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Soil porosity prediction across Europe with a focus on soil particle density determination

ABSTRACT

This study emphasizes the critical role of soil porosity as an environmental variable influencing
infiltration, compaction, runoff, and erosion, which are inversely related to bulk density. An
analysis of topsoil porosity across Europe (0-20cm) was conducted using data from the LUCAS
monitoring program, focusing on the fine earth fraction of soils. The conversion from bulk density
to porosity — more intuitive for hydrological studies - requires knowledge of the particle density
of both mineral and organic components, which is often lacking. A novel method was developed
to estimate the particle density of organic matter using stoichiometric datasets from various land
use types, resulting in an EU LUCAS average soil particle density of 2.53 g cm™. The generated
fine earth porosity map aligns with high porosity areas in Northern Europe's peatlands and Central
Europe's forests, providing insights into soil densification processes linked to compaction from
traffic or organic matter depletion due to land use changes. This understanding is crucial for

assessing compaction and erosion risk.

Key words: Bulk density, soil organic matter, stoichiometric modelling, LUCAS soil survey, soil

science
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1 INTRODUCTION

Soil porosity, the proportion of void space among soil particles (Dippenaar, 2014; Nimmo,
2004), is essential for gas fluxes and the infiltration, movement, transport, and retention of soil
water. Moreover, it is an important indicator of soil health with declining porosity indicating
densification and potential compaction which can lead to enhanced runoff and greater erosion risk
(Gupta, Borrelli, Panagos, & Alewell, 2024; Holz, Williard, Edwards, & Schoonover, 2015).
Increasing the pore space, for example using plant cover to which porosity is correlated (Thomas
etal., 2024), is an important way to mitigate such effects (Zuazo & Pleguezuelo, 2009). Moreover,
recent findings indicate that soil macroporosity is dynamic on continental and decadal time scales

with unknown consequences for soil hydrological functioning (Hirmas et al., 2018).

Hirmas et al. (2018), found that predictions based on effective porosity, in five different
physiographic regions of the USA, based on predicted changes in mean annual precipitation up to
2100 mm, resulted in soil saturated hydraulic conductivity altering between —55 to 34%. Two
important advances came from this work, 1) that we understand that soil porosity, especially
macroporosity alters on much shorter time scales than previously considered, 5-10 yr time cycles.
2) that the porosity alters due to feedback from climate, presumably through alteration of the flora
and physical cracking of soils. A similar recent study for China (Kang, Zhang, Wu, & Zhao, 2024)
found similar results with effective porosity higher in drylands compared to humid regions
resulting in dryland soils being less conducive to soil water conservation and vegetation
development. Several important studies have gone on to examine the implications of better
incorporating soil structure into large scale regional or global models. Fatichi et al. (2020) found
that the inclusion of better soil structure characterization in Earth System Models affected local

hydrologic response. However, they concluded that the implications for global-scale climate
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remains elusive in current Earth System Models. More recently, Wankmdller et al. (2024) have
shown that global influence of soil texture on ecosystem water limitation, hence factors, such as
porosity, affecting the ability of soils to retain moisture will impact the drought resilience of
ecosystems. In temperate systems the porosity and water retention are also likely to be influenced
strongly by soil organic matter (Robinson et al., 2025; Robinson et al., 2022; Thomas et al., 2024).
This increasingly active area of research indicates the importance of improving our ability to
measure and predict soil characteristics in space and time related to hydrological function in order
to better understand climate soil feedback. Pore sizes can vary significantly, encompassing both
large macropores, which promote swift water drainage and air circulation, and smaller micropores,
which are responsible for the retention of water and nutrients. The intricate network of pores is
vital for soil conservation, ecosystem functionality, effective water management, agricultural
productivity, and the sustainability of environmental systems. A comprehensive understanding of
soil porosity and bulk density is critical for assessing soil health, particularly in relation to water
resilience, ecosystem processes, biomass generation, and carbon storage (Robinson et al., 2022).
Moreover, porosity is susceptible to degradation by compaction or consolidation which densify
the soil. Porosity and bulk density are essentially emergent properties based on a hierarchy of
structures from grains to clay domains (tactoids), micro- and macro-aggregates and peds. Adopting
a stereoscopic perspective, encompassing both microscopic and macroscopic dimensions (Scarlett,

Van Der Kraan, & Janssen, 1998) can therefore clarify what leads to this emergence.

From a macroscopic perspective, soil porosity is quantified as the volume of pore space
relative to the total volume of soil Eqg. (1) and exhibits an inverse relationship with bulk density.

Fundamentally, the packing of granular particles leads to the macroscopic — bulk relationship
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between porosity (¢, cm® cm3), bulk density (pb, g cm™), the soil particle density (pss, g cm®), and

the packing fraction (n, cm® cm), Eq. (1):

o=1-(2)=1-n M

Pss
Numerous elements affect the relationship between bulk density and soil porosity, such as soil
texture, structural composition, and the content of clay and organic matter (Robinson et al., 2022).
However, a significant challenge arises when attempting to convert bulk density, which is
frequently assessed, into porosity due to the necessity of knowing the soil particle density, a
parameter that is not typically measured, or difficult to measure routinely. A value of 2.65 g cm™
is often used as a proxy for the soil particle density in textbooks as it represents the particle density

of quartz, a common constituent of many temperate soils (Brady & Weil, 2008).

