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A B S T R A C T

Soil physics models have long relied on simplifying assumptions to represent complex processes, yet such as
sumptions can strongly bias model predictions. Here, we propose differentiable hybrid modeling (DHM) as a 
paradigm-shifting framework that learns unobservable intrinsic processes from data and physical constraints, 
rather than simplifying them. As a proof of concept, we apply the DHM approach to the challenge of partitioning 
the soil water retention curve (SWRC) into capillary and adsorbed water components, a problem where tradi
tional assumptions have led to divergent results. The hybrid framework derives this partitioning directly from 
data while remaining guided by simple physical constraints. Using basic soil physical properties as inputs, the 
DHM couples an analytical formula for the dry end of the SWRC with data-driven physics-informed neural 
networks that learn the wet end, the transition between the two ends, and key soil-specific parameters. The 
model was trained on a SWRC dataset from 482 undisturbed soil samples, spanning a broad range of texture 
classes and organic carbon contents. The hybrid model successfully learned both the overall shape and the 
capillary and adsorbed components of the SWRC. Notably, the learned patterns were consistent with pore-scale 
thermodynamic saturation behavior in angular pores, without relying on explicit assumptions about soil pore 
geometry or its distribution. Moreover, the model revealed a distinctly nonlinear transition between capillary 
and adsorbed domains, challenging the linear assumptions invoked in previous studies. The methodology 
introduced here provides a blueprint for learning other soil processes where high-quality datasets are available 
but mechanistic understanding is incomplete.

1. Introduction

Physics-based modeling approaches have a long tradition in soil 
physics and have been applied to simulate fundamental soil processes 
such as infiltration, evaporation, solute transport, and energy exchange 
in the vadose zone (Green and Ampt, 1911; Gardner, 1958; Philip and de 
De Vries, 1957; Van Genuchten, 1982). Mechanistic modeling typically 

involves conceptualizing the problem, deriving governing equations 
from physical laws or empirical relationships, and validating the 
resulting models against experimental data. These models are then used 
to study system functions and behaviors, test hypotheses, and assess the 
responses of a system to changes in the driving forces or internal 
properties.

The process of deriving representative models in any natural system 
inevitably requires simplifying poorly understood components of the 
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system. For instance, soil physics makes assumptions regarding (difficult 
to quantify) pore geometry and its distribution within soil, attainment of 
equilibrium conditions, or the functional forms of constitutive re
lationships. While these simplifications enable tractable formulations, 
they are shaped by the modeler’s view of the system that may bias the 
true representation of soil processes. While some assumptions are 
refined as new evidence emerges, the original modeling and represen
tation bias may persist.

To overcome some of these challenges, we propose differentiable 
hybrid modeling (DHM) as an alternative approach to the explicit rep
resentation of certain soil physical processes. Hybrid methods embed 
neural networks within physical models so that the unknown or poorly 
understood components of a system can be learned directly from data, 
while the well-established physical laws remain explicitly enforced 
(Psichogios and Ungar, 1992; Karniadakis et al., 2021; Moseley, 2022; 
Shen et al., 2023). By constructing both the physical equations and the 
neural components in a differentiable form, these hybrid systems can be 
trained end-to-end using gradient-based optimization. This allows all 
parameters to be adjusted jointly to minimize a downstream, physics- 
constrained loss function. This dual nature of these methods maintains 
the interpretability of traditional formulations while enabling discovery 
of processes that are otherwise inaccessible through purely mechanistic 
or purely empirical approaches.

Automatic differentiation (AD), which is the backbone of DHM 
(Baydin et al., 2018), has also advanced other domains of scientific 
machine learning (SciML), such as physics-informed neural networks 
(PINNs) (Raissi et al., 2019). PINNs have been successfully applied in 
vadose zone modeling to estimate soil hydraulic properties from soil 
moisture measurements (Tartakovsky et al., 2020; Bandai and Ghezze
hei, 2021; Minasny et al., 2024), to model water flow and solute 
transport using geoelectrical data (Haruzi and Moreno, 2023), and to 
develop flexible non-parametric pedotransfer functions (PTFs) for the 
soil water retention curve (Norouzi et al., 2025). While both DHM and 
PINNs fall under the broader umbrella of SciML and share conceptual 
similarities, they differ fundamentally in structure and training objec
tives. In PINNs, neural networks are trained to learn solutions that 
satisfy governing physical laws, whereas DHM embeds neural networks 
within an existing analytical model or process-based model to learn the 
unknown or less understood components.

To demonstrate how DHM can be used as a framework for learning 
complex soil physical processes, we apply this method to the classic 
problem of modeling the soil water retention curve and its partitioning 
to capillary and adsorptive components. The SWRC is a fundamental soil 

property that defines the relationship between water content and matric 
head (or suction) in soil. Modeling a variety of land-surface processes, 
including infiltration, runoff, evaporation, and energy exchange at the 
land surface requires knowledge of the SWRC across scales (Gupta et al., 
2022; Tehrani et al., 2025; Turek et al., 2025). Moreover, partitioning 
the SWRC into its capillary and adsorbed components enhances the 
modeling of the soil hydraulic conductivity curve and is essential for 
determining the liquid–water interfacial area, which influences soil 
health and biogeochemical processes, particularly the retention and 
transport of interfacially active contaminants such as per- and poly
fluoroalkyl substances (PFAS) (Guo et al., 2020; Brusseau, 2023).

