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1. Introduction
Oceanic internal solitary waves (ISWs) are long, powerful, nonlinear subsurface waves that 
propagate along sharp density gradients, typically near the seasonal or permanent pycnocline 
(Helfrich and Melville 2006). They can exceed 100 m in amplitude at depth, with periods from 
minutes to under an hour, producing strong vertical velocities (>0.5 m s−1) and localized shear 
currents. ISWs are usually generated from linear internal tides that steepen into solitary waves, 
typically when barotropic tidal flows displace stratified layers over sloping topography. When 
forcing is strong enough, baroclinic energy can quickly cascade into nonlinear waves. Other 
mechanisms include wind forcing, gravity currents, and interactions with mesoscale oceanic 
features (e.g., Buijsman et al. 2010; Jackson et al. 2012; Lamb 2014; da Silva et al. 2015). 
ISWs often appear in wave trains of solitons (Apel et al. 1975; Osborne and Burch 1980; Alford 
et al. 2015), ranked by amplitude and visible in high-resolution satellite observations in opti-
cal, altimeter, and synthetic aperture radar (SAR). Given the ocean’s vastness and limited in 
situ observations, satellite remote sensing has long been key to ISW monitoring. The advent 
of satellites equipped with SAR in the 1980–90s revolutionized ISW research by providing 
high-resolution, two-dimensional, day-and-night, all-weather observations of surface signa-
tures (Fu and Holt 1982; Alpers 1985). However, identifying these waves in satellite imagery 
remains labor-intensive due to the sheer volume of data. To address this challenge, the Internal 
Waves Service (IWS) was conceived, a deep learning–based system that automatically detects 
and logs internal wave events, making the data openly accessible. To promote the IWS and 
gather feedback, the Atlantic International Research Centre (AIR Centre) organized the IWS 
Workshop 2025 (IWS-W25), held on 3–4 April 2025 in Angra do Heroísmo, Azores, Portugal. 
The event gathered 15 invited researchers, oceanographers, and data service providers from 
institutions across Europe and North America to discuss IWS development. The IWS initia-
tive aims to enhance detection, forecasting, and understanding of internal wave dynamics, 
which are critical for advancing operational oceanography and climate research. Currently, 
it uses SAR Wave (WV) mode data from the European Space Agency’s (ESA’s) Sentinel-1 
satellite mission, offering near-real-time, global, open-ocean coverage with a latency of ap-
proximately four days. Expert-validated deep learning algorithms classify ISWs, supporting 
the first operational, long-term global ISW monitoring service.

2. State of the art and developments reported at the workshop
ISWs are major contributors to ocean mixing, energy dissipation, and vertical transport pro-
cesses across the ocean (Garrett and Munk 1979; Alford 2003; Simmons et al. 2004; Zhao 
and Alford 2009; Waterhouse et al. 2014). Their dynamics, global distribution, and climatic 
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impacts are increasingly studied using satellite remote sensing, in situ observations, and 
numerical modeling. To support systematic, large-scale detection and analysis, the IWS was 
developed—the first operational, free, global service dedicated to ISWs, to our knowledge.

The IWS is a collaborative initiative developed by a multidisciplinary team of researchers 
and technologists working across several international institutions. Led by the AIR Centre 
(Portugal) and codeveloped by a team of international experts in oceanography, Earth obser-
vation, and artificial intelligence (AI), the IWS aims to provide an operational, global-scale 
system for the detection and analysis of internal waves using satellite data. At present, 
the service assimilates Copernicus Sentinel-1 SAR images acquired in WV mode and auto-
matically classifies them according to the presence or absence of ISWs. WV mode collects  
20 km × 20 km vignettes with 5-m resolution every 100 km at two incidence angles along the 
satellite orbit. The ISW detection system leverages an expert-curated dataset of internal waves 
in several deep-ocean regions which was used to develop a state-of-the-art machine learning 
model that is capable of classifying SAR images as depicting or not ISWs. The service involves 
a comprehensive data pipeline that sources the images, classifies them automatically, and 
sends the positives to be validated by an expert. As the dataset of confirmed internal waves ex-
pands, the model is retrained, increasing its performance. Images are stored in S3-compatible 
cloud storage, and associated metadata (confidence, time, location) in a Structured Query 
Language (SQL) database for efficient access. This infrastructure enables near-real-time im-
age classification and is scalable to handle the large data volumes generated by Sentinel-1, 
which collects parsimonious WV mode vignettes along its 100-min orbit, covering up to  
75 min of acquisition time per orbit depending on the satellite track and operational plan. 
The images classified as positive by the machine learning model and validated by an expert 
are subsequently mapped on a web platform (https://services.aircentre.org/iw/map). Figure 1 (top) 
shows global validated ISW detections to date. This aggregation of internal wave events will, 
over time, highlight spatial and temporal hotspots. Currently, the dataset covers the global 
satellite acquisitions starting in September 2024, with an extended 5-yr archived data record 
available specifically for the equatorial Pacific Ocean region. The red points in Fig. 1 mark 
detection centroids; green points correspond to SAR WV mode vignettes displayed below, 
showing ISW surface signatures as alternating bright and dark bands in wave packets.