Better estimates of soil porosity require knowledge of the particle densities of the soil
materials, primarily organic and mineral constituents. However, as noted by (Rihlimann,
Korschens, & Graefe, 2006), the calculation of particle density is not merely a summation of the
individual densities. This complexity arises because the impact of each component on the overall
particle density is contingent upon both its mass fraction and the volume it occupies. Consequently,
since the densities do not scale linearly with their mass fractions, it is essential for the equation to
incorporate variations in the intrinsic volume contributions of the different components
(Ruehlmann, 2020; Ruehlmann & Kdrschens, 2020). To address this, Ruehlmann (2020) proposed

a suitable mixing equation for soils Eq. (2).

1
Pss = Som (1-SOM) 2)
PsoM Clay, Silt  Sand|™"
Psc PsSi PsSa
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Where psom represents the particle density of organic matter and the particle density of the mineral
fraction is divided between, clay (psc), silt (pssi) and sand (pssa), respectively. SOM is the fraction
of soil organic matter (0-1), hence the mineral matter fraction is 1-SOM. Clay, Silt and Sand are
the respective fractions of the texture components which all add together to 1. Ruehlmann and
Korschens (2020) utilized a comprehensive global dataset to estimate the particle densities of Clay,
Silt, and Sand fractions, which were found to be 2.76, 2.69, and 2.66 g cm=, respectively.
Additionally, using a regression method Ruehlmann and Kdrschens (2020) suggested that soil
organic matter (SOM) could be categorized into low-density (1.27 g cm™®) and high-density (1.43
g cm?®) fractions. However, the determination of the most suitable value, or values, of SOM
particle density remains an open research question, particularly when assessing large spatial areas.
Although not explored, Ruehlmann (2020) suggested that using the stochiometric values of the
components of SOM could be one way to determine a value for the particle density of the organic

fraction.

In addition, the same modelling approach can also be applied to determine the soil bulk

density (Adams, 1973) Eq. (3) and the total porosity Eqg. (4), according to:

1

Pb = Som L 1=SoM 3)
PbOM PbM
1 1
p=1- lSOM ,1—50Ml - lSOM N 1—SOM] 4)
PboM PbM psoM  PsM

Where the bulk density of the organic matter (ppom) and mineral material (pom) is for the end
members of all OM or all mineral material, SOM is a fraction (0-1). The values of end members
will vary quite widely, but Robinson et al. (2022) proposed values of 1.98 g cm™ for ppm and ~0.1

g cm for ppowm that captured the general response of a national data set. A value of 1.98 g cm™ is
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equivalent to the bulk density of a binary mixture of hard spheres with a ~10:1 size ratio where the
small completely infill the voids between the large, assuming a porosity of 0.252 and particle
density 2.65 g cm; and 0.1 g cm™ was based on data from bogs. As above psom represents the

particle density of organic matter and psm represents the particle density of mineral material.

The transformation of bulk density into porosity is advantageous for hydrological studies and
offers a more intuitive understanding of the pore space that is comparable, and of the water
retention capabilities of soil layers. Moreover, water retention and water holding capacity are both
descriptors in the EU monitoring law to which porosity is valuable in determining. The conversion,
from bulk density to porosity, necessitates knowledge of the soil particle density, Eq. (1).
Accurately measuring this value poses challenges; nonetheless, significant advancements have
been achieved by Rihlmann et al. (2006) in predicting the particle densities of both mineral and
organic matter (Ruehlmann, 2020; Ruehlmann & Karschens, 2020). Rihlmann et al. (2006)
reported that soil organic matter (SOM) particle density exhibited variability within the range of
approximately 1.13 to 1.50 g cm. Their findings indicated that as the quantity of SOM increased,
so did its density, which they attributed to qualitative changes in SOM resulting from
decomposition processes. This observed range aligns well with the values suggested by Redding

and Devito (2006), which span from 0.9 to 1.55 g cm ™.

Ruehlmann (2020), referencing the findings of Tipping, Somerville, and Luster (2016),
asserted that lower soil particle densities corresponded with nutrient-rich cropland soils, while
higher densities were indicative of nutrient-poor soils. He classified these into two categories: the
low-density fraction (SOMId) and the high-density fraction (SOMhd). Earlier, Rihlmann et al.
(2006) had provided significant insights by positing that the density of soil organic matter (SOM)

is influenced by both the quality of the SOM and the content of soil organic carbon (SOC).
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(Ruehlmann, 2020) indicated that low- density SOM is typically found in nutrient rich soils
abundant in nitrogen (N), phosphorus (P), and sulfur (S), although these soils may also exhibit
lower SOC content in the SOM, such as 0.42 g g !, and reduced density. In contrast, high-density
SOM is likely derived from nutrient-poor soils characterized by low N:C, P:C, and S:C ratios,
along with a higher average carbon concentration in the SOM, exemplified by a value of 0.53 g
g ! as noted by Pribyl (2010). Rihlmann et al. (2006) suggested the importance of microbes, while
Ruehlmann (2020), based on the observations of Tipping et al. (2016) also suggested that the
prevalence of microbes with low organic matter density, approximately 1.15 g cm=, in nutrient-
rich soils could explain these observations. Ruehlmann (2020) concluded that employing a

stoichiometric approach could unveil new avenues for exploring SOM density.