All existing SWRC models that partition capillary and adsorbed film 
water have been developed based on specific prior assumptions and 
simplifications about soil pore geometry, the functional forms used to 
describe water retention components, and the transition between these 
two soil water regimes. Because these assumptions directly influence the 
resulting partitioning, different models applied to the same soil can yield 
substantially different outcomes, reflecting the sensitivity of predictions 
to their underlying assumptions (Or and Tuller, 1999; Lebeau and 
Konrad, 2010; Peters, 2013; Lu, 2016; Weber et al., 2019; Ghorbani 
et al., 2025). Moreover, direct experimental validation of the parti
tioning remains challenging, as capillary and adsorbed water compo
nents are not readily separable or independently measurable at the pore 
scale. Therefore, there remains a need for new approaches that can learn 
the partitioning directly from data with minimal prior assumptions, 
while still respecting key physical constraints.

The main objective of this study is to develop and demonstrate a 
hybrid modeling framework that learns the shape of the SWRC as well as 
its capillary and adsorbed water components from basic soil properties 
using a state-of-the-art differentiable modeling approach. In key 
contrast to traditional parametric models with rigid physical assump
tions, our hybrid method learns a flexible, physically interpretable, and 
data-driven partitioning, with only universally accepted assumptions 
included. Our study introduces a new generation of SWRC models, 
which we term “semi-parametric” (i.e., semi-analytical) models. In this 
new type of SWRC models, part of the curve is described by analytical 
equations, while the remaining parts are flexibly learned from data 
using neural networks, yet the final SWRC remains continuous, differ
entiable, and physically consistent. We believe our work demonstrates 
the potential of the DHM framework for unifying physical theory and 
data-driven discovery across a wide range of fundamental soil physical 
processes.

Nomenclature

Notation Definition Unit
θ Total volumetric water content [m3 m− 3]
θc Volumetric capillary water content (capillary component) 

[m3 m− 3]
θa Volumetric adsorbed film water content (adsorbed 

component) ]m3 m− 3]
h Matric head [cm]
pF Log-transformed matric head [-]
θCS Water content predicted by the Campbell–Shiozawa model 

[m3 m− 3]
pFdry pF at oven dryness where θ→0 [-]
θo Campbell–Shiozawa fitting parameter [m3 m− 3]
θs Volumetric saturated water content [m3 m− 3]
Sc Capillary saturation, Sc = θc/θs [-]
f(Sc) Transition function [-]
g(Sc) Unknown function for parametrizing the transition 

function [-]

x Input vector of basic soil properties [Sand, Silt,Clay,OC,
BD] [see text]

NNc, NNg, NNs, NNdry, NNo Neural sub-models for predicting θc, 
g(Sc), θs, pFdry, θo [see text]

ϕc, ϕg, ϕs, ϕdry, ϕo Trainable parameters of NNc, NNg, NNs, NNdry, 
NNo [-]

J Loss function [-]
θ̂ Predicted volumetric water content [m3 m− 3]
N Total number of measured points [-]
Nwet, Ndry Number of wet-end and dry-end training examples [-]
λ1, λ2, λ3, λ4 Loss-term weights [-]
S1, S2 Number of residual (collocation) points [-]
pFair− entry Air-entry value [-]
θ Mean of measured water contents [m3 m− 3]
Q25, Q75 25th and 75th percentiles of measured θ [m3 m− 3]
θco Water content at the crossover point between capillary and 

adsorbed components [m3 m− 3]
ρb Soil bulk density [g cm− 3]
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2. Materials and methods

2.1. Hybrid modeling framework

The hybrid model uses the same inputs and outputs as conventional 
pedotransfer functions, translating basic soil physical properties to 
SWRC. However, during this mapping from inputs to outputs, the model 
learns multiple intermediate processes and their unobservable transi
tions implicitly, without requiring explicit data for them.

We begin with universally accepted principles describing the coex
istence and behavior of capillary and adsorptive forces across the full 
moisture range. As we derive the governing equations from these known 
principles, any unknown terms are treated as components to be inferred 
from data using physics-constrained neural networks. To physically 
guide the model, we only rely on a few physical constraints that are 
universally accepted and relax the restrictive assumptions in conven
tional models: idealized pore shapes, certain pore size distributions, or 
fixed functional forms.

2.1.1. Physical definitions and model derivation
Capillary water refers to liquid water filling the spaces between soil 

particles, held by surface tension and the contact angle of water with 
solid surfaces, which leads to the formation of curved liquid–vapor in
terfaces (menisci). The adsorbed film water component refers specif
ically to liquid water retained in thin films by adsorptive forces, where a 
distinct liquid–air interface is present (see for example figure 4 of 
Nachum (2025)). The adsorptive forces in soil arise from intermolecular 
interactions between the liquid and solid surfaces, including van der 
Waals forces, electrostatic double-layer forces, and structural (hydra
tion) forces (Derjaguin et al., 1987; Tuller and Or, 2005a).

The total volumetric water content retained in a soil can thus be 
expressed as the sum of its capillary (θc) and adsorbed (θa) components: 

θ = θc + θa (1) 

Note that all terms in Eq. (1) are functions of matric head. As a soil 
dries, capillary water drains from larger pores and recedes into pore 
corners. Beyond a certain matric head threshold, water persists pri
marily as thin films adsorbed onto particle surfaces. At this dry end, 
experimental studies show that the water retention curve becomes linear 
in pF − θ space, where pF = log|h| and h is the matric head in cm (Arthur 
et al., 2013). This linear behavior can be described analytically by the 
Campbell and Shiozawa (1992) model (hereinafter referred to as 
Campbell-Shiozawa model and denoted by the subscript CS), which in 
pF − θ space is written as: 

θCS =

(

1 −
pF

pFdry

)

θo (2) 

where θCS is the predicted water content by Campbell-Shiozawa model, 
and θo and pFdry are its fitting parameters that determine the slope and 
intercept of this empirical model at the dry end. The parameter pFdry 

corresponds to the logarithm of matric head at oven dryness, where the 
soil is assumed to reach zero water content.

