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ARTICLE INFO ABSTRACT

This manuscript was handled by Renato Mor- Soil physics models have long relied on simplifying assumptions to represent complex processes, yet such as-

bidelli, Editor-in-Chief sumptions can strongly bias model predictions. Here, we propose differentiable hybrid modeling (DHM) as a
paradigm-shifting framework that learns unobservable intrinsic processes from data and physical constraints,

Keywords: rather than simplifying them. As a proof of concept, we apply the DHM approach to the challenge of partitioning

Scientific machine learning
Differentiable modeling
Soil hydraulic properties
Hybrid modeling

the soil water retention curve (SWRC) into capillary and adsorbed water components, a problem where tradi-
tional assumptions have led to divergent results. The hybrid framework derives this partitioning directly from
data while remaining guided by simple physical constraints. Using basic soil physical properties as inputs, the
DHM couples an analytical formula for the dry end of the SWRC with data-driven physics-informed neural
networks that learn the wet end, the transition between the two ends, and key soil-specific parameters. The
model was trained on a SWRC dataset from 482 undisturbed soil samples, spanning a broad range of texture
classes and organic carbon contents. The hybrid model successfully learned both the overall shape and the
capillary and adsorbed components of the SWRC. Notably, the learned patterns were consistent with pore-scale
thermodynamic saturation behavior in angular pores, without relying on explicit assumptions about soil pore
geometry or its distribution. Moreover, the model revealed a distinctly nonlinear transition between capillary
and adsorbed domains, challenging the linear assumptions invoked in previous studies. The methodology
introduced here provides a blueprint for learning other soil processes where high-quality datasets are available
but mechanistic understanding is incomplete.

involves conceptualizing the problem, deriving governing equations
from physical laws or empirical relationships, and validating the
resulting models against experimental data. These models are then used
to study system functions and behaviors, test hypotheses, and assess the
responses of a system to changes in the driving forces or internal
properties.

The process of deriving representative models in any natural system
inevitably requires simplifying poorly understood components of the

1. Introduction

Physics-based modeling approaches have a long tradition in soil
physics and have been applied to simulate fundamental soil processes
such as infiltration, evaporation, solute transport, and energy exchange
in the vadose zone (Green and Ampt, 1911; Gardner, 1958; Philip and de
De Vries, 1957; Van Genuchten, 1982). Mechanistic modeling typically
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Nomenclature

Notation Definition Unit

0 Total volumetric water content [m® m 3]

72 Volumetric capillary water content (capillary component)
[m® m~3]

04 Volumetric adsorbed film water content (adsorbed
component) ]m3 m*3]

h Matric head [cm]

DF Log-transformed matric head [-]

Ocs Water content predicted by the Campbell-Shiozawa model
[m®m™?]

PFyry DF at oven dryness where 6—0 [-]

0, Campbell-Shiozawa fitting parameter m®m™3]

O Volumetric saturated water content [m® m—2]

S Capillary saturation, S; = 6./6; [-]

f(Se) Transition function [-]

g(Se) Unknown function for parametrizing the transition

function [-]

X Input vector of basic soil properties [Sand, Silt, Clay, OC,
BD)] [see text]

NN, NNg, NN, NNgr,, NN, Neural sub-models for predicting 6.,
8&(Sc)s b5, PFry, 0o [see text]

bc; Doy b, Darys b Trainable parameters of NN,, NNg, NN;, NNgy,
NNa [']

J Loss function [-]

9 Predicted volumetric water content [m® m~%]

N Total number of measured points [-]

Nyet, Ngr, Number of wet-end and dry-end training examples [-]

A1, A2, A3, A4 Loss-term weights [-]

S1, So Number of residual (collocation) points [-]

PFair—entry Air-entry value [-]

0 Mean of measured water contents [m°® m 3]

Qa2s, Q75 25th and 75th percentiles of measured [m® m23)

Oco Water content at the crossover point between capillary and
adsorbed components [m®m—2]

Db Soil bulk density [g cm ™3]

system. For instance, soil physics makes assumptions regarding (difficult
to quantify) pore geometry and its distribution within soil, attainment of
equilibrium conditions, or the functional forms of constitutive re-
lationships. While these simplifications enable tractable formulations,
they are shaped by the modeler’s view of the system that may bias the
true representation of soil processes. While some assumptions are
refined as new evidence emerges, the original modeling and represen-
tation bias may persist.

To overcome some of these challenges, we propose differentiable
hybrid modeling (DHM) as an alternative approach to the explicit rep-
resentation of certain soil physical processes. Hybrid methods embed
neural networks within physical models so that the unknown or poorly
understood components of a system can be learned directly from data,
while the well-established physical laws remain explicitly enforced
(Psichogios and Ungar, 1992; Karniadakis et al., 2021; Moseley, 2022;
Shen et al., 2023). By constructing both the physical equations and the
neural components in a differentiable form, these hybrid systems can be
trained end-to-end using gradient-based optimization. This allows all
parameters to be adjusted jointly to minimize a downstream, physics-
constrained loss function. This dual nature of these methods maintains
the interpretability of traditional formulations while enabling discovery
of processes that are otherwise inaccessible through purely mechanistic
or purely empirical approaches.

