SEDIMENTOLOGY

Sedimentology (2026) 73, 40-82

Facies mosaic distribution and stratigraphic disorder of a

mixed carbonate-siliciclastic tidal succession

VICTOR J. P. HEME DE LACOTTE* (), CHESTER H. C. DAVIES*,
BRIONY J. BOWLER*, STUART M. CLARKE*, A. GRAHAM LESLIE*'} and
DOUGLAS A. SPRINKEL}

*Basin Dynamics Research Group, School of Life Sciences, Keele University, Keele ST5 5BG, UK

(E-mail: v.j.p.heme.de.lacotte@keele.ac.uk)

tBritish Geological Survey, The Lyell Centre, Research Avenue South, Edinburgh EH14 4AP, UK

1Azteca Geosolutions, Pleasant View, UT 84414, USA

Associate Editor — Marc Aurell

40

ABSTRACT

Complex stratigraphic arrangements may be generated through lateral facies
transitions from the strata of aeolian depositional systems into bordering
peritidal deposits. In such scenarios, sedimentary architectural complexity
and associated facies heterogeneities are governed by the interplay between
autogenic processes inherent to tidal environments and larger-scale allocyc-
lic forcing. As a result, complications arise when trying to discriminate the
two signals within preserved strata, and the prediction of their depositional
configuration may be challenging. By documenting the facies diversity and
spatial distribution of an ancient mixed carbonate-siliciclastic tidal flat suc-
cession deposited under arid conditions, and by analysing its degree of stra-
tal disorder, this work provides a generalised model for the stratigraphic
record of marginal mixed peritidal flats. The sedimentology of tidally domi-
nated shallow marine to sabkha deposits of the Middle Jurassic Carmel For-
mation (San Rafael Group) is investigated across a 350 km long transect in
southern Utah, USA. A total of 26 lithofacies are identified and grouped into
11 facies associations. Detailed qualitative and quantitative analysis of facies
distribution has highlighted two transgressive-regressive sequences over-
printed by high levels of autogenic noise at the facies association scale. Mul-
tiple coexisting associations are observed within different facies belts and
are characterised by the sedimentary signatures of intricate coastal, tidal and
aeolian forces with variable proportions of carbonate, siliciclastic and evapo-
ritic material. By combining statistical analysis with classical sedimentologi-
cal interpretations, this study demonstrates the challenges in predicting the
distribution of discrete stratigraphic architectures in peritidal successions.
Such systems may be subdivided into separate depositional elements
defined by differences in facies proportions linked to changes in deposi-
tional processes and energy levels across their margins. This work proposes
a newly quantified model for arid tidal systems with which to account for
stratal disorder. Incorporating this singular characteristic may help constrain
the predictions of reservoir heterogeneities in analogous subsurface
successions.

Keywords autocyclic, Carmel Formation, depositional model, facies
mosaic, mixed carbonate-siliciclastic, Tidal.
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INTRODUCTION

Tidally dominated, carbonate-rich marine mar-
gins to arid continental systems are the scene
of complex interactions between multiple sedi-
mentary processes which together give rise to
some of the most challenging stratigraphic
records to interpret. Whilst sedimentary succes-
sions of aeolian systems are generally fairly
prone to recording the influence of allocyclic
controls and thus to expressing sedimentary
cyclicity in their stratigraphic record, marginal
paralic systems may be influenced by a combi-
nation of auto-and allogenic processes that
together make their analysis in the rock record
challenging.

Sedimentary heterogeneities in tidally domi-
nated successions are observed at every scale
(Yoshida et al., 2001; Ainsworth, 2010; Chiarella
et al., 2017, 2024) and relate to a wide range of
autogenic mechanisms (e.g. Pratt & James, 1986;
Cloyd et al., 1990; Osleger, 1991; Musial et al.,
2012; Olariu et al., 2012; Longhitano & Miocic,
2024) and allogenic forces (e.g. Yoshida
et al., 2007; Longhitano & Miocic, 2024; Wroble-
wski et al.,, 2024). Interactions between wave,
tide and aeolian processes, coupled with the
mixing of different sediment types (i.e. silici-
clastic, carbonates, evaporites), can result in the
preservation of high lithofacies diversity and
highly varied vertical trends. Nevertheless, inter-
pretations of apparent peritidal stratigraphic
sequences based on the preconceived notion
that canonical shallowing upward cycles
(James, 1984) are solely the product of sea-level
change are still common practice for most
outcrop-based studies (e.g. Spalluto et al., 2024).
The foundational theory on the role of eustasy
in recorded carbonate cyclicity (Demicco, 1985;
Grotzinger, 1986; Koerschner & Read, 1989;
Goldhammer et al., 1990) is a powerful tool to
interpret broad-scale stratigraphic sequences,
but it cannot explain all facies transitions
observable at a detailed level (Rivers & Dalrym-
ple, 2025). Pioneering work from Wilkinson
et al (1996, 1997) and, more recently,
forward-modelling methods introduced by Bur-
gess (2006, 2016) suggest that observed patterns
in peritidal carbonate successions may be only
perceptional artefacts, and that sequence analy-
sis should be statistically supported as well as
interpretatively examined. Nevertheless, the
effects of scattered facies distribution (i.e. facies
mosaic) in tidal flats and their inherited strati-
graphic disorder are only rarely discussed
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(Manifold et al, 2020; Quijada et al., 2020;
Geyman et al., 2021).

Sediments of aeolian systems make demon-
strably good regional-scale reservoirs for carbon
capture and storage, and bordering tidal sedi-
ments along their margins have the potential to
provide excellent regional-scale stratigraphic
seals. However, current models for mixed periti-
dal flats do not fully account for the architec-
tural complexity arising from the randomised
mosaic distribution of facies at the time of depo-
sition. Documenting the inter-dependence of
such depositional environments through geologi-
cal time and unravelling the combination of
controls that drives their stratigraphic heteroge-
neities is therefore crucial for targeting aeolian
sandstone deep saline aquifers for CO, seques-
tration (e.g. Priddy et al., 2023).

This work discusses the sedimentology of a
mixed carbonate and siliciclastic arid tidal flat
succession and presents a generic facies model
that accounts for preserved heterogeneities and
stratigraphic architectures arising from plan-
view facies mosaic distributions. The study
shows an analysis of the spatio-temporal evolu-
tion of the Carmel Formation: a Bajocian
shallow-marine succession deposited along the
shoreline of an epicratonic seaway flooding
the Colorado Plateau of the western USA. Spe-
cific objectives are: (i) to evaluate the facies
diversity and relationships to stratigraphic com-
plexity for mixed carbonate-siliciclastic arid
tidal flats; (ii) to discuss the vertical stratal dis-
order that is characteristic of tidal successions;
(iii) to investigate the influence of plan-view
facies mosaic distribution on apparent strati-
graphic disorder through comparison with a
modern example. Aeolian deposits of the con-
temporaneous Page Sandstone are discussed
where they occur in association with tidal
deposits, but their comprehensive analysis is
beyond the scope of this study.

BACKGROUND

Interplay between tidal, wave and fluvial pro-
cesses in coastal environments leads to a broad
spectrum of depositional products with differing
relative sedimentary characteristics associated
with each driving force (Galloway, 1975; Dal-
rymple et al., 1992; Ainsworth et al., 2011;
Vakarelov et al., 2012; Zuchuat et al., 2023).
Furthermore, it is now recognised that basin
geometry  (Zuchuat et al, 2022) and
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palaeocoastline morphology (Sleveland et al.,
2020) can control, or at least influence signifi-
cantly, the preserved stratigraphic record of tidal
cyclicity. Consequently, confined tidal systems
within restricted basins (e.g. epicontinental sea-
ways) will tend to be the scene of complex over-
prints from autogenic signals, such as tidal
amplification processes (Zuchuat et al., 2019) or
sediment reworking during storm events (Kvale
et al., 1995), which may make the recognition of
allogenic cycles recorded in strata challenging.
To compound the complexity, the record of tidal
signature, when present, can be observed at dif-
ferent wavelengths preferentially expressed in
particular depositional settings (Tessier &
Gigot, 1989; Longhitano, 2011; Longhitano et al.,
2012b).