The Campbell–Shiozawa model was originally developed for the dry 
end of the SWRC (i.e., the higher range of pF values), where only 
adsorptive forces are active. In the lower range of pF values, where 
capillary water begins to contribute, the expression for θCS no longer 
holds and must be revised. To account for this, we introduce a transition 
function, denoted as f , that modifies θCS in the mixed region, where 
capillary and adsorbed water coexist. This function is treated as an un
known to be learned from data, and it is expressed as a function of 
capillary saturation, defined as Sc = θc/θs, where θs is the saturated 
water content. Accordingly, the adsorbed film component of the SWRC 
can be modeled as: 

θa = f(Sc)θCS (3) 

Combining Eqs. (3) and (1), the total water can be expressed as: 

θ = θc + f(Sc)θCS

⏞̅̅̅̅ ⏟⏟̅̅̅̅ ⏞
θa

(4) 

The second term on the right-hand side of Eq. (4) accounts for the 
adsorbed film water contribution. When Sc approaches zero (i.e., at very 
high pF values where θc is zero), the retention behavior is dominated by 
adsorbed water. In this limit, Eq. (4) should reduce to the Campbell- 
Shiozawa model, Eq. (2). To ensure this, we reparametrize the transi
tion function with a hard constraint that enforces f(0) = 1: 

f(Sc) = 1+ Sc • g(Sc) (5) 

where g(Sc) is an unknown function that is learned from data. 
Combining this equation with Eq. (4), the total water content can be 
expressed as: 

θ = θc + [1 + Scg(Sc) ]θCS

⏞̅̅̅̅̅̅̅̅̅̅̅̅⏟⏟̅̅̅̅̅̅̅̅̅̅̅̅⏞
θa

(6) 

Inserting Eq. (2) into Eq. (6), we obtain: 

θ = θc + [1+ Scg(Sc) ]

(

1 −
pF

pFdry

)

θo (7) 

It is worth noting that Eq. (7) reflects only a general structural 
formulation based on a few widely accepted assumptions about water 
retention in soils. Specifically, it assumes that total water content con
sists of two components, capillary and adsorbed water, and that the 
contribution of the capillary component vanishes as capillary saturation 
(Sc) approaches zero. In this condition, Eq. (7) reduces to Campbell- 
Shiozawa model for the dry end. The function g(Sc) captures the tran
sition between capillary and adsorbed dominant regions behavior 
without explicitly specifying its shape and form in advance. Similarly, 
the capillary component, θc, as well as soil constants (i.e., θs, pFdry, and 
θo) are treated as unknowns to be learned from data.

2.1.2. Neural sub-model for the capillary water
We replace the capillary water content (θc) in Eq. (7), which is a 

function of pF, with a dedicated neural network sub-model named 
NNc(x,pF;ϕc), which receives the vector of soil physical properties x =

[Sand, Silt,Clay,OC,BD] and pF as input. The vector ϕc represents the 
trainable parameters (weights and biases) of this neural network. This 
network has two hidden layers, each with eight units (i.e., nodes) 
(Table 1). By taking pF as an input, the network outputs the capillary 

Table 1 
Summary of the architecture and configuration of the subnetworks.

Network Inputsa Hidden layersb Output Output activation and 
scalingc

NNc Sa, Si, Cl, OC, 
BD,pF

2 × Dense (8) 
(ELU)

θc θsσ(zc)

NNg NNc/NNs 2 × Dense (16) 
(ELU)

g(Sc) Linear

NNs Sa, Si, Cl, OC, 
BD

2 × Dense (4) 
(ELU)

θs σ(zs)

NNo Sa, Si, Cl, OC, 
BD

2 × Dense (4) 
(ELU)

θo σ(zo)

NNdry Sa, Si, Cl, OC, 
BD

2 × Dense (4) 
(ELU)

pFdry 6.2 + σ
(
zdry
)
× (7.6 – 

6.2)

a Sa, Si, Cl, OC, and BD stand for sand, silt, clay, organic carbon, and bulk 
density, respectively.

b This column represents the number of hidden layers, the layer type, the 
number of units per layer, and the activation function for each neural network 
(NN).

c σ(zx) represents the sigmoid activation function applied to the raw output zx 

of the neural network associated with variable x.
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water content at the specified pF. This architecture produces a contin
uous representation of the curve without limiting it to a specific func
tional form (Haghverdi et al., 2012; Norouzi et al., 2025). To ensure 
meaningful predictions, the sub-network output is constrained to remain 
less than saturated water content (θs). To enforce this, the raw output of 
the capillary network is passed through a sigmoid activation, σ(z) =

1/[1+ exp( − z)], and scaled by the θs value.

2.1.3. Neural sub-model for the transition function
The transition function in Eqs. (5) and (7) includes an unknown 

component, g(Sc), which maps the input Sc to a scalar output. Rather 
than assuming a fixed analytical form for g(Sc), we replace it with a fully 

connected neural network, NNg

(
Sc;ϕg

)
, and allow it to be learned from 

data. Similarly, ϕg refers to the trainable parameters of this network. 
This neural network is capable of approximating a wide range of 
continuous functions, which helps capture complex transition behav

iors. The neural network NNg

(
Sc;ϕg

)
consists of two hidden layers and a 

linear output layer without any constraint on the output value (Table 1). 
We designed this sub-network to be more flexible to ensure that the 
shape of the overall transition function, f(Sc), is not limited by the ca

pacity of NNg

(
Sc;ϕg

)
.

