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Soil porosity prediction across Europe with a focus on soil particle density determination  1 

 2 

ABSTRACT 3 

This study emphasizes the critical role of soil porosity as an environmental variable influencing 4 

infiltration, compaction, runoff, and erosion, which are inversely related to bulk density. An 5 

analysis of topsoil porosity across Europe (0-20cm) was conducted using data from the LUCAS 6 

monitoring program, focusing on the fine earth fraction of soils. The conversion from bulk density 7 

to porosity – more intuitive for hydrological studies - requires knowledge of the particle density 8 

of both mineral and organic components, which is often lacking. A novel method was developed 9 

to estimate the particle density of organic matter using stoichiometric datasets from various land 10 

use types, resulting in an EU LUCAS average soil particle density of 2.53 g cm-3. The generated 11 

fine earth porosity map aligns with high porosity areas in Northern Europe's peatlands and Central 12 

Europe's forests, providing insights into soil densification processes linked to compaction from 13 

traffic or organic matter depletion due to land use changes. This understanding is crucial for 14 

assessing compaction and erosion risk.  15 

 16 

Key words: Bulk density, soil organic matter, stoichiometric modelling, LUCAS soil survey, soil 17 

science    18 
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1 INTRODUCTION 19 

Soil porosity, the proportion of void space among soil particles (Dippenaar, 2014; Nimmo, 20 

2004), is essential for gas fluxes and the infiltration, movement, transport, and retention of soil 21 

water. Moreover, it is an important indicator of soil health with declining porosity indicating 22 

densification and potential compaction which can lead to enhanced runoff and greater erosion risk 23 

(Gupta, Borrelli, Panagos, & Alewell, 2024; Holz, Williard, Edwards, & Schoonover, 2015). 24 

Increasing the pore space, for example using plant cover to which porosity is correlated (Thomas 25 

et al., 2024), is an important way to mitigate such effects (Zuazo & Pleguezuelo, 2009). Moreover, 26 

recent findings indicate that soil macroporosity is dynamic on continental and decadal time scales 27 

with unknown consequences for soil hydrological functioning (Hirmas et al., 2018). 28 

Hirmas et al. (2018), found that predictions based on effective porosity, in five different 29 

physiographic regions of the USA, based on predicted changes in mean annual precipitation up to 30 

2100 mm, resulted in soil saturated hydraulic conductivity altering between −55 to 34%. Two 31 

important advances came from this work, 1) that we understand that soil porosity, especially 32 

macroporosity alters on much shorter time scales than previously considered, 5-10 yr time cycles. 33 

2) that the porosity alters due to feedback from climate, presumably through alteration of the flora 34 

and physical cracking of soils. A similar recent study for China (Kang, Zhang, Wu, & Zhao, 2024) 35 

found similar results with effective porosity higher in drylands compared to humid regions 36 

resulting in dryland soils being less conducive to soil water conservation and vegetation 37 

development. Several important studies have gone on to examine the implications of better 38 

incorporating soil structure into large scale regional or global models. Fatichi et al. (2020) found 39 

that the inclusion of better soil structure characterization in Earth System Models affected local 40 

hydrologic response. However, they concluded that the implications for global-scale climate 41 
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remains elusive in current Earth System Models. More recently, Wankmüller et al. (2024) have 42 

shown that global influence of soil texture on ecosystem water limitation, hence factors, such as 43 

porosity, affecting the ability of soils to retain moisture will impact the drought resilience of 44 

ecosystems. In temperate systems the porosity and water retention are also likely to be influenced 45 

strongly by soil organic matter (Robinson et al., 2025; Robinson et al., 2022; Thomas et al., 2024).  46 

This increasingly active area of research indicates the importance of improving our ability to 47 

measure and predict soil characteristics in space and time related to hydrological function in order 48 

to better understand climate soil feedback. Pore sizes can vary significantly, encompassing both 49 

large macropores, which promote swift water drainage and air circulation, and smaller micropores, 50 

which are responsible for the retention of water and nutrients. The intricate network of pores is 51 

vital for soil conservation, ecosystem functionality, effective water management, agricultural 52 

productivity, and the sustainability of environmental systems. A comprehensive understanding of 53 

soil porosity and bulk density is critical for assessing soil health, particularly in relation to water 54 

resilience, ecosystem processes, biomass generation, and carbon storage (Robinson et al., 2022). 55 

Moreover, porosity is susceptible to degradation by compaction or consolidation which densify 56 

the soil. Porosity and bulk density are essentially emergent properties based on a hierarchy of 57 

structures from grains to clay domains (tactoids), micro- and macro-aggregates and peds. Adopting 58 

a stereoscopic perspective, encompassing both microscopic and macroscopic dimensions (Scarlett, 59 

Van Der Kraan, & Janssen, 1998) can therefore clarify what leads to this emergence. 60 

From a macroscopic perspective, soil porosity is quantified as the volume of pore space 61 

relative to the total volume of soil Eq. (1) and exhibits an inverse relationship with bulk density. 62 

Fundamentally, the packing of granular particles leads to the macroscopic – bulk relationship 63 
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between porosity (φ, cm3 cm-3), bulk density (ρb, g cm-3), the soil particle density (ρss, g cm-3), and 64 

the packing fraction (η, cm3 cm-3), Eq. (1): 65 

φ = 1 − (
𝜌𝑏

𝜌𝑠𝑠
) = (1 − η)        (1) 66 

Numerous elements affect the relationship between bulk density and soil porosity, such as soil 67 

texture, structural composition, and the content of clay and organic matter (Robinson et al., 2022). 68 

However, a significant challenge arises when attempting to convert bulk density, which is 69 

frequently assessed, into porosity due to the necessity of knowing the soil particle density, a 70 

parameter that is not typically measured, or difficult to measure routinely. A value of 2.65 g cm-3 71 

is often used as a proxy for the soil particle density in textbooks as it represents the particle density 72 

of quartz, a common constituent of many temperate soils (Brady & Weil, 2008).   73 

 Better estimates of soil porosity require knowledge of the particle densities of the soil 74 

materials, primarily organic and mineral constituents. However, as noted by (Rühlmann, 75 

Körschens, & Graefe, 2006), the calculation of particle density is not merely a summation of the 76 

individual densities. This complexity arises because the impact of each component on the overall 77 

particle density is contingent upon both its mass fraction and the volume it occupies. Consequently, 78 

since the densities do not scale linearly with their mass fractions, it is essential for the equation to 79 

incorporate variations in the intrinsic volume contributions of the different components 80 