The scientific importance of ISWs underscores the value of services like the IWS. ISWs in-
fluence the thermohaline circulation (Whalen et al. 2020) and force coastal ecosystems, often 
delivering offshore nutrient-rich deep waters (Pineda 1991). Nonlinear internal waves and 
bores can alter local conditions, causing or mitigating events such as hypoxia, acidification, 
or extreme heating (Palumbi et al. 2014; Wyatt et al. 2020) and influence fertilization and 
larval transport (Crimaldi and Zimmer 2014; Pineda et al. 2024). In the open ocean, regions 
of frequent and intense ISW activity, known as hotspots, are evident in global maps such as 
Jackson (2007), which is based on nearly 2 years of global analysis of Terra/Aqua National 
Aeronautics and Space Administration (NASA) satellites. These include the Mascarene Ridge 
of the Indian Ocean (da Silva et al. 2015), the South China Sea (Alford et al. 2015), off the 
Amazon shelf (Magalhães et al. 2016), and the Pacific cold tongue (PCT; see Santos-Ferreira 
et al. 2023). Recent numerical modeling efforts (Solano et al. 2023) show that, particularly 
in the tropics, the combination of strong surface-intensified stratification and weak Coriolis 
forces promotes the nonlinear steepening of internal tides into solitary waves. In many of 
these ISW hotspots, such as the PCT, upper-ocean shear currents coinciding with strong 
stratification create conditions close to “marginal instability” (Miles 1961; Smyth et al. 2013). 
Large-amplitude ISWs, which produce intense shears near the pycnocline, may nudge shear 
even further to unstable conditions, causing overturning and strong mixing. These processes 
may significantly impact climate (see e.g., Warner and Moum 2019). Santos-Ferreira et al. 
(2023) propose that in the PCT, ISWs generated by buoyancy-driven gravity currents linked 
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to tropical instability waves propagate through strong shear zones, enhancing vertical mixing 
and potentially reinforcing the El Niño–Southern Oscillation (ENSO) feedback loop during  
La Niña years or regular other years, possibly with global-scale ramifications in climate.

During the workshop, ISWs in the equatorial Pacific Ocean, within ±10°N for 5 years, were 
presented (see global map in Fig. 1), revealing a hotspot whose ISW origins, characteristics, 
and impacts on climate are just beginning to unfold. Long-crested ISWs exceeding 300 km 
are abundant in the PCT and are believed to be generated by buoyant gravity currents, them-
selves originating from tropical instability waves’ dynamics (see e.g., Santos-Ferreira et al. 
2023; Warner et al. 2018). The longevity of these waves was measured from satellite synergy 
with Surface Water and Ocean Topography (SWOT) to be on average 20 h, with a maximum of  
72 h, the waves being, therefore, capable of propagating across the full meridional length 
of the PCT. This suggests ISWs may convey information between the north and south 
equatorial fronts by transporting mass and momentum (da Silva et al. 2025a). The new 
SWOT mission could advance the retrieval of key ISW parameters, precisely mapping at 
high resolution both sea surface roughness and height anomalies (ssha). New methods 
are being developed to retrieve the 3D structure of ISWs based on SWOT Ka-band radar 
interferometer (KaRIn) measurements of ssha and our knowledge of ocean stratification 
and dynamics (Siyahi et al. 2025, manuscript submitted to J. Geophys. Res. Oceans; da 
Silva et al. 2025b). This represents a major step in satellite synergy for ISWs and highlights 
the timely growth of the IWS.