Automatic differentiation (AD), which is the backbone of DHM
(Baydin et al., 2018), has also advanced other domains of scientific
machine learning (SciML), such as physics-informed neural networks
(PINNs) (Raissi et al., 2019). PINNs have been successfully applied in
vadose zone modeling to estimate soil hydraulic properties from soil
moisture measurements (Tartakovsky et al., 2020; Bandai and Ghezze-
hei, 2021; Minasny et al., 2024), to model water flow and solute
transport using geoelectrical data (Haruzi and Moreno, 2023), and to
develop flexible non-parametric pedotransfer functions (PTFs) for the
soil water retention curve (Norouzi et al., 2025). While both DHM and
PINNSs fall under the broader umbrella of SciML and share conceptual
similarities, they differ fundamentally in structure and training objec-
tives. In PINNs, neural networks are trained to learn solutions that
satisfy governing physical laws, whereas DHM embeds neural networks
within an existing analytical model or process-based model to learn the
unknown or less understood components.

To demonstrate how DHM can be used as a framework for learning
complex soil physical processes, we apply this method to the classic
problem of modeling the soil water retention curve and its partitioning
to capillary and adsorptive components. The SWRC is a fundamental soil

property that defines the relationship between water content and matric
head (or suction) in soil. Modeling a variety of land-surface processes,
including infiltration, runoff, evaporation, and energy exchange at the
land surface requires knowledge of the SWRC across scales (Gupta et al.,
2022; Tehrani et al., 2025; Turek et al., 2025). Moreover, partitioning
the SWRC into its capillary and adsorbed components enhances the
modeling of the soil hydraulic conductivity curve and is essential for
determining the liquid-water interfacial area, which influences soil
health and biogeochemical processes, particularly the retention and
transport of interfacially active contaminants such as per- and poly-
fluoroalkyl substances (PFAS) (Guo et al., 2020; Brusseau, 2023).

All existing SWRC models that partition capillary and adsorbed film
water have been developed based on specific prior assumptions and
simplifications about soil pore geometry, the functional forms used to
describe water retention components, and the transition between these
two soil water regimes. Because these assumptions directly influence the
resulting partitioning, different models applied to the same soil can yield
substantially different outcomes, reflecting the sensitivity of predictions
to their underlying assumptions (Or and Tuller, 1999; Lebeau and
Konrad, 2010; Peters, 2013; Lu, 2016; Weber et al., 2019; Ghorbani
et al., 2025). Moreover, direct experimental validation of the parti-
tioning remains challenging, as capillary and adsorbed water compo-
nents are not readily separable or independently measurable at the pore
scale. Therefore, there remains a need for new approaches that can learn
the partitioning directly from data with minimal prior assumptions,
while still respecting key physical constraints.

The main objective of this study is to develop and demonstrate a
hybrid modeling framework that learns the shape of the SWRC as well as
its capillary and adsorbed water components from basic soil properties
using a state-of-the-art differentiable modeling approach. In key
contrast to traditional parametric models with rigid physical assump-
tions, our hybrid method learns a flexible, physically interpretable, and
data-driven partitioning, with only universally accepted assumptions
included. Our study introduces a new generation of SWRC models,
which we term “semi-parametric” (i.e., semi-analytical) models. In this
new type of SWRC models, part of the curve is described by analytical
equations, while the remaining parts are flexibly learned from data
using neural networks, yet the final SWRC remains continuous, differ-
entiable, and physically consistent. We believe our work demonstrates
the potential of the DHM framework for unifying physical theory and
data-driven discovery across a wide range of fundamental soil physical
processes.
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2. Materials and methods
2.1. Hybrid modeling framework

The hybrid model uses the same inputs and outputs as conventional
pedotransfer functions, translating basic soil physical properties to
SWRC. However, during this mapping from inputs to outputs, the model
learns multiple intermediate processes and their unobservable transi-
tions implicitly, without requiring explicit data for them.

We begin with universally accepted principles describing the coex-
istence and behavior of capillary and adsorptive forces across the full
moisture range. As we derive the governing equations from these known
principles, any unknown terms are treated as components to be inferred
from data using physics-constrained neural networks. To physically
guide the model, we only rely on a few physical constraints that are
universally accepted and relax the restrictive assumptions in conven-
tional models: idealized pore shapes, certain pore size distributions, or
fixed functional forms.

2.1.1. Physical definitions and model derivation

Capillary water refers to liquid water filling the spaces between soil
particles, held by surface tension and the contact angle of water with
solid surfaces, which leads to the formation of curved liquid-vapor in-
terfaces (menisci). The adsorbed film water component refers specif-
ically to liquid water retained in thin films by adsorptive forces, where a
distinct liquid-air interface is present (see for example figure 4 of
Nachum (2025)). The adsorptive forces in soil arise from intermolecular
interactions between the liquid and solid surfaces, including van der
Waals forces, electrostatic double-layer forces, and structural (hydra-
tion) forces (Derjaguin et al., 1987; Tuller and Or, 2005a).

The total volumetric water content retained in a soil can thus be
expressed as the sum of its capillary (0.) and adsorbed (6,) components:

0=0.+0, (€9)

Note that all terms in Eq. (1) are functions of matric head. As a soil
dries, capillary water drains from larger pores and recedes into pore
corners. Beyond a certain matric head threshold, water persists pri-
marily as thin films adsorbed onto particle surfaces. At this dry end,
experimental studies show that the water retention curve becomes linear
in pF —0 space, where pF = log|h| and h is the matric head in cm (Arthur
et al., 2013). This linear behavior can be described analytically by the
Campbell and Shiozawa (1992) model (hereinafter referred to as
Campbell-Shiozawa model and denoted by the subscript CS), which in
PF —0 space is written as:

bes = [1- 2 ), )
DF,

ry

where 6¢s is the predicted water content by Campbell-Shiozawa model,
and 6, and pFy,, are its fitting parameters that determine the slope and
intercept of this empirical model at the dry end. The parameter pFg,
corresponds to the logarithm of matric head at oven dryness, where the
soil is assumed to reach zero water content.