(Ruehlmann, 2020; Ruehlmann & Körschens, 2020). To address this, Ruehlmann (2020) proposed 81 

a suitable mixing equation for soils Eq. (2). 82 

𝜌𝑠𝑠 =
1

𝑆𝑂𝑀

𝜌𝑠𝑂𝑀
+

(1−𝑆𝑂𝑀)

[
𝐶𝑙𝑎𝑦
𝜌𝑠𝐶

+ 
𝑆𝑖𝑙𝑡
𝜌𝑠𝑆𝑖

+ 
𝑆𝑎𝑛𝑑
𝜌𝑠𝑆𝑎

]
−1

        (2) 83 
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Where ρsOM represents the particle density of organic matter and the particle density of the mineral 84 

fraction is divided between, clay (ρsC), silt (ρsSi) and sand (ρsSa), respectively. SOM is the fraction 85 

of soil organic matter (0-1), hence the mineral matter fraction is 1-SOM. Clay, Silt and Sand are 86 

the respective fractions of the texture components which all add together to 1. Ruehlmann and 87 

Körschens (2020) utilized a comprehensive global dataset to estimate the particle densities of Clay, 88 

Silt, and Sand fractions, which were found to be 2.76, 2.69, and 2.66 g cm-3, respectively. 89 

Additionally, using a regression method Ruehlmann and Körschens (2020) suggested that soil 90 

organic matter (SOM) could be categorized into low-density (1.27 g cm-3) and high-density (1.43 91 

g cm-3) fractions. However, the determination of the most suitable value, or values, of SOM 92 

particle density remains an open research question, particularly when assessing large spatial areas. 93 

Although not explored, Ruehlmann (2020) suggested that using the stochiometric values of the 94 

components of SOM could be one way to determine a value for the particle density of the organic 95 

fraction.  96 

 In addition, the same modelling approach can also be applied to determine the soil bulk 97 

density (Adams, 1973) Eq. (3) and the total porosity Eq. (4), according to: 98 

𝜌𝑏 =
1

𝑆𝑂𝑀

𝜌𝑏𝑂𝑀
+

1−𝑆𝑂𝑀

𝜌𝑏𝑀

         (3) 99 

𝜑 = 1 − [[
1

𝑆𝑂𝑀

𝜌𝑏𝑂𝑀
+

1−𝑆𝑂𝑀

𝜌𝑏𝑀

] ÷ [
1

𝑆𝑂𝑀

𝜌𝑠𝑂𝑀
 + 

1−𝑆𝑂𝑀

𝜌𝑠𝑀

]]      (4) 100 

Where the bulk density of the organic matter (ρbOM) and mineral material (ρbM) is for the end 101 

members of all OM or all mineral material, SOM is a fraction (0-1). The values of end members 102 

will vary quite widely, but Robinson et al. (2022) proposed values of 1.98 g cm-3 for ρbM and ~0.1 103 

g cm-3 for ρbOM that captured the general response of a national data set. A value of 1.98 g cm-3 is 104 
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equivalent to the bulk density of a binary mixture of hard spheres with a ~10:1 size ratio where the 105 

small completely infill the voids between the large, assuming a porosity of 0.252 and particle 106 

density 2.65 g cm-3; and 0.1 g cm-3 was based on data from bogs. As above ρsOM represents the 107 

particle density of organic matter and ρsM represents the particle density of mineral material. 108 

The transformation of bulk density into porosity is advantageous for hydrological studies and 109 

offers a more intuitive understanding of the pore space that is comparable, and of the water 110 

retention capabilities of soil layers. Moreover, water retention and water holding capacity are both 111 

descriptors in the EU monitoring law to which porosity is valuable in determining. The conversion, 112 

from bulk density to porosity, necessitates knowledge of the soil particle density, Eq. (1). 113 

Accurately measuring this value poses challenges; nonetheless, significant advancements have 114 

been achieved by Rühlmann et al. (2006) in predicting the particle densities of both mineral and 115 

organic matter (Ruehlmann, 2020; Ruehlmann & Körschens, 2020). Rühlmann et al. (2006) 116 

reported that soil organic matter (SOM) particle density exhibited variability within the range of 117 

approximately 1.13 to 1.50 g cm−3. Their findings indicated that as the quantity of SOM increased, 118 

so did its density, which they attributed to qualitative changes in SOM resulting from 119 

decomposition processes. This observed range aligns well with the values suggested by Redding 120 

and Devito (2006), which span from 0.9 to 1.55 g cm−3.  121 

Ruehlmann (2020), referencing the findings of Tipping, Somerville, and Luster (2016), 122 

asserted that lower soil particle densities corresponded with nutrient-rich cropland soils, while 123 

higher densities were indicative of nutrient-poor soils. He classified these into two categories: the 124 

low-density fraction (SOMld) and the high-density fraction (SOMhd). Earlier, Rühlmann et al. 125 

(2006) had provided significant insights by positing that the density of soil organic matter (SOM) 126 

is influenced by both the quality of the SOM and the content of soil organic carbon (SOC). 127 
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(Ruehlmann, 2020) indicated that low- density SOM is typically found in nutrient rich soils 128 

abundant in nitrogen (N), phosphorus (P), and sulfur (S), although these soils may also exhibit 129 

lower SOC content in the SOM, such as 0.42 g g−1, and reduced density. In contrast, high-density 130 

SOM is likely derived from nutrient-poor soils characterized by low N:C, P:C, and S:C ratios, 131 

along with a higher average carbon concentration in the SOM, exemplified by a value of 0.53 g 132 

g−1 as noted by Pribyl (2010). Rühlmann et al. (2006) suggested the importance of microbes, while 133 