Given the aim of the paper, to provide EU wide maps of topsoil porosity, the objective of
this paper is to convert total bulk density (Panagos et al., 2024) to fine earth porosity for the EU
scale. The added value of this conversion is to have a direct assessment of the amount of void
space related to functional capacity, with porosity providing a more standardized metric than bulk
density which varies distinctly across soil textures. The novel aspect of this work is the use of
stoichiometric data to predict both soil organic matter and organic matter density as a function of
land use, or cover, to tighten the estimate of the soil particle density for generic land use or covers
appropriate to the EU scale. Moreover, we use an additional novel conversion of SOC to SOM
using values appropriate to the carbon density of different habitats. Given the sand, silt and clay
fractions, this provides a framework for estimating organic matter particle density based on land
cover and hence improving the continental scale prediction of porosity. This advancement
facilitates a deeper understanding of how porosity may be influenced by changes in SOM affected

by land management or shifts in land use.
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2 MATERIALS AND METHODS

2.1 LUCAS topsoil data

The geographic scope of the study covers the 27 Member States of the European Union (EU)
and the United Kingdom. It captures a temporal snapshot of the porosity, as it is based on topsoil
data (0-20cm) from the 2018 Land Use and Cover Area Frame Statistical Survey (LUCAS),
sampled in this region between June-August. The LUCAS topsoil survey 2018 included just under
20,000 topsoil data points for measured physical, chemical and biological properties (Orgiazzi,
Ballabio, Panagos, Jones, & Fernandez-Ugalde, 2018). This was the third campaign of LUCAS
and for the first time total bulk density was measured for almost 6,000 locations across the EU and
UK for 0-10 and 10-20 cm (Orgiazzi et al., 2022). The sampling strategy for bulk density points
is like the one used to select the LUCAS 2018 points which includes criteria such as land use/cover,
soil properties and topography. The highest number of points were surveyed in Spain, France,

Sweden, Poland, Finland and Italy (Panagos et al., 2024).

The bulk density samples were left to air-dry followed by a recording of their weight. A
subsample (3-5 g of soil) was then oven-dried at 105°C until it reached a constant weight. The
final total bulk density for each location was then calculated following the adapted I1SO
11272:2017 (Fernandez-Ugalde et al., 2022). Spurious points were rejected from the analysis data
set, any points with a bulk density less than 0.1 g cm™ or greater than 2.0 g cm™. After quality
controls, a bulk density database of 5,659 well distributed points (0-10 and 10-20 cm samples)
based on stratification from across the EU was developed, of these 5,659 covered a complete depth

of 0-20cm. The total bulk density (pb 1) was converted to the bulk density of the fine earth (po re)
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according to the conversion (pbre = (pb 7%(1-McF) x2.6)/(2.6- pp 7*Mcr), Where the particle density

of the coarse fragments is assumed to be 2.6, and Mcr is the mass of coarse fragments.

2.2 Stochiometric analysis and data

Soil organic matter particle density is considered to range between 1.1 and 1.5 g cm™ according
to (Ruhlmann, 2006) and the references therein. In the development of pedo-transfer functions to
predict soil particle densities Ruehlmann (2020) suggested that the approach could be refined using
stoichiometry such as used by Tipping et al. (2016), to analyze the quality of organic matter.
Kuwata, Zorn, and Martin (2012) presented such an approach using stoichiometry to predict
organic compound density of organic matter (psom). They developed an equation based on
hydrogen, carbon and oxygen (H:C and O:C ratios). The basic approach uses the molecular weight
(MW), molecular volume (Vm) and the intermolecular volume (Vim), with A as a unit conversion

factor:

mass 1 MW
volume A (Vip+Vim)

()

Psom =

They state that Eq. (5) predicts particle density for pure compounds to within an error of £5%
However, the inputs are not always known and hence, Kuwata et al. (2012) proposed to make
predictions using elemental ratios instead which are more commonly measured. They thus

formulated Eqg. (6) to predict organic material particle density.

-3y _ 12+1(H:C)+16(0:C)
Psom (g cm™) = 7.0+5.0(H:C)+4.15(0:C) (6)

Kuwata et al. (2012) tested Eq. (6) on 31 pure compounds and found an error of +12%, where

densities ranged from 0.77 — 1.9 g cm™. This was about double that of Eq. (5) but represented a
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practical more measurable alternative. Certain compounds such as oxalic acid, xylitol, and
cholesterol drove the nonconformity error. In addition, Kuwata et al. (2012) were interested in
predicting the density of complex mixtures of organic materials such as those found in aerosols.
They created a range of mixed secondary organic materials and tested Eq. (6) which predicted the
particle density within the 12% error envelope. They concluded that Eq. (6), developed using pure
organic compounds, was also accurate for predicting the density of secondary organic matter that
constituted a complex mixture of organic compounds. Here we assume the equation holds for soil
organic matter. Further validation, specific to soil organic materials to confirm this would be a
welcome addition to the literature. Hence, assuming the applicability of Eq. (6) for SOM and given
the elemental ratios of SOM, Eq. (6) provides a means to estimate the density of the soil organic

matter.

Stoichiometric data sets for soils focus on organic soils to avoid complications with mineral
components. Hence, the approach is used more for wetland studies such as the values for natural
ecosystems such as bog, fen and swamp (Moore, Large, Talbot, Wang, & Riley, 2018). In addition,
Leifeld, Klein, and Wiust-Galley (2020) recently published results for organic soils across
Switzerland under different land uses. This data set, comprised of 1165 soil samples from four
different land uses, and provides a way to predict psom based on Eq. (6). The dataset was used to
obtain median values for organic matter densities based on land use for, woodland (including
shrubland), grassland, cropland, and bare soil. A data set adding bog, fen and swamp was obtained
from (Moore et al., 2018), where fens, are fed by streams and rivers; bogs, fed by rainwater; and
swamps, distinguished by the presence of trees and shrubs. The data offered a mixture of depths
to >5 m and so the data was split into those values for 0-20cm and the entire dataset with all depths

for comparison.
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2.3 Mapping

Soil organic carbon (SOC) was measured in LUCAS and was converted to SOM for the
purposes of calculations. To convert SOC to SOM a single conversion factor such as a value of
1.82 is often used for the conversion, equivalent to 0.55 for the conversion of SOM to SOC (Lebron
et al., 2024). SOC-SOM conversion will also depend on the stoichiometry and could thus be
refined. Improvement on this approach was undertaken by obtaining SOC-SOM ratios from the
literature for different habitats (Reinsch et al., 2025). This is consistent with the different SOC-
SOM ratios for plants in the meta-analysis of (Ma et al., 2018). SOC-SOM conversion factors are

provided in Table 1.