Further challenges arise when trying to link
depositional processes to the stratigraphic
record of mixed carbonate-siliciclastic tidal sys-
tems. In such scenarios, multi-scale interactions
may involve terrigenous siliciclastic content and
locally produced biogenic material or bioclastic
material derived from a nearby carbonate fac-
tory. Such complex tidal systems are well recog-
nised in the rock record. Some studies
document sedimentary processes which decou-
ple deposition of externally sourced siliciclastic
detritus (e.g. fluvial sediment pulses) from loca-
lised carbonate deposition (Breda & Preto, 2011;
Quijada et al., 2016; Wroblewski & Schueth,
2023), whilst others illustrate scenarios of coeval
mixing between the same two sediment fractions
(Longhitano et al., 2012b; Chiarella et al., 2017;
Bddenas et al., 2018). At the bed scale, hetero-
lithic segregation of quartz and bioclastic grains
stems from the laws of hydrodynamics (Chiar-
ella & Longhitano, 2012) and tidal modulation
(Longhitano et al., 2010; Longhitano, 2011).
When upscaled to stratigraphic scale, interton-
gued, vertically stacked patterns of carbonate
and siliciclastic packages are more likely to be
driven by transgressive-regressive relative
sea-level cycles linked to eustatic variations (e.g.
Spalluto, 2008), salt tectonics (e.g. Bourillot
et al., 2010) or structural dynamics (e.g. Wroble-
wski & Morris, 2023).

For mixed tidal flats in hot desert climates
where arid conditions prevail (20° to 30° lati-
tudes ranges; Peel et al., 2007), sub- to intertidal
microbial activity, the formation of ooidal bar-
rier islands and supratidal evaporitic precipita-
tion (i.e. sabkha) are often the main driving
mechanisms for in situ carbonate grain produc-
tion, while siliciclastic material is derived

mainly from ephemeral wadi-type river systems
that reach the coastal plains (Breda &
Preto, 2011), or from bordering aeolian ergs (Fry-
berger et al., 1990; Rodriguez-Lopez et al., 2012;
Cross et al., 2023). Multi-scale studies docu-
menting Holocene evolution of low-gradient car-
bonate ramps and sabkhas along the southern
Arabian  Gulf coastline have produced
well-constrained geomorphological models for
modern arid peritidal environments (Lokier &
Steuber, 2008; Lokier et al., 2013; Lokier & Fior-
ini, 2016; Rivers et al., 2020). Dedicated summa-
ries of sedimentary processes and classification
of sub-environments found in such settings are
numerous (e.g. Alsharhan & Kendall, 2003;
Pratt, 2010; Lasemi et al., 2012). However, pre-
vailing geological models used for associated
subsurface interpretations don’t account for pre-
served heterogeneities and architectural com-
plexities, despite active applied research on
reservoir characterisation in such depositional
systems (e.g. Grotsch et al., 2003; Longhitano
et al., 2012a; Qiao et al, 2016; Khazaie
et al.,, 2022). By investigating the lithofacies
diversity and spatiotemporal distribution of an
ancient arid mixed tidal succession, this study
proposes a generalised model for such systems
with which to account for recorded stratal signa-
tures of competing autocyclic and allocyclic
controls.

GEOLOGICAL SETTING

From late Palaeozoic through to Jurassic times,
the stratigraphic record of the Colorado Plateau
in the western USA is dominated by deposits
associated ~ with  arid climates (Blakey
et al.,, 1988; Parrish & Peterson, 1988). From
southern Wyoming to northern Arizona, most of
the Middle Jurassic strata are characterised by
widespread erg successions interacting with
shallow-marine deposits from the Sundance Sea-
way (Fig. 1E). These deposits filled a retro arc
foreland basin — the Utah-Idaho Trough — as the
region drifted northward into the intertropical
convergence zone (Kocurek & Dott, 1983; Danise
& Holland, 2017). This depocentre has been
linked to Jurassic Cordilleran tectonics and is
the result of an asymmetric flexural subsidence
in the foreland of the Elko Orogenic Belt (Bjer-
rum & Dorsey, 1995; Kowallis et al., 2001; Thor-
man, 2011). It is bound to the east by several
palaeo-highs including remnant topographies of
the Uncompahgre, Defiance and Monument
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Fig. 1. (A) Bajocian palaeogeographical setting of the Colorado Plateau displaying the extents of the Sundance
Sea incursion and the coastal Page erg. Adapted from Blakey (2014) and Parrish & Peterson (1988). (B) Simplified
stratigraphic log of the San Rafael Group in southeastern Utah. (C, D) Lithostratigraphic framework for the Carmel
Formation, the Page Sandstone and the Temple Cap Formation on transects perpendicular (C) and parallel (D) to
the Sundance Sea palaeocoastline. The Carmel Formation is subdivided into eight lithostratigraphic members
whose definitions are based upon transgressive-regressive trends and lateral facies changes. (E) Composite model
of the Sundance Sea summarising the various depositional environments observable in the different deposits of
the San Rafael Group. Theoretical position of this work’s focus is given.

uplifts as well as the Ancestral Uinta Arch (Bla- Mogollon Slope, an exhumed continental
key et al., 1988; Sprinkel et al., 2024), whereas paleo-drainage located in modern Arizona (Bilo-
its southern border gradually grades into the deau, 1986). The Utah-Idaho Trough deepens
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further north and is thought to have been con-
nected with the Pacific Ocean in modern-day
Yukon (Blakey, 2014).

The Bajocian to Callovian (169-162 Ma) Car-
mel Formation belongs to the San Rafael Group
(Fig. 1B) in southeastern Utah, and is attributed
to the first major flooding event of the restricted
epicratonic Sundance Seaway along the north-
south axis of the Utah-Idaho Trough (Fig. 1A).
The Formation comprises a mix of
shallow-marine carbonates, tidal clastics and
coastal sabkha sediments that fit within a com-
plex lithostratigraphic framework of contempo-
raneous strata (Gilbert, 1877; Gilluly, 1929;
Peterson & Pipiringos, 1979; Blakey et al., 1983).
It is characterised by two main transgressive-
regressive (T-R) sequences (sensus Embry &
Johannessen, 1993; Fig. 1C and D), the lower of
which conformably overlies the marginal aeolian
deposits of the Temple Cap Formation (Dickin-
son et al.,, 2010; Doelling et al., 2013) and was
previously separated from them by the now
obsolete J-2 unconformity (Pipiringos &
O’Sullivan, 1978; Lucas & Anderson, 1997).

A complex subdivision of the Carmel Forma-
tion based upon transgressive-regressive trends
has resulted in eight lithostratigraphic members
(Fig. 1C and D), some of which are identified as
lateral lithological variations of the same deposi-
tional sequence (Sprinkel et al., 2011, 2024;
Doelling et al., 2013). The reddish tidal flat
sandstones and siltstones of the Judd Hollow
Member and the alternating thick carbonates
and marls of the Co-op Creek Member represent
the transgressive system tract (TST) of the first
T-R sequence of the Carmel Formation. The
overlying large aeolian cross-bedded sandstone
sets of the Thousand Pockets Member, and the
fine reddish tidal siltstones and evaporitic gyp-
sum beds of the Crystal Creek Member, are asso-
ciated with the regressive system tract (RST) of
this sequence. Both the Co-op Creek and Crystal
Creek members illustrate basinward facies tran-
sitions to sediment of deeper marine deposi-
tional systems. The transgressive event that
marks the onset of the second T-R sequence is
represented by sediments of the Paria River
Member. These sediments range from shallow-

marine carbonate sediments in the San Rafael
Swell area of Utah, to an ephemeral-fluvial suc-
cession in the Vermillion Cliffs area. Specific
attention has been given to the Paria River Mem-
ber in this latter region as this continental part
of the Carmel Formation exposes the unusual
sedimentology of aeolian-fluvial interactions
(Jones & Blakey, 1997) and catastrophic debris
flow deposits sourced from the western mag-
matic arc (Chapman, 1989; Kowallis et al., 2020)
as well as intriguing post-depositional deforma-
tion features (Wheatley & Chan, 2018). The RST
of the second T-R sequence is defined by the
Winsor Member that comprises a cyclic coastal
sabkha succession of banded siltstones and
mudstones intercalated with evaporitic gypsum
beds. Southward, sediments of the Carmel For-
mation intertongue with the dry aeolian deposits
of the Page Sandstone south of Page, Arizona
(Jones & Blakey, 1993; Blakey et al., 1996;
Anderson et al, 2024). Westward, they grade
into the mixed offshore sediments of the Ara-
pien Formation (Picard & Uygur, 1982) and
northward into the carbonate deposits of the
Twin Creek Limestone (Sprinkel, 1982). Sedi-
ments of the Carmel Formation grade conform-
ably vertically into the wet aeolian successions
of  the overlying  Entrada Sandstone
(Kocurek, 1981a; Crabaugh & Kocurek, 1993).
Ichnological and sedimentological analysis of
shallow-marine parts of this system suggest
together that generally hypersaline and stressed
conditions prevailed during the sedimentation
of the Carmel Formation (De Gibert &
Ekdale, 1999, 2002).

METHODOLOGY

A set of 26 sedimentary logs has been compiled
across the extensive outcrop belt of the sedi-
ments of the Carmel Formation and the underly-
ing Temple Cap Formation in Utah. Eleven logs
have been measured along a 300 km long
northeast-southwest basinward transect from
Uneva Mine Canyon on the eastern reef of the
San Rafael Swell (Section 1, Fig. 2) to Cedar
Ridge near Saint George (Section 12, Fig. 2).