Advances in SAR oceanography, particularly the insights gained over the past decade 
from continuous datasets provided by off-nadir SAR systems such as Sentinel-1, were also 
reported. These highlight the ability of SAR to capture surface expressions of internal 

Fig. 1.  (top) Global distribution of validated ISW detections from Sentinel-1 WV mode imagery. Red 
dots mark centroids of ISW events from the past 7 months (since September 2024), with a 5-yr ex-
tended dataset for the equatorial Pacific (2020–24). Green dots show the locations of SAR vignettes 
below. (bottom) SAR WV-mode vignette examples from those locations, showing typical ISW surface 
signatures as alternating bright and dark bands forming wave packets. Images are ordered left to right, 
matching the green dots above.
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waves associated with phenomena such as surface wave breaking, currents, and eddies  
(Johannessen et al. 2005; Chapron et al. 2005; Johannessen et al. 2008). The radar imag-
ing model (RIM) (Kudryavtsev et al. 2005) was highlighted as a key tool for analyzing SAR 
imagery and disentangling the contributions from different ocean surface processes. The 
importance of dual-polarization SAR for distinguishing Bragg scattering from wave break-
ing was emphasized (section 3.2 in Fan et al. 2019), along with the benefits of combining 
SAR with other sensors such as Moderate Resolution Imaging Spectroradiometer (MODIS) 
and SWOT. Although SWOT is not a conventional SAR imager but an across-track SAR inter-
ferometer operating in quasi-specular geometry, its synergy with traditional SAR missions 
offers complementary perspectives for ocean surface and internal wave studies. Emphasis 
was placed on the synergy between SWOT, optical missions (Sentinel-3 and Sentinel-2), nadir 
altimeters, other acquisition modes of Sentinel-1, such as the Interferometric Wide (IW) and 
ExtraWide (EW) swath modes, and future SAR missions like Radar Observing System for 
Europe at L-band (ROSE-L), which will feature full-polarization capabilities, and NASA–ISRO 
SAR (NISAR). Simulations and case studies demonstrated how internal waves interact with 
wind and surface currents, and how SAR can be used to investigate internal wave dynamics, 
including those generated by mesoscale features. The need for targeted validation campaigns 
was strongly emphasized, particularly those capable of linking satellite-detected surface 
expressions to subsurface oceanic properties.

Workshop discussions extended beyond internal wave detection. Unsupervised machine 
learning is being used to identify submesoscale ocean eddies in SAR imagery (Vincent et al. 
2023), revealing potential synergies between the automated detection of internal waves 
and other features (Wang et al. 2019). Global ocean simulations have provided insights into 
the generation and distribution of supertidal internal waves (periods < 9 h). Sites of strong 
supertidal energy flux coincide with regions of observed ISW activity in SAR imagery, par-
ticularly in the tropics where strong stratification and weak Coriolis effects prevail (Solano 
et al. 2023). The generation of these waves is hypothesized to result from resonant wave–wave 
interactions (Buijsman et al. 2025), in agreement with theoretical predictions (Wunsch 2017; 
Baker and Sutherland 2020). Such findings help explain the formation of ISWs in regions 
like the Amazon off-shelf region and underscore the importance of resolving internal wave 
processes in global circulation models (Forget et al. 2015a,b; Su et al. 2018; Forget 2024). 
The combined effects of ISWs and surface wind forcing were also investigated for their role in 
enhancing vertical mixing in the coastal ocean (Magalhães et al. 2025, manuscript submitted 
to Cont. Shelf Res.). Using in situ data collected over the Portuguese shelf in 2019 within the 
framework of the HABWAVE project (https://habwave.campus.ciencias.ulisboa.pt/) and simulations 
with the Massachusetts Institute of Technology General Circulation Model (MITgcm), this 
study showed that wind can amplify shear instabilities associated with ISWs, particularly at 
midwater-column depths. Results suggest that the interaction between ISWs and moderate 
wind regimes leads to more frequent overturns and convective mixing [also possibly including 
enhanced surface wave breaking as documented in Magalhães et al. (2021) and Santos-Ferreira 
et al. (2022)]. These findings highlight the importance of considering wind–wave interactions 
in models of ocean mixing and stratification. Beyond their physical impacts, internal waves 
play an important role in shaping biological processes. Surface convergence zones associ-
ated with internal wave activity can influence larval transport and biological patchiness in 
coastal ecosystems (Pineda et al. 2024). Field studies in the Gulf of Maine showed consistent 
accumulation of lobster larvae and zooplankton in these ephemeral features, with notable 
differences observed inside versus outside the convergence zones.

