SWOT WSE measurements in a complex coastal setting using LiDAR, ADCP-mounted
pressure sensors, and shore tide gauges. SWOT reliably tracks water level variations under 4-12 m tidal
ranges with STD of 0.13 m for tide gauges and 0.09-0.14 m for spatially averaged LIDAR comparisons (Table S5
in Supporting Information S1). Critically, SWOT maintains sub-decimeter accuracy within 1-2 km of irregular
coastlines in a challenging coastal environment, whereas traditional nadir altimetry experiences land contami-
nation within 1-5 km of coastlines (Dinardo et al., 2018; Passaro et al., 2014; Peng et al., 2024) despite advanced
SAR mode and retracking algorithms. Beyond improved coastal performance, SWOT's 2D swath coverage
(~120 km width) resolves spatial WSE variability fundamentally inaccessible to along-track altimetry.

SWOT PIXC measurements show systematic spatial errors of £2 m, with variogram analysis revealing clear
anisotropy: cross-estuary errors decorrelate over shorter distances, while along-estuary errors exhibit larger
magnitudes and cyclical, non-stabilizing patterns. These patterns arise because SWOT's oblique radar incidence
interacts with tidal dynamics, bathymetry, shoreline morphology, and wave fields differently than near nadir-
looking LiDAR. In the cross-estuary direction, shorter correlation lengths suggest lateral averaging can effec-
tively reduce uncertainty; in the along-estuary direction, persistent correlations demand averaging approaches
that account for longer-range error structure. Consequently, coastal SWOT processing should use anisotropic
error models that consider: (a) the geometric alignment between SWOT's swath and channel orientation, (b) the
influence of tidal and intertidal morphology on radar returns, and (c) the differing spatial scales of error corre-
lation in cross-versus along-estuary directions.

SWOT products evolve through successive versions as processing algorithms and calibration parameters are
refined. This study used Version C data from the Cal/Val phase, which should translate well to routine operations
since the fast-sampling orbit altitude differs only marginally from the nominal science orbit (https://swot.jpl.nasa.
gov/system/documents/files/2244_2244 D-75724_SWOT_Cal_Val_Plan_Initial_20180129u.pdf), although ab-
solute error magnitudes will likely improve. However, Version C contains known issues including a
0.5 x 0.5 arcmin geoid interpolation offset that introduces spatial biases (typically <5 cm over our study area) and
residual water-fraction/SSH fill-value artifacts that may contribute to larger errors observed in this analysis.
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