The Campbell-Shiozawa model was originally developed for the dry
end of the SWRC (i.e., the higher range of pF values), where only
adsorptive forces are active. In the lower range of pF values, where
capillary water begins to contribute, the expression for 6¢s no longer
holds and must be revised. To account for this, we introduce a transition
function, denoted as f, that modifies O¢s in the mixed region, where
capillary and adsorbed water coexist. This function is treated as an un-
known to be learned from data, and it is expressed as a function of
capillary saturation, defined as S. = 6./6;, where 6, is the saturated
water content. Accordingly, the adsorbed film component of the SWRC
can be modeled as:

00 = f(Sc)0cs 3)
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Table 1
Summary of the architecture and configuration of the subnetworks.

Network  Inputs® Hidden layers” Output  Output activation and
scaling®
NN, Sa, Si, Cl, OC, 2 x Dense (8) 0. 056(2c)
BD,pF (ELU)
NN, NN_./NN; 2 x Dense (16) g(Sc) Linear
(ELU)
NN; Sa, Si, Cl, OC, 2 x Dense (4) Os o(2s)
BD (ELU)
NN, Sa, Si, Cl, OC, 2 x Dense (4) 0, 6(20)
BD (ELU)
NN Sa, Si, Cl, OC, 2 x Dense (4) DFyy 6.2 + 6(2ary) x (7.6 —
BD (ELU) 6.2)

 Sa, Si, Cl, OC, and BD stand for sand, silt, clay, organic carbon, and bulk
density, respectively.

Y This column represents the number of hidden layers, the layer type, the
number of units per layer, and the activation function for each neural network
(NN).

¢ o(2x) represents the sigmoid activation function applied to the raw output z,
of the neural network associated with variable x.

Combining Egs. (3) and (1), the total water can be expressed as:

Oa
0 =0.+f(Sc)bcs (4)

The second term on the right-hand side of Eq. (4) accounts for the
adsorbed film water contribution. When S, approaches zero (i.e., at very
high pF values where 6, is zero), the retention behavior is dominated by
adsorbed water. In this limit, Eq. (4) should reduce to the Campbell-
Shiozawa model, Eq. (2). To ensure this, we reparametrize the transi-
tion function with a hard constraint that enforces f(0) = 1:

f(S)=1+S.eg(S) )

where g(S:) is an unknown function that is learned from data.
Combining this equation with Eq. (4), the total water content can be
expressed as:

0Oa
—N—
0= 96 =+ [1 + ch(Sc) ]Hcs (6)

Inserting Eq. (2) into Eq. (6), we obtain:

pF
0=0.+[1+SgS)]||{1——— 1|6, 7
[1+5.g( )J( de') @

It is worth noting that Eq. (7) reflects only a general structural
formulation based on a few widely accepted assumptions about water
retention in soils. Specifically, it assumes that total water content con-
sists of two components, capillary and adsorbed water, and that the
contribution of the capillary component vanishes as capillary saturation
(S.) approaches zero. In this condition, Eq. (7) reduces to Campbell-
Shiozawa model for the dry end. The function g(S.) captures the tran-
sition between capillary and adsorbed dominant regions behavior
without explicitly specifying its shape and form in advance. Similarly,
the capillary component, 6., as well as soil constants (i.e., 6;, PFyys and
0,) are treated as unknowns to be learned from data.

2.1.2. Neural sub-model for the capillary water

We replace the capillary water content (¢.) in Eq. (7), which is a
function of pF, with a dedicated neural network sub-model named
NN, (x,pF; ¢.), which receives the vector of soil physical properties x =
[Sand, Silt, Clay, OC, BD] and pF as input. The vector ¢, represents the
trainable parameters (weights and biases) of this neural network. This
network has two hidden layers, each with eight units (i.e., nodes)
(Table 1). By taking pF as an input, the network outputs the capillary
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[Inputs: Sand, Silt, Clay, OC, BD, pF]
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Fig. 1. Workflow of the proposed hybrid model illustrating the interior neural networks, analytical formulation, and loss function structure for learning the soil water
retention curve and its capillary and adsorbed components. The model inputs, including soil physical properties and pF, are fed into separate neural networks whose
outputs are combined within the hybrid formulation to predict the total water content, which is then used in the loss function. The entire model, including all neural
network components, is trained end-to-end, meaning that all parameters are optimized jointly from input to output through gradient-based minimization of a
downstream, physics-constrained loss function, without explicit labeled data for the individual sub-networks. pF serves as an input only to the capillary neural

network (NN.).

water content at the specified pF. This architecture produces a contin-
uous representation of the curve without limiting it to a specific func-
tional form (Haghverdi et al., 2012; Norouzi et al., 2025). To ensure
meaningful predictions, the sub-network output is constrained to remain
less than saturated water content (6;). To enforce this, the raw output of
the capillary network is passed through a sigmoid activation, ¢(z) =
1/[1 + exp( — 2)], and scaled by the 6, value.

2.1.3. Neural sub-model for the transition function

The transition function in Egs. (5) and (7) includes an unknown
component, g(S;), which maps the input S, to a scalar output. Rather
than assuming a fixed analytical form for g(S.), we replace it with a fully

connected neural network, NN, (Sc; ¢g> , and allow it to be learned from

data. Similarly, ¢, refers to the trainable parameters of this network.
This neural network is capable of approximating a wide range of
continuous functions, which helps capture complex transition behav-
iors. The neural network NN, (SC; ¢g> consists of two hidden layers and a

linear output layer without any constraint on the output value (Table 1).
We designed this sub-network to be more flexible to ensure that the
shape of the overall transition function, f(S.), is not limited by the ca-

pacity of NN, (Sc; ¢g).