Fig. 2. Outcrop distribution map of the Middle Jurassic San Rafael Group and stratigraphically equivalent units
with location of studied sections. The proposed stratigraphic framework in Fig. 14 includes Sections 1 to 12. Mar-
kov chain analysis covers sedimentary logs from Sections 1 to 3. Geological mapping data is extracted from Hintze

et al. (2000).
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Additionally, 15 logs were collected in equiva-
lent continental parts of the depositional system
including (i) the fluvially dominated Bluff and
Moab sections (Sections 17 to 21, Fig. 2); (ii)
the aeolian dominated Page Sandstone near the
northern Arizona state line (Sections 13 to 16,
Fig. 2) and (iii) sabkha dominated regions north
and south of the Uinta Mountains (Sections 23
to 26, Fig. 2). Each section has been logged at a
decimetre vertical resolution by incorporating
sedimentological, ichnological and palaeontolo-
gical observations. Samples have been collected
when appropriate in order to enable thin-section
analysis of key carbonate lithofacies. Although
palaeocurrent azimuth directions were measured
on aeolian and tidal dune foresets, their compre-
hensive analysis is outwith the scope of this
study. Correlations between these logs have
been made based upon the assumption that the
sequence-stratigraphic framework discussed in
this work, and its associated system tracts
bounding surfaces, are ubiquitously expressed
throughout the exposure of the Carmel Forma-
tion within the studied area. Vertical facies dis-
locations have been used to define maximum
flooding surfaces (MF) and maximum regressive
surfaces (MR). Furthermore, this stratigraphic
framework is built upon the hypothesis that sed-
iment distribution on a regional scale was dis-
connected from Middle Jurassic thrusting
activities of the Cordilleran orogen to the west
of the Utah-Idaho Trough. Indeed, regional
accommodation creation during the studied
interval was generated through constant subsi-
dence during a period of tectonic quiescence in
between thrusting events (Bjerrum & Dor-
sey, 1995). Effects of localised bulging events of
the Monument Upwarp (Havholm et al., 1993)
onto the accommodation of the documented
parts of the basin aren’t considered in this
study.

Markov chain analyses depicting the stratal
disorder of the tidal sediments of the Carmel
Formation have been conducted on three neigh-
bouring sections in the San Rafael Swell area
where successions are dominantly composed of
sub- to supratidal sediments (Sections 1 to 3,
Fig. 2). Observed stratal signals of these ana-
lysed sections are considered representative of a
region where facies distributions were not
impacted by aeolian processes of the Page Sand-
stone erg. Statistical evaluation of stratal transi-
tions based on the method introduced by
Burgess (2016) enabled the generation of trans-
verse probability matrices for both facies and

facies associations. A total of six Markov metric
values were calculated through diagonal summa-
tions of transition probability matrices for both
facies and associations for each of the three
selected logs. These Markov metric values were
compared on kernel density plots of the density
distributions of stochastically shuffled succes-
sions based on each section’s sedimentological
diversity. Order or disorder of a given succes-
sion is statistically evaluated by comparing its
unique Markov metric value to the distribution
of values from disordered successions.

The facies scheme discussed in this study is
applied to satellite images (ESRI World Imagery)
of the Adair Bay, Mexico, in order to provide
high-resolution plan view facies distribution
interpretations compatible with the results of this
analysis. The Adair Bay is described as an arid
fluvially starved tidal embayment bordered by
the Gran Desierto dune field (Beveridge
et al., 2006; Scheidt et al., 2011). Because of its
nature and its significant scale (~500 km?), the
Adair Bay is considered as a good modern ana-
logue for the Carmel Formation. In addition to a
complete map of the embayment, three localised
maps have been produced to highlight key plan
view facies interactions ultimately leading to
architectural complexities within the deposi-
tional elements discussed in the proposed model.

FACIES ANALYSIS OF THE CARMEL
FORMATION

Twenty-five lithofacies are recognised in the
Carmel Formation and are related to a wide
range of aeolian processes, tidal dynamics and
open-marine processes (Table 1). Sedimentary
facies have been grouped into 11 associations
representing the products of co-occurring pro-
cesses (Table 2; Figs 3 to 13).

Aeolian facies associations

Dry aeolian dune association (FA1)

Description. The dry aeolian dune association
(Fig. 3) is the most continental deposit identified
in this work and is composed of lithofacies Axs,
Atxs, Ahl, Air and Acl (Table 2). It is typically
characterised by metre-scale cross-stratified sets
of reverse-graded dune foreset avalanching
deposits (grainflow), coupled with drapes of set-
tled suspended load (grainfall) (Fig. 3A). These
units can either depict tabular and laterally
extensive decametre-scale cross-stratification

© 2025 The Author(s). Sedimentology published by John Wiley & Sons Ltd on behalf of
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sets (Axs) or more three-dimensional trough and
amalgamated cross-stratification sets (Atxs;
Fig. 3E). Grainflow strata interfinger at the tosets
of dune lee slopes with impact ripple cross-
lamination sets (Air; Fig. 3D) or crinkly lami-
nated very fine to silty deposits (Acl; Fig. 3C).
Vertical stacking of horizontal laminations
(Ahl), characterised by strong bimodal grain-size
distributions, are sporadically present along
with impact ripple cross-laminations (Air).

Interpretation. These lithofacies together record
the migration of aeolian bedforms (Hunter, 1977;
Kocurek & Dott, 1981). Preserved architectural
differences in cross-strata (Axs & Atxs) reflect
variations in aeolian dune morphology. While
straight-crested transverse dunes tended to be
recorded as tabular cosets of laterally continu-
ous cross-bedded sets, sinuous dunes represent
cosets of complex internal geometric relation-
ships (Rubin & Hunter, 1982). Highly amalgam-
ated aeolian dune sets (i.e. scour-and-fill; sensu
Cardenas et al., 2019) are associated with loca-
lised wind turbulence caused by the increasing
complexity of dune morphologies toward the erg
centre. Impact ripple cross-laminated and crin-
kly laminated sets (Air and Acl) are associated
with interdune corridors characterised by vari-
able dampness conditions on the sediment sur-
face (Mountney, 2006). The migration of impact
ripples (Air & Acl) alongside aeolian dunes gen-
erated interdune migration surfaces that
bounded aeolian dune cross-stratification sets
(Fig. 3E; Kocurek, 1981b; Mountney & Thomp-
son, 2002). Vertically stacked bimodal lamina-
tion deposits (Ahl) are interpreted as aggrading
bedform-free dry aeolian sandsheet surfaces cov-
ered with impact ripples (Kocurek &
Nielson, 1986).

Tidally reworked wet aeolian dune
association (FA2)

Description. The tidally reworked wet aeolian
dune association (Fig. 4) is composed of diverse
lithofacies linked to depositional processes of
differing nature (Arxs, Aha, Ast and Acl;
Table 2). The association is primarily charac-
terised by the co-occurrence of metre-thick con-
voluted  aeolian  cross-stratification sets
sporadically displaying subaqueous reworking
features such as oscillatory ripple cross-
lamination and structureless to cross-stratified
decimetre-thick subaqueous strata with sharp
erosive bases (Arxs; Fig. 4A, E and F). Both sub-
aerial and subaqueous cross-stratification sets

occur within the overall same lithology (cf.
facies Axs/Atxs in FA1). Heavily contorted and
deformed aeolian sandstone units (Ast) reveal
water-saturated conditions in these sediments
by the time of deposition (Fig. 4D). Tidally
reworked wet aeolian dune associations are typi-
cally capped by contorted aeolian cross-
stratification sets penetrated and brecciated by
metre-scale sandy polygonal fracture-fills (Aha;
Fig. 4B and C).

Interpretation. The characteristic coexistence of
sedimentary structures linked to contrasting aeo-
lian and subaqueous processes records the pres-
ervation of coastal dunes subject to reworking
and breaching by tidal currents. Similar facies
have been reported in both ancient marginal
aeolian deposits (Blakey & Middleton, 1983;
Chan, 1989) and modern coastal dune fields
(Fryberger et al., 1983, 1990). The absence of
grainflow-grainfall couplets and the occurrence
of oscillatory sedimentary structures in subaque-
ous strata (Arsx) betray the presence of standing
shallow-water bodies that partly reworked iso-
lated aeolian bedforms migrating across the
supratidal flat (Axs & Atxs). Crinkly laminated
sandstones (Acl) are attributed to the trapping of
windblown sediment onto dampened surfaces
during ebb tide. Heavily contorted sandstone
units (Ast) are interpreted as water-saturated
aeolian dunes subject to intense deformation
caused by water escape processes on burial,
rather than the result of syn-depositional folding
by simple slumping of dune toe sets. Finally,
fractured aeolian units (Aha) are interpreted to
reflect the development of evaporitic crusts
through salt precipitation during erg deflation
events coupled with a high water table (Kocurek
& Hunter, 1986; Lokier, 2012). This association
marks the transition from erg-centre successions
dominated by dunes (FA1) to tidal flat
environments.