2.1.4. Neural sub-model for the soil dependent constants
The Campbell–Shiozawa model and the transition function both 

depend on three key soil-specific parameters: θs, pFdry, and θo. We as
sume that these parameters can be predicted from basic soil physical 

properties, and therefore, we model each parameter using a dedicated 
neural network. In our hybrid framework, each parameter is estimated 

by a separate sub-network: NNs(x;ϕs), NNdry

(
x;ϕdry

)
, and NNo(x;ϕo), 

corresponding to θs, pFdry, and θo, respectively. Each sub-network takes 
five basic soil properties as defined by x: sand, silt, clay, OC, and BD. 
Additionally, each of the neural networks has two hidden layers, each 
containing four units with Exponential Linear Unit (ELU) activation 
function (Table 1). Although a single multi-output neural network could 
have been used, given that the inputs of these networks are identical, we 
opted for separate networks to maintain clarity and interpretability in 
the modeling framework.

Since θs and θo represent volumetric water contents and cannot 
exceed unity, we constrain the predictions of NNs(x;ϕs) and NNo(x;ϕo)

to a range between 0 and 1 by applying a sigmoid activation function in 
the output layers of these sub-networks. Similarly, several studies 
showed that the range of pFdry falls between 6.5 and 7.45 (Schneider and 
Goss, 2012; Arthur et al., 2013; Lu and Khorshidi, 2015; Karup et al., 
2017). To ensure broader applicability and account for potential vari

ability beyond these observations, we constrain the NNdry

(
x;ϕdry

)
sub- 

model output to predict values within a slightly wider interval of 6.2 to 

7.6. This is achieved by scaling the sigmoid output of NNdry

(
x;ϕdry

)
to 

this target range.
To keep notation simple, the explicit dependence on inputs (x, pF) 

and trainable parameters (ϕ) is omitted in the remaining text wherever 
it does not cause ambiguity.

Fig. 1. Workflow of the proposed hybrid model illustrating the interior neural networks, analytical formulation, and loss function structure for learning the soil water 
retention curve and its capillary and adsorbed components. The model inputs, including soil physical properties and pF, are fed into separate neural networks whose 
outputs are combined within the hybrid formulation to predict the total water content, which is then used in the loss function. The entire model, including all neural 
network components, is trained end-to-end, meaning that all parameters are optimized jointly from input to output through gradient-based minimization of a 
downstream, physics-constrained loss function, without explicit labeled data for the individual sub-networks. pF serves as an input only to the capillary neural 
network (NNc).
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2.1.5. Hybrid model and loss function
By embedding all the neural network sub-models into Eq. (7), we 

obtain our hybrid model, expressed as: 

θ = NNc +

[

1 +

(
NNc

NNs

)

NNg

](

1 −
pF

NNdry

)

NNo

⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞
θa

(8) 

As depicted in Fig. 1, the model inputs, including soil physical 
properties and pF, are fed into separate neural networks whose outputs 
are combined within the hybrid formulation to predict the total water 
content, which is then used in the loss function.

It is important to note that Eq. (8) is directly trained end-to-end on 
measurements of the total water content as a function of pF (Fig. 1), and 
all the neural network parameters are learned jointly. Therefore, sepa
rate training of individual sub-networks using distinct target measure
ments is not needed. Instead, the sub-networks adjust their predictions 
during training so that the final predicted total water content closely 
matches the measured total water content at each pF value (Fig. 1).

In our hybrid modeling design, each measured point on the SWRC is 
treated as an independent training example, paired with its corre
sponding soil properties: sand, silt, clay, OC, BD, and pF. The key 
assumption is that, given a sufficient number of measurements, training 
the hybrid model in Eq. (8) enables the model to capture the complete 
shape of the SWRC, including both the capillary and adsorbed water 
components, which are modeled with various internal sub-networks. A 
major advantage of this method is that it allows samples with very few 
measured points to be included in the training set. This capability is not 
achievable with conventional parametric models, where a minimum 
number of measured points from each sample is needed (Rasoulzadeh 
et al., 2025).

The loss function used for training the hybrid model is as follows: 

J=
λ1

Nwet

∑Nwet

i=1

[
θ̂
(i)
− θ(i)]2+

λ2

Ndry

∑Ndry

i=1

[
θ̂
(i)
− θ(i)]2+

λ3

S1

∑S1

i=1

(
θ̂

2
c
)(i)

+
λ4

S2

∑S2

i=1

⃒
⃒
⃒
⃒

∂θ̂
∂pF

⃒
⃒
⃒
⃒

(i)

(9) 

where θ̂ and θ are the predicted and measured water contents, respec
tively, and they are both a function of pF. The first two terms on the 
right-hand side of Eq. (9) represent the mean squared error between the 
volumetric water contents predicted by the neural network and the 
observed measurements, where Nwet and Ndry denote the number of 
training examples from the wet and dry ends, respectively. As shown by 
Norouzi et al. (2025), using separate terms for the wet-end (i.e., 

pF ≤ 4.2) and dry-end (i.e., pF > 4.2) is necessary to account for dis
parities in sample sizes and the narrower range of water contents typi
cally observed at the dry end. The λ coefficients are weights assigned to 
each term in the loss function which determine the relative importance 
of each loss component during training. The parameters S1 and S2 in the 
last two terms of Eq. (9) denote the number of residual (collocation) 
points used to enforce the two physics-based constraints, which are 
explained in the following section.

2.1.6. Universally accepted physical constraints
Our hybrid model relies solely on general physical reasoning without 

imposing rigid or system-specific assumptions. Here, to guide the model, 
we incorporate two physical constraints that are broadly accepted in soil 
physics and supported by pore-scale saturation mechanisms.

First, at high suctions in soil (i.e., for pF > 5), the soil water content is 
assumed to be entirely in adsorbed form, meaning that the capillary 
water content should approach zero in this range of pF (Norouzi et al., 
2025; Tuller and Or, 2005b). To enforce this, we introduce a constraint 
in the loss function. Specifically, we generate a set of residual (collo
cation) points, which are synthetic samples with random combinations 
of sand, silt, clay, OC, and BD, paired with random pF values higher than 
5. During each training step, the output of the θc neural network at these 
residual points is computed, and the mean of the squared values is added 
as a penalty term to the custom loss function to encourage θc to approach 
zero for pF > 5 (the third term on the right-hand side of Eq. (9). These 
residual points are illustrated in Fig. 2a.