2.1.4. Neural sub-model for the soil dependent constants

The Campbell-Shiozawa model and the transition function both
depend on three key soil-specific parameters: 6;, pFg,, and 6,. We as-
sume that these parameters can be predicted from basic soil physical

properties, and therefore, we model each parameter using a dedicated
neural network. In our hybrid framework, each parameter is estimated
by a separate sub-network: NN (x; ¢;), NNgp, (x; ¢d,y>, and NN, (x;¢,),
corresponding to 6s, pF,,, and 6o, respectively. Each sub-network takes
five basic soil properties as defined by x: sand, silt, clay, OC, and BD.
Additionally, each of the neural networks has two hidden layers, each
containing four units with Exponential Linear Unit (ELU) activation
function (Table 1). Although a single multi-output neural network could
have been used, given that the inputs of these networks are identical, we
opted for separate networks to maintain clarity and interpretability in
the modeling framework.

Since 6; and 0, represent volumetric water contents and cannot
exceed unity, we constrain the predictions of NN;(x;¢,) and NN, (x; ¢,)
to a range between 0 and 1 by applying a sigmoid activation function in
the output layers of these sub-networks. Similarly, several studies
showed that the range of pF,, falls between 6.5 and 7.45 (Schneider and
Goss, 2012; Arthur et al., 2013; Lu and Khorshidi, 2015; Karup et al.,
2017). To ensure broader applicability and account for potential vari-

ability beyond these observations, we constrain the NNy, (x; q)d,y) sub-
model output to predict values within a slightly wider interval of 6.2 to
7.6. This is achieved by scaling the sigmoid output of NNy, (x; q}d,y) to

this target range.

To keep notation simple, the explicit dependence on inputs (x, pF)
and trainable parameters (¢) is omitted in the remaining text wherever
it does not cause ambiguity.
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Fig. 2. The two sets of residual (collocation) points used to enforce physical constraints: (a) zero capillary water for pF > 5 and (b) constant water content

for pF < —0.3.

2.1.5. Hybrid model and loss function
By embedding all the neural network sub-models into Eq. (7), we
obtain our hybrid model, expressed as:

0a
pF

ol

As depicted in Fig. 1, the model inputs, including soil physical
properties and pF, are fed into separate neural networks whose outputs
are combined within the hybrid formulation to predict the total water
content, which is then used in the loss function.

It is important to note that Eq. (8) is directly trained end-to-end on
measurements of the total water content as a function of pF (Fig. 1), and
all the neural network parameters are learned jointly. Therefore, sepa-
rate training of individual sub-networks using distinct target measure-
ments is not needed. Instead, the sub-networks adjust their predictions
during training so that the final predicted total water content closely
matches the measured total water content at each pF value (Fig. 1).

In our hybrid modeling design, each measured point on the SWRC is
treated as an independent training example, paired with its corre-
sponding soil properties: sand, silt, clay, OC, BD, and pF. The key
assumption is that, given a sufficient number of measurements, training
the hybrid model in Eq. (8) enables the model to capture the complete
shape of the SWRC, including both the capillary and adsorbed water
components, which are modeled with various internal sub-networks. A
major advantage of this method is that it allows samples with very few
measured points to be included in the training set. This capability is not
achievable with conventional parametric models, where a minimum
number of measured points from each sample is needed (Rasoulzadeh
et al., 2025).

The loss function used for training the hybrid model is as follows:

NN,
6 = NN, + [1 + <NN5 (€)]

D T N T PO - O
0 =0+ 2N"[97 -0 122N (0 al
Nwe Z[ ] +Ndry~z[ ] +Sll:21( c) +SZZ

=1 i=1

W
JopF

J=

9

where 9 and 6 are the predicted and measured water contents, respec-
tively, and they are both a function of pF. The first two terms on the
right-hand side of Eq. (9) represent the mean squared error between the
volumetric water contents predicted by the neural network and the
observed measurements, where Ny, and Ng, denote the number of
training examples from the wet and dry ends, respectively. As shown by
Norouzi et al. (2025), using separate terms for the wet-end (i.e.,

PF < 4.2) and dry-end (i.e., pF > 4.2) is necessary to account for dis-
parities in sample sizes and the narrower range of water contents typi-
cally observed at the dry end. The A coefficients are weights assigned to
each term in the loss function which determine the relative importance
of each loss component during training. The parameters S; and S, in the
last two terms of Eq. (9) denote the number of residual (collocation)
points used to enforce the two physics-based constraints, which are
explained in the following section.

2.1.6. Universally accepted physical constraints

Our hybrid model relies solely on general physical reasoning without
imposing rigid or system-specific assumptions. Here, to guide the model,
we incorporate two physical constraints that are broadly accepted in soil
physics and supported by pore-scale saturation mechanisms.

First, at high suctions in soil (i.e., for pF > 5), the soil water content is
assumed to be entirely in adsorbed form, meaning that the capillary
water content should approach zero in this range of pF (Norouzi et al.,
2025; Tuller and Or, 2005b). To enforce this, we introduce a constraint
in the loss function. Specifically, we generate a set of residual (collo-
cation) points, which are synthetic samples with random combinations
of sand, silt, clay, OC, and BD, paired with random pF values higher than
5. During each training step, the output of the 6, neural network at these
residual points is computed, and the mean of the squared values is added
as a penalty term to the custom loss function to encourage 6. to approach
zero for pF > 5 (the third term on the right-hand side of Eq. (9). These
residual points are illustrated in Fig. 2a.