Tidal facies associations

Supratidal evaporitic sabkha

association (FA3)

Description. The evaporitic sabkha facies asso-
ciation (Fig. 5) is the only representative of the
supratidal facies belt of the Carmel Formation,
and it is ubiquitously present along its exposure
across the Colorado Plateau. It is composed of
lithofacies Acl, Smo, Fcl and Sev (Table 2). The
association is dominated by crystalline gypsum
deposits (Sev) varying in extent from localised
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Fig. 3. Lithofacies diversity of dry aeolian dune association (FA1). (A) Feathering pattern between grainflow
deposits and impact ripple laminations (Air). (B) Corrugated interdune migration surface linked to water table
fluctuations at the time of deposition. (C) Crinkly laminated damp interdune deposits (Acl) with undulating
microbial mat structures. (D) Impact ripple cross-laminations (Air). (E) Tabular cross-stratified aeolian dune coset
(Axs) displaying various bounding surfaces of different orders. (F) Superimposition surfaces with a cross-stratified
aeolian dune coset (Axs). The suggested vertical facies distribution represents the idealised sequence of a matur-

ing and drying-upward dune field.

decametre-scale lenses to extensive kilometre-
scale layers interbedded within reddish mud-
stone units (Fcl; Fig. 5A). Evaporite beds often
record internal centimetre-scale precipitation as
microfolded crystalline laminations (i.e., entero-
lithic folds) (Fig. 5A and B). Mottled siliciclastic
sabkha facies (Smo) are sporadically present and
differ from Ast facies by the absence of aeolian
structures and the presence of convoluted lami-
nations and plume features.

Interpretation. The facies of this association are
interpreted together as the product of water
table-controlled salt precipitation in the suprati-
dal facies belt. Precipitation of crystalline gyp-
sum occurred interstitially within the pore
spaces between siliciclastic material and gener-
ally translated landward into nodular anhydrite
belts (Sev) in the groundwater capillary fringe
(Kinsman, 1969; Wood & Wolfe, 1969; Ken-
dall, 1978; Pettigrew et al., 2021). The inconsis-
tent lateral extent of evaporite beds, as well as
their spatial distribution, suggests that their
deposition was substantially controlled by auto-
cyclic factors (Clement & Holland, 2016). In the
case of siliciclastic-rich coastal sabkha environ-
ments, soft sediment deformation structures in
sandy units (Smo) derived from high-tide beach
material are associated with dewatering and
haloturbation processes (Andreason, 1992). Crin-
kly laminated sandstones (Acl) are interpreted
as windblown sediment trapped upon damp-
ened supratidal surfaces, while reddish mud-
stones (Fcl) are associated with the settlement of
clay particles within standing water ponds.

Upper intertidal microbialite

association (FA4)

Description. The  microbialite  association
(Fig. 6) is dominated by intertidal deposits com-
posed of lithofacies Mdo and Mxs (Table 2). It is
mainly characterised by millimetre-scale lami-
nated couplets of micritic mudstone and very
fine sand affected by secondary dolomitisation
(Mdo; Fig. 6C). Couplets are typically observed
as extensive kilometre-scale units of wavy to

crinkly laminated sets which may sporadically
display ripple-form shapes (Fig. 6D). Sporadi-
cally, microbialites are found interbedded with
structureless oolitic sand (Mxs) and they may
develop as decimetre-high columnar stromato-
lites (Fig. 6A). In this latter case, microbialite
clasts can be reworked and deposited as floating
clasts in oolitic sand (Fig. 6B).

Interpretation. Microbialite facies observed in
the Carmel Formation are the result of biologi-
cally induced carbonate precipitation associated
with the trapping and binding of siliciclastic
grains in low-energy settings (e.g. Suarez-
Gonzalez et al., 2019; Harris et al., 2024). Lami-
nated couplets of micritic mudstone and very
fine sand (Mdo) were deposited by extensive
algal mats restricted to the upper intertidal
zones (Evans, 1966; Kendall & Skipwith, 1969;
Court et al., 2017). This facies is similar to mod-
ern microbial mats observed in coastal deposits
of the southern Arabian Gulf (Kenig et al., 1990;
Alsharhan & Kendall, 2003). Wavy to crinkly
morphologies are interpreted as tufted microbial
mats overlying ripple-forms commonly known
as palimpsest ripples (Eriksson & Truswell, 1974;
Sarkar et al., 2016). Despite these sediments
being dominantly associated with very calm
energy settings, occasional storm events may
have disrupted microbial mat areas by disman-
tling parts of them and generating thrombolites
(Paul et al., 2021). In a similar fashion, oolitic
material (Mxs) derived from open-marine
oolitic factories (FA9) was sporadically brought
landward to the intertidal facies belt during
high-energy events and interbedded as structure-
less beds within microbialite strata.

Lower intertidal heterolithic siliciclastic flat
association (FA5)

Description. The heterolithic siliciclastic flat
association (Fig. 7) represents a depositional
area where evidence of both subaerial exposure
and subaqueous transport is equally preserved,
but with carbonate precipitation absent. It is
composed of lithofacies Fcl and Mosc (Table 2).
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FA 2 - Tidally reworked wet aeolian dune
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Fig. 4. Lithofacies diversity of tidally reworked wet aeolian dune association (FA2). (A) Interbedded small aeolian
cross-stratification sets and subaqueous strata (Arsx). (B) Polygonal fracture plan view pattern on an aeolian defla-
tionary surface (Aha). (C) Focus on a polygonal fracture fill cross-section penetrating underlying aeolian set (Aha).
(D) Water-saturated aeolian dune displaying heavily contorted strata. (E) Soft sediment deformation in aeolian
dune set. (F) Oscillation ripple cross-laminations in tidally reworked aeolian material. The suggested vertical
facies distribution represents the idealised sequence of a coastal aeolian dune field undergoing a deflationary

stage.

FA 3 - Supratidal evaporitic sabkha
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Fig. 5. Lithofacies diversity of supratidal evaporitic sabkha association (FA3). (A) Sedimentary architecture of
lenticular evaporite beds (Sev) interbedded in red mudstone units (Fcl). (B) Detailed photograph of a folded anhy-
drite bed (Sev). (C) Haloturbation and enterolithic folds in evaporite unit (Sev). The suggested vertical facies dis-
tribution represents the idealised drying-upward sequence of a coastal sabkha.

Desiccated red clay (Fcl) and oscillatory ripple-
laminated fine sand (Mosc) in various ratios
describe a continuous range of heterolithic strat-
ification from flaser, to wavy and to lenticular
bedding (Fig. 7A to D). Oscillatory ripple-
laminated fine sand is sporadically characterised
by a high bioturbation index with abundant
Gyrochorte (Fig. 7F) and Skolithos trace fossils
(Fig. 7G). Thalassinoides and Asterosoma
(Fig. 7E and H) traces are sporadically observed.
Oscillatory ripple-form crest-lines are generally
straight and rounded (Fig. 7A) and sporadically
display interference patterns.

Interpretation. Facies of the association are
interpreted together as the lower intertidal
record of siliciclastic sediment transport and
deposition under fluctuating tidal flow, coupled
with the settling of clay particles and subaerial
exposure during high and low tides, respec-
tively. Heterolithic stratification sets are gener-
ally associated with fining-landward successions
(Reineck & Wunderlich, 1968), but various loca-
lised mechanisms may influence the preserva-
tion of such sedimentary successions (e.g.
Longhitano et al., 2014; Zuchuat et al., 2019).
Ripple-forms in plan view (Mosc) can vary in
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FA 4 - Upper intertidal microbialite
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Fig. 6. Lithofacies diversity of microbialite facies association (FA4). (A) Columnar stromatolite (Mdo) embedded
in structureless oolitic grainstone (Mxs). (B) Details of a reworked microbialite clasts. (C) Thin section photograph
illustrating microbial dolomicrite. (D) Plan view microbial mat view displaying peak-crested oscillation ripple
form morphologies associated with wind action on the shore of restricted ponds. The suggested vertical facies dis-
tribution represents the idealised shallowing-upward sequence of a coastal microbialite.