Ruehlmann (2020), based on the observations of Tipping et al. (2016) also suggested that the 134 

prevalence of microbes with low organic matter density, approximately 1.15 g cm-3, in nutrient-135 

rich soils could explain these observations. Ruehlmann (2020) concluded that employing a 136 

stoichiometric approach could unveil new avenues for exploring SOM density. 137 

Given the aim of the paper, to provide EU wide maps of topsoil porosity, the objective of 138 

this paper is to convert total bulk density (Panagos et al., 2024) to fine earth porosity for the EU 139 

scale. The added value of this conversion is to have a direct assessment of the amount of void 140 

space related to functional capacity, with porosity providing a more standardized metric than bulk 141 

density which varies distinctly across soil textures. The novel aspect of this work is the use of 142 

stoichiometric data to predict both soil organic matter and organic matter density as a function of 143 

land use, or cover, to tighten the estimate of the soil particle density for generic land use or covers 144 

appropriate to the EU scale. Moreover, we use an additional novel conversion of SOC to SOM 145 

using values appropriate to the carbon density of different habitats. Given the sand, silt and clay 146 

fractions, this provides a framework for estimating organic matter particle density based on land 147 

cover and hence improving the continental scale prediction of porosity. This advancement 148 

facilitates a deeper understanding of how porosity may be influenced by changes in SOM affected 149 

by land management or shifts in land use. 150 
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 151 

2 MATERIALS AND METHODS 152 

2.1 LUCAS topsoil data 153 

The geographic scope of the study covers the 27 Member States of the European Union (EU) 154 

and the United Kingdom. It captures a temporal snapshot of the porosity, as it is based on topsoil 155 

data (0-20cm) from the 2018 Land Use and Cover Area Frame Statistical Survey (LUCAS), 156 

sampled in this region between June-August. The LUCAS topsoil survey 2018 included just under 157 

20,000 topsoil data points for measured physical, chemical and biological properties (Orgiazzi, 158 

Ballabio, Panagos, Jones, & Fernández‐Ugalde, 2018). This was the third campaign of LUCAS 159 

and for the first time total bulk density was measured for almost 6,000 locations across the EU and 160 

UK for 0-10 and 10-20 cm (Orgiazzi et al., 2022). The sampling strategy for bulk density points 161 

is like the one used to select the LUCAS 2018 points which includes criteria such as land use/cover, 162 

soil properties and topography. The highest number of points were surveyed in Spain, France, 163 

Sweden, Poland, Finland and Italy (Panagos et al., 2024). 164 

The bulk density samples were left to air-dry followed by a recording of their weight. A 165 

subsample (3-5 g of soil) was then oven-dried at 105°C until it reached a constant weight.  The 166 

final total bulk density for each location was then calculated following the adapted ISO 167 

11272:2017 (Fernandez-Ugalde et al., 2022). Spurious points were rejected from the analysis data 168 

set, any points with a bulk density less than 0.1 g cm-3 or greater than 2.0 g cm-3. After quality 169 

controls, a bulk density database of 5,659 well distributed points (0-10 and 10-20 cm samples) 170 

based on stratification from across the EU was developed, of these 5,659 covered a complete depth 171 

of 0-20cm. The total bulk density (ρb T) was converted to the bulk density of the fine earth (ρb FE) 172 
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according to the conversion (ρb FE = (ρb T×(1-MCF) ×2.6)/(2.6- ρb T×MCF), where the particle density 173 

of the coarse fragments is assumed to be 2.6, and MCF is the mass of coarse fragments.  174 

  175 

2.2 Stochiometric analysis and data 176 

Soil organic matter particle density is considered to range between 1.1 and 1.5 g cm-3 according 177 

to (Ruhlmann, 2006) and the references therein. In the development of pedo-transfer functions to 178 

predict soil particle densities Ruehlmann (2020) suggested that the approach could be refined using 179 

stoichiometry such as used by Tipping et al. (2016), to analyze the quality of organic matter. 180 

Kuwata, Zorn, and Martin (2012) presented such an approach using stoichiometry to predict 181 

organic compound density of organic matter (ρsOM). They developed an equation based on 182 

hydrogen, carbon and oxygen (H:C and O:C ratios). The basic approach uses the molecular weight 183 

(MW), molecular volume (Vm) and the intermolecular volume (Vim), with A as a unit conversion 184 

factor: 185 

𝜌𝑠𝑂𝑀 =
𝑚𝑎𝑠𝑠

𝑣𝑜𝑙𝑢𝑚𝑒
=  

1

𝐴

𝑀𝑊

(𝑉𝑚+𝑉𝑖𝑚)
       (5) 186 

They state that Eq. (5) predicts particle density for pure compounds to within an error of ±5% 187 

However, the inputs are not always known and hence, Kuwata et al. (2012) proposed to make 188 

predictions using elemental ratios instead which are more commonly measured. They thus 189 

formulated Eq. (6) to predict organic material particle density.   190 

𝜌𝑠𝑂𝑀 (𝑔 𝑐𝑚−3) =
12+1(H:C)+16(O:C)

7.0+5.0(H:C)+4.15(O:C)
      (6) 191 

Kuwata et al. (2012) tested Eq. (6) on 31 pure compounds and found an error of ±12%, where 192 

densities ranged from 0.77 – 1.9 g cm-3. This was about double that of Eq. (5) but represented a 193 
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practical more measurable alternative. Certain compounds such as oxalic acid, xylitol, and 194 

cholesterol drove the nonconformity error. In addition, Kuwata et al. (2012) were interested in 195 

predicting the density of complex mixtures of organic materials such as those found in aerosols. 196 

They created a range of mixed secondary organic materials and tested Eq. (6) which predicted the 197 

particle density within the 12% error envelope. They concluded that Eq. (6), developed using pure 198 

organic compounds, was also accurate for predicting the density of secondary organic matter that 199 

constituted a complex mixture of organic compounds. Here we assume the equation holds for soil 200 

organic matter. Further validation, specific to soil organic materials to confirm this would be a 201 

welcome addition to the literature. Hence, assuming the applicability of Eq. (6) for SOM and given 202 

the elemental ratios of SOM, Eq. (6) provides a means to estimate the density of the soil organic 203 

matter.  204 

Stoichiometric data sets for soils focus on organic soils to avoid complications with mineral 205 

components. Hence, the approach is used more for wetland studies such as the values for natural 206 

ecosystems such as bog, fen and swamp (Moore, Large, Talbot, Wang, & Riley, 2018). In addition, 207 

Leifeld, Klein, and Wüst-Galley (2020) recently published results for organic soils across 208 