The fractions of clay, silt, and sand used in the present work were taken from the set of pan-
European maps produced by (Ballabio, Panagos, & Monatanarella, 2016) from 6,140 observations
of the LUCAS 2009 database. The bulk density information for the topsoil (20 cm) derived from
the map of (Panagos et al., 2024) who used 6,140 points of the LUCAS 2018 database (Orgiazzi
et al., 2022), and the soil organic carbon map was derived from observations of all LUCAS
campaigns. The CORINE land cover dataset was adopted and reclassified into the broad categories
(cropland, grassland, shrubland, forest) to which stoichiometric values were derived. All datasets
were resampled to the common spatial resolution of 1 km and cropped to the 27 Member States of

the European Union, plus the United Kingdom and Switzerland.

We followed a sequence of five steps to derive the topsoil porosity map: 1) Calculate organic
matter particle density based on stoichiometry using Eq. (5) and determine the median for each of
the land cover categories; 2) Assign each map land cover to a median value of particle density; 3)
Convert soil organic carbon to soil organic matter for LUCAS data; 4) for each map pixel with

bulk density, calculate the soil particle density according to Eq. (5); and 5) convert each total bulk
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density pixel to p» re based on a coarse fragment correction described previously, then determine
the porosity of the fine earth using Eq. (1) to produce a porosity map. By using the almost 6,000
points of total bulk density from LUCAS 2018 topsoil survey and advanced machine learning
methods (Cubist), Panagos et al. (2024) developed a high-resolution total bulk density map (100
m) for topsoil (0-20 cm) covering the EU, UK and Switzerland. The predicted total bulk density
map values were used as the basis for the conversion of total bulk density to fine earth bulk density

and then porosity.

2.4 Statistical modelling

We constructed statistical models to explore the extent to which porosity may be predicted
directly from SOM, allowing the relationship to vary between land cover types. This type of
statistical approach can be used to estimate porosity when data are limited and helps to build
understanding of the influence of land cover on trends in the data. Models were fit using k fold
cross validation, stratified by landcover type. Due to the bimodal distribution of residuals in
models derived from SOM, Gaussian distribution was not appropriate. Hence, a Tweedie
distribution was used with variance power p assigned during model fitting using the “gam”
function in the R package “mgcv” (v1.8-42; (Wood, 2011)). Fitting Tweedie distribution variance
power p value to the model should capture the distribution of residuals, which was assessed using

residual plots for the models.

To test for variation in the relationship of SOM to porosity between land cover types, we
constructed two separate models. In Model 1, we allowed the model to vary the gradient of the
SOM to porosity relationship between land covers (using "fs" to fit a variable smooth by land
cover). We compared this to a Model 2 which instead specified a consistent nonlinear relationship

to SOM (using “cs” to specify a cubic spline). In both models, we also included land cover as a
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fixed effect, to account only for variation in intercept (i.e. a shift in the trend). The use of penalized
smoothers in both models can capture nonlinear relationships between SOM and porosity. The
"cs" smoother applies a double penalty (Marra & Wood, 2011), which allows the penalized
regression routine to shrink spurious covariates out of the model. The "fs" smoother fits separate
smooths by habitat and applies penalization to avoid overfitting, allowing the smooths to be shrunk
toward simpler or more similar trends, unless the data strongly justifies greater complexity. Using
these methods, the influence of a variable in the model may be interpreted as indicative of
improving the fit (since influence of the variable would otherwise be shrunk out). The penalization
approach should avoid overfitting if implemented correctly, which was assessed from comparison
of estimated degress of freedom (edf) with reference degrees of freedom (ref.df) and inspection of
smooth plots to look for implausible patterns. The separate inclusion of land cover as a fixed effect
in both models allows us to also capture average variation in SOM porosity relationships between
land cover types, rather than assuming that differences should be only related to a trend with SOM.
We used a Wilcoxon signed-rank test to evaluate whether the additional flexibility in allowing the
relationship to SOM to vary between landcover types significantly improves model fit. To better

explore the relationship by land cover, we filtered out wetland data points due to low n (<3).

3 RESULTS

Histograms illustrating the soil total bulk density data for the LUCAS 2018 dataset are
presented in Fig. 1, encompassing two depth ranges: 0-10 cm and 10-20 cm. The bulk density
values span from 0.1 g cmto 2.0 g cm™, with the 0-10 cm histogram (Fig. 1a) indicating a higher
prevalence of organic material, as evidenced by the noticeable increase in data points at lower bulk

densities. In contrast, this trend diminishes in the 10-20 cm dataset (Fig. 1b). Furthermore, this
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decline in organic matter correlates with a rise in the mean bulk density across the two layers,

shifting from 1.04 g cm™ for the 0-10 cm range to 1.14 g cm for the 10-20 cm range (1.09 g cm

3 for the 0-20 cm range). The conversion of bulk density from Total (pb7) to fine earth (p» re) for

0-20cm is found in (Supplementary Fig. S1). The mean bulk density of the po re transitions from

1.09 cm= to 1.01 cm2 after coarse fraction removal.