Fig. 7. Lithofacies diversity of heterolithic siliciclastic flat facies association (FA5). (A) Centimetre-scale desicca-
tion cracks of clay drapes facies (Fcl) in oscillatory ripple troughs (Mosc). (B) Sand-dominated flaser bedding
(Mosc). (C) Desiccated clay (Fcl). (D) Mud-dominated lenticular bedding (Mosc and Fcl). (E) Thalassinoides bot-
tom plan view (Mosc). (F) Gyrochorte top plan view (Mosc). (G) Skolithos bottom plan view (Mosc). (H) Astero-
soma bottom plan view (Mosc). The suggested vertical facies distribution represents the idealised shallowing
upward sequence of a siliciclastic heterolithic flat.
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FA 5 - Lower intertidal heterolithic siliciclastic flat
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morphology, symmetry and migration direction
due to the strong autogenic aspect of heterolithic
flats (Chakrabarti, 2005). The purely siliciclastic
nature of FA5 is interpreted as the localised
expression of aeolian sand flux into the tidal
flat, coupled with occasional ephemeral-fluvial
pulses that reached the coastal plains. The
sporadically high ichnological abundance in
oscillatory ripple-laminated fine sand (Mosc)
shows similarities with siliciclastic tidal succes-
sions stratigraphically related to the Carmel For-
mation (e.g. De Gibert & Ekdale, 2002;
Wroblewski & Schueth, 2023) and may reflect
localised lower rates of sedimentation in more
protected areas of the intertidal facies belt.

Subtidal mixed carbonate-siliciclastic flat
association (FAG6)

Description. The subtidal mixed carbonate—
siliciclastic flat association is composed of litho-
facies Mosc, Mmic and Mmud (Table 2). In a
similar fashion to the lower intertidal siliciclas-
tic heterolithic flat association (FA5) (Fig. 8), it
is characterised by heterogeneous grain-size
deposits forming a wide range of flaser to lentic-
ular bedding. Distinction between the two asso-
ciations lies in their lithological differences and
in the absence of facies from FA6 that provide
evidence for subaerial exposure. The association
comprises three different lithofacies linked to
variable sediment sources and depositional pro-
cesses. Micritic lime mudstones (Mmud) are
deposited in very low hydrodynamic conditions
favourable to the development of trace fossils
(Fig. 8A, F and G) and are typically interbedded
with sandy ripple-laminated strata (Mosc),
which suggests regular siliciclastic sediment flux
into the subtidal carbonate factory (Fig. 8A to
D). In addition, sporadic micritised oolitic grain-
stone beds (Mmic) can be observed draping pre-
served bedforms (Fig. 8E). Micritised ooids are
developed from quartz grain nuclei and can be
observed  with  occasional  well-rounded
millimetre-scale intraclasts (Fig. 8H and I).

Interpretation. The association is interpreted as
the sedimentary expression of a shallow carbon-
ate subtidal flat affected by siliciclastic pulses
and wave action. Micritic mud (Mmud) is asso-
ciated with periods of low bed shear stress dur-
ing slack tides, while ribbons of lenticular to
wavy siliciclastic bedding (Mosc) were depos-
ited during periods of tidal current (e.g.
Demicco, 1983; Lasemi et al.,, 2012; Hashmie
et al, 2016). The development of micritised

ooids (Mmic) is associated with the coating of
lithoclast nuclei by microbial laminae growth.
Their well-rounded morphologies and the pres-
ence of intraclasts suggest occasional transport
and deposition through wave action during
storm events. FA6 is generally considered as
part of the subtidal facies belt as carbonate pro-
duction cannot be sustained under episodic
aerial exposure of the intertidal facies belt.

Restricted lagoon association (FA7)
Description. The lagoon facies association
(Fig. 9) is linked to sedimentation under very
low-energy levels in the subtidal system and
comprises the lithofacies Mmar, Mfen, Msto
and Mstl (Table 2). It is mainly composed of
decametre-thick but kilometre-scale units of tab-
ular blue marls (Mmar; Fig. 9A and C). Sporadic
occurrences of peloidal grainstone units with
fenestral fabric (Mfen; Fig. 9B) betray excep-
tional subaerial exposure (Shinn, 1983). Hetero-
geneous bioclastic strata (Msto; Fig. 9D),
characterised by poorly sorted, matrix-
supported, gravel-grade layers of disarticulated
bivalve shells and rounded mud balls, are spo-
radically present interbedded with the blue
marls (Mmar). Structureless sandstones (Mstl)
are associated with FA7 and are described as
fine to very fine calcarenites with irregular and
bioturbated bedding surfaces.

Interpretation. The lithofacies of the association
record the deposition of fine material in a
restricted  back-barrier lagoon (Riding &
Wright, 1981; Steel et al., 2012). Evidence of con-
formable superposition of supratidal associations
onto the marly facies (Mmar; Fig. 9A) suggests a
lagoonal mud depositional setting rather than
deposition in deeper water (FA11). Features indi-
cating subaerial exposure in peloidal packstones
(Mfen) are interpreted as the expression of loca-
lised shallower zones of the lagoon with marginal
intertidal properties. Gravel-grade heterogeneous
bioclastic strata (Msto) are interpreted as ‘spill-
over’ storm units deposited during high-energy
events that locally disrupted deposition of marl in
the lagoon (Wilson & Mohrig, 2021). Structureless
marine facies (Mstl) are interpreted as the record
of diagenetically altered intermittent bedform
migration allowing substrate reworking by benthic
biota (Melnyk et al., 2025).

Sandy subtidal channel-fill association (FA8)
Description. The sandy subtidal channel-fill
association (Fig. 10) is primarily composed of
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FA 6 - Subtidal mixed carbonate-siliciclastic flat
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Fig. 8. Lithofacies diversity of subtidal mixed carbonate-siliciclastic flat facies association (FA6). (A to E) Mud-
dominated lenticular bedding to sand-dominated flaser bedding (Mmud & Mosc), note the abundant Skolithos bur-
rows in A. (F) Skolithos on Mmud drape plan view. (G) Sandy Chondrites burrow infills on Mmud drape plan
view. (H, I) Thin section detail of micritised oolitic grainstones facies (Mmic). The suggested vertical facies distri-

bution represents the idealised sequence of a shallowing upward mixed subtidal flat.
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FA 7 - Restricted lagoon

Lithofacies
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Fig. 9. Lithofacies diversity of restricted lagoon association (FA7). (A, C) Thick lagoonal marl deposits conform-
ably capped by FA3. (B) Thin-section view of fenestral fabric in peloidal packstone facies Mfen. (D) Poorly sorted
heterogeneous bioclastic storm deposit (Msto). Note the presence of rounded mud balls. The suggested vertical
facies distribution represents a possible succession of restricted lagoonal lithofacies.

strata dominated by indicators of high sediment characterised by fine-grained, well-sorted ripple-
load deposited under bidirectional currents laminated  sandstone  (Mhb)  sporadically
(lithofacies Mhb and Mstl; Table 2). It is displaying herringbone cross-stratification sets
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FA 8 - Sandy subtidal channel-fill
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Fig. 10. Lithofacies diversity of sandy subtidal channel-fill association (FA8). (A) Herringbone ripple cross-
lamination sets (Mhb). (B) Upper regime planar lamination grading into climbing ripple cross-lamination sets
(Mhb). The suggested vertical facies distribution represents the variability of sedimentary structures and lithofa-

cies for a sandy subtidal channel-fill.

(Fig. 10A) and upper flow regime parallel lami-
nation. Oscillatory ripple cross-lamination can
be observed aggrading into climbing current rip-
ple cross-lamination sets (Fig. 10B). Structure-
less marine sandstone (Mstl) with irregular
bedding surfaces can be deposited adjacently to

ripple-laminated sandstone. Channel fills of the
association are typically characterised by fairly
planar bedded units, although few examples of
decametre-wide erosive lenses that pinch out
rapidly have been reported by the present
authors in sections not discussed in this study.
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Interpretation. The facies of sandy subtidal
channel-fill associations record together the
migration of sandy bedforms under alternating
confined subtidal currents with varying flow
directions and velocities (Visser, 1980; Allen &
Homewood, 1984). Upper flow regime planar
laminations combined with climbing ripple
cross-lamination sets (Mhb) suggest sudden
increases in sediment load. These features are
typically associated with tidal channel fills (e.g.
Lanier & Tessier, 1998). Together, the relatively
low abundance of sandy subtidal channel-fill
associations and their lack of clear erosive sur-
faces in two-dimensional views are evidence
supporting a microtidal regime. This contrasts
with other tidal channel fills previously docu-
mented in younger meso-tidal strata of the San
Rafael Group (Zuchuat et al., 2018).

Marine facies associations

Oolitic tidal dune association (FA9)
Description. The oolitic tidal dune association
(Fig. 11) marks deposition in the open-marine
facies belt where lithofacies linked to variable
processes are combined (Mxs, Mbw, Mhb;
Table 2). The association is dominantly com-
posed of laterally extensive, kilometre-scale,
superimposed sets of cross-stratified oolitic and
bioclastic grainstone (Mxs; Fig. 11A and B).
Dune toesets are typically associated with mud
drapes and can sporadically display reactivation
surfaces. The diverse bioclastic composition of
Mxs facies is dominated by coated gastropods,
bivalves, bryozoan and crinoidal debris (Cuffey
& Ehleiter, 1984; Taylor & Wilson, 1999; Tang
et al., 2000) coupled with occasional millimetre-
scale intraclasts (Fig. 11C to E). Mxs facies are
occasionally associated with herringbone ripple
cross-laminated sandstone (Mhb) and low-
energy laminated bioclastic wackestone facies
(Mbw).