Regarding new satellite missions, SWOT, Harmony, and the proposed SEASTAR concept 
(Martin et al. 2024) offer valuable opportunities for monitoring surface manifestations of 
ISWs and offer deeper understanding of the relationship between surface signatures and 
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subsurface processes. Harmony is an approved ESA Earth Explorer mission, scheduled 
for launch in December 2029, and will provide pseudopolarimetric bistatic measurements 
(López-Dekker et al. 2021). OSCAR, an airborne demonstrator developed with ESA support, 
was specifically designed to inform and de-risk the SEASTAR mission. Although SEASTAR 
was not ultimately selected to fly, OSCAR produced encouraging results, demonstrating the 
ability to resolve fine-scale 2D frontal structures of total surface currents and winds under 
highly dynamic ocean conditions (Martin et al. 2024; McCann et al. 2024). One of the key 
innovations was the use of 90° azimuth diversity, which is crucial for capturing the complex 
interactions between wind, currents, and surface waves, and other geophysical phenomena 
like internal waves that manifest in SAR. These developments highlight the growing interest 
in systematic satellite-based cataloging of internal waves and reinforce the importance of 
complementary observation strategies beyond SAR alone, to fully capture and understand 
internal wave dynamics.

3. Major outcomes and future work
The IWS-W25 workshop led to several key outcomes and strategic recommendations, all cen-
tered on advancing the Internal Waves Service into a robust, comprehensive, and operational 
platform. A major consensus emerged around the need to continuously expand a high-quality, 
curated global dataset of Sentinel-1 WV mode images containing ISWs, covering data since the 
launch of Sentinel-1A in 2014 to the present and into the future, now ensured by the successful 
launch in December 2024 and current operation of Sentinel-1C alongside Sentinel-1A. This 
dataset is fundamental for algorithm development, training, expert validation, and long-term 
monitoring of ISWs globally. Participants also emphasized the importance of preparing the 
system for future satellite missions such as ROSE-L (expected launch in 2028), which will 
inherit and enhance the WV mode legacy, offering increased temporal resolution. Given that 
WV mode acquisitions have limited spatial coverage, especially over coastal and shelf areas, 
the integration of data from Sentinel-1’s Interferometric Wide (IW) mode was considered a 
crucial next step. Looking beyond detection, the community identified internal wave image 
segmentation as a vital capability. Segmentation methods will enable the precise localiza-
tion of wave fronts and extraction of key physical parameters such as distance between wave 
crests and crest length, supporting improved quantitative analyses. The workshop highlighted 
promising synergies between SAR and SWOT observations. For specific regions such as off the 
Amazon shelf and the Banda Sea, where it is known that large-amplitude ISWs are common, 
the synergy can be used to estimate internal wave amplitudes (Siyahi et al. 2025, manuscript 
submitted to J. Geophys. Res. Oceans; da Silva et al. 2025b) and, when combined with inter-
packet separation, provide and validate phase speeds.

Finally, strong emphasis was placed on community engagement and coordination. All par-
ticipants reaffirmed their involvement in the ongoing development of the IWS. The formation 
of dedicated thematic working groups focusing on data curation, AI model development, and 
science applications was proposed as a concrete next step (Glaser et al. 2024; Kerdreux et al. 
2025). These groups will support collaborative publications and are expected to reconvene 
in follow-up workshops within 12–18 months, ensuring continuity, innovation, and shared 
scientific advancement.

The Internal Waves Service represents a significant step forward in the operational obser-
vation providing foundations for the understanding of internal wave dynamics at a global 
scale. By combining the power of satellite Earth observation, AI, and expert knowledge, 
the IWS is not only enabling the scientific community to better track and characterize these 
features in vast datasets, but also laying the groundwork for improved forecasting, climate 
modeling, and marine services. The collaborative efforts initiated at the IWS-W25 workshop 
mark the beginning of a long-term vision: to build an open-source, scalable, and evolving 
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platform that empowers both science and society. This long-term strategy is aligned with 
the evolution of the Copernicus program, building on Sentinel-1 and preparing for future 
missions such as ROSE-L and Harmony. Recent advances in AI also invite a reexploration of 
historical missions like Environmental Satellite (Envisat), offering potential to extract internal 
wave signals from archived SAR data. By connecting past, present, and future missions, the 
IWS is well-positioned to deliver lasting scientific and societal value.
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