Switzerland under different land uses. This data set, comprised of 1165 soil samples from four 209 

different land uses, and provides a way to predict ρsOM based on Eq. (6). The dataset was used to 210 

obtain median values for organic matter densities based on land use for, woodland (including 211 

shrubland), grassland, cropland, and bare soil. A data set adding bog, fen and swamp was obtained 212 

from (Moore et al., 2018), where fens, are fed by streams and rivers; bogs, fed by rainwater; and 213 

swamps, distinguished by the presence of trees and shrubs. The data offered a mixture of depths 214 

to >5 m and so the data was split into those values for 0-20cm and the entire dataset with all depths 215 

for comparison.   216 
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2.3 Mapping 217 

Soil organic carbon (SOC) was measured in LUCAS and was converted to SOM for the 218 

purposes of calculations. To convert SOC to SOM a single conversion factor such as a value of 219 

1.82 is often used for the conversion, equivalent to 0.55 for the conversion of SOM to SOC (Lebron 220 

et al., 2024). SOC-SOM conversion will also depend on the stoichiometry and could thus be 221 

refined. Improvement on this approach was undertaken by obtaining SOC-SOM ratios from the 222 

literature for different habitats (Reinsch et al., 2025). This is consistent with the different SOC-223 

SOM ratios for plants in the meta-analysis of (Ma et al., 2018). SOC-SOM conversion factors are 224 

provided in Table 1. 225 

 The fractions of clay, silt, and sand used in the present work were taken from the set of pan-226 

European maps produced by (Ballabio, Panagos, & Monatanarella, 2016) from 6,140 observations 227 

of the LUCAS 2009 database. The bulk density information for the topsoil (20 cm) derived from 228 

the map of (Panagos et al., 2024) who used 6,140 points of the LUCAS 2018 database (Orgiazzi 229 

et al., 2022), and the soil organic carbon map was derived from observations of all LUCAS 230 

campaigns. The CORINE land cover dataset was adopted and reclassified into the broad categories 231 

(cropland, grassland, shrubland, forest) to which stoichiometric values were derived. All datasets 232 

were resampled to the common spatial resolution of 1 km and cropped to the 27 Member States of 233 

the European Union, plus the United Kingdom and Switzerland. 234 

 We followed a sequence of five steps to derive the topsoil porosity map: 1) Calculate organic 235 

matter particle density based on stoichiometry using Eq. (5) and determine the median for each of 236 

the land cover categories; 2) Assign each map land cover to a median value of particle density; 3) 237 

Convert soil organic carbon to soil organic matter for LUCAS data; 4) for each map pixel with 238 

bulk density, calculate the soil particle density according to Eq. (5); and 5) convert each total bulk 239 
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density pixel to ρb FE based on a coarse fragment correction described previously, then determine 240 

the porosity of the fine earth using Eq. (1) to produce a porosity map. By using the almost 6,000 241 

points of total bulk density from LUCAS 2018 topsoil survey and advanced machine learning 242 

methods (Cubist), Panagos et al. (2024) developed a high-resolution total bulk density map (100 243 

m) for topsoil (0-20 cm) covering the EU, UK and Switzerland. The predicted total bulk density 244 

map values were used as the basis for the conversion of total bulk density to fine earth bulk density 245 

and then porosity.  246 

2.4 Statistical modelling 247 

We constructed statistical models to explore the extent to which porosity may be predicted 248 

directly from SOM, allowing the relationship to vary between land cover types. This type of 249 

statistical approach can be used to estimate porosity when data are limited and helps to build 250 

understanding of the influence of land cover on trends in the data. Models were fit using k fold 251 

cross validation, stratified by landcover type. Due to the bimodal distribution of residuals in 252 

models derived from SOM, Gaussian distribution was not appropriate. Hence, a Tweedie 253 

distribution was used with variance power p assigned during model fitting using the “gam” 254 

function in the R package “mgcv” (v1.8-42; (Wood, 2011)). Fitting Tweedie distribution variance 255 

power p value to the model should capture the distribution of residuals, which was assessed using 256 

residual plots for the models.  257 

To test for variation in the relationship of SOM to porosity between land cover types, we 258 

constructed two separate models. In Model 1, we allowed the model to vary the gradient of the 259 

SOM to porosity relationship between land covers (using "fs" to fit a variable smooth by land 260 

cover). We compared this to a Model 2 which instead specified a consistent nonlinear relationship 261 

to SOM (using “cs” to specify a cubic spline). In both models, we also included land cover as a 262 
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fixed effect, to account only for variation in intercept (i.e. a shift in the trend).  The use of penalized 263 

smoothers in both models can capture nonlinear relationships between SOM and porosity. The 264 

"cs" smoother applies a double penalty (Marra & Wood, 2011), which allows the penalized 265 

regression routine to shrink spurious covariates out of the model. The "fs" smoother fits separate 266 

smooths by habitat and applies penalization to avoid overfitting, allowing the smooths to be shrunk 267 

toward simpler or more similar trends, unless the data strongly justifies greater complexity. Using 268 

these methods, the influence of a variable in the model may be interpreted as indicative of 269 

improving the fit (since influence of the variable would otherwise be shrunk out). The penalization 270 

approach should avoid overfitting if implemented correctly, which was assessed from comparison 271 

of estimated degress of freedom (edf) with reference degrees of freedom (ref.df) and inspection of 272 

smooth plots to look for implausible patterns. The separate inclusion of land cover as a fixed effect 273 

in both models allows us to also capture average variation in SOM porosity relationships between 274 

land cover types, rather than assuming that differences should be only related to a trend with SOM. 275 

We used a Wilcoxon signed-rank test to evaluate whether the additional flexibility in allowing the 276 

relationship to SOM to vary between landcover types significantly improves model fit. To better 277 

explore the relationship by land cover, we filtered out wetland data points due to low n (<3).  278 

 279 

3 RESULTS 280 

Histograms illustrating the soil total bulk density data for the LUCAS 2018 dataset are 281 

presented in Fig. 1, encompassing two depth ranges: 0-10 cm and 10-20 cm. The bulk density 282 

values span from 0.1 g cm-3 to 2.0 g cm-3, with the 0-10 cm histogram (Fig. 1a) indicating a higher 283 

prevalence of organic material, as evidenced by the noticeable increase in data points at lower bulk 284 

densities. In contrast, this trend diminishes in the 10-20 cm dataset (Fig. 1b). Furthermore, this 285 
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decline in organic matter correlates with a rise in the mean bulk density across the two layers, 286 

shifting from 1.04 g cm-3 for the 0-10 cm range to 1.14 g cm-3 for the 10-20 cm range (1.09 g cm-287 