Interpretation. The association records the
migration of compound tidal dunes or sand
waves (sensu Gonzalez & Eberli, 1997) on an

oolitic-rich sand shoal (Rankey & Reeder, 2012).
The superimposition of oolitic and bioclastic
cross-stratified grainstone sets suggests that sedi-
ment fluxes are sufficiently high to allow succes-
sive bedforms to climb over bigger-scale
compound dunes and thus to generate complex
sedimentary architectures with surfaces of mul-
tiple orders (Olariu et al., 2012). Despite record-
ing one overall unidirectional flow direction
dominantly (Fig. 11A), feathering patterns
between mud drapes and dune toesets (Fig. 11B)
are interpreted as slack tide settlement of fine-
grained material during current reversal between
ebb and flood flows. Direct tidal influence was
occasionally recorded by herringbone ripple
cross-laminated sandstone (Mhb) facies.
Although resedimented, the high bioclastic con-
tent of the association suggests a higher biologi-
cal activity in this stronger energy setting
compared to the tidally dominated environ-
ments described previously (FA8 and FA9).
Micritic coating of skeletal grains is here associ-
ated with a microbial activity (i.e. Védrine
et al., 2007). The sporadic transition from oolitic
and bioclastic cross-stratified grainstone (Mxs)
to bioclastic wackestone (Mbw) is interpreted as
the expression of deepening upward succes-
sions. This association marks the transition from
the subtidal to the open-marine facies belt
where deposits are controlled by a combination
of tidal and wave processes.

Wave-dominated shoreface to foreshore
association (FA10)

Description. The wave-dominated shoreface to
foreshore association (Fig. 12) comprises lithofa-
cies associated with sediment deposited by
high-energy, subaqueous processes (Mlxs, Mhcs
and Mstl; Table 2). It is characterised by
laterally continuous decametre-scale units of
fine-grained, well-sorted sand. Convex-up hum-
mocky and concave-up swaley  cross-
stratification sets (Mhcs; Fig. 12C and D) are
deposited where flow superimposition is gener-
ating complex oscillatory bed shear stress. Low-
angle cross-stratification sets (Mlxs; Fig. 12A

Fig. 11. Lithofacies diversity of oolitic tidal bar association (FA9). (A) and (B) Sedimentary architecture of cross-
stratified oolitic tidal dune sets (Mxs). Note the superimposition surfaces and the mud drapes on dune toesets. (C)
Detailed view of Mxs bioclasts. (D, E) Thin section views of Mxs facies displaying various ratios of oolitic, bioclas-
tic and siliciclastic content. The suggested vertical facies distribution represents the idealised deepening upward

sequence of an oolitic tidal bar.
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FA 9 - Oolitic tidal dune
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FA 10 - Wave-dominated shoreface to foreshore
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Fig. 12. Lithofacies diversity of wave-dominated shoreface to foreshore association (FA10). (A, B) Low-angle
cross-stratification sets (Mlxs) associated with beach swash-zone deposits. (C) Swaley cross-stratification set
(Mhcs). (D) Hummocky cross-stratification set (Mhcs). The suggested vertical facies distribution represents the
idealised shallowing-upward sequence of a wave-dominated sandy foreshore.

and B), coupled with occasional upper regime
parallel laminations and oscillatory ripple
cross-laminations, are associated with localised
high-energy sediment reworking and
short-distance transport. Both hummocky cross-
stratification (Mhcs) and low-angle cross-
stratified sets (Mlxs) can be observed grading
vertically into one another and can be coupled
with marine facies Mstl.

Interpretation. These facies record together the
progradation of shoreface to foreshore barrier-
island successions where wave action was the
dominant mechanism (McCubbin, 1982; Dalrym-
ple & Rivers, 2023). Sediment surfaces at depths
below the fair-weather base were affected by
current superimposition and by sediment mobi-
lisation from regular wave action during storm
events that produced hummock and swale bed-
forms (Mhcs; Duke, 1985; Cheel & Leckie, 1993).
Low-angle cross-stratification sets (Mlxs) are
associated with much shallower water depths
and are interpreted as migration of beach swash
zones and associated upper regime parallel lami-
nations are linked to low-tide run-offs.

Offshore transition association (FA11)
Description. The offshore transition association
(Fig. 13) marks the open-marine end-member
setting of the studied area and is composed of
lithofacies Mmud, Mmar, Mbw and Mhg
(Table 2). Carbonate facies are dominated by lat-
erally continuous, kilometre-scale, poorly sorted
bioclastic grainstone beds with skeletal grains
derived from FA9 (Mhg; Fig. 13B). Regionally
extensive, highly oxidised hardground surfaces
are sporadically present with layers of oriented
and disarticulated bivalve shells and brachio-
pods. Such surfaces are often associated with in
situ colonies of encrusting Liostrea strigilecula
growing as ostreoliths over sedimented bioclasts
(Wilson & Palmer, 1994; Wilson et al., 1998).
Carbonate mudstone (Mmud) and bioclastic
wackestone (Mbw) containing skeletal grains
include disarticulated bivalve shells (Plicatula
and Ostreida) and brachiopods that are sporadi-
cally associated with marly facies (Mmar).

Interpretation. These facies record together the
deposition of tempestite beds (Mhg) below the
fair-weather wave base in the offshore transition
zone (Myrow & Southard, 1996; Rodrigues
et al., 2024). In this scenario, intermittent basin-
ward fluxes of oolitic and bioclastic material of
the oolitic tidal dune association (FA9) were
triggered by storm events and are recorded as
strata of poorly sorted resedimented material
interbedded with offshore marls (Mmar) and
lime mudstones (Mbw). Correlative hardground
surfaces are associated with long depositional
hiatuses between storm events. Carbonate-rich
muddy facies (Mmud and Mbw) are linked to
fair-weather deposition along the ramp and may
vary in proportions due to localised changes in
hydrodynamic processes (Colombié et al., 2025).

STRATIGRAPHIC FRAMEWORK AND
GENERALISED MODEL

A reconstruction of the regional stratigraphic
framework based on 11 sedimentary logs corre-
lated along a palaeoshoreline-parallel transect
(Fig. 2) highlights spatial and temporal varia-
tions in the distribution of facies associations
(Fig. 14). Vertical evolutions of facies propor-
tions are used to define regressive and transgres-
sive system tracts. Facies dislocations are
interpreted as maximum regressive surfaces
(MR) and Maximum Flooding Surfaces (MF)
which bound transgressive systems tracts and
regressive systems tracts (Embry & Johannes-
sen, 1993). Analysis of this framework demon-
strates  that the shallow-marine system
represented by the Carmel Formation preserves
the sedimentary record of a mixed arid tidal flat
system (Fig. 15) undergoing two T-R sequences
in which regressive systems tracts are domi-
nated by aeolian to supratidal deposits and
transgressive systems tracts are dominated by
intertidal to open-marine deposits. Both spatial
and vertical facies distributions within time-
equivalent packages demonstrate complex strati-
graphic arrangements with numerous transitions
between facies associations reflecting a
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FA 11 - Offshore transition
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Fig. 13. Lithofacies diversity of offshore transition facies association (FA11). (A) Sedimentary architecture of
alternating marly facies Mmar, distal tempestite shelly beds Mhg and mudstone facies Mmud. (B) Detailed
photographs of oxidised hardground surfaces Mhg displaying various bivalves and brachiopod shells. The sug-
gested vertical facies distribution represents the idealised deepening upward sequence within distal basin

settings.

combination of depositional processes and sedi-
ment types co-occurring within facies belts.