(a) Bulk Density T 0-10 cm
LUCAS 2018
600 Mean Median
S 4001
Q
[
=
[ &)
[
L1 b
3
(a]
L 200
L

00 05 10 15

Bulk density (g cm™

2.0

)

(b) Bulk Density T 10-20 cm
LUCAS 2018
600 Mean Median

S 4001

o

[

=

[ &)

[

L1 b

3

(a]

L 200

L

D_

00 03 10 15 20

Bulk density (g cm™)

Figure 1. Soil total bulk density histograms for (a) 0-10 cm (n=5,518) and (b) 0-20 cm

(n=5,518) filtered from the LUCAS 2018 topsoil survey (n=5,659). The red line indicates the mean

values for the distribution (0-10cm = 1.04 g cm™; 10-20cm = 1.14; 0-20cm 1.09), which is slightly

lower than the median value (blue line) (0-10cm = 1.10 g cm™3; 10-20cm = 1.18; 0-20cm 1.15).
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The data are colored from dark to pale signifying the greater organic matter content in the low bulk

density soils and the higher mineral content in the high bulk density soils.

The bulk density data are illustrated in Fig. 2a, which depicts the relationship between soil total
bulk density and soil organic matter fraction. This fraction is derived from the soil organic carbon
concentration within the LUCAS dataset, calculated by applying the conversion factors in Table
1. The data points are color-coded according to their respective land covers, revealing a robust
relationship consistent with findings by Panagos et al. (2024) and Thomas et al. (2024).
Furthermore, an interpretive model is introduced, Eq. (6), with bulk density values at the extreme
ends set to be 0.1 g cm™and 1.98 g cm™. This model, grounded in physical principles (Robinson
et al., 2022), effectively captures the observed trends and curvature of the data. In Fig. 2b, the
modeled data is compared to the measured data, with a 1:1 line included for reference. The figure
demonstrates a relatively uniform distribution of values around the model, emphasizing the
prevalence of woodland in areas with low bulk density soils, while cropland and grassland are
associated with higher bulk density soils. Additional figures, differentiated by clay content, are
provided in Supplementary Fig. S2, indicating that grasslands and croplands exhibit greater

consistency with mineral soils.
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field sites for example while bare land is that without vegetation more generally.

The bulk density values categorized by land cover type are detailed in Table 1, which also
includes the soil clay fraction. Table 1 also contains predictions discussed later in the context of
Fig. 5. These estimated values are derived from modeled bulk density as per Eq. (4), with the soil
organic matter bulk density end members set at 0.1 g cm™ and the mineral soil bulk density at 1.98
g cm™3 (Robinson et al., 2022). The calculation of soil particle density involved the integration of
mineral and organic particle densities, following the methodology outlined in Eq. (4). The mineral
particle density was obtained from the particle densities of the clay, silt, and sand fractions, as
reported by (Ruehlmann & Kérschens, 2020), utilizing a comprehensive global dataset (2.76, 2.69,
and 2.66 g cm), while the soil organic matter particle density was ascertained from the current

study.

Table 1. Soil metrics, measured and estimated either from the model predictions, Eq. (2), (3)
& (6) for six land cover types. Values represent the means with the standard deviation following
in brackets. Estimated values, the bulk density is calculated using Eq. (3). The soil particle density
with Eq. (2) and the porosity Eq. (1) using the modelled particle density to convert the bulk density

of the fine earth. Numbers in parentheses are the standard deviations.

Metric Bareland Cropland Grassland Shrubland Woodland

Bu|k Dens|ty (pb) (T) measured g Cm'3 123 125 110 105 083 (0353)
(0.199) (0.212) (0.270) (0.316)

Bulk Density (Pb) (FE) measured g cm 111 117 1.00 0.90 0.74
(0.210) (0.232) (0.283) (0.290) (0.338)

Clay % 24.1 (11.1) | 23.7 (13.9) | 21.1 (13.6) | 18.1 (12.9) | 11.5 (10.7)

Estimated values
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Soil Particle Density (pss) modelled, Eq. (6) | 2-62 (0.05) | 2.61(0.07) | 2.53(0.16) | 2.50(0.20) | 2.40(0.29)

& (2) (g cm®)

Porosity (FE) — modelled, Eq. (6) & (4) (cm® | 0.576 0.553 0.609 0.646 0.702

cm?) (0.080) (0.087) (0.102) (0.104) (0.122)

Porosity (FE) assuming Pw 2.65 (cm® cm?) | 0-581 0.560 0.624 0.662 0.721
(0.079) (0.088) (0.107) (0.110) (0.127)

Number obs. 200 2328 1167 181 1617

Particle density was calculated based on Eq. (6) using the data of Moore et al. (2018) and
Leifeld et al. (2020) with the results presented in the form of a Van Krevelen diagram (Fig. 3) that
plots the H:C versus O:C ratios (van Krevelen, 1950). This diagram illustrates the anticipated
positioning of organic materials based on their stoichiometric ratios, thereby capturing the
potential relationships and transitions that SOM may experience. In Fig. 3a, the data points are
color-coded according to their predicted density. The predicted density is consistent with a gradient
ranging from lightweight, lipid-dominated compounds (such as stearic acid at 0.94) to denser
substances like lignin (1.3) and carbohydrates (cellulose at 1.5). The densest SOM is linked to the
condensed aromatic structures depicted (Fig. 3a). The dashed lines, marked with arrows, represent
the pathways of dehydration and decarboxylation. Therefore, Eq. (6) predicts particle density
values consistent with where we would expect them to fall on the van Krevelen plot. Fig. 3b
presents the same diagram, but the data points are categorized by habitat. The distribution of these
data points suggests potential clustering among habitats, indicating that compounds of specific
densities are more prevalent in certain environments. Lighter organic matter is predominantly
associated with nutrient-rich habitats such as cropland and grassland, while denser organic matter