3 for the 0-20 cm range). The conversion of bulk density from Total (ρb T) to fine earth (ρb FE) for 288 

0-20cm is found in (Supplementary Fig. S1). The mean bulk density of the ρb FE transitions from 289 

1.09 cm-3 to 1.01 cm-3 after coarse fraction removal.  290 

 291 

 292 

Figure 1. Soil total bulk density histograms for (a) 0-10 cm (n=5,518) and (b) 0-20 cm 293 

(n=5,518) filtered from the LUCAS 2018 topsoil survey (n=5,659). The red line indicates the mean 294 

values for the distribution (0-10cm = 1.04 g cm-3; 10-20cm = 1.14; 0-20cm 1.09), which is slightly 295 

lower than the median value (blue line) (0-10cm = 1.10 g cm-3; 10-20cm = 1.18; 0-20cm 1.15). 296 
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The data are colored from dark to pale signifying the greater organic matter content in the low bulk 297 

density soils and the higher mineral content in the high bulk density soils.  298 

The bulk density data are illustrated in Fig. 2a, which depicts the relationship between soil total 299 

bulk density and soil organic matter fraction. This fraction is derived from the soil organic carbon 300 

concentration within the LUCAS dataset, calculated by applying the conversion factors in Table 301 

1.  The data points are color-coded according to their respective land covers, revealing a robust 302 

relationship consistent with findings by Panagos et al. (2024) and Thomas et al. (2024). 303 

Furthermore, an interpretive model is introduced, Eq. (6), with bulk density values at the extreme 304 

ends set to be 0.1 g cm⁻³and 1.98 g cm⁻³. This model, grounded in physical principles (Robinson 305 

et al., 2022), effectively captures the observed trends and curvature of the data. In Fig. 2b, the 306 

modeled data is compared to the measured data, with a 1:1 line included for reference. The figure 307 

demonstrates a relatively uniform distribution of values around the model, emphasizing the 308 

prevalence of woodland in areas with low bulk density soils, while cropland and grassland are 309 

associated with higher bulk density soils. Additional figures, differentiated by clay content, are 310 

provided in Supplementary Fig. S2, indicating that grasslands and croplands exhibit greater 311 

consistency with mineral soils. 312 

 313 
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 314 

Figure 2 Fine earth bulk density relationships for major EU land covers. (a) Bulk density (0-20 cm 315 

FE) as a function of soil organic matter for the LUCAS 2018 topsoil dataset. (b) Model predicted 316 
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bulk density FE, Eq. (6) vs. the measured bulk density FE. Artificial land represents urban brown 317 

field sites for example while bare land is that without vegetation more generally.     318 

The bulk density values categorized by land cover type are detailed in Table 1, which also 319 

includes the soil clay fraction. Table 1 also contains predictions discussed later in the context of 320 

Fig. 5. These estimated values are derived from modeled bulk density as per Eq. (4), with the soil 321 

organic matter bulk density end members set at 0.1 g cm-3 and the mineral soil bulk density at 1.98 322 

g cm-3 (Robinson et al., 2022). The calculation of soil particle density involved the integration of 323 

mineral and organic particle densities, following the methodology outlined in Eq. (4). The mineral 324 

particle density was obtained from the particle densities of the clay, silt, and sand fractions, as 325 

reported by (Ruehlmann & Körschens, 2020), utilizing a comprehensive global dataset (2.76, 2.69, 326 

and 2.66 g cm-3), while the soil organic matter particle density was ascertained from the current 327 

study. 328 

 329 

Table 1. Soil metrics, measured and estimated either from the model predictions, Eq. (2), (3) 330 

& (6) for six land cover types. Values represent the means with the standard deviation following 331 

in brackets. Estimated values, the bulk density is calculated using Eq. (3). The soil particle density 332 

with Eq. (2) and the porosity Eq. (1) using the modelled particle density to convert the bulk density 333 

of the fine earth. Numbers in parentheses are the standard deviations. 334 

Metric Bareland   Cropland Grassland Shrubland Woodland   

Bulk Density (ρb) (T)  measured g cm-3 1.23  

(0.199)   

1.25  

(0.212)   

1.10  

(0.270)   

1.05  

(0.316)   

0.83 (0.353)   

Bulk Density (ρb) (FE)  measured g cm-3 1.11 

(0.210) 

1.17 

(0.232) 

1.00 

(0.283) 

0.90 

(0.290) 

0.74 

(0.338) 

Clay % 24.1  (11.1)     23.7  (13.9)     21.1  (13.6)     18.1  (12.9)     11.5  (10.7)     

Estimated values 
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Soil Particle Density (ρss) modelled, Eq. (6) 

& (2) (g cm-3) 

2.62 (0.05)    2.61 (0.07)    2.53 (0.16)     2.50 (0.20)     2.40 (0.29)    

Porosity (FE) – modelled, Eq. (6) & (4) (cm3 

cm-3) 

0.576 

(0.080)   

0.553 

(0.087)   

0.609 

(0.102)   

0.646 

(0.104)    

0.702 

(0.122)    

Porosity (FE) assuming ρM 2.65 (cm3 cm-3) 0.581 

(0.079)   

0.560 

(0.088)   

0.624 

(0.107)    

0.662 

(0.110)    

0.721 

(0.127)    

Number obs. 200 2328 1167 181 1617 

 335 

Particle density was calculated based on Eq. (6) using the data of Moore et al. (2018) and 336 

Leifeld et al. (2020) with the results presented in the form of a Van Krevelen diagram (Fig. 3) that 337 

plots the H:C versus O:C ratios (van Krevelen, 1950). This diagram illustrates the anticipated 338 

positioning of organic materials based on their stoichiometric ratios, thereby capturing the 339 

potential relationships and transitions that SOM may experience. In Fig. 3a, the data points are 340 

color-coded according to their predicted density. The predicted density is consistent with a gradient 341 

ranging from lightweight, lipid-dominated compounds (such as stearic acid at 0.94) to denser 342 

substances like lignin (1.3) and carbohydrates (cellulose at 1.5). The densest SOM is linked to the 343 

condensed aromatic structures depicted (Fig. 3a). The dashed lines, marked with arrows, represent 344 

the pathways of dehydration and decarboxylation. Therefore, Eq. (6) predicts particle density 345 

values consistent with where we would expect them to fall on the van Krevelen plot. Fig. 3b 346 

presents the same diagram, but the data points are categorized by habitat. The distribution of these 347 

data points suggests potential clustering among habitats, indicating that compounds of specific 348 

densities are more prevalent in certain environments. Lighter organic matter is predominantly 349 

associated with nutrient-rich habitats such as cropland and grassland, while denser organic matter 350 

is more commonly found in woodlands and peatlands.        351 
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Figure 3. (a) Organic matter particle density (g cm-3) calculated by using the atomic hydrogen to 354 

carbon (H:C) and oxygen to carbon (O:C) ratios from (Leifeld et al., 2020) and (Moore et al., 355 