Spatial complexity

As similarly described in the model of Badenas
et al. (2018) for mixed carbonate-clastic tidal

flats, the tidal succession of the Carmel Forma-
tion is characterised by numerous lateral transi-
tions of facies associations within system tracts,
thus suggesting a combination of processes and
sediment sources across its palaeo-shoreline
(Fig. 14). Lateral extrapolation of facies associa-
tions within regressive and transgressive
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Regional stratigraphic framework of the Middle Jurassic Carmel F
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Fig. 14. Regional stratigraphic framework of the Middle Jurassic Carmel Formation. This correlation panel is
based on a palaeoshoreline-parallel transect (Fig. 2) depicting the spatio-temporal evolution of facies association
distributions within the system tracts of two T-R sequences. Depositional environment proportions of each section
are provided. Main correlative surfaces are annotated on outcrop panels for both Sections 1 and 12.

systems tracts of T-R sequences regularly dis-
plays discontinuous units. Lateral stratigraphic
complexities resulting from this variability are
linked to plan-view autocyclic mechanisms and
may challenge correlations between sections at
the scale of facies associations. Nevertheless,
four depositional elements — that combine key
co-occurring facies associations and are charac-
terised by their variable proportions — may be
defined for specific parts of the system: (i)
supratidal to continental transition; (ii) sub- to
intertidal transition; (iii) protected subtidal and
(iv) wave-dominated subtidal (Fig. 15).
Regressive systems tracts are characterised by
a combination of facies associations suggesting
transitional settings from supratidal to aeolian
facies belts which together define a supratidal to
continental transition depositional element
(Fig. 15B). In this part of the system, migrating

aeolian dunes (FA1) may be affected by tidal
reworking (FA2) and may laterally pinch out
into evaporitic sabkha deposits (FA3) and ulti-
mately into microbial mats (FA4). Microbialite
associations are deposited within very restricted
depositional zones where specific hydrodynamic
and environmental conditions are favourable for
their development. The occurrence of this facies
association marks the maximum landward
extent of the sub- to intertidal depositional ele-
ment (Fig. 15A). Localised increases in aeolian
facies associations within regressive system
tracts (Sections 6 to 9; Fig. 14) are interpreted as
dune field encroachment events onto the coastal
plains.

Transgressive systems tracts are expressed by
different depositional elements based on the
position relative to the basin depocentre. The
sub- to intertidal transition depositional element
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Fig. 15. Integrated dynamic facies model for a mixed siliciclastic-carbonate tidal flat in transgressive systems with
detailed depositional element models for (A) sub- to intertidal transitions, (B) supratidal to continental transitions,
(C) protected subtidal and (D) wave-dominated subtidal sub-environments.

(Fig. 15A) is defined by the co-occurrence of
microbialite associations (FA4), heterolithic sili-
ciclastic intertidal flat (FA5) and subtidal mixed
siliciclastic-carbonate flat (FA6). Lateral transi-
tions between these associations are gradual and
follow an increase in average water depth
between high and low tides. The protected sub-
tidal depositional element (Fig. 15C) is defined
by the presence of sporadic sandy channel fills
(FA8) within restricted lagoon deposits (FA7).
Finally, the wave-dominated subtidal deposi-
tional element (Fig. 15D) is defined by coeval
depositions of open-marine facies associations
(FA9-FA11) that may grade into restricted
lagoon associations (FA7) due to coastline
migration or shoreface sediment routing. Overall
higher proportions of wave-dominated subtidal
depositional elements within transgressive sys-
tems tracts (Sections 10 to 12; Fig. 14) reflect the
influence of basinward increase in accommoda-
tion. Parasequence-like successions may be
observed in such a distal-most depositional ele-
ment. Eight flooding surfaces (FS1-FS8) that are
partly equivalent to the sequence boundaries of
Blakey et al. (1996) are defined, where carbonate
ramp deposition is dominant (Section 12;
Fig. 14). However, landward correlation of these
parasequences is challenged by their amalgam-
ation in proximal parts of the system. In conti-
nental parts of the system (Sections 1 to 7;
Fig. 14), transgressive system tracts are either
condensed into aeolian deflationary super sur-
faces (Havholm & Kocurek, 1994) or expressed
as protected subtidal and sub- to intertidal tran-
sition depositional elements.

Together, these depositional elements can be
placed in the broader context of a mixed
siliciclastic-carbonate tidal flat undergoing
periods of aeolian dune field encroachment
(RST) and periods of deflation triggered by tidal
embayments (TST) (Fig. 15). Analysis of the
presented stratigraphic framework suggests that
correlation of mixed paralic deposits is challeng-
ing at the association scale as high lateral facies
variabilities will tend to generate unpredictable
complexities of architecture. It is, however, pos-
sible to define generic models at the

depositional element scale within the T-R
sequence framework and, ultimately, to correlate
transgressive and regressive system tracts at a
basin scale.

Temporal evolution

Analysis of the vertical stratal evolution of the
Carmel  Formation reveals two  major
transgressive-regressive (T-R) sequences
bounded by maximum regressive surfaces (MR1
& MR2; Fig. 14) which, together with associated
maximum flooding surfaces (MF1 & MF2),
define the current lithostratigraphic subdivision
(Fig. 1). Both T-R sequences record gradual tidal
flat fluctuations across the coastal plains with
transgressive system tracts characterised by
marine- to intertidal-dominated successions and
regressive system tracts associated with suprati-
dal evaporites and aeolian deposits. Vertical
shallowing-up trends in facies associations may
be observed locally within system tracts and are
interpreted as the expression of internal process
variability within tidal belts.

Following a significant hiatus recorded during
the termination and erosion of the Navajo Sand-
stone erg (J-1 unconformity), early stages in the
erg development of the Temple Cap Formation
were recorded in variable thicknesses as palaeo-
low infills and are equivalent to the lower aeo-
lian sequences of the Page Sandstone (Dickinson
et al., 2010; Doelling et al., 2013). The preserva-
tion of this primary depositional stage reflects
the return of positive accommodation and sedi-
ment availability on the Colorado Plateau after a
significant period of uplift during the late
Glen Canyon Group times (Marzolf, 1991;
Bromley, 1992).

Where preserved, the Temple Cap Formation
is capped by a deflationary supersurface (MR1;
Fig. 14) marking the initiation of the first major
transgression of the Carmel Formation (T-R
sequence 1), although older supratidal facies
that were deposited prior to MR1 can be
observed in the Saint George area (Manganese
Wash Member). Open-marine carbonate ramp
(Co-op Creek Limestone) to mixed tidal flat
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associations (Judd Hollow Member) are domi-
nant in the TST of T-R sequence 1, but thin east-
ward (Fig. 14). Correlative hardgrounds in the
offshore transition association (FA11; Fig. 13) at
the base of this TST in the distal settings can be
traced out across several sections in the San
Rafael Swell region (Sections 1 to 3; Fig. 14).
The following RST in the T-R sequence 1 is
marked by the encroachment of the Page Sand-
stone erg onto the coastal plains of the Sun-
dance Sea. Vertical facies dislocations from
marine and tidal facies associations into the
younger aeolian strata are used to define a maxi-
mum flooding surface (MF1; Fig. 14). Tidally
reworked aeolian associations FA2 are dominant
in Sections 6 to 9 (Thousand Pockets Member)
and grade both westward into terminal distribu-
tary fluvial system successions and eastward
into supratidal evaporitic successions (Crystal
Creek Member). An increase in wave action is
observed in the preserved TST of T-R sequence
2, which caps the underlying aeolian strata
(Paria River Member). Vertical facies transitions
to the following and final RST are gradational
and demonstrate an overall retreat of the Sun-
dance Sea. Studied sections covering the T-R
sequence 2 (Sections 1 to 3; Fig. 14) demonstrate
a regional decrease in continental sediment
availability as regressive-stage aeolian deposits
are replaced by terminal fluvial fan facies not
discussed in this study (Jones & Blakey, 1997).

DISCUSSION: STRATAL DISORDER AND
FACIES MOSAIC

Markov chain analysis

The presented facies analysis of peritidal succes-
sions in the sediments of the Carmel Formation
demonstrates that correlation between the stud-
ied sections at the facies association scale is
very challenging. Successions within system
tracts often do not match those in neighbouring
logs, which suggests that, at this scale, observ-
able vertical trends in facies associations may be
artefacts only, controlled principally by

autogenic mechanisms. To evaluate this, numer-
ical techniques based upon Markov analysis
(Burgess, 2016) have been applied to three tid-
ally dominated sections of the Carmel Formation
(sections 1 to 3, Fig. 16) in order to quantify
their degree of order at both lithofacies and
facies association scales. Transition probability
matrices demonstrate that several transitions
between facies and facies associations are more
likely to occur in these three sections. This
result may be biased by the large number of
potential transitions that could theoretically
happen but are not recorded in these specific
cases. Lithofacies and facies association Markov
numbers of each section are given in relation to
the density profiles of their corresponding ran-
domly shuffled successions. Results demonstrate
that each observed succession may be classified
as statistically disordered at both facies and
association scales. With the exception of mar-
ginal results in Section 2 at the lithofacies scale,
all calculated Markov numbers fall below the
uppermost 5% threshold defining statistical
order. This reinforces the interpretation that (i)
observed vertical trends are only apparent prod-
ucts and that (ii) allocyclic parasequence signals
in tidally dominated successions may be over-
printed by autogenic dynamics (c.f. Zuchuat
et al., 2019).

Recent advances (Manifold et al., 2020; Gey-
man et al., 2021), building upon previous statis-
tical methodologies (Wilkinson et al., 1996,
1997), demonstrate that the stratigraphic record
of shallow-marine carbonate can be more chal-
lenging to analyse than other systems. Facies
mosaic distribution is commonly used to
describe modern carbonate systems and is
thought to have a high influence on the order of
vertical facies successions (e.g. Rankey, 2016).
The co-occurrence of different contemporaneous
facies associations deposited within system
tracts of the Carmel Formation reflects the com-
plex facies mosaic distribution of supra- to sub-
tidal depositional elements. By illustrating
process interactions and the plan view distribu-
tion of their sedimentary products, the analysis
of facies distribution in analogous modern

Fig. 16. Markov chain analysis applied for the tidal succession of Sections 1 to 3. Transverse Probability Matrix
and Kernel density distributions are calculated for both lithofacies and facies association datasets. Results show
Markov numbers below the range of statistically relevant ordered successions (upper 5%) for both lithofacies and
facies association datasets. Method adapted from Burgess (2016).
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Fig. 17. Sedimentary facies distribution map of Adair Bay, Mexico. Interpreted facies associations are adapted
from the discussed Carmel Formation facies scheme and have been manually drawn over satellite views from the

ESRI World Imagery data bank.

systems can constrain the autocyclic controls
over the spatio-temporal complexity of system
tracts observed in the Carmel Formation.

Facies mosaic in modern analogous systems

The Adair Bay in Mexico (Fig. 17) is a complex
tidal embayment bordering a coastal desert
(Ives, 1949; Beveridge et al., 2006) and presents
similarities with palaeoenvironmental interpre-
tations of the Carmel Formation. The application
of the presented facies scheme to high-
resolution satellite images reveals an overall seg-
regation between the main facies belts of the
Adair Bay over kilometres: (i) aeolian dune field
(FA1 and FAZ2); (ii) evaporitic sabkha (FA3); (iii)
mangroves and microbialites (FA4); (iv) inter-
tidal deposits (FA5 and FA6); (v) subtidal
deposits (FA7 and FA8) and (vi) wave-
dominated foreshore (FA10). However, spatial
transitions between facies associations are more
erratic at a smaller, sub-kilometre scale.

Foreshore deposits are occasionally truncated by
smaller tidal inlets and show preferential orien-
tations in response to wave action (Fig. 17A).
The facies belt delimitation between sabkha
ponds and microbialites deposits is hard to eval-
uate as both facies associations may be depos-
ited concomitantly within the same relative
bathymetric zone (Fig. 17B). Furthermore, the
distribution of intertidal deposits seems to be
governed by channel avulsion due to the degree
of channel sinuosity which, in itself, adds spa-
tial complexity to this transitional facies belt.
Finally, dune field-sabkha interactions reveal a
discontinuous and scattered distribution of both
facies associations (Fig. 17C). Facies belts of the
Adair Bay are reasonably defined at a regional
scale but sediments are erratically distributed in
a mosaic of facies associations at the local scale.
As supported by the presented Markov chain
analysis, a non-cyclic and unpredictable strati-
graphic record will arise from such a random-
ised plan view facies distribution. This finding
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Fig. 18. Informative graphics illustrating the increasing stratigraphic disorder across peritidal transitional zones
between aeolian and marine environments and direct implications for sedimentary architecture predictability.

contrasts with recent studies demonstrating
clear evidence of allocyclic signals in ancient
peritidal deposits (e.g. Spalluto et al, 2024;
Read et al., 2025). As demonstrated by the diffi-
culties in correlating marine parasequences
landward (Section 12; Fig. 14), autogenic phe-
nomena specific to restricted coastal settings
and influenced by coastal palaesomorphology
have the potential to inhibit the expression of
larger-scale controlling factors and the preserva-
tion of their signature in the rock record (Alshar-
han & Kendall, 2003; Zhong et al., 2023;
Zuchuat et al., 2023). In such
scenarios, stratigraphic arrangements and three-
dimensional distributions of sedimentary archi-
tectures may be wunpredictable parameters
(Fig. 18).

Controlling factors on sedimentary evolution

Facies dislocations used to correlate sequence-
stratigraphic surfaces between system tracts of
the Carmel Formation are interpreted as the
result of larger-scale allocyclic forcing. Discus-
sion of the overarching mechanism(s) control-
ling the relative sea-level fluctuations observed
in this Bajocian system is still open. Recent
isotopic analysis suggests a geochemical decou-
pling between the restricted Sundance Sea and
the Jurassic open water masses (Danise
et al., 2020), negating the idea of a eustatic con-
trol. Instead, the vertical facies evolution of the
Carmel Formation could be explained by
regional tectonic bulging events related to Juras-
sic cordilleran arc tectonism (Bjerrum & Dor-
sey, 1995). In addition to directly affecting
accommodation and base levels within the

Utah-Idaho Trough, regional bulging may have
had an indirect influence on aeolian sediment
availability and upon the dune field encroach-
ment stages. Conversely, cyclicity has been dem-
onstrated in the coaeval aeolian succession of
the Page Sandstone, Arizona, suggesting a strong
water table control over the preservation of these
coastal aeolian strata (Kocurek et al.,, 2001).
Locally, observed thicknesses vary drastically
over the studied transect (Fig. 14) and are
thought to be influenced by spatial changes in
palaeotopography and localised accommodation.
Differential subsidence is now broadly recog-
nised as a potential controlling factor on sedi-
ment distributions in tidally influenced systems
(e.g., Smyrak-Sikora et al., 2020). The combined
effects of such controls may have an influence
on the nature of the preserved strata that is not
considered here.

Comprehensive models accounting for spatial
arrangement and morphological complexities of
arid peritidal environments are numerous and
provide tools to elucidate the controls on facies
distribution for different relative sea levels. The
development of tidal paralic systems along arid
coastlines is often associated with complex
interactions between processes that lead to the
coeval deposition of siliciclastic, carbonate and
evaporitic sediments in restricted environments
(Lokier et al., 2013; Billeaud et al., 2014; Rivers
et al., 2020). In such scenarios, the spatial distri-
bution of sediment is grossly governed by energy
levels and relative abundances of tide and wave
processes, and mixed tidal environments are
usually described by well-defined facies belts:
(1) supratidal sabkha successions irregularly
supplied with terrigenous material; (2) mixed
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intertidal zones occasionally disrupted by
storms and (3) subtidal carbonate ramp with
occasional lateral facies transitions to wave-
dominated siliciclastic shoreface units (e.g.
Alsharhan & Kendall, 2003). Other models for
ancient shallow carbonate ramp systems incor-
porate the idea of facies mosaic distribution to
justify high lateral facies heterogeneities
(Badenas et al., 2010, 2018; Sequero et al,
2018). Despite this, no generic model unifies
plan-view complexities, recorded sedimentary
architectures and inherent stratigraphic hetero-
geneities arising from facies mosaic distribu-
tions. The model proposed in this study is the
first qualitative integrated dynamic facies model
for mixed carbonate-siliciclastic arid tidal flats.
It encapsulates stochastic facies transitions
within depositional elements and their strati-
graphic arrangement within system tracts.

CONCLUSION

Tidal flat depositional systems developing under
arid conditions are the scene of intricate interac-
tions between competing depositional processes
and involve an intricate mixing of multiple sedi-
ment fractions. This analysis captures the
spatio-temporal facies variability of a mixed
transitional paralic system in regard to pre-
served lithologies (evaporites, terrigenous clas-
tics and carbonates) and to sedimentary
processes (aeolian, tides and wave action) occur-
ring concurrently within different facies belts.

Complex lateral facies transitions are characteris-
tic of such systems and may challenge correlations
over long distances. Stratigraphic successions will
tend to display disordered stratal arrangements
within system tracts at the facies and association
scale. Stochastic organisation of facies mosaics is
presumed to be the driving mechanism of architec-
tural disorder in tidal stratigraphic distribution,
and we suggest that the record of dynamic facies
mosaic distribution over time may overprint allo-
cyclic signals at such scale.

Arid paralic successions are often treated as a
whole for assessing stratigraphic sealing at reser-
voir margins. The work presented here suggests
that the resolution at which these margins are
evaluated should be refined in order to capture
the facies diversity and stratigraphic complexity
within system tract packages at depositional-
element scale, and it offers a generic model at
this scale. Such systems may be subdivided into
separate depositional elements defined by

differences in facies proportions linked to
changes in depositional processes and energy
levels across their margins, within a
transgressive-regressive framework. Stratal disor-
der and unpredictable vertical facies successions
may challenge sequence-stratigraphic analysis at
the association scale. However, the proposed
model suggests that recognition of spatio-
temporal patterns and correlations at the scale
of depositional elements is possible within sys-
tem tracts.

Incorporating this singular characteristic may
help constrain the predictions of reservoir het-
erogeneities in analogous subsurface succes-
sions. Nevertheless, subsurface fluid migration
pathways may be deterministically unpredict-
able below depositional element scale, and this
critical uncertainty should be accounted for
stochastically in the appraisal carbon storage
projects.
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