Second, the soil air-entry value, also known as the bubbling pressure,
corresponds to the matric head at which air begins to penetrate the
largest soil pores (Fredlund and Xing, 1994; Sourmanabad et al., 2024).
According to this definition, when the soil matric head (expressed in
terms of pF) is below a specific value, the soil remains saturated, and its
water content remains constant despite further changes in matric head.
This condition can be mathematically represented as:

% = 0,pF < pF,

The air-entry value, pF,, ., depends on both soil texture and
structure, with structure often playing a dominant role in undisturbed
samples (Rawls et al., 1982). To implement this constraint within our
neural network, we set pF = —0.3 (equivalent to a matric head of —0.5
cm) as the minimum threshold, below which the soil is assumed to stay
fully saturated, with water content remaining constant despite varia-
tions in pF. It should be noted that this value is not assumed to represent

ir—entry (1 0)
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a similar air-entry pressure for all soils; rather, it serves as a conservative
lower bound defining fully saturated conditions across all soils.

For implementing this constraint, as illustrated in Fig. 2b, we
generate a set of residual points, which are randomly sampled within the
input space using pF values between —2.0 and —0.3. During training, we
evaluate Eq. (10) at these points and penalize deviations from this
constraint by adding the fourth term to the loss function (Eq. (9)). The
numbers of residual points used to enforce these two physical con-
straints, denoted as S; and Sy in Eq. (9), were selected through manual
tuning.

2.1.7. Model training via automatic differentiation

The hybrid model developed in this study involves several inter-
connected neural networks, each containing trainable parameters
(Fig. 1). These networks are coupled in Eq. (8) through a physics-
constrained ansatz (i.e., a prior mathematical form assumed to guide
the model). This coupling of various neural networks results in a highly
nonlinear system whose parameters must be optimized to minimize the
total loss function defined in Eq. (9).

Training such a hybrid system requires computing gradients of the
loss function, Eq. (9), with respect to all trainable parameters. To enable
efficient and accurate gradient computation, we leverage automatic
differentiation (AD), a core feature in modern deep learning frameworks
such as TensorFlow and PyTorch (Baydin et al., 2018). Automatic dif-
ferentiation automatically constructs a computational graph during the
model’s forward pass and traces the sequence of mathematical opera-
tions from inputs to outputs. During backpropagation, reverse-mode AD
traverses this graph from the output layer back to the inputs and sys-
tematically applies the chain rule to compute exact gradients with
respect to every trainable parameter. This allows the model to be trained
efficiently using standard gradient-based optimization algorithms,
despite its architectural complexity and the presence of embedded
physical constraints.

2.1.8. Hyperparameter optimization

The developed hybrid model consists of separate sub-network neural
models, each designed for a specific component. Table 1 reports the
inputs, architecture, and activation functions of each sub-network. To
select the optimal architecture of the interior networks, we initially
adopted relatively expressive network structures and subsequently
reduced the number of layers and units until a noticeable degradation in
model performance was observed. The final architectures were chosen
as the simplest configurations that maintained stable performance. All
hidden layers across the sub-networks employed Exponential Linear
Unit (ELU) activation functions.

The output of networks NN, NN;, NN, and NN, were implemented
with sigmoid activation functions and were scaled appropriately to their
respective physical ranges. Additionally, the networks NN;, NN,, and
NNg,, which estimate soil-dependent constants, shared a similar struc-
ture: two hidden layers with four units each and ELU activations.

We set 4; and Ay in Eq. (9) to 1 and 12.1, respectively, based on
manual tuning. The parameters A3 and 14 were set to 10 and 5, respec-
tively. These weights were tuned to ensure their corresponding con-
straints were satisfied without degrading the overall performance of the
model. The parameters S; and S;, which determine the number of re-
sidual points in sets 1 and 2, were both set to 2000.

The Adam optimizer (Kingma, 2014) was used for model training
with an initial learning rate of 0.005. An adaptive learning rate strategy
was applied, in which the learning rate was reduced by a factor of 0.8 if
no improvement in the validation loss was observed, continuing down to
a minimum of 0.0005.

To avoid overfitting, early stopping with a patience of 10 epochs was
applied. In practice, this resulted in model convergence after approxi-
mately 250 training epochs. The evolution of the training and validation
loss as a function of epoch is provided in the Supplementary Information
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Organic carbon content
>5.00 %

2.52 %

Sand (%)

Fig. 3. The textural distribution of 482 soil samples according to the USDA
(United States Department of Agriculture) soil triangle. Point colors indicate
organic carbon content (%) of each soil sample. The abbreviations Sa, Si, and Cl
stand for sand, silt, and clay, respectively.

Table 2
Summary statistics of soil physical properties in the dataset.
Sand [%] Silt [%] Clay [%] 0C [%] BD [gr cm ™3]
Min 3.3 0.0 0.1 0.04 0.37
Mean 41.3 38.6 20.1 2.11 1.33
Max 99.9 85.7 66.4 19.26 1.89
Std 30.4 24.6 13.2 2.15 0.29

OC, organic carbon; BD, bulk density; Std, standard deviation

(Fig. S1). Additionally, because the capillary sub-network (NN,) directly
influences the smoothness of the final model, we applied L2 regulari-
zation with an intensity of 0.15 to all layers of this sub-network. L2
regularization prevents overfitting by controlling the magnitude of large
weights in the network (Ng, 2004). The model was entirely developed in
Python and implemented using TensorFlow (Abadi et al., 2016).