2018) and plotted on the Van Krevelen diagram. The legend is particle density (g cm-3) (b) The 356 

same diagram but colored by habitat  357 

The predicted particle density values (0-20cm) for different habitats are presented in Fig. 4 and 358 

in Supplementary Table S1; these are for organic soils, where fens, are fed by streams and rivers; 359 

bogs, fed by rainwater; and swamps, distinguished by the presence of trees and shrubs. The mean 360 

particle density ranged from 1.35 g cm-3 in grassland soils to 1.50 g cm-3 in nutrient-poor peatland 361 

for 0-20cm; this narrowed to 1.35 to 1.41 if data from the whole profiles was included (Table S2). 362 

This change perhaps reflecting a decrease in O2 with depth. The data, represented by median values 363 

in Fig. 4, suggest a potential gradient in density from nutrient-rich to nutrient-poor habitats.  364 

 365 
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 366 

Figure 4. Organic matter density for differing habitats predicted according to Eq. (6) for the 367 

stoichiometric data sets in Leifeld et al. (2020) and Moore et al. (2018) (0-20cm).  368 

 369 

Particle densities presented in (Supplementary Table S1) were utilized to ascertain the soil 370 

particle density (Table 1), which subsequently facilitated the calculation of soil porosity in 371 

accordance with Eq. (1). The mean porosity values derived from the novel methodology introduced 372 

in this study are displayed in Table 1, alongside those obtained using a conventional particle 373 

density value of 2.65 g cm-3, commonly applied in mineral soil conversions, for comparative 374 

purposes (see Fig. 5). Fig. 5a shows the difference in porosity between an assumption of 2.65 and 375 

the calculated particle density based on the mineral and organic fraction weighting. The findings 376 
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from the new model suggest that when compared to the assumption of a particle density of 2.65, 377 

the porosities calculated using a combination of organic and mineral particle densities are lower 378 

as expected, within 0.05 m3m-3, due to the lower density of organic matter. The coloring shows 379 

that soils where the difference is greater than 0.05 tend to have more organic matter. This is 380 

explored in Fig. 5b using Eq. (4) to calculate that happens when the bulk density of the organic 381 

fraction is increased. The figure clearly shows that the absolute error in terms of porosity is small 382 

(~0.03) when the bulk density of the organic material is low, as there is little of the organic material 383 

resulting in a small error. However, as expected, as the amount of organic material increases so 384 

the absolute porosity difference increases substantially such that the use of 2.65 substantially 385 

overestimates porosity. This difference in organic soils with bulk densities of 0.5 g cm-3, represents 386 

an over estimation of more than 0.15 cm3 cm-3 when 2.65 is assumed, which is beyond the standard 387 

deviation of the combined LUCAS data set porosity (SD = 0.119).        388 

 389 

 390 
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Figure 5. (a) Boxplots of the difference in porosity (ρss=2.65 – ρss=calculated) for different LUCAS 393 

land covers. Particle densities calculated with, Eq. (6), (a generic value of 2.65 g cm-3, often used 394 

for mineral soils (Brady & Weil, 2008)). (b) The porosity (FE) difference calculated with ρss=2.65-395 

ρss=1.4, simulated for the SOM range with Eq. (4) ρb mineral = 1.98 ρb SOM adjusted.  396 

 397 

The spatial extension of these findings, utilizing the maps produced for bulk density (Panagos 398 

et al., 2024) and subsequently converting to porosity through the application of mineral and 399 

organic matter particle densities, culminates in the European map depicted in Fig. 6 (0-20 cm). 400 

The regions marked in yellow in Northern Europe correspond to soils rich in organic matter, while 401 

those in Central Europe align with extensive areas of forested soils. Conversely, the soils 402 

represented in blue, characterized by low porosity, are typically associated with agricultural 403 

croplands.   404 
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 406 

Figure 6. Soil porosity (FE) (cm3 cm-3) for the topsoil (0-20 cm) for Europe and UK based on the 407 

conversion of bulk density to porosity using the particle density determination approach introduced 408 

in this work.   409 
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Fig. 7 examines the relationship between soil organic matter and porosity across various 411 

vegetation covers. A Wilcoxon signed-rank test showed that this model which allowed the SOM 412 

trend to vary by landcover provided significantly better fit (p<0.001, see Table S4) than a model 413 

2 without landcover specific relationship to SOM: Porosity ~ s(SOM Fraction, bs=”cs”) + 414 

landcover. The observed gradients indicate that vegetation cover significantly influences the SOM-415 

porosity relationship. Notably, the relationships observed in artificial and bare land differ markedly 416 

from those in vegetated habitats, highlighting the distinct biotic drivers and processes at play. In 417 

vegetated habitats, the overall trend exhibited less variability. Grassland, shrubland, and woodland 418 

display the characteristic curvature of the empirical model, Eq. (4); (Fig. S4), while cropland does 419 

not have the initial steep rise, suggesting that porosity increases less with lower levels of soil 420 

organic matter compared to semi-natural habitats. This phenomenon may be indicative of a higher 421 

degree of settlement and potential compaction associated with this land cover. 422 

 423 

 424 
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Figure 7. Plots of predicted porosity using a Generalized Additive Model (GAM) for LUCAS 0-425 

20cm datapoints using model 1: Porosity ~ s(SOM Fraction,  by = landcover, bs=”fs”) + landcover. 426 

The relationship to soil organic matter (SOM) was allowed to vary by land cover, and model 427 

statistics indicate variation in porosity between land cover types, as well as nonlinear trends with 428 