Second, the soil air-entry value, also known as the bubbling pressure, 
corresponds to the matric head at which air begins to penetrate the 
largest soil pores (Fredlund and Xing, 1994; Sourmanabad et al., 2024). 
According to this definition, when the soil matric head (expressed in 
terms of pF) is below a specific value, the soil remains saturated, and its 
water content remains constant despite further changes in matric head. 
This condition can be mathematically represented as: 

dθ
dpF

= 0, pF < pFair− entry (10) 

The air-entry value, pFair− entry, depends on both soil texture and 
structure, with structure often playing a dominant role in undisturbed 
samples (Rawls et al., 1982). To implement this constraint within our 
neural network, we set pF = − 0.3 (equivalent to a matric head of − 0.5 
cm) as the minimum threshold, below which the soil is assumed to stay 
fully saturated, with water content remaining constant despite varia
tions in pF. It should be noted that this value is not assumed to represent 

Fig. 2. The two sets of residual (collocation) points used to enforce physical constraints: (a) zero capillary water for pF > 5 and (b) constant water content 
for pF < − 0.3.
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a similar air-entry pressure for all soils; rather, it serves as a conservative 
lower bound defining fully saturated conditions across all soils.

For implementing this constraint, as illustrated in Fig. 2b, we 
generate a set of residual points, which are randomly sampled within the 
input space using pF values between − 2.0 and − 0.3. During training, we 
evaluate Eq. (10) at these points and penalize deviations from this 
constraint by adding the fourth term to the loss function (Eq. (9)). The 
numbers of residual points used to enforce these two physical con
straints, denoted as S1 and S2 in Eq. (9), were selected through manual 
tuning.

2.1.7. Model training via automatic differentiation
The hybrid model developed in this study involves several inter

connected neural networks, each containing trainable parameters 
(Fig. 1). These networks are coupled in Eq. (8) through a physics- 
constrained ansatz (i.e., a prior mathematical form assumed to guide 
the model). This coupling of various neural networks results in a highly 
nonlinear system whose parameters must be optimized to minimize the 
total loss function defined in Eq. (9).

Training such a hybrid system requires computing gradients of the 
loss function, Eq. (9), with respect to all trainable parameters. To enable 
efficient and accurate gradient computation, we leverage automatic 
differentiation (AD), a core feature in modern deep learning frameworks 
such as TensorFlow and PyTorch (Baydin et al., 2018). Automatic dif
ferentiation automatically constructs a computational graph during the 
model’s forward pass and traces the sequence of mathematical opera
tions from inputs to outputs. During backpropagation, reverse-mode AD 
traverses this graph from the output layer back to the inputs and sys
tematically applies the chain rule to compute exact gradients with 
respect to every trainable parameter. This allows the model to be trained 
efficiently using standard gradient-based optimization algorithms, 
despite its architectural complexity and the presence of embedded 
physical constraints.

2.1.8. Hyperparameter optimization
The developed hybrid model consists of separate sub-network neural 

models, each designed for a specific component. Table 1 reports the 
inputs, architecture, and activation functions of each sub-network. To 
select the optimal architecture of the interior networks, we initially 
adopted relatively expressive network structures and subsequently 
reduced the number of layers and units until a noticeable degradation in 
model performance was observed. The final architectures were chosen 
as the simplest configurations that maintained stable performance. All 
hidden layers across the sub-networks employed Exponential Linear 
Unit (ELU) activation functions.

The output of networks NNc, NNs, NNdry, and NNo were implemented 
with sigmoid activation functions and were scaled appropriately to their 
respective physical ranges. Additionally, the networks NNs, NNo, and 
NNdry, which estimate soil-dependent constants, shared a similar struc
ture: two hidden layers with four units each and ELU activations.

We set λ1 and λ2 in Eq. (9) to 1 and 12.1, respectively, based on 
manual tuning. The parameters λ3 and λ4 were set to 10 and 5, respec
tively. These weights were tuned to ensure their corresponding con
straints were satisfied without degrading the overall performance of the 
model. The parameters S1 and S2, which determine the number of re
sidual points in sets 1 and 2, were both set to 2000.

The Adam optimizer (Kingma, 2014) was used for model training 
with an initial learning rate of 0.005. An adaptive learning rate strategy 
was applied, in which the learning rate was reduced by a factor of 0.8 if 
no improvement in the validation loss was observed, continuing down to 
a minimum of 0.0005.

To avoid overfitting, early stopping with a patience of 10 epochs was 
applied. In practice, this resulted in model convergence after approxi
mately 250 training epochs. The evolution of the training and validation 
loss as a function of epoch is provided in the Supplementary Information

(Fig. S1). Additionally, because the capillary sub-network (NNc) directly 
influences the smoothness of the final model, we applied L2 regulari
zation with an intensity of 0.15 to all layers of this sub-network. L2 
regularization prevents overfitting by controlling the magnitude of large 
weights in the network (Ng, 2004). The model was entirely developed in 
Python and implemented using TensorFlow (Abadi et al., 2016).

2.2. Experimental data and train/validation/test splits

For training and evaluating the hybrid pedotransfer functions in this 
study, we used 482 undisturbed soil samples from the publicly available 
dataset of Hohenbrink et al. (2023), which includes measurements of 
soil hydraulic properties for a wide range of texture types and organic 
carbon contents (Fig. 3 and Table 2). The 482 soils were extracted from 
the main dataset (consisting of 572 soil samples) with the condition that 
measurements of SWRC, soil textural fractions, bulk density, and 
organic carbon content, are available. This dataset is available at 
doi:10.5880/fidgeo.2023.012.