2.2. Experimental data and train/validation/test splits

For training and evaluating the hybrid pedotransfer functions in this
study, we used 482 undisturbed soil samples from the publicly available
dataset of Hohenbrink et al. (2023), which includes measurements of
soil hydraulic properties for a wide range of texture types and organic
carbon contents (Fig. 3 and Table 2). The 482 soils were extracted from
the main dataset (consisting of 572 soil samples) with the condition that
measurements of SWRC, soil textural fractions, bulk density, and
organic carbon content, are available. This dataset is available at
doi:10.5880/fidge0.2023.012.

As with all data-driven models, predictive performance is strongly
dependent on the dataset size (Ahmadisharaf et al., 2024) and diversity
of input training examples. The present dataset was selected to maxi-
mize both sample size as well as diversity in soil texture, organic carbon
content, and coverage of both wet- and dry-end measurements, which is
essential for learning representative intermediate retention processes.

Particle size distribution was measured using wet sieving and sedi-
mentation techniques. The size classes were categorized following the
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Fig. 4. Predicted soil water retention curves from the developed hybrid pedotransfer functions for twelve soils representing different USDA textural classes. Values in

parentheses represent the organic carbon content (OC) in percentage.

United States Department of Agriculture (USDA) classification system,
which defines clay as particles smaller than 2 pm, silt as 2-50 pm, and
sand as 50-2,000 pm (Hillel, 1982). The selected set of soil samples
covers eleven soil textural classes of USDA system, making the dataset
highly suitable for the data-driven approach in this study (Fig. 3).
Organic carbon content was measured by high-temperature com-
bustion using an elemental analyzer. Bulk density was determined
gravimetrically, by oven-drying the soil samples for at least 24 h

following evaporation experiments (Tehrani et al., 2023).

The dataset includes measurements of the soil water retention curve
covering a broad range of matric heads. The wet and medium moisture
ranges (pF < 4.2) were measured using the simplified evaporation
method (Peters and Durner, 2008; Schindler, 1980), implemented via
the HYPROP device (METER Group AG, Germany). This method cap-
tures the drying branch of the retention curve and provides high-
resolution measurements. For the dry end (pF > 4.2), additional
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Fig. 5. Overall performance of the hybrid pedotransfer functions on the (a) train and (b) test sets. Validation performance metrics are RMSE = 0.045 m®* m 3, R? =
0.924, and RPIQ = 4.857. The validation set, comprising 20 % of the training data, was used during training for model selection and early stopping.

measurements were obtained using the dewpoint method (Campbell
et al., 2007; Kirste et al., 2019) via the WP4C device (METER Group,
Inc., USA). Due to the large imbalance between the number of dry-end
and wet-end data points, we uniformly resampled the wet-end mea-
surements to 15 points. For more detailed information about the mea-
surement details and device specifications, readers are referred to
Hohenbrink et al. (2023).

To train the model with the customized loss function in Eq. (9),
which includes separate terms for the wet and dry ends of the SWRC, we
partitioned the data for each end into training and test sets separately to
achieve a more balanced split. Seventy percent of the samples from each
end were used for training and validation, while the remaining 30 %
served as a hold-out test set. The stratified sampling ensured that each
subset, training, validation, and testing, represented the full range of wet
and dry conditions. Within the 70 % training pool, 20 % of the data were
further set aside as a validation set during training. The dataset
comprised 8394 pF —0 observations after resampling, of which 5916
PpF —0 pairs (339 samples) were used for training and validation, and
2478 pF —0 pairs (143 samples) for testing.

To avoid data leakage and account for the strong correlation among
water content measurements within individual soil samples, we parti-
tioned the dataset at the soil sample level rather than at the level of
individual pF —@ pairs. This ensured that all pF —0 observations from a
given sample were assigned entirely to either the training or testing set.
Additionally, we ensured that samples from the same soil profile (i.e.,
location) were exclusively included in either the training or the testing
set.

2.3. Evaluation criteria

Model performance was evaluated based on three metrics: root mean
square error (RMSE), coefficient of determination (R-squared), and the
ratio of the interquartile range to RMSE (RPIQ), all calculated using the
predicted and observed volumetric water contents:

RMSE = an

(12)

Q75 - Q25

RPIQ = —poisE

(13)

where N is the total number of measured points, 6 is the mean of the
measured water contents, and Qs and Qg5 correspond to the 75th and
25th percentiles of the measured water contents, respectively. The RPIQ
metric offers a scale-independent metric by comparing the RMSE with
the variability of the data.

3. Results and discussion
3.1. Physics-constrained neural network performance

Fig. 4 shows the predicted shape of the SWRC for twelve soil samples
with different texture classes according to the USDA classification sys-
tem. The model is trained by optimizing the loss function (Eq. (9)) over
the entire training set as a whole, rather than fitting it sample by sample.
Unlike parametric PTFs, which use predefined analytical forms for the
SWRC, our hybrid model learns the curve shape directly from the data.
Once trained, the model can predict the entire continuous SWRC. To
achieve this, for any given soil with fixed physical properties (i.e., sand,
silt, clay, OC, and BD), we vary the pF over a specified range to generate
the continuous curves shown in Fig. 4.