SOM for all landcover types except artificial (see Table S5; Fig. S5). Model constructed using k-429 

fold cross validation; each point in the data used for plotting was predicted by a model which 430 

excluded it.  431 

 432 

 433 

4 DISCUSSION 434 

The bulk density data obtained from the LUCAS topsoil survey constitutes an internally 435 

consistent dataset that is essential for comprehending the condition and transformation of soils 436 

throughout Europe. Bulk density serves as a critical indicator of soil health and has been 437 

demonstrated by Seaton et al. (2021) to be closely associated with concentrations of carbon and 438 

nitrogen at a national scale. Recent advancements in understanding the physical relationship 439 

between bulk density and soil organic matter have been articulated by Robinson et al. (2022) and 440 

Thomas et al. (2024). This enhanced comprehension suggests that the significance lies not only in 441 

the mere presence of soil organic matter and its differing particle density compared to mineral 442 

materials, but also in the morphology of soil organic matter particles, as noted by (Robinson et al., 443 

2022). This principle similarly applies to porosity. The data distinctly illustrate a robust correlation 444 

with land cover or habitat type, as highlighted by (Panagos et al., 2024) and Thomas et al. (2024) 445 

for porosity. Furthermore, Thomas et al. (2024) has indicated that for porosity this relationship 446 
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extends beyond soil organic matter and is further refined by the inclusion of habitat variables, as 447 

evidenced in Models 14 and 15 of their study. We found even greater influence of land cover, to 448 

the extent that the gradient of the relationship between soil organic matter and porosity for the 449 

LUCAS data varies between land cover, whilst Thomas et al. (2024) found only a shift in the trend 450 

for UK data, probably due to the smaller area studied. The additional influence of land cover is 451 

likely attributable to plant roots and pores created by other organisms altering the geometry of the 452 

soil beyond that of soil organic matter alone. 453 

The mean particle density of organic matter was observed to range from 1.35 in grassland to 454 

1.50 in bog, according to this methodology (Supplementary Table S1). We concur with Ruehlmann 455 

(2020); (Rühlmann et al., 2006) that a distinct gradient exists in soil organic matter density from 456 

low to high. Additionally, we hypothesize that this gradient is likely attributable to the quality of 457 

SOM. This corresponds to Fig 3 that indicates that as the H:C ratio alters, to more carbon and less 458 

hydrogen, the particle density increases as expected. Hence, as carbon concentrates in Bog’s, the 459 

SOM becomes denser. Recent investigations by Ma et al. (2018) have examined plant components 460 

globally for their organic carbon content, revealing notable patterns; for instance, organic carbon 461 

content varies from 0.382 in the roots of cropland plants to 0.474 in woody plant roots, which we 462 

believe undergo transformation and are subsequently represented in the soil organic matter 463 

stoichiometry. A comprehensive analysis conducted by (Reinsch et al., 2025) across European 464 

soils corroborated these findings regarding SOM. Therefore, we align with Rühlmann et al. (2006) 465 

in asserting that the observed gradient in soil organic matter density likely reflects variations in 466 

organic matter quality and the SOC content.  467 

An examination of Fig. 4b indicates that cropland soils are characterized by a higher presence 468 

of lighter compounds, such as lipids and proteins, and a lower presence of lignin, in contrast to 469 
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woody habitats that exhibit increased lignin content. (Ma et al., 2018) research indicated a positive 470 

correlation between carbon content and lignin, while no such correlation was found with cellulose. 471 

This suggests that the concentrations of lignin and lipid proteins within soil organic matter are 472 

significant determinants of overall organic matter particle density. Furthermore, we endorse the 473 

notion that this gradient aligns with the "soil continuum model" conceptual framework proposed 474 

by (Lehmann & Kleber, 2015); who suggest a gradient from particulate organic matter into smaller 475 

and smaller molecules as the SOM breaks down. 476 

The integration of soil texture for assessing mineral density alongside average land cover 477 

values for organic matter particle density, Eq. (6) facilitates a more refined prediction of porosity 478 

for large scales based on Eq. (1). This approach is predicated on a detailed estimation of soil 479 

particle density, Eq. (6), utilizing metrics that are readily accessible through soil monitoring and 480 

remote sensing technologies. As illustrated in Fig. 5, the predictions of porosity derived from this 481 

method differ from those obtained by employing a standard factor, such as 2.65 g cm-3, for particle 482 

density. It is anticipated that a mineral soil particle density conversion factor would yield 483 

suboptimal results in woodland and peatland environments where organic soils are prevalent. 484 

Nevertheless, it is noteworthy that the predictions also fall short in cropland and bare soil contexts, 485 

where one might reasonably assume a particle density reflective of quartz. Analysis of the LUCAS 486 

dataset indicates that the average value for particle density for all EU soils used to convert bulk 487 

density to porosity, Eq. (1), in the absence of texture and organic matter data, is 2.53 g cm-3. 488 

However, it’s better to use the land use specific values in Table 1.  489 

The porosity map for Europe (Fig. 6 (0-20 cm) illustrates a significant anthropogenic influence 490 

on soil porosity throughout the EU and UK. Those datasets at 100m resolution will be available in 491 

the European Soil Data Centre (ESDAC) (Panagos et al., 2022). The generated porosity map aligns 492 
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closely with the soil organic carbon distribution across Europe, highlighting the critical role of soil 493 

organic carbon in this relationship. In Southern Europe, soils exhibit low levels of SOM, primarily 494 

attributed to rising pH levels and a transition from organic to inorganic carbon stability. 495 

Consequently, the inherent low SOM content in these soils is reflected in their reduced porosity. 496 

While land cover plays a crucial role in determining porosity, latitude also influences organic 497 

carbon distribution across the continent, further affecting porosity levels. This can be observed 498 

when upscaling to global scales, such as when looking at products from soilgrids (Hengl et al., 499 

2017) or openland map (Hengl et al., 2025) for bulk density. When observing such global data, it 500 

is apparent that a gradient exists with lower bulk densities in the peatlands of the North and higher 501 

bulk densities in hot dry places like deserts. SOM and parent material will each contribute to the 502 

expression of porosity, but this generalization is supported by analysis of global data based on 503 

mean annual precipitation and temperature, where soils in hot dry climates tend to have higher 504 

bulk densities than those that follow a gradient from cold and dry to hot and humid (Zhao, Yang, 505 

Shen, Geng, & Fang, 2019). Global soil mapping is yet to incorporate temporal change in the way 506 