As with all data-driven models, predictive performance is strongly 
dependent on the dataset size (Ahmadisharaf et al., 2024) and diversity 
of input training examples. The present dataset was selected to maxi
mize both sample size as well as diversity in soil texture, organic carbon 
content, and coverage of both wet- and dry-end measurements, which is 
essential for learning representative intermediate retention processes.

Particle size distribution was measured using wet sieving and sedi
mentation techniques. The size classes were categorized following the 

Fig. 3. The textural distribution of 482 soil samples according to the USDA 
(United States Department of Agriculture) soil triangle. Point colors indicate 
organic carbon content (%) of each soil sample. The abbreviations Sa, Si, and Cl 
stand for sand, silt, and clay, respectively.

Table 2 
Summary statistics of soil physical properties in the dataset.

Sand [%] Silt [%] Clay [%] OC [%] BD [gr cm− 3]

Min 3.3 0.0 0.1 0.04 0.37
Mean 41.3 38.6 20.1 2.11 1.33
Max 99.9 85.7 66.4 19.26 1.89
Std 30.4 24.6 13.2 2.15 0.29

OC, organic carbon; BD, bulk density; Std, standard deviation
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United States Department of Agriculture (USDA) classification system, 
which defines clay as particles smaller than 2  μm, silt as 2–50  μm, and 
sand as 50–2,000  μm (Hillel, 1982). The selected set of soil samples 
covers eleven soil textural classes of USDA system, making the dataset 
highly suitable for the data-driven approach in this study (Fig. 3).

Organic carbon content was measured by high-temperature com
bustion using an elemental analyzer. Bulk density was determined 
gravimetrically, by oven-drying the soil samples for at least 24 h 

following evaporation experiments (Tehrani et al., 2023).
The dataset includes measurements of the soil water retention curve 

covering a broad range of matric heads. The wet and medium moisture 
ranges (pF ≤ 4.2) were measured using the simplified evaporation 
method (Peters and Durner, 2008; Schindler, 1980), implemented via 
the HYPROP device (METER Group AG, Germany). This method cap
tures the drying branch of the retention curve and provides high- 
resolution measurements. For the dry end (pF > 4.2), additional 

Fig. 4. Predicted soil water retention curves from the developed hybrid pedotransfer functions for twelve soils representing different USDA textural classes. Values in 
parentheses represent the organic carbon content (OC) in percentage.
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measurements were obtained using the dewpoint method (Campbell 
et al., 2007; Kirste et al., 2019) via the WP4C device (METER Group, 
Inc., USA). Due to the large imbalance between the number of dry-end 
and wet-end data points, we uniformly resampled the wet-end mea
surements to 15 points. For more detailed information about the mea
surement details and device specifications, readers are referred to 
Hohenbrink et al. (2023).

To train the model with the customized loss function in Eq. (9), 
which includes separate terms for the wet and dry ends of the SWRC, we 
partitioned the data for each end into training and test sets separately to 
achieve a more balanced split. Seventy percent of the samples from each 
end were used for training and validation, while the remaining 30 % 
served as a hold-out test set. The stratified sampling ensured that each 
subset, training, validation, and testing, represented the full range of wet 
and dry conditions. Within the 70 % training pool, 20 % of the data were 
further set aside as a validation set during training. The dataset 
comprised 8394 pF − θ observations after resampling, of which 5916 
pF − θ pairs (339 samples) were used for training and validation, and 
2478 pF − θ pairs (143 samples) for testing.

To avoid data leakage and account for the strong correlation among 
water content measurements within individual soil samples, we parti
tioned the dataset at the soil sample level rather than at the level of 
individual pF − θ pairs. This ensured that all pF − θ observations from a 
given sample were assigned entirely to either the training or testing set. 
Additionally, we ensured that samples from the same soil profile (i.e., 
location) were exclusively included in either the training or the testing 
set.

2.3. Evaluation criteria

Model performance was evaluated based on three metrics: root mean 
square error (RMSE), coefficient of determination (R-squared), and the 
ratio of the interquartile range to RMSE (RPIQ), all calculated using the 
predicted and observed volumetric water contents: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N
∑N

i=1

(
θ̂
(i)
− θ(i))2

√
√
√
√ (11) 

R2 = 1 −

∑N
i=1
(

θ̂
(i)
− θ(i))2

∑N
i=1
(
θ(i) − θ

)2 (12) 

RPIQ =
Q75 − Q25

RMSE
(13) 

where N is the total number of measured points, θ is the mean of the 
measured water contents, and Q75 and Q25 correspond to the 75th and 
25th percentiles of the measured water contents, respectively. The RPIQ 
metric offers a scale-independent metric by comparing the RMSE with 
the variability of the data.

3. Results and discussion

3.1. Physics-constrained neural network performance

Fig. 4 shows the predicted shape of the SWRC for twelve soil samples 
with different texture classes according to the USDA classification sys
tem. The model is trained by optimizing the loss function (Eq. (9)) over 
the entire training set as a whole, rather than fitting it sample by sample. 
Unlike parametric PTFs, which use predefined analytical forms for the 
SWRC, our hybrid model learns the curve shape directly from the data. 
Once trained, the model can predict the entire continuous SWRC. To 
achieve this, for any given soil with fixed physical properties (i.e., sand, 
silt, clay, OC, and BD), we vary the pF over a specified range to generate 
the continuous curves shown in Fig. 4.