is more commonly found in woodlands and peatlands.
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Figure 3. (a) Organic matter particle density (g cm™) calculated by using the atomic hydrogen to
carbon (H:C) and oxygen to carbon (O:C) ratios from (Leifeld et al., 2020) and (Moore et al.,
2018) and plotted on the Van Krevelen diagram. The legend is particle density (g cm™®) (b) The

same diagram but colored by habitat

The predicted particle density values (0-20cm) for different habitats are presented in Fig. 4 and
in Supplementary Table S1; these are for organic soils, where fens, are fed by streams and rivers;
bogs, fed by rainwater; and swamps, distinguished by the presence of trees and shrubs. The mean
particle density ranged from 1.35 g cm™ in grassland soils to 1.50 g cm™ in nutrient-poor peatland
for 0-20cm; this narrowed to 1.35 to 1.41 if data from the whole profiles was included (Table S2).
This change perhaps reflecting a decrease in Oz with depth. The data, represented by median values

in Fig. 4, suggest a potential gradient in density from nutrient-rich to nutrient-poor habitats.
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Figure 4. Organic matter density for differing habitats predicted according to Eqg. (6) for the

stoichiometric data sets in Leifeld et al. (2020) and Moore et al. (2018) (0-20cm).

Particle densities presented in (Supplementary Table S1) were utilized to ascertain the soil
particle density (Table 1), which subsequently facilitated the calculation of soil porosity in
accordance with Eq. (1). The mean porosity values derived from the novel methodology introduced
in this study are displayed in Table 1, alongside those obtained using a conventional particle
density value of 2.65 g cm=, commonly applied in mineral soil conversions, for comparative
purposes (see Fig. 5). Fig. 5a shows the difference in porosity between an assumption of 2.65 and

the calculated particle density based on the mineral and organic fraction weighting. The findings



377

378

379

380

381

382

383

384

385

386

387

388

389

390

from the new model suggest that when compared to the assumption of a particle density of 2.65,
the porosities calculated using a combination of organic and mineral particle densities are lower
as expected, within 0.05 m®m, due to the lower density of organic matter. The coloring shows
that soils where the difference is greater than 0.05 tend to have more organic matter. This is
explored in Fig. 5b using Eq. (4) to calculate that happens when the bulk density of the organic
fraction is increased. The figure clearly shows that the absolute error in terms of porosity is small
(~0.03) when the bulk density of the organic material is low, as there is little of the organic material
resulting in a small error. However, as expected, as the amount of organic material increases so
the absolute porosity difference increases substantially such that the use of 2.65 substantially
overestimates porosity. This difference in organic soils with bulk densities of 0.5 g cm, represents
an over estimation of more than 0.15 cm® cm when 2.65 is assumed, which is beyond the standard

deviation of the combined LUCAS data set porosity (SD = 0.119).
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Figure 5. (a) Boxplots of the difference in porosity (pss=2.65 — pss=calculated) for different LUCAS
land covers. Particle densities calculated with, Eq. (6), (a generic value of 2.65 g cm, often used
for mineral soils (Brady & Weil, 2008)). (b) The porosity (FE) difference calculated with pss=2.65-

pss=1.4, simulated for the SOM range with Eq. (4) po mineral = 1.98 p» SOM adjusted.

The spatial extension of these findings, utilizing the maps produced for bulk density (Panagos
et al., 2024) and subsequently converting to porosity through the application of mineral and
organic matter particle densities, culminates in the European map depicted in Fig. 6 (0-20 cm).
The regions marked in yellow in Northern Europe correspond to soils rich in organic matter, while
those in Central Europe align with extensive areas of forested soils. Conversely, the soils
represented in blue, characterized by low porosity, are typically associated with agricultural

croplands.
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conversion of bulk density to porosity using the particle density determination approach introduced

in this work.
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Fig. 7 examines the relationship between soil organic matter and porosity across various
vegetation covers. A Wilcoxon signed-rank test showed that this model which allowed the SOM
trend to vary by landcover provided significantly better fit (p<0.001, see Table S4) than a model
2 without landcover specific relationship to SOM: Porosity ~ s(SOM Fraction, bs="cs”) +
landcover. The observed gradients indicate that vegetation cover significantly influences the SOM-
porosity relationship. Notably, the relationships observed in artificial and bare land differ markedly
from those in vegetated habitats, highlighting the distinct biotic drivers and processes at play. In
vegetated habitats, the overall trend exhibited less variability. Grassland, shrubland, and woodland
display the characteristic curvature of the empirical model, Eq. (4); (Fig. S4), while cropland does
not have the initial steep rise, suggesting that porosity increases less with lower levels of soil
organic matter compared to semi-natural habitats. This phenomenon may be indicative of a higher

degree of settlement and potential compaction associated with this land cover.
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Figure 7. Plots of predicted porosity using a Generalized Additive Model (GAM) for LUCAS 0-
20cm datapoints using model 1: Porosity ~ s(SOM Fraction, by =landcover, bs="fs”) + landcover.
The relationship to soil organic matter (SOM) was allowed to vary by land cover, and model
statistics indicate variation in porosity between land cover types, as well as nonlinear trends with
SOM for all landcover types except artificial (see Table S5; Fig. S5). Model constructed using k-
fold cross validation; each point in the data used for plotting was predicted by a model which

excluded it.