The discovered shapes of the SWRCs are smooth, differentiable, and
therefore suitable for simulation of soil water flow (i.e., Richardson-
Richards equation). These curves exhibit a sigmoidal shape in the wet
range, similar to traditional parametric models (van Genuchten, 1980;
Kosugi, 1994), and transition to a linear form at lower water contents,
consistent with the Campbell-Shiozawa model behavior assumed at the
dry end. Notably, the transition between the neural network-predicted
region and the analytically modeled region governed by the Campbell-
Shiozawa model is seamless, with no noticeable discontinuities or
abrupt changes, resulting in a smooth, continuous curve. Furthermore,
at the wet end, the curves remain invariant with respect to pF for values
below —0.3. At the dry end, the range of pF at zero water content, pFg,,,
for all curves remains between 6.2 and 7.6, ensuring the satisfaction of
the physical constraints imposed at both ends during training.

The overall performance of the hybrid PTFs on both the train and test
sets is depicted in Fig. 5. As shown, the model demonstrates a close
performance on both the train and test sets, indicating the generalization
capability of the model. This close performance between training and
testing sets is particularly important in developing continuous, non-
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Fig. 6. Discovered capillary and adsorbed film components of the soil water retention curve for the same soil samples shown in Fig. 4, as obtained from the hybrid
model. Values in parentheses represent the organic carbon content (OC) in percentage.

parametric and semi-parametric PTFs, as even small degrees of over-
fitting can distort the predicted curve, making it physically unrealistic.

The model achieved an RMSE of 0.049 m® m ™~ on the test set, which
is reasonable given the diversity of soils represented in the dataset,
including eleven USDA texture classes, and samples with high organic
carbon content and very low bulk density (Table 2). The extent of var-
iations in soil properties is also reflected in Fig. 5, where measured
volumetric water contents reach values as high as 0.8 m® m™2. This

diversity, along with dataset size, variations in soil properties, and
measurement quality, are key factors influencing the performance of
PTFs. The performance of the PTF developed aligns well with both
continuous parametric models (dos Santos Pereira et al., 2025) and
continuous non-parametric models trained on HYPROP system mea-
surements (Haghverdi et al., 2018). However, due to differences in the
datasets used and input predictors across studies, direct comparisons are
challenging.
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In the regression equation shown in the figure, the variable ‘clay’ represents the
clay content (%).

The discovered partitioning of capillary and adsorbed film compo-
nents of the SWRC for the soil samples shown in Fig. 4 is depicted in
Fig. 6. These curves are obtained by plotting the first and second terms
on the right-hand side of Eq. (8). The curves shown in Fig. 6 should be
considered as follows: at each pF, the total water content (black line) is
the sum of the capillary and adsorbed film water contents.

This data-driven partitioning aligns remarkably well with the
physics-based models in the literature, such as that of Or and Tuller
(1999) model, which was developed by incorporating detailed interfa-
cial physics within an angular pore geometry. Specifically, the capillary
component dominates under saturated conditions for all soils. This
corresponds to the point where the liquid-vapor interfacial area is
effectively zero. As pF increases (corresponding to more suction in soil),
pores of varying sizes begin to drain, and this process starts with larger
pores. For each pore size, there exists a critical pF, often referred to as the
“onset of drainage”, at which air starts to invade the pore.

As drainage progresses, water films begin to form along the surfaces
of the partially emptied pores. With further increase of pF, smaller pores
also undergo drainage, leading to a gradual decrease in the capillary
component and a concurrent increase in the contribution of the film
component. This reflects the physical process by which surface area
becomes increasingly available for film water as the capillary water
recedes to the pores corners (Or and Tuller, 1999).

At a pF between 2.5 and 4 for all soils, the film component reaches a
peak. Beyond this peak, toward the dry region, both capillary and
adsorbed film contributions decline; this is the point where even the
adsorbed water films begin to thin. This decline continues at very high
PF values and eventually the adsorbed water converges to the Campbell-
Shiozawa linear model for the dry end, with the extent of this linear
region being dependent on soil texture (Fig. 6). Note that, consistent
with physical constraints imposed, the water content for pF >5 remains
entirely in adsorbed form for all soils.

Another important point in Fig. 6 is the crossover between capillary
and adsorbed component curves, which determines the boundary be-
tween capillary and adsorbed dominant regions. This crossover point is
highly dependent on soil texture, and as seen in Figs. 6 and 7, with an
increase in clay content, the water content at this point increases. This is
because the fraction of finer particles (i.e., silt and clay) provides a
greater specific surface area, which supports the formation and retention
of more extensive water films along particle surfaces (Norouzi et al.,
2022; Norouzi et al., 2023).

An important advantage of DHM is the ability to replace unknown or
poorly defined components with neural networks, which serve as uni-
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Fig. 8. Learned transition function, f(S.), as defined in Eq. (5). The reference
curve 1 —S;, commonly assumed in previous studies, is shown in gray to illus-
trate the deviation of the learned function from linear behavior.

versal function approximators. In our model, the transition function
f(S¢) in Eq. (5), whose analytical form was not known in advance, was
learned directly from data. This function governs how the Campbell-
Shiozawa model should be modified at pF values lower than a certain
threshold, where capillary and adsorbed film water may coexist. This
learned function is shown in Fig. 8. As illustrated, f(S;) exhibits a
decreasing trend, which is expected: as capillary water increases, the
contribution of the Campbell-Shiozawa model to total water content
should diminish.