The discovered shapes of the SWRCs are smooth, differentiable, and 
therefore suitable for simulation of soil water flow (i.e., Richardson- 
Richards equation). These curves exhibit a sigmoidal shape in the wet 
range, similar to traditional parametric models (van Genuchten, 1980; 
Kosugi, 1994), and transition to a linear form at lower water contents, 
consistent with the Campbell-Shiozawa model behavior assumed at the 
dry end. Notably, the transition between the neural network-predicted 
region and the analytically modeled region governed by the Campbell- 
Shiozawa model is seamless, with no noticeable discontinuities or 
abrupt changes, resulting in a smooth, continuous curve. Furthermore, 
at the wet end, the curves remain invariant with respect to pF for values 
below − 0.3. At the dry end, the range of pF at zero water content, pFdry, 
for all curves remains between 6.2 and 7.6, ensuring the satisfaction of 
the physical constraints imposed at both ends during training.

The overall performance of the hybrid PTFs on both the train and test 
sets is depicted in Fig. 5. As shown, the model demonstrates a close 
performance on both the train and test sets, indicating the generalization 
capability of the model. This close performance between training and 
testing sets is particularly important in developing continuous, non- 

Fig. 5. Overall performance of the hybrid pedotransfer functions on the (a) train and (b) test sets. Validation performance metrics are RMSE = 0.045 m3 m− 3, R2 =

0.924, and RPIQ = 4.857. The validation set, comprising 20 % of the training data, was used during training for model selection and early stopping.
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parametric and semi-parametric PTFs, as even small degrees of over
fitting can distort the predicted curve, making it physically unrealistic.

The model achieved an RMSE of 0.049 m3 m− 3 on the test set, which 
is reasonable given the diversity of soils represented in the dataset, 
including eleven USDA texture classes, and samples with high organic 
carbon content and very low bulk density (Table 2). The extent of var
iations in soil properties is also reflected in Fig. 5, where measured 
volumetric water contents reach values as high as 0.8 m3 m− 3. This 

diversity, along with dataset size, variations in soil properties, and 
measurement quality, are key factors influencing the performance of 
PTFs. The performance of the PTF developed aligns well with both 
continuous parametric models (dos Santos Pereira et al., 2025) and 
continuous non-parametric models trained on HYPROP system mea
surements (Haghverdi et al., 2018). However, due to differences in the 
datasets used and input predictors across studies, direct comparisons are 
challenging.

Fig. 6. Discovered capillary and adsorbed film components of the soil water retention curve for the same soil samples shown in Fig. 4, as obtained from the hybrid 
model. Values in parentheses represent the organic carbon content (OC) in percentage.
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The discovered partitioning of capillary and adsorbed film compo
nents of the SWRC for the soil samples shown in Fig. 4 is depicted in 
Fig. 6. These curves are obtained by plotting the first and second terms 
on the right-hand side of Eq. (8). The curves shown in Fig. 6 should be 
considered as follows: at each pF, the total water content (black line) is 
the sum of the capillary and adsorbed film water contents.

This data-driven partitioning aligns remarkably well with the 
physics-based models in the literature, such as that of Or and Tuller 
(1999) model, which was developed by incorporating detailed interfa
cial physics within an angular pore geometry. Specifically, the capillary 
component dominates under saturated conditions for all soils. This 
corresponds to the point where the liquid–vapor interfacial area is 
effectively zero. As pF increases (corresponding to more suction in soil), 
pores of varying sizes begin to drain, and this process starts with larger 
pores. For each pore size, there exists a critical pF, often referred to as the 
“onset of drainage”, at which air starts to invade the pore.

As drainage progresses, water films begin to form along the surfaces 
of the partially emptied pores. With further increase of pF, smaller pores 
also undergo drainage, leading to a gradual decrease in the capillary 
component and a concurrent increase in the contribution of the film 
component. This reflects the physical process by which surface area 
becomes increasingly available for film water as the capillary water 
recedes to the pores corners (Or and Tuller, 1999).

At a pF between 2.5 and 4 for all soils, the film component reaches a 
peak. Beyond this peak, toward the dry region, both capillary and 
adsorbed film contributions decline; this is the point where even the 
adsorbed water films begin to thin. This decline continues at very high 
pF values and eventually the adsorbed water converges to the Campbell- 
Shiozawa linear model for the dry end, with the extent of this linear 
region being dependent on soil texture (Fig. 6). Note that, consistent 
with physical constraints imposed, the water content for pF >5 remains 
entirely in adsorbed form for all soils.

Another important point in Fig. 6 is the crossover between capillary 
and adsorbed component curves, which determines the boundary be
tween capillary and adsorbed dominant regions. This crossover point is 
highly dependent on soil texture, and as seen in Figs. 6 and 7, with an 
increase in clay content, the water content at this point increases. This is 
because the fraction of finer particles (i.e., silt and clay) provides a 
greater specific surface area, which supports the formation and retention 
of more extensive water films along particle surfaces (Norouzi et al., 
2022; Norouzi et al., 2023).

An important advantage of DHM is the ability to replace unknown or 
poorly defined components with neural networks, which serve as uni

versal function approximators. In our model, the transition function 
f(Sc) in Eq. (5), whose analytical form was not known in advance, was 
learned directly from data. This function governs how the Campbell- 
Shiozawa model should be modified at pF values lower than a certain 
threshold, where capillary and adsorbed film water may coexist. This 
learned function is shown in Fig. 8. As illustrated, f(Sc) exhibits a 
decreasing trend, which is expected: as capillary water increases, the 
contribution of the Campbell-Shiozawa model to total water content 
should diminish.

The transition function was designed with a hard constraint to satisfy 
f(Sc = 0) = 1, ensuring full reliance on the Campbell-Shiozawa model 
when the capillary saturation is zero (Fig. 8). Interestingly, although not 
explicitly constrained to do so, the learned function also satisfies 
f(Sc = 1) = 0. This behavior implies that at capillary saturation (Sc =

1), the entire water content is attributed to capillary water, with no 
contribution from the adsorbed film component (Fig. 6). Additionally, 
the transition between the two endpoints (Sc = 0 and Sc = 1) is 
distinctly nonlinear, deviating from the commonly assumed linear 
transition (1 − Sc) used in previous studies (Fayer and Simmons, 1995; 
Lebeau and Konrad, 2010).