4 DISCUSSION

The bulk density data obtained from the LUCAS topsoil survey constitutes an internally
consistent dataset that is essential for comprehending the condition and transformation of soils
throughout Europe. Bulk density serves as a critical indicator of soil health and has been
demonstrated by Seaton et al. (2021) to be closely associated with concentrations of carbon and
nitrogen at a national scale. Recent advancements in understanding the physical relationship
between bulk density and soil organic matter have been articulated by Robinson et al. (2022) and
Thomas et al. (2024). This enhanced comprehension suggests that the significance lies not only in
the mere presence of soil organic matter and its differing particle density compared to mineral
materials, but also in the morphology of soil organic matter particles, as noted by (Robinson et al.,
2022). This principle similarly applies to porosity. The data distinctly illustrate a robust correlation
with land cover or habitat type, as highlighted by (Panagos et al., 2024) and Thomas et al. (2024)

for porosity. Furthermore, Thomas et al. (2024) has indicated that for porosity this relationship
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extends beyond soil organic matter and is further refined by the inclusion of habitat variables, as
evidenced in Models 14 and 15 of their study. We found even greater influence of land cover, to
the extent that the gradient of the relationship between soil organic matter and porosity for the
LUCAS data varies between land cover, whilst Thomas et al. (2024) found only a shift in the trend
for UK data, probably due to the smaller area studied. The additional influence of land cover is
likely attributable to plant roots and pores created by other organisms altering the geometry of the

soil beyond that of soil organic matter alone.

The mean particle density of organic matter was observed to range from 1.35 in grassland to
1.50in bog, according to this methodology (Supplementary Table S1). We concur with Ruehlmann
(2020); (Ruhlmann et al., 2006) that a distinct gradient exists in soil organic matter density from
low to high. Additionally, we hypothesize that this gradient is likely attributable to the quality of
SOM. This corresponds to Fig 3 that indicates that as the H:C ratio alters, to more carbon and less
hydrogen, the particle density increases as expected. Hence, as carbon concentrates in Bog’s, the
SOM becomes denser. Recent investigations by Ma et al. (2018) have examined plant components
globally for their organic carbon content, revealing notable patterns; for instance, organic carbon
content varies from 0.382 in the roots of cropland plants to 0.474 in woody plant roots, which we
believe undergo transformation and are subsequently represented in the soil organic matter
stoichiometry. A comprehensive analysis conducted by (Reinsch et al., 2025) across European
soils corroborated these findings regarding SOM. Therefore, we align with Riihimann et al. (2006)
in asserting that the observed gradient in soil organic matter density likely reflects variations in

organic matter quality and the SOC content.

An examination of Fig. 4b indicates that cropland soils are characterized by a higher presence

of lighter compounds, such as lipids and proteins, and a lower presence of lignin, in contrast to
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woody habitats that exhibit increased lignin content. (Ma et al., 2018) research indicated a positive
correlation between carbon content and lignin, while no such correlation was found with cellulose.
This suggests that the concentrations of lignin and lipid proteins within soil organic matter are
significant determinants of overall organic matter particle density. Furthermore, we endorse the
notion that this gradient aligns with the "soil continuum model™ conceptual framework proposed
by (Lehmann & Kleber, 2015); who suggest a gradient from particulate organic matter into smaller

and smaller molecules as the SOM breaks down.

The integration of soil texture for assessing mineral density alongside average land cover
values for organic matter particle density, Eq. (6) facilitates a more refined prediction of porosity
for large scales based on Eq. (1). This approach is predicated on a detailed estimation of soil
particle density, Eq. (6), utilizing metrics that are readily accessible through soil monitoring and
remote sensing technologies. As illustrated in Fig. 5, the predictions of porosity derived from this
method differ from those obtained by employing a standard factor, such as 2.65 g cm, for particle
density. It is anticipated that a mineral soil particle density conversion factor would yield
suboptimal results in woodland and peatland environments where organic soils are prevalent.
Nevertheless, it is noteworthy that the predictions also fall short in cropland and bare soil contexts,
where one might reasonably assume a particle density reflective of quartz. Analysis of the LUCAS
dataset indicates that the average value for particle density for all EU soils used to convert bulk
density to porosity, Eq. (1), in the absence of texture and organic matter data, is 2.53 g cm™.

However, it’s better to use the land use specific values in Table 1.

The porosity map for Europe (Fig. 6 (0-20 cm) illustrates a significant anthropogenic influence
on soil porosity throughout the EU and UK. Those datasets at 100m resolution will be available in

the European Soil Data Centre (ESDAC) (Panagos et al., 2022). The generated porosity map aligns
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closely with the soil organic carbon distribution across Europe, highlighting the critical role of soil
organic carbon in this relationship. In Southern Europe, soils exhibit low levels of SOM, primarily
attributed to rising pH levels and a transition from organic to inorganic carbon stability.
Consequently, the inherent low SOM content in these soils is reflected in their reduced porosity.
While land cover plays a crucial role in determining porosity, latitude also influences organic
carbon distribution across the continent, further affecting porosity levels. This can be observed
when upscaling to global scales, such as when looking at products from soilgrids (Hengl et al.,
2017) or openland map (Hengl et al., 2025) for bulk density. When observing such global data, it
is apparent that a gradient exists with lower bulk densities in the peatlands of the North and higher
bulk densities in hot dry places like deserts. SOM and parent material will each contribute to the
expression of porosity, but this generalization is supported by analysis of global data based on
mean annual precipitation and temperature, where soils in hot dry climates tend to have higher
bulk densities than those that follow a gradient from cold and dry to hot and humid (Zhao, Yang,
Shen, Geng, & Fang, 2019). Global soil mapping is yet to incorporate temporal change in the way
Hirmas et al. (2018) observed on years to decade time scales across the USA. Moreover, changes
in porosity are also likely to be observed in some latitudes due to seasonality with both land
management and moisture and temperature cycles altering the porosity (Alletto & Coquet, 2009;

Hu, Shao, & Si, 2012; Nottingham, Thompson, Turk, Li, & Connolly, 2015).