The transition function was designed with a hard constraint to satisfy
f(Sc = 0) = 1, ensuring full reliance on the Campbell-Shiozawa model
when the capillary saturation is zero (Fig. 8). Interestingly, although not
explicitly constrained to do so, the learned function also satisfies
f(Sc =1) = 0. This behavior implies that at capillary saturation (S, =
1), the entire water content is attributed to capillary water, with no
contribution from the adsorbed film component (Fig. 6). Additionally,
the transition between the two endpoints (S, =0 and S, 1) is
distinctly nonlinear, deviating from the commonly assumed linear
transition (1 — S.) used in previous studies (Fayer and Simmons, 1995;
Lebeau and Konrad, 2010).

3.2. Performance of the sub-networks for soil constants

One of the key advantages of DHM is its ability to train multiple
internal models simultaneously within a unified framework (Shen et al.,
2023). In our hybrid PTF, we implemented three dedicated sub-
networks (i.e., sub-PTFs) to estimate key soil parameters, namely, 6,
PFgr,, and 6,, directly from basic soil physical properties (see Eq. (8) and
Table 1). Each of these sub-networks maps soil properties to a physical
constant. After training, each of these networks could be used as a
standalone PTF. It should be noted that these sub-networks were not
trained with separate target data; instead, they adjusted their parame-
ters as part of the joint training of the full hybrid model (Fig. 1).

Fig. 9 illustrates the predictions of each sub-network, plotted against
one of the representative input variables, to ensure that these sub-
networks have learned meaningful physically or empirically known re-
lationships rather than overfitting the training data.

The sub-network NN; predicts 6;. The predictions of this sub-network
exhibit a clear inverse relationship with bulk density in its input layer,
consistent with the physical understanding that higher bulk density
typically corresponds to lower total porosity and thus lower saturated
water content (Fig. 9a). Interestingly, for high bulk density values, the
predictions align well with the standard equation used to calculate
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Fig. 9. Predicted soil-specific parameters from the interior sub-networks of the hybrid PTF model, plotted against representative input variables. The parameters 6,
and ¢ represent saturated water content and porosity, respectively, and ¢, and pF,, are the fitting parameters that determine the slope and intercept of the Campbell-

Shiozawa model at the dry end [Eq. (2)].

porosity from known bulk density, assuming a particle density of 2.65 g/
cm®. However, for soils with low bulk density (organic soils), the pre-
dictions deviate from this relationship, demonstrating the inadequacy of
the 2.65 g/cm® assumption for such soils (Marakkala Manage et al.,
2019).

In Fig. (9b) the predictions of NN; are plotted against OC in the input
layer. As expected, saturated water content increases with increasing
OC. Organic particles have lower intrinsic density with more irregular,
often fibrous structures than mineral particles, which leads to looser
packing and greater total pore volume. Consequently, soils with higher
organic carbon content tend to exhibit higher porosity and lower bulk
density, consistent with observations in analytical modeling studies
(compare for example with the trend observed in Fig. 4 of Robinson
(2022)).

Similarly, the sub-network NN, (Fig. 9c), which predicts 6, of
Campbell-Shiozawa model and determines the slope of the linear region
at the dry end, shows a positive correlation with clay content. As noted
by Campbell and Shiozawa (1992), this free parameter is highly influ-
enced by the amount of soil clay content, which determines the specific
area of soil. Higher 6, values are indicative of finer-textured soils, which
retain more water across a wide range of matric heads.

In contrast to the other two sub-networks, the sub-network predict-
ing pF,, denoted as NNy, does not show any clear correlation with the
input variables. This is consistent with findings by Lu and Khorshidi
(2015) and Karup et al. (2017), who showed that PFary is more depen-
dent on clay mineralogy than soil OC or clay content. Although no strong
correlation is observed, all predictions from this sub-network remain
within the imposed limits (pF = 6.2 to 7.6), which were enforced as a
hard constraint by scaling the network’s output to the target range
(Fig. 9d).

These results collectively demonstrate that the interior sub-networks
not only remained within the specified physical bounds but also
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captured relationships that are consistent with established physical and
empirical understanding.

4. Conclusions and outlook
We draw the following main conclusions from this study:

1) We presented a differentiable hybrid modeling (DHM) framework
that combines mechanistic understanding with data-driven compo-
nents to discover internal and largely unobservable soil processes
that are not directly measurable. Applied to the soil water retention
curve, the hybrid approach successfully learned the overall shape of
the SWRC as well as its capillary and adsorbed components. Notably,
the hybrid model learned pore-scale features without relying on
explicit geometrical assumptions about soil pore shape or its
distribution.

2) Our model demonstrates a new perspective on the use of data in soil
physics. We used the same inputs and outputs as conventional
pedotransfer functions but our main objective goes far beyond simple
prediction. During this mapping from inputs to outputs, the hybrid
model learns multiple intermediate processes and their unobservable
transitions implicitly, without requiring explicit data for them.
Importantly, these learned internal relationships produced physi-
cally meaningful results and as observed in the case of transition
function, the model discovered a nonlinear function that challenges
the linear assumptions invoked in previous studies.

3) The DHM framework is flexible in design. As our understanding of
soil physical processes advances, we can incorporate more soil
physics knowledge into the hybrid model structure. Future work may
explore alternative formulations for dry-end behavior and evaluate
how learned sub-models can be reused in broader hydrological
modeling contexts.
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Given the increasing availability of large soil datasets, we believe
DHM and its capability for end-to-end training of several internal
components (i.e., sub-models) within a single optimization process,
provides a promising tool that can be leveraged for modeling funda-
mental physical processes where partial knowledge of the underlying
mechanisms has led to over-simplifying assumptions and biased
predictions.
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