3.2. Performance of the sub-networks for soil constants

One of the key advantages of DHM is its ability to train multiple 
internal models simultaneously within a unified framework (Shen et al., 
2023). In our hybrid PTF, we implemented three dedicated sub- 
networks (i.e., sub-PTFs) to estimate key soil parameters, namely, θs, 
pFdry, and θo, directly from basic soil physical properties (see Eq. (8) and 
Table 1). Each of these sub-networks maps soil properties to a physical 
constant. After training, each of these networks could be used as a 
standalone PTF. It should be noted that these sub-networks were not 
trained with separate target data; instead, they adjusted their parame
ters as part of the joint training of the full hybrid model (Fig. 1).

Fig. 9 illustrates the predictions of each sub-network, plotted against 
one of the representative input variables, to ensure that these sub- 
networks have learned meaningful physically or empirically known re
lationships rather than overfitting the training data.

The sub-network NNs predicts θs. The predictions of this sub-network 
exhibit a clear inverse relationship with bulk density in its input layer, 
consistent with the physical understanding that higher bulk density 
typically corresponds to lower total porosity and thus lower saturated 
water content (Fig. 9a). Interestingly, for high bulk density values, the 
predictions align well with the standard equation used to calculate 

Fig. 7. Water content at the crossover point between capillary and adsorbed 
film components, denoted as θco, versus clay content for all soils in the test set. 
In the regression equation shown in the figure, the variable ‘clay’ represents the 
clay content (%).

Fig. 8. Learned transition function, f(Sc), as defined in Eq. (5). The reference 
curve 1 − Sc, commonly assumed in previous studies, is shown in gray to illus
trate the deviation of the learned function from linear behavior.
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porosity from known bulk density, assuming a particle density of 2.65 g/ 
cm3. However, for soils with low bulk density (organic soils), the pre
dictions deviate from this relationship, demonstrating the inadequacy of 
the 2.65 g/cm3 assumption for such soils (Marakkala Manage et al., 
2019).

In Fig. (9b) the predictions of NNs are plotted against OC in the input 
layer. As expected, saturated water content increases with increasing 
OC. Organic particles have lower intrinsic density with more irregular, 
often fibrous structures than mineral particles, which leads to looser 
packing and greater total pore volume. Consequently, soils with higher 
organic carbon content tend to exhibit higher porosity and lower bulk 
density, consistent with observations in analytical modeling studies 
(compare for example with the trend observed in Fig. 4 of Robinson 
(2022)).

Similarly, the sub-network NNo (Fig. 9c), which predicts θo of 
Campbell-Shiozawa model and determines the slope of the linear region 
at the dry end, shows a positive correlation with clay content. As noted 
by Campbell and Shiozawa (1992), this free parameter is highly influ
enced by the amount of soil clay content, which determines the specific 
area of soil. Higher θo values are indicative of finer-textured soils, which 
retain more water across a wide range of matric heads.

In contrast to the other two sub-networks, the sub-network predict
ing pFdry, denoted as NNdry, does not show any clear correlation with the 
input variables. This is consistent with findings by Lu and Khorshidi 
(2015) and Karup et al. (2017), who showed that pFdry is more depen
dent on clay mineralogy than soil OC or clay content. Although no strong 
correlation is observed, all predictions from this sub-network remain 
within the imposed limits (pF = 6.2 to 7.6), which were enforced as a 
hard constraint by scaling the network’s output to the target range 
(Fig. 9d).

These results collectively demonstrate that the interior sub-networks 
not only remained within the specified physical bounds but also 

captured relationships that are consistent with established physical and 
empirical understanding.

4. Conclusions and outlook

We draw the following main conclusions from this study: 

1) We presented a differentiable hybrid modeling (DHM) framework 
that combines mechanistic understanding with data-driven compo
nents to discover internal and largely unobservable soil processes 
that are not directly measurable. Applied to the soil water retention 
curve, the hybrid approach successfully learned the overall shape of 
the SWRC as well as its capillary and adsorbed components. Notably, 
the hybrid model learned pore-scale features without relying on 
explicit geometrical assumptions about soil pore shape or its 
distribution.

2) Our model demonstrates a new perspective on the use of data in soil 
physics. We used the same inputs and outputs as conventional 
pedotransfer functions but our main objective goes far beyond simple 
prediction. During this mapping from inputs to outputs, the hybrid 
model learns multiple intermediate processes and their unobservable 
transitions implicitly, without requiring explicit data for them. 
Importantly, these learned internal relationships produced physi
cally meaningful results and as observed in the case of transition 
function, the model discovered a nonlinear function that challenges 
the linear assumptions invoked in previous studies.

3) The DHM framework is flexible in design. As our understanding of 
soil physical processes advances, we can incorporate more soil 
physics knowledge into the hybrid model structure. Future work may 
explore alternative formulations for dry-end behavior and evaluate 
how learned sub-models can be reused in broader hydrological 
modeling contexts.

Fig. 9. Predicted soil-specific parameters from the interior sub-networks of the hybrid PTF model, plotted against representative input variables. The parameters θs 

and ϕ represent saturated water content and porosity, respectively, and θo and pFdry are the fitting parameters that determine the slope and intercept of the Campbell- 
Shiozawa model at the dry end [Eq. (2)].
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Given the increasing availability of large soil datasets, we believe 
DHM and its capability for end-to-end training of several internal 
components (i.e., sub-models) within a single optimization process, 
provides a promising tool that can be leveraged for modeling funda
mental physical processes where partial knowledge of the underlying 
mechanisms has led to over-simplifying assumptions and biased 
predictions.
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