Europe spans the latitudes where soils are very porous in the Northern peatlands to where soils
are increasingly dense close to the equator, or in deserts with no organic matter; this represents a
span in porosity from ~0.95 to 0.4 m®m=3. In such locations without SOM and only granular
material bulk densities revert to values around 1.6 g cm corresponding to porosities of ~0.4 m®m-

3, The results imply that the greatest changes to porosity will likely be observed initially in the
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temperate latitudes where changes in soil organic matter due to land use or climate change are

likely to be more pronounced.

While this work has focused on mechanistic modelling, increasingly data driven modelling
using Al is being applied in soil science (Minasny & McBratney, 2025; Wadoux, 2025). As
porosity is not measured directly Al and machine learning approaches have focused on bulk
density (Chenetal., 2024; Hengl et al., 2025; Hengl et al., 2017; Panagos et al., 2024). These black
box methods continue to improve (Minasny & McBratney, 2025). One of the challenges for soil
mapping is presented by biased data sets (Liu, Ikonnikova, Scott Hamlin, Sivila, & Pyrcz, 2021)
or bimodal data (Nussbaum, Zimmermann, Walthert, & Baltensweiler, 2023). Traditional soil
sampling, for example based on a grid, will often produce machine learning predictions that have
the tails of the distribution poorly represented. The tails are often important in soil science as they
may represent less spatially abundant but functionally important soils like peats. One way of
dealing with this is using stratified sampling which results in more balance data sets. Alternatively,
methods continue to develop to deal with such data e.g. selecting the best approach for rebalancing
data (Dal Pozzolo, Caelen, Waterschoot, & Bontempi, 2013). These methods continue to evolve
and as data becomes more abundant will significantly improve the prediction of soil change in
space and time across scales, but caution and care should be applied in the selection of covariates
to improve soil knowledge and understanding (Wadoux, Samuel-Rosa, Poggio, & Mulder, 2020).
These issues are not unique to Al modelling, for example, statistical models like the GAM
presented here must also be applied with consideration for unbalanced data-sets e.g. through
careful selection of response distribution (Wood, 2017). Similarly, data-driven statistical

modelling implemented with poorly selected co-variates may identify spurious relationships which



538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

do not reflect underlying processes or drivers and may not hold outside of the sample dataset

(Tredennick, Hooker, Ellner, & Adler, 2021).

Total porosity represents an initial aspect of soil characterization; however, comprehending
variations in size distribution is a crucial subsequent consideration. Macropores play a significant
role in facilitating swift infiltration (Beven & Germann, 1982; Watson & Luxmoore, 1986),
thereby minimizing surface water accumulation and mitigating the risks associated with runoff,
localized flooding, and soil erosion. Recent investigations conducted throughout the continental
United States have revealed that soil macroporosity is undergoing changes over decadal periods
(Hirmas et al., 2018), over and above rapid field scale changes due to agriculture. Their findings
suggest that "drier and warmer climates foster the formation of macropores in the surface layer,
while more humid and cooler climates inhibit the manifestation of macroporosity." While
macropores facilitate rapid drainage, micropores serve to retain water against gravitational forces,
thus supplying moisture to plants and soil microorganisms. This dual porosity characteristic of
soils is vital for sustaining biological functions. Any reduction in total porosity will have
significant implications for hydrological processes, the extent of which will be influenced by the

distribution of pore sizes.

Many sustainable land management practices that promote soil health play a significant role in
the restoration, maintenance, and enhancement of total soil porosity, as well as the distribution and
connectivity of soil pores. These practices encompass the application of organic amendments, and
the use of cover crops and reduced or no tillage (Bai et al., 2019). It is essential to acknowledge
that soil pore space is inherently dynamic and requires careful management to ensure the health of
agricultural soils. This dynamic is influenced by various processes, including wetting and drying

cycles, shrink-swell phenomena, and soil aggregation (Ghezzehei, 2012). Additionally, biotic
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factors, such as plant root systems and ecosystem engineers like earthworms, ants, and termites,
contribute to the dynamic characteristics of soil porosity (Kodesova, Kodes, Zigova, & Simiinek,
2006). This evolving nature of soil porosity and its implications for structural development is
gaining attention, particularly concerning its potential interactions with the hydrological cycle and

climate change (Fatichi et al., 2020; Hirmas et al., 2018).

The anthropogenic impact, particularly in central and northern Europe, suggests a potential
increase in soil compaction, which is likely associated with a decrease in SOM resulting from
agricultural practices that has been observed both in measurement (Reynolds et al., 2013) and
modelling (Janes-Bassett et al., 2021). Furthermore, the relationship between bulk density or
porosity and SOM implies that significant feedback mechanisms may arise concerning local soil
hydrology in response to changes in land use and soil organic carbon management. Alterations in
porosity are expected to occur over various temporal scales. Seasonal variations in porosity may
arise due to cycles of wetting and drying, while longer-term changes may be observed over decades
because of shifts in land use (De Rosa et al., 2024; Or, Keller, & Schlesinger, 2021). In the United
States, changes in porosity have been documented over similar time frames, although the
underlying causes remain unclear (Hirmas et al., 2018). Datasets like the LUCAS for European
topsoils, which is expanding its monitoring of bulk density, offer a robust foundation for
monitoring the magnitude and extent of soil conditions and changes as the survey progresses over
time. This will enhance our comprehension of the dynamic characteristics of soil porosity at large
scales and its responses to various factors, including seasonal variations, climate influences, and

land use modifications.
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