Hirmas et al. (2018) observed on years to decade time scales across the USA. Moreover, changes 507 

in porosity are also likely to be observed in some latitudes due to seasonality with both land 508 

management and moisture and temperature cycles altering the porosity (Alletto & Coquet, 2009; 509 

Hu, Shao, & Si, 2012; Nottingham, Thompson, Turk, Li, & Connolly, 2015).     510 

Europe spans the latitudes where soils are very porous in the Northern peatlands to where soils 511 

are increasingly dense close to the equator, or in deserts with no organic matter; this represents a 512 

span in porosity from ~0.95 to 0.4 m3m-3. In such locations without SOM and only granular 513 

material bulk densities revert to values around 1.6 g cm-3 corresponding to porosities of ~0.4 m3m-514 

3. The results imply that the greatest changes to porosity will likely be observed initially in the 515 
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temperate latitudes where changes in soil organic matter due to land use or climate change are 516 

likely to be more pronounced.        517 

While this work has focused on mechanistic modelling, increasingly data driven modelling 518 

using AI is being applied in soil science (Minasny & McBratney, 2025; Wadoux, 2025). As 519 

porosity is not measured directly AI and machine learning approaches have focused on bulk 520 

density (Chen et al., 2024; Hengl et al., 2025; Hengl et al., 2017; Panagos et al., 2024). These black 521 

box methods continue to improve (Minasny & McBratney, 2025). One of the challenges for soil 522 

mapping is presented by biased data sets (Liu, Ikonnikova, Scott Hamlin, Sivila, & Pyrcz, 2021) 523 

or bimodal data (Nussbaum, Zimmermann, Walthert, & Baltensweiler, 2023). Traditional soil 524 

sampling, for example based on a grid, will often produce machine learning predictions that have 525 

the tails of the distribution poorly represented. The tails are often important in soil science as they 526 

may represent less spatially abundant but functionally important soils like peats. One way of 527 

dealing with this is using stratified sampling which results in more balance data sets. Alternatively, 528 

methods continue to develop to deal with such data e.g. selecting the best approach for rebalancing 529 

data (Dal Pozzolo, Caelen, Waterschoot, & Bontempi, 2013). These methods continue to evolve 530 

and as data becomes more abundant will significantly improve the prediction of soil change in 531 

space and time across scales, but caution and care should be applied in the selection of covariates 532 

to improve soil knowledge and understanding (Wadoux, Samuel‐Rosa, Poggio, & Mulder, 2020).  533 

These issues are not unique to AI modelling, for example, statistical models like the GAM 534 

presented here must also be applied with consideration for unbalanced data-sets e.g. through 535 

careful selection of response distribution (Wood, 2017). Similarly, data-driven statistical 536 

modelling implemented with poorly selected co-variates may identify spurious relationships which 537 
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do not reflect underlying processes or drivers and may not hold outside of the sample dataset 538 

(Tredennick, Hooker, Ellner, & Adler, 2021).  539 

Total porosity represents an initial aspect of soil characterization; however, comprehending 540 

variations in size distribution is a crucial subsequent consideration. Macropores play a significant 541 

role in facilitating swift infiltration (Beven & Germann, 1982; Watson & Luxmoore, 1986), 542 

thereby minimizing surface water accumulation and mitigating the risks associated with runoff, 543 

localized flooding, and soil erosion. Recent investigations conducted throughout the continental 544 

United States have revealed that soil macroporosity is undergoing changes over decadal periods 545 

(Hirmas et al., 2018), over and above rapid field scale changes due to agriculture. Their findings 546 

suggest that "drier and warmer climates foster the formation of macropores in the surface layer, 547 

while more humid and cooler climates inhibit the manifestation of macroporosity." While 548 

macropores facilitate rapid drainage, micropores serve to retain water against gravitational forces, 549 

thus supplying moisture to plants and soil microorganisms. This dual porosity characteristic of 550 

soils is vital for sustaining biological functions. Any reduction in total porosity will have 551 

significant implications for hydrological processes, the extent of which will be influenced by the 552 

distribution of pore sizes. 553 

Many sustainable land management practices that promote soil health play a significant role in 554 

the restoration, maintenance, and enhancement of total soil porosity, as well as the distribution and 555 

connectivity of soil pores. These practices encompass the application of organic amendments, and 556 

the use of cover crops and reduced or no tillage (Bai et al., 2019). It is essential to acknowledge 557 

that soil pore space is inherently dynamic and requires careful management to ensure the health of 558 

agricultural soils. This dynamic is influenced by various processes, including wetting and drying 559 

cycles, shrink-swell phenomena, and soil aggregation (Ghezzehei, 2012). Additionally, biotic 560 
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factors, such as plant root systems and ecosystem engineers like earthworms, ants, and termites, 561 

contribute to the dynamic characteristics of soil porosity (Kodešová, Kodeš, Žigová, & Šimůnek, 562 

2006). This evolving nature of soil porosity and its implications for structural development is 563 

gaining attention, particularly concerning its potential interactions with the hydrological cycle and 564 

climate change (Fatichi et al., 2020; Hirmas et al., 2018). 565 

The anthropogenic impact, particularly in central and northern Europe, suggests a potential 566 

increase in soil compaction, which is likely associated with a decrease in SOM resulting from 567 

agricultural practices that has been observed both in measurement (Reynolds et al., 2013) and 568 

modelling (Janes-Bassett et al., 2021). Furthermore, the relationship between bulk density or 569 

porosity and SOM implies that significant feedback mechanisms may arise concerning local soil 570 

hydrology in response to changes in land use and soil organic carbon management. Alterations in 571 

porosity are expected to occur over various temporal scales. Seasonal variations in porosity may 572 

arise due to cycles of wetting and drying, while longer-term changes may be observed over decades 573 

because of shifts in land use (De Rosa et al., 2024; Or, Keller, & Schlesinger, 2021). In the United 574 

States, changes in porosity have been documented over similar time frames, although the 575 

underlying causes remain unclear (Hirmas et al., 2018). Datasets like the LUCAS for European 576 

topsoils, which is expanding its monitoring of bulk density, offer a robust foundation for 577 

monitoring the magnitude and extent of soil conditions and changes as the survey progresses over 578 

time. This will enhance our comprehension of the dynamic characteristics of soil porosity at large 579 

scales and its responses to various factors, including seasonal variations, climate influences, and 580 

land use modifications. 581 
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