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Non-Technical Summary 

This review highlights ten recent advances in climate change research with high policy 

relevance, spanning diverse topics: (1) the global temperature jump of 2023-2024; (2) sea 

surface warming and marine heatwaves; (3) land carbon sinks; (4) interactions between climate 

change and biodiversity loss; (5) accelerated groundwater decline; (6) global dengue incidence; 

(7) income and labour productivity loss; (8) strategic considerations for the scaling carbon 

dioxide removal (CDR); (9) integrity of carbon credit markets; and (10) policy mixes for climate 

change mitigation.  

Technical Summary 

Interdisciplinary understanding is vital for delivering sound climate policy advice. However, 

navigating the ever-growing and increasingly diverse scholarly literature on climate change is 

challenging for any individual researcher. This annual synthesis highlights and explains recent 

advances across a variety of fields of climate change research. This year, the ten insights focus 

on: (1) the record-warmth of 2023/2024 and the elevated Earth energy imbalance; (2) 

acceleration of ocean warming and intensifying marine heatwaves; (3) northern land carbon 

sinks under strain; (4) reinforcing feedback between biodiversity loss and climate change; (5) 

accelerated depletion of groundwater; (6) global dengue incidence; (7) global income losses 

and labour productivity declines; (8) strategic scaling of carbon dioxide removal (CDR); (9) 

integrity challenges in carbon credit markets and emerging responses; and (10) effective policy 

mixes for emissions reductions. The insights have been written to be accessible to researchers 

from different fields, serving as entry-points to specific topics, as well as providing an overview 

of the evolving landscape of climate change research. In the final section, the insights are used 

to develop overarching policy-relevant messages. This paper provides the basis for a science-

policy report that was shared with all Party delegations ahead of COP30 in Belém, Brazil. 

Social Media Summary 

Highlights of climate change research in 2024-2025: 10insightsclimate.science  

  

https://doi.org/10.1017/sus.2025.10043 Published online by Cambridge University Press

https://doi.org/10.1017/sus.2025.10043


Accepted Manuscript ID GSUS-2025-0062 (no figures) 

 

Introduction 
Interdisciplinary understanding is an important foundation for producing robust scientific advice 

for policymakers and government officials on complex issues, such as climate change (Bammer 

et al., 2020; Gluckman et al., 2021). However, navigating the immense and rapidly expanding 

body of climate change literature, and identifying the most important developments is 

increasingly difficult, due to the sheer volume of yearly scholarly publications, and the diversity 

of topics and disciplinary perspectives (Callaghan et al., 2020; Minx et al., 2017). In this paper 

we identify key recent advances across diverse research areas on climate change, spanning 

natural and social sciences. We refer to these as “new insights”, selected on the grounds of 

their scientific evidence-base, novelty, and policy relevance, and anchored on the most recent 

peer-reviewed literature (Bustamante et al., 2023; Schaeffer et al., 2025). This year, the 

synthesis is built on the collective effort of 75 researchers, based on input from more than 150 

experts across the world. This paper has a dual purpose. First, it offers entry-points to enhance 

cross- and inter-disciplinary understanding among climate change researchers with very 

different domains of expertise. Second, it grounds the scientific messages highlighted in an 

annual science-policy report titled ‘10 New Insights in Climate Science’, which is shared with all 

the Party delegations to the United Nations Framework Convention on Climate Change 

(UNFCCC).  

Before presenting this year’s ten insights, the Introduction offers a concise account of the state 

of the climate system and greenhouse gas (GHG) emissions in 2024, key outcomes of the 29th 

Conference of the Parties (COP29), and expectations leading into the COP30. We expand 

briefly on the rationale behind the 10 New Insights in Climate Science initiative, and explain how 

it is intended to contribute to more scientifically informed discussions at COP30 and beyond.  

State of the climate system and GHG emissions 

Key climate indicators continue to exhibit trends inconsistent with stabilising the climate system. 

In the first months of 2025, the World Meteorological Organization (WMO) confirmed that 2024 

was the warmest year on record, with an average temperature of 1.55°C (± 0.13°C) above pre-

industrial levels (C3S, 2025a; WMO, 2025). While this does not signify a breach of the 1.5°C 

long-term warming limit of the Paris Agreement, it is a stark sign of how close we are to that. 

The year 2024 also brought record-breaking ocean-heat content and sea level rise, exceptional 

glacier mass loss, and Antarctic sea ice reached its second-lowest extent on record (C3S, 

2025a; WMO, 2025). The rise of global temperature has intensified extreme weather events, 

including heatwaves, droughts, wildfires, storms, and floods, potentially having caused tens or 

even hundreds of thousands of human deaths and displaced millions (Otto et al., 2024). And 

yet, despite the impacts already felt and the impending risks, anthropogenic GHG emissions 

further increased throughout 2023 and 2024 (P. M. Forster et al., 2025; Friedlingstein et al., 

2025). As a direct result of this, atmospheric concentrations of GHGs continue their steady rise 

(C3S, 2025a; NOAA-GML, 2025).  

At present, global mitigation action remains insufficient to achieve climate goals. Full 

implementation of the current Nationally Determined Contributions (NDCs) would only reduce 
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global emissions by 5.9% [3.2–8.6] by 2030, relative to 2019 levels (UNFCCC, 2024), and lead 

to warming of 2.6°C [1.9–3.6] by the end of the century (UNEP, 2024). In contrast, keeping the 

planet below 2°C warming (relative to the pre-industrial average) following a least-cost pathway 

requires a 28% reduction in global emissions (or 42% for 1.5°C) by 2030 (UNEP, 2024). These 

figures underscore the importance of rapidly “closing the gaps” on ambition and implementation 

in the new NDCs, submitted as part of the third cycle of commitments in order to achieve the 

2035 targets.  

Unfortunately, the third cycle of NDC submissions is progressing slowly. By the February 2025 

deadline originally set by the UNFCCC, only 16 of 195 Parties had submitted the required 

updated NDCs. Among these 16, only a few major economies, such as the United Kingdom, 

Brazil, and the United Arab Emirates, submitted updates. The United States submitted its NDC 

in December 2024, but its withdrawal from the Paris Agreement will take legal effect at the end 

of January 2026. The UNFCCC extended the deadline to September 2025, which is the cutoff 

date for inclusion in the UNFCCC’s annual NDC synthesis report, the official assessment of 

global progress toward the Paris Agreement goals to be presented at COP30 in Belém, Brazil 

(UNDP, 2025). As of September 19, only 37 Parties had submitted the updated NDCs, while 

major emitters, including China, India, the European Union, and Russia had not (Climate Watch, 

2025; UNFCCC, 2025a). This lack of momentum is one of the biggest challenges at the moment 

for climate diplomacy . 

From Baku to Belém 

Key outcomes from COP29 in Baku, Azerbaijan, include the adoption of the New Collective 

Quantified Goal (NCQG) on climate finance, and an agreement on the framework for 

international carbon markets (Article 6 of the Paris Agreement) (Goldberg, 2025; Kessler & 

Vallejo, 2024; Waskow et al., 2024) (see Note S7 for a brief explanation of terms related to the 

UNFCCC process). However, the climate finance goal of $300 billion annually by 2035 is widely 

regarded as insufficient given the identified needs (Bhattacharya et al., 2024). The Baku-Belém 

Roadmap to realise the $1.3 trillion aspirational goal is the main process to address the 

shortcomings, but it faces some highly contentious and unfinished items for operationalisation, 

including the sources (public-provided vs. private-mobilised funding), kind (grant- vs. loan-

based), allocation (Adaptation and Loss & Damage), and accountability (standards for tracking 

and reporting) (Alayza & Larsen, 2025). Progress on the Mitigation agenda at COP29 was 

minimal. At COP30, the expectation is to resolve issues regarding the “ambition cycle” structure, 

the role of the Mitigation Work Programme (MWP) going forward, and the implementation of the 

Global Stocktake (GST) outcome on transitioning away from fossil fuels. Aspects of the Paris 

Agreement rulebook still pending include carbon markets (e.g., technical guidance to prevent 

double-counting and the verification of removal projects), adaptation (e.g., inclusion of indicators 

on ‘means of implementation’), and just transition (e.g., global framework). But with almost all 

negotiations for the Paris Agreement finally completed, and scientific evidence showing there is 

no time to be wasted if the goals are to be reached, the focus is now firmly on effective 

implementation. 

https://doi.org/10.1017/sus.2025.10043 Published online by Cambridge University Press

https://paperpile.com/c/if31MR/Oe0S
https://paperpile.com/c/if31MR/IdALr
https://paperpile.com/c/if31MR/IdALr
https://paperpile.com/c/if31MR/U76mA
https://paperpile.com/c/if31MR/wB4KE+50Dg9
https://paperpile.com/c/if31MR/wB4KE+50Dg9
https://paperpile.com/c/if31MR/MymcX+7FofC+Dnowa
https://paperpile.com/c/if31MR/MymcX+7FofC+Dnowa
https://paperpile.com/c/if31MR/z6CY4
https://paperpile.com/c/if31MR/IfCjr
https://doi.org/10.1017/sus.2025.10043


Accepted Manuscript ID GSUS-2025-0062 (no figures) 

 

The ‘10 New Insights in Climate Science’ 

Despite challenges, recent findings suggest that in most countries, people continue to trust 

scientists and support their increased engagement in public discourse and policymaking 

(Cologna et al., 2025). Science has a critical role in informing policymaking and governance, 

including the implementation of climate commitments at international, national, and sub-national 

levels. The Intergovernmental Panel on Climate Change (IPCC) is the cornerstone of the 

science-policy interface on climate change. IPCC Assessment Reports reflect and, to a large 

extent, produce the scientific consensus. However, given their comprehensiveness and 

procedural demands, these assessment reports have a multi-year production cycle. The cut-off 

dates for inclusion of literature in the most recent Assessment Report (AR6) were in 2020 and 

2021; hence, research published after 2021 will only be reflected in the reports of the next IPCC 

cycle (AR7), the first of which is expected to be published in 2028. Therefore, complementary 

synthesis and communication efforts are needed to share the emerging scientific advances 

more rapidly.  

The 10 New Insights in Climate Science initiative responds to this need by curating and 

synthesising key messages across diverse fields of climate change research based on the latest 

peer-reviewed literature, on a yearly basis. It offers a thematically broad selection of scientific 

messages, in a format that is accessible to non-experts. The ultimate purpose is to support the 

timely uptake of new scientific evidence in policy processes and international governance 

spaces.  

A "new insight" refers to a recent advance in climate change research, based on new evidence 

or analysis that significantly updates existing understanding of climate processes, impacts, or 

possible solutions. An insight can also highlight an emerging area of research or a novel 

concept that is gaining attention and is seen as an important future direction for the field. 

 

For a more detailed account of the positioning of this initiative in the broader science-policy 

landscape for climate change, in particular its complementary character to the IPCC reports, 

see Schaeffer et al. (2025).  

Method 

Every cycle of the 10 New Insights in Climate Science incorporates lessons from the previous 

year, resulting in a progressively more robust process for the selection and development of 

insights. The process (SM1) described below builds directly on the one described by 

Bustamante et al. (2023): In January, an open call for expert input was distributed as an online 

questionnaire (SM2), primarily making use of the partners’ institutional networks with global 

reach. The main question that respondents answer is ‘‘What key recent advance in climate 

change research do you think should be highlighted for policymakers?’’ Respondents are also 

asked to provide references to recent peer-reviewed publications (i.e., 2024 or 2025) that 

support their suggested key research advance. 
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The call for expert input was open between January 9 and February 5, 2025 (4.5 weeks) and 

received responses from 154 individuals (SM3), totaling 179 suggestions. The suggestions or 

‘‘entries’’ collected were screened by at least two team members based on predefined 

inclusion/exclusion criteria (SM4). When necessary, project coordinators conducted one 

additional round of screening to come to a final decision. This year, 56 entries met the inclusion 

criteria. After merging the closely related entries, the list was reduced to 44 themes and coded 

using a thematic framework based on all previous ‘10 New Insights’ editions. This list was 

complemented with a literature scan (SM5) of impactful papers in climate change research 

published in the same period (2024 and the first months of 2025), which yielded 27 additional 

themes. The final list of 71 themes (SM6) was then evaluated in a three-stage process by our 

editorial board, consisting of 23 leading international climate change researchers from various 

disciplines. First, the 71 themes were categorised into four broad categories: (i) the Earth 

system, (ii) Impacts, (iii) Actions, and (iv) Barriers. The editorial board members then individually 

prioritized 4–20 themes (1–5 per category) that they considered most relevant overall. Second, 

building on the outcomes of the individual prioritisation of themes, the editorial board members 

gathered virtually for an initial 90-minute workshop to deliberate and collectively prioritise the 

themes, leading to a preliminary set of candidate insights. At a second workshop, the final set of 

insights was approved. For more details on the process, see Bustamante et al. (2023) and 

Schaeffer et al. (2025). 

Results 

The ten new insights featured this year begin with an explanation of the geophysical processes 

and remaining uncertainties behind the record-warm years of 2023/2024 (Insight 1), with an 

additional examination of the acceleration of warming in the oceans and impacts on marine 

heatwaves (Insight 2). We then highlight the latest evidence of strain on land carbon sinks, 

highlighting recent changes on the Northern Hemisphere sinks (Insight 3). Continuing on 

biosphere-climate interactions, we also synthesise new evidence on the direct effect of 

biodiversity loss on climate change (Insight 4). The next three insights focus on three distinct 

types of climate impacts: groundwater depletion (Insight 5), global incidence of dengue (Insight 

6), and labour productivity and income loss (Insight 7). The final three insights focus on distinct 

and complementary approaches and instruments to mitigation, their potential, and limitations. 

Starting with strategic considerations for scaling CDR in the context of overshoot (Insight 8), 

carbon credit markets and associated integrity challenges (Insight 9), and the lessons on 

effective policy mixes for emissions reductions (Insight 10). After this Results section, the 

insights are summarised into clusters of messages, and with links to discussions happening 

ahead of and in preparation for COP30.  

Insight 1. Explaining the record warm years 2023/2024 — 

evidence, uncertainty, and remaining questions  

Since 2023, global surface temperatures have shattered previous records, more likely than not 

surpassing 1.5°C above pre-industrial levels in 2024 and remaining elevated into 2025 (P. M. 
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Forster et al., 2025; WMO, 2025). While the shift from La Niña to El Niño was expected to warm 

the planet, the intensity, global extent, and persistence of the heat were unprecedented (Min, 

2024). 

The unexpected level of global warmth (G. Schmidt, 2024) coincided with an elevated Earth 

Energy Imbalance (EEI) (P. M. Forster et al., 2025; Mauritsen et al., 2025). EEI is the difference 

between energy input from absorbed sunlight (shortwave radiation) and output in the form of 

infrared (longwave) radiation to space, such that an elevated positive EEI results in a greater 

heating rate and so an acceleration of global warming (P. Forster et al., 2021; Minière et al., 

2023). Observed increases in EEI since 2000 and peaking in 2023 have been dominated by 

reducing reflection of sunlight from the planet as a whole (reduced planetary albedo) that was 

associated with diminished coverage of ice and less reflective clouds over the oceans (Allan & 

Merchant, 2025; Goessling et al., 2025; Loeb, Ham, et al., 2024; Tselioudis et al., 2024, 2025). 

The role of feedbacks to warming (involving ice, cloud and water vapour), declining aerosol 

particulate pollution, internal ocean variability and other factors in driving the planetary 

darkening remain debated (Hansen et al., 2025; Hodnebrog et al., 2024; Raghuraman et al., 

2023). Here we assess recent evidence on how unusual the level of warmth in 2023/2024 was 

in the context of climate variability, the role of the elevated EEI in explaining this warmth and 

what factors explain the elevated EEI, which has implications for the rate of climate change over 

the coming decades. 

Accounting for the long-term warming caused by GHG increases, the margin by which the 

annual average ocean warmth April 2023 to March 2024 broke the previous annual record was 

found to occur only once in about 500 years or longer (Terhaar et al., 2025), and the September 

2023 margin just once in about 2000 years (Rantanen & Laaksonen, 2024) when considering 

variability based on observations and simulations. A large jump in global temperatures was 

made more likely by the transition from a prolonged La Niña phase to an El Niño, a situation that 

applied in 2023/2024 but also 1976/1977 (Raghuraman et al., 2024). However, while a clear 

consensus is still missing, the recent temperature surge is only marginally reconcilable with the 

long-term warming trend combined with internal variability, particularly given that the 2023/2024 

El Niño was not as strong as previous ones (Cattiaux et al., 2024; Xie et al., 2025). This 

emphasizes a need to investigate other contributing factors and to scrutinize changes in Earth’s 

energy budget. 

The substantial warming from 2022 to 2023 is physically determined by how much heat was 

absorbed by Earth’s surface layers.The EEI reached 1.9 Wm-2 during mid 2022 to mid 2023, 

more than double the 2006-2020 average (Allan & Merchant, 2025; Kuhlbrodt et al., 2024; von 

Schuckmann et al., 2023) and at the upper level of what is expected from detailed modelling 

(Hodnebrog et al. 2024). Only around 15-20% of this increased EEI contributed to heating of the 

atmosphere and land, and to a lesser extent melting of ice (Allan & Merchant, 2025; Minobe et 

al., 2025). The remainder increased ocean heating (Cheng et al., 2024). The magnitude of sea 

surface warming can only be reconciled with this ocean heating if concentrated in shallower 

upper-most ocean layers (England et al., 2025; Guinaldo et al., 2025; C. Li, Huang, et al., 2024) 

or through redistribution of heat from the subsurface 100-300m ocean layer to the upper 100m 

layer during the transition to El Niño in 2023, which added to the greater heating from above 
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due to a larger EEI (Allan & Merchant, 2025; Min, 2024; Minobe et al., 2025) (see Insight 2). 

Research confirms that EEI increases since 2000 are dominated by greater absorption of 

sunlight, and associated primarily with reduced reflectivity over cloudy regions of the ocean 

(Allan & Merchant, 2025; Goessling et al., 2025; Loeb, Ham, et al., 2024). 

Figure 1 shows factors contributing to extra warming in 2023 and 2024, additional to the 

average annual rise caused mainly by rising greenhouse gases. A moderate additional heating 

from the 11-year solar cycle, which was slightly stronger and earlier than expected (P. M. 

Forster et al., 2025), contributed extra warming (Goessling et al., 2025; Hansen et al., 2025; 

Merchant et al., 2025). The effect of the Hunga Tonga undersea volcanic eruption that peaked 

in early 2022 is now considered small since warming from water vapour injected into the 

normally dry stratosphere was offset by cooling from greater reflection of sunlight by sulfate 

aerosol particles also emitted (Gupta et al., 2025; Jenkins et al., 2023; Schoeberl et al., 2024; 

Stenchikov et al., 2025; Stocker et al., 2024) (Figure 1). Effects from other volcanoes and 

wildfire (Yu et al., 2023), or reduced Sahara dust in June 2023 (Francis et al., 2024) are also 

considered small at the global scale. A larger influence on the elevated EEI and associated 

warming is expected from reductions in sulfate aerosol pollution originating from different 

sources (Figure 1), primarily through the subsequent influence on clouds, which can explain a 

considerable part of the increase in EEI in 2001-2019 (Hodnebrog et al., 2024). 

First, regulations implemented in 2020 reduced sulfur emissions from international shipping by 

~80% and the resulting reduction in sulfate aerosol particles led to a heating effect due to less 

sunlight being reflected, particularly through aerosol effects on clouds (P. M. Forster et al., 

2024; Gettelman et al., 2024; Hansen et al., 2025; Jordan & Henry, 2024; Quaglia & Visioni, 

2024; Skeie et al., 2024; Yoshioka et al., 2024; Yuan et al., 2024; Zhang et al., 2025). There is a 

potentially large regional temperature change induced by the sulfur cap, especially over the mid-

latitude oceans in the Northern Hemisphere (Gettelman et al., 2024). The sulfur cap is mostly 

estimated to have a moderate effect on global surface warming based on a variety of methods 

(Gettelman et al., 2024; Hansen et al., 2025; Jordan & Henry, 2024; Quaglia & Visioni, 2024; 

Watson-Parris et al., 2025; Yoshioka et al., 2024; Yuan et al., 2024) (Figure 1). 

Second, there was a pronounced decline in land-based anthropogenic aerosol emissions in 

recent decades (Insight 2 in Schaeffer et al., 2025). Rapid aerosol emission reductions over 

East Asia since their peak in the early 2000s have significantly contributed to global warming 

during 2010-2023 (Samset et al., 2025), and to record high sea surface temperatures in the 

Northeast Pacific in 2010-2020 that were potentially amplified by cloud feedback responses to 

the warming (H. Wang et al., 2024). While extra absorbed sunlight associated with declining 

East Asian aerosol is physically linked with the long-term warming trend, their contribution to the 

level of global warmth in 2023/2024 is less obvious (Figure 1). More recently, however, reducing 

aerosol emissions where pollution has already been mitigated somewhat such as East Asia, or 

over the still moderately pristine open ocean, is thought to have a larger effect than previously 

thought on making clouds reflect less sunlight (Hansen et al., 2025; H. Jia & Quaas, 2023).  

Several uncertainties remain when it comes to the causes and implications of the record heat 

since 2023. Aerosol-cloud interactions and cloud feedbacks display a large diversity across 
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model simulations (P. Forster et al., 2021; Zelinka et al., 2023), and the inability of coarse-

resolution global models to adequately represent ship tracks adds to the uncertainty in 

estimates of climate impacts of the sulfur cap (Gettelman et al., 2024). A more robust 

quantification of the cloud feedback, including how circulation-induced shrinking of cloud zones 

contributes (Tselioudis et al., 2025), can inform to what extent global warming is accelerating by 

these effects. EEI observations from Clouds and the Earth’s Radiant Energy System (CERES) 

since 2000 are essential for modelling initiatives proposed to disentangle forcings and 

feedbacks and to improve models (G. A. Schmidt et al., 2023) yet are at risk due to aging 

satellites (Loeb, Doelling, et al., 2024; Mauritsen et al., 2025). 

In summary, new insights add to evidence that a combination of cloud feedback responses to 

global warming and reduced reflection of sunlight by clouds in response to declining aerosol 

emissions have plausibly contributed to the long-term increase in the absorption of sunlight by 

the planet since 2000. The exact relative importance of these drivers or the additional role of 

internal ocean variability in contributing to Earth’s growing energy imbalance have not been 

established, yet are essential for reducing the range in climate sensitivity estimates (Goessling 

et al., 2025) with low climate sensitivity models recently found being unable to reproduce 

observed EEI trends (Myhre et al., 2025). Combined with rising GHG levels, this extra planetary 

heating and a redistribution of heat in the upper ocean associated with a transition from an 

extended La Niña to El Niño in 2023 were instrumental in explaining the record global warmth in 

2023/2024. Current levels of global temperature are consistent with a continued acceleration of 

global warming (Samset et al., 2023) and suggest that surpassing the 1.5oC threshold above 

pre-industrial conditions is practically inevitable (Bevacqua et al., 2025; Insight 1 in Bustamante 

et al., 2023; Cannon, 2025) yet highlights the importance of massive cuts in GHG emissions are 

for limiting further warming and associated impacts on societies and ecosystems. 

Figure 1. Estimates of contributing factors to the anomalous global mean temperatures in 
2023 and 2024 (residual components), adding to the annual warming effect from 
increasing radiative forcing dominated by rising greenhouse gases (left-side pink bar: 
0.026 [0.02-0.04]°C/yr, as assessed by Forster et al. 2024 for 2010-2019). The actual 
residual for each year (green dashed line) is the difference between the annual global 
mean temperature in 2023 and 2024, and a 20-year trend (LOESS smoothed, with green 
fading area hinting at the uncertainties). Individual residual components (vertical bars) 
indicate the specific contributions for each of the two years (uncertainty bars nominally 
represent the 95% confidence level). The residual data displayed are from WMO (2025), 
see Figure 12 therein and associated discussion for details (cf. Forster et al. (2025) made 
a similar analysis). It is important to note that the data shown are only indicative and 
represent preliminary estimates. References discussed in the main text provide more 
information on each component; these references are, however, not necessarily the same 
as used by WMO (2025) for deriving the temperature contributions 
 

Insight 2. Sea surface warming is accelerating and marine 

heatwaves are intensifying  

The global average temperature of the ocean surface serves as a key indicator of climate 

change. Record-breaking levels of global mean sea surface temperature were recorded in April 
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2023 and monthly records were then continuously set for over a year until June 2024 (Cheng et 

al., 2025; Terhaar et al., 2025). As the largest sink for Earth’s accumulating heat, the ocean sets 

the pace for global warming, and, as new analysis outlined below shows (Merchant et al., 2025), 

that pace is accelerating. That is, the warming trend underneath internal and solar variability has 

been faster over the last 10 – 15 years compared to previous decades. Impacts on ocean life 

have been widespread, often severe and in some cases likely irreversible (K. E. Smith et al., 

2025). 

The global mean sea surface temperature for 2024 was 0.6°C warmer than a baseline of 1981 

to 2019 (Cheng et al., 2025), slightly warmer than for 2023, and about 0.9°C warmer than 

preindustrial (C3S, 2025b). Temperatures exceeded the previous records set in 2015-2016 by 

0.25°C on average between April 2023 and March 2024 (Terhaar et al., 2025). Given a long-

term warming trend, it is not unexpected that El Niño years break records, but the magnitude of 

exceedance is large given that the El Niño of 2023-2024 was not particularly intense. The 

probability of the observed exceptional global exceedance assuming a steady linear warming 

trend has been shown to be low (about 1 in 500 years (Terhaar et al., 2025)). Driven by the 

Earth's energy accumulation over the past decade (see Insight 1), acceleration of the underlying 

warming trend is physically plausible and is now statistically detectable (Merchant et al., 2025). 

Acceleration of global mean sea surface temperature is consistent with accelerations in the 

storage of heat in the ocean (Cheng et al., 2025; von Schuckmann et al., 2023) and contributes 

to accelerating sea level rise, both of which are well-established.  

The rise in global ocean temperature is accompanied by an increasing incidence of marine 

heatwaves (MHWs), which last days to months (Cael et al., 2024). Based on a fixed baseline (K. 

E. Smith et al., 2025) for MHW detection (Box 1), the persistence of MHWs has increased by 

about one week over the past four decades (Capotondi et al., 2024; Lee et al., 2025). MHW 

intensity has increased across 65% of the global ocean during 2000–2016 compared to 1982–

1998, and over this period, annual number of MHW days has risen by 54% (Oliver et al., 2018). 

An exceptionally extreme, near-basin-scale marine heatwave was experienced in the North 

Atlantic in 2023 (England et al., 2025). These changes are in part driven by weakening 

interaction between the upper and the deeper ocean, as the upper waters warm faster and 

become relatively more buoyant (England et al., 2025). Climate models consistently project 

further increases in both the frequency and intensity of MHWs under continued global warming 

(Cael et al., 2024; Deser et al., 2024; Frölicher et al., 2018). 

Box 1. Definition of Marine Heatwaves 

Marine heatwaves (MHWs) are periods of abnormally high sea surface temperatures that persist for days to 
months or even longer and can extend across thousands of square-kilometers. MHWs are commonly defined 
as sea water temperatures exceeding the 90th percentile relative to a baseline climatology for at least five 
consecutive days (Hobday et al. 2016). These events can occur at the surface or subsurface and have wide-
ranging ecological, biogeochemical, and socioeconomic impacts (K. E. Smith et al., 2025).  

 

MHWs are not purely a surface phenomenon, but also occur in the sub-surface where the 

majority of fish live and diurnally migrate (D. Sun et al., 2023). Heatwaves in the sub-surface 

layer can be more intense than their surface counterparts, and most do not co-occur with 
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surface heatwaves (He et al., 2024; Köhn et al., 2024). Sub-surface MHWs are often caused by 

ocean eddies and are intensifying more rapidly (0.1–1°C per decade) than the rise in mean 

state temperature (around 0.1°C per decade) under global warming (Guo et al., 2024; Köhn et 

al., 2024). Despite growing recognition of the ecological importance of subsurface MHWs, the 

scarcity of observations presents a challenge to gaining a full understanding of their dynamics 

and impacts (Le Grix et al., 2025; S. Li & Hu, 2024). 

Oceanic warming is of concern on land and in the oceans themselves. The weather and 

seasons experienced by human populations are strongly determined by the warmth of the 

ocean (Armour et al., 2024; Samset et al., 2024). Exceptional sea surface temperatures tend to 

strengthen European heatwaves (Berthou et al., 2024) and to increase the likelihood for 

Atlantic, Caribbean and Pacific hurricanes to intensify (Choi et al., 2024; Radfar, Moftakhari, et 

al., 2024). Several studies linked MHWs and extreme weather events like hurricanes, cyclones, 

flooding and atmospheric heatwaves (Berthou et al., 2024; Choi et al., 2024; Radfar, 

Foroumandi, et al., 2024; Ripple et al., 2024). Higher economic costs of MHWs were evident, 

including US$7.5-8.5 billion recovery costs from Cyclone Gabrielle, fuelled by a MHW; US$1.4 

billion loss from the closure of the Peruvian anchovy fishery following a species range shift 

(Figure 2); and ongoing closures or reduced quotas in North American fisheries following MHWs 

(Harrington et al., 2023; K. E. Smith et al., 2025). A warmer ocean surface also reduces the 

uptake of carbon dioxide from the atmosphere: Li, Burger, et al. (2024) estimate a global net 

reduction of 8% during MHWs over 1990-2019, reducing nature’s mitigation of human carbon 

emissions. 

Across 2023 and 2024, various impacts of MHWs were reported (K. E. Smith et al., 2025). New 

research shows MHW-associated declines in foundation species like macroalgae, seagrass and 

corals in many coastal ecosystems globally (K. E. Smith et al., 2024), highlighted in Figure 2. In 

2024 the fourth global coral bleaching event (i.e., a stress response whereby the symbiotic 

zooxanthellae which give corals their colour are lost due to thermal stress) was declared 

(Reimer et al., 2024). In the tropical Atlantic, where corals are considered more resilient to 

bleaching, massive bleaching events have occurred in response to increases in frequency and 

intensity of MHWs over the last two decades (Rodrigues, Neto, et al., 2025). In the 

Mediterranean, MHWs worsened outbreaks of disease, causing mortality events in fish and 

shellfish (Kersting et al., 2024; Nikolaou et al., 2024), and satellite observations identified shifts 

in the size and biomass of phytoplankton linked to MHWs in eastern boundary upwelling 

systems, in the western Baltic Sea and South Atlantic (Cahill et al., 2024; Rodrigues, Artana, et 

al., 2025; Zhan et al., 2024).  

The responses of marine species can be variable and often depend on where within a species’ 

geographic range the MHW occurs, complicating efforts to predict and interpret biological 

impacts (Fredston et al., 2023; K. E. Smith et al., 2024). Trophic models indicate that at the 

community scale, MHWs significantly reduce biomass across all consumer levels, with higher 

trophic levels most affected (Guibourd de Luzinais et al., 2024), altering ecosystem structure 

and function (Gomes et al., 2024). Some ‘wins’ were reported, with corals bred for heat 

tolerance demonstrating resistance to bleaching (Miller et al., 2024), and conservation efforts 

showed some potential for preserving endangered species (Hobday et al., 2024).  
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Widespread impacts driven by MHWs are occurring more often and more intensely than 

previously reported (K. E. Smith et al., 2024). Sharing of successful intervention strategies may 

reduce or delay impacts to some industries and ecosystem services supported by the oceans 

(Hobday et al., 2023; K. E. Smith et al., 2025). Ultimately, mitigating future ecological, economic 

and societal losses will depend on rapid measures to reduce GHG emissions and limit ocean 

warming (Frölicher et al., 2018; Hoegh-Guldberg et al., 2023; K. E. Smith et al., 2023). 

Figure 2. The impacts of the exceptional marine heatwaves in 2023-2024 and the 
period of occurrence of the warmest sea surface temperature (relative to the seasonal 
normal) in the satellite record since 1985. Dataset: ESA Climate Change Initiative Sea 
Surface Temperature v3 (Embury et al., 2024). ‘Year of occurrence’ refers to the year of 
warmest sea surface temperature (relative to the seasonal average) in the satellite record 
since 1985. 

 

Insight 3. Permafrost and boreal forests show signs of strain, 

raising concerns about the global land carbon sink 

While the fraction of anthropogenic GHG emissions absorbed by the global natural land carbon 

sink - whose magnitude partly determines Earth’s contribution to offsetting anthropogenic 

emissions - has remained stable at around 30% (Friedlingstein et al., 2025) on decadal time 

scales, signs of strain are emerging. In addition to the well-known long-term carbon loss from 

tropical systems due to deforestation and forest degradation (Gatti et al., 2021, Carle et al., 

2025), carbon stored in boreal forest and permafrost ecosystems also shows signs of strain. 

However, these signals are often driven by noisy disturbances linked to changing climatic and 

land-use stresses - disturbances whose long term effects on the carbon sink are still not fully 

understood. For example in 2023 significantly less carbon was absorbed by land ecosystems 

compared to the previous year, driven predominantly by drought and warming-related losses 

from tropical ecosystems and fire-related losses in boreal forests (Ke et al., 2024). The decline 

adds to concerns that increasing trends in the drivers of carbon sink loss - including wildfires, 

droughts, heatwaves, and permafrost thaw - are weakening the natural land carbon sink and 

threaten to overwhelm possible growth gains from higher CO2 concentration in the near future. If 

the land sink weakens, a larger fraction of human emissions will remain in the atmosphere, 

meaning lower cumulative GHG emissions would lead to higher warming than  previously 

estimated (Burton et al., 2024). Here we will look at the evidence of short and long-term 

changes in the global natural carbon sink on land, with a focus on emerging vulnerability in 

northern, extratropical land ecosystems. 

The Global Carbon Project estimate of the natural land carbon sink (excluding emissions from 

land use and land-use change) in 2023 was 2.3   - 1  tC yr, well below the 2022  a Ni a-

induced strong sink of 3.9 +/- 1 GtC/yr, or the 2014-2023 average of 3.2 +/- 0.9 GtC/yr 

(Friedlingstein et al., 2025). This decline occurred in a year with strong El Niño conditions and 

record-breaking high temperatures—the global average was 1.48°C above pre-industrial 

levels—and reflects a strong negative response of terrestrial ecosystems to extreme events 

(Byrne et al., 2024; Ke et al., 2024). However, comparing changes in the land carbon sink 

across studies is difficult due to variations in model ensembles, assumptions, and included 
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processes. For example, the notably lower land carbon sink value reported by Ke et al. (2024) 

partly results from including land-use emissions of about 1+/- 0.7 GtC/yr in 2023, which lowered 

the overall mean land carbon sink compared to Friedlingstein et al. (2025), alongside 

differences in vegetation model ensembles. After accounting for land-use emissions and 

uncertainty ranges, the two studies' results roughly align. 

Interannual variability in the land carbon sink is expected, with large drops in the land carbon 

sink having occurred in the past (Figure 3A), usually in conjunction with El Niño years, followed 

by a recovery. Indeed, the global natural land sink rebounded somewhat in early 2024 

(Friedlingstein et al., 2025; Ke et al., 2024). Whether a long-term decline is underway may 

depend on whether the record warmth and widespread extremes of 2023–24 reflect typical 

variability layered on long-term warming, or mark a deeper shift in the climate system (the 

confluence of factors, in addition to rising atmospheric GHG concentrations, leading to the 

anomalous warmth in 2023-24 are discussed in Insight 1). 

In 2023, above average amounts of carbon were released to the atmosphere from multiple 

terrestrial biomes, but with different drivers and underlying temporal dynamics. The largest 

carbon release came from tropical ecosystems, which declined by 58% (from 2.8 GtC/yr to 1.2 

GtC/yr) between 2022 and 2023 (Friedlingstein et al., 2025).  This decline was driven primarily 

by El-Nino-influenced warming and drying, leading to reduced vegetation productivity in water-

limited Sahel and southern Africa (Botía et al., 2025; Gui et al., 2024), as well as reduced 

vegetation carbon uptake in the Amazon region (Botia et al. 2025). The estimate of the tropical 

land carbon sink may be affected by misrepresentation of phosphorus limitation in many 

vegetation models, which would imply that the true decline was even larger (O’Sullivan et al. 

2024). 

Providing equivalent estimates for northern extra-tropical ecosystems is particularly challenging 

for 2023 because of the dominant influence of extreme wildfire emissions (Jones, Kelley, et al. 

2024; Byrne et al. 2024). Current vegetation models used to produce the estimates, 

systematically underrepresent such intense high-latitude fire seasons, (Hantson et al., 2016, 

2020) meaning that model-based estimates would have failed to capture the unusually large 

carbon release from the 2023 Canadian fires. These models have also been shown to 

systematically underestimate the northern land carbon sink by ~1  tC (O’Sullivan et al. 2024), 

not least due to misrepresentation of regrowth rates after fire. Nonetheless, observational 

evidence points to significant release of carbon from wildfires in the Canadian boreal forests in 

2023 (0.65 ± 0.08 GtC) (Byrne et al., 2024; Friedlingstein et al., 2025), which contributed to 

record-breaking fire emissions in boreal forests globally in 2023 (Jones, Kelley, et al., 2024). 

These disturbance-driven fluxes, which have also emerged during recent Arctic fire seasons, 

make it difficult to constrain northern land-sink behaviour during years with exceptional high-

latitude fire activity.  

Although it is difficult to quantify the net northern extra-tropical land carbon sink in any single 

year, long-term assessments and evidence from individual disturbance processes suggest the 

land carbon sink in northern extra-tropical ecosystems—long considered more resilient to 

climate change than tropical forests— is showing signs of weakening. Although still a net carbon 
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sink, recent studies using both empirical and model-based approaches indicate a longer-term 

flattening off or even decline over the past few decades (Friedlingstein et al., 2025; Ke et al., 

2024; Virkkala et al., 2025). In the most recent decade, increasing drought-related tree mortality, 

insect outbreaks and wildfires have driven a shift from growth to decline in live carbon biomass 

(X. Li et al., 2025) (a significant component of the land carbon sink; see Figure 3B) in northern 

extra-tropical land ecosystems, even without considering changes that occurred in 2023. This 

trend shift may be a sign of accelerating carbon transfer from vegetation to the atmosphere (X. 

Li et al., 2025) and an indication of growing instability in northern extra-tropical land ecosystems 

(Romanou et al., 2024).  

Carbon uptake in boreal forests—one key biome within northern extra-topical land 

ecosystems—has declined significantly in recent decades due  to fires, as well as insect 

outbreaks, drought and abnormal heat-induced mortality (M. W. Jones et al., 2024; Ramage et 

al., 2024; Virkkala et al., 2025). When additionally including emissions from land-use change 

and management, average annual carbon uptake in boreal forests—including in live biomass, 

soils, dead wood and litter—decreased by 36% between the decade 2010-2019 and the 

previous two decades (Pan et al., 2024). At the global level, this large loss was compensated by 

increases in carbon sinks in tropical regrowth and temperate forests, keeping the global forest 

carbon sink stable on average (Pan et al., 2024). 

30% of the Arctic-boreal zone as a whole, which covers both the boreal biome and the treeless 

tundra, has become a net source of CO2. Furthermore, evidence suggests that the tundra biome 

alone is no longer a net CO2 sink (Ramage et al., 2024; Virkkala et al., 2025). Whether or not 

these regions have become a net carbon sink would require a full GHG inventory (including 

CO₂ , CH4, and N₂O), which is not currently available. However, for the northern permafrost 

region, which covers ca. 65% of the Arctic-boreal zone, a full GHG inventory allows for 

calculation of the land carbon sink. Characterised by perennially-frozen soils and home to 

Earth's largest soil carbon pool, its carbon uptake capacity is undergoing profound, warming-

induced changes. Having acted as a carbon sink for decades, the most recent budgets identify 

the northern permafrost region as a net carbon source of 0.14 Gt C/yr (−0.51, 0.83; 95% 

confidence interval) over short decadal time scales (2000-2020) (Hugelius et al., 2024; Ramage 

et al., 2024). This shift is partly due to emissions from inland waters, fires, and abrupt 

permafrost thaw (Ramage et al., 2024; Virkkala et al., 2025). 

Understanding the long-term fate of the land carbon sink, in particular in northern extra-tropical 

ecosystems, remains a challenge. Much depends on the impact of extreme events on the land 

carbon sink in general. While additional emissions from wildfires–not least in the boreal region 

(Corning et al. 2024)–are expected to reach up to 5% of the remaining carbon budget for 2°C 

(Burton et al., 2024), aerosol emissions from fires may indeed reduce future warming 

(Blanchard-Wrigglesworth et al., 2025). Furthermore, the amount of carbon remaining in the 

atmosphere or reabsorbed by the land surface after events like fires and droughts depends on 
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the pace and extent of recovery, which remain uncertain (Hamilton et al., 2024; Martínez-García 

et al., 2024; O’Sullivan et al., 2024).  

Because of, and not despite these uncertainties, as global temperatures continue to rise, the 

capacity of land ecosystems to buffer climate change cannot be taken for granted. 

Strengthening this understanding is not just a scientific priority—it provides a critical foundation 

for credible climate policy.  

Figure 3. Temporal evolution of the global land carbon sink and associated 
uncertainties from 1960 to 2023 and recent changes in live biomass in northern 
ecosystems. (A) Global CO2 flux (GtC/yr) is shown. Positive values indicate an increase 
in the land carbon sink. The dark line represents the annual mean net fluxes, with the 
shaded area denoting ±1 standard deviation uncertainty. The red dot shows the projected 
land carbon sink for 2024 with associated uncertainty. Data are from the Global Carbon 
Budget 2024 (Friedlingstein et al., 2025). (B) Annual variations in live biomass carbon 
stocks, expressed as the difference from 2010 values in northern ecosystems. Data 
available from Li et al. (2025). 

Insight 4. Climate change and biodiversity loss reinforce one 

another  

Climate change and biodiversity loss are two of the most pressing and interlinked environmental 

challenges that humanity is facing (Pfenning-Butterworth et al., 2024; Pörtner et al., 2023). 

Multiple studies have demonstrated the potential impact of climate change on biodiversity from 

local to global scales, with 3–6 million (or more) animal and plant species threatened, even 

under intermediate climate change scenarios (Wiens & Zelinka, 2024). However, increasing 

evidence suggests that a loss of biodiversity also impacts climate change, thereby contributing 

to a destabilizing feedback directly impacting global climate stability. Experimental and 

observational studies have consistently found that higher plant diversity on lands can increase 

ecosystem functioning, including carbon storage, and these effects grow stronger over time (see 

Table 1 for mechanisms; (O’Connor et al., 2017; S. Wang et al., 2021)).  

Because higher plant diversity leads to greater biomass within a place over time, loss of plant 

diversity from climate and land-use change can lead to biomass stock loss, and therefore 

carbon emissions (Lange et al., 2015; Mori et al., 2021). Weiskopf et al. (2024) found that 

projected global plant species loss could lead to the emission of 7-145 PgC in the coming 

decades (Figure 4). Although the uncertainty range is large, the high-end estimates constitute a 

substantial portion of the remaining carbon budget before warming exceeds 1.5 or 2°C 

(Canadell et al., 2023). Similarly, Mori et al. (2021) found that conserving tree diversity through 

climate change mitigation could correspond to 2-3 Gt C per year in reduced emissions. 
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Table 1. Mechanisms behind the biodiversity-carbon storage relationship. 

Mechanism Description  

Complementarity effect In diverse communities, species differ in traits and resource use, 
allowing for more complete exploitation of available resources. This 
can enhance ecosystem functioning (e.g., primary productivity) 
through mechanisms such as niche partitioning and facilitation 
(Hooper et al., 2005; Loreau & Hector, 2001).  

Selection effect In more diverse communities, the likelihood of including particularly 
productive or competitively dominant species increases. These 
species may disproportionately contribute to biomass production 
and carbon storage, leading to higher overall ecosystem 
functioning (Loreau & Hector, 2001; Hooper et al., 2005). 

Stability and insurance effects Diverse ecosystems tend to exhibit greater temporal stability in 
functioning (e.g., carbon fluxes), as asynchronous responses 
among species to environmental variability buffer against losses in 
the overall function (Isbell et al., 2015; Tilman et al., 2006). 

 

Although the role of plant diversity on ecosystem functioning is well established, the strength of 

the relationship can vary across biomes and environmental conditions. Large-scale analyses, 

for example, have shown stronger biodiversity-productivity relationships in less productive 

ecosystems ((García-Palacios et al., 2018; Liang et al., 2016; Paquette & Messier, 2011). 

Similarly, Spohn et al. (2023) found that the effects of plant diversity on soil organic carbon 

storage were stronger at drier sites. To reduce uncertainties regarding carbon release 

associated with biodiversity loss, further research across distinct biomes is needed to clarify the 

ecological mechanisms underlying variations in the biodiversity-carbon storage relationship 

along environmental gradients and differences in species and plant functional composition. 

As an example, while tree diversity can enhance carbon sequestration and carbon retention in 

agroforestry systems (Ma et al., 2020), it remains less clear if increasing plant diversity within 

cropland agroecosystems can have a similar effect. A recent study that evaluated a large field 

trial that manipulated plant diversity by combining undersown species with a cereal crop (i.e., 

barley) showed that increasing plant diversity within agroecosystems can also increase the 

carbon retention potential in soils (Domeignoz-Horta et al., 2024), without compromising 

productivity. This confirms previous studies suggesting that manipulating plant diversity can 

enhance plant productivity and positively influence the associations between microorganisms, 

increasing microbial growth efficiency, which is considered a driver of soil carbon storage 

(Lange et al., 2015; Tao et al., 2023). 

While uncertainties exist, plant-animal interactions and ecosystem functions, for instance 

through trophic chains, can potentially alter vegetation structure and plant species composition, 

which in turn can affect above and belowground biomass (Back et al., 2025; Bello et al., 2024; 

Brodie et al., 2025; Török et al., 2020). For example, simulation studies show that elephants in 

African forests increase aboveground biomass by promoting high wood-density trees and 

dispersing seeds of large trees (Berzaghi et al., 2019, 2023), whereas in African savannas, 
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remote sensing and ground experiments indicate that reduced herbivores resulted in higher 

biomass (Back et al., 2025). In tropical systems, defaunation could reduce carbon storage up to 

26%, primarily driven by population declines in animal-dispersed tree species (Brodie et al., 

2025). In the Brazilian Atlantic Forest, a study quantified that frugivores can potentially enhance 

carbon recovery in fragmented forest landscapes when at least 40% forest cover remains (Bello 

et al., 2024). Climate change may disproportionately affect specialised guilds such as 

frugivores, especially in the tropics (Mendoza & Araújo, 2025). Independent of these species 

interactions, evidence demonstrating the role of terrestrial animals as contributors to climate 

solutions is limited and remains contested (Duvall et al. 2024). 

Animals can also impact carbon storage in the oceans. For example, due to their large size, 

whales can sequester carbon as biomass, which then sinks to the ocean floor after death, 

promoting carbon sequestration (Durfort et al., 2022; H. C. Pearson et al., 2024). The recovery 

of baleen whale populations and their nutrient recycling services could enhance productivity and 

help restore ecosystem functions lost during 20th-century whaling (Savoca et al., 2021). 

However, the carbon benefits associated with this recovery are increasingly threatened by 

climate change (Tulloch et al., 2019; Durfort et al., 2022).  

While knowledge gaps remain, multidisciplinary and transdisciplinary approaches to understand 

the social, -ecological and physical processes involving biodiversity loss and climate change 

through carbon uptake, release and protection are critical in assessing the entire destabilising 

feedback mechanisms. Because of such feedback, meeting the targets of the Kunming-

Montreal Global Biodiversity Framework can directly contribute to countries’ Nationally 

Determined Contributions under the UNFCCC by reducing biodiversity-loss-driven carbon debt. 

Recognising and acting upon the interdependence between biodiversity conservation and 

restoration and effective climate mitigation would improve our ability to meet the  climate and 

biodiversity policy targets. Despite the importance of biodiversity to store carbon, many existing 

natural climate-solution initiatives focus on ecosystem extent and cover, such as forested areas, 

rather than quality and composition (Mori, 2020; Seddon et al., 2019), which could lower 

effectiveness as carbon sinks. Likewise, many conservation efforts focus on species, often 

charismatic ones, rather than maintaining species interactions and their role for ecosystem 

function (Tobias et al., 2025). Maintaining and restoring diverse ecosystems while considering 

Indigenous and traditional knowledge and livelihoods can be effective actions towards achieving 

sustainability in the face of multiple global crises (Levis et al., 2024; Razanatsoa et al., 2021) 

and therefore contributing to both  biodiversity and climate agreements. Considering Indigenous 

Peoples and Local Communities can allow for location-specific and biome-specific analyses to 

inform local policies and contribute to global goals. 

Figure 4. Additional plant diversity loss and resulting carbon loss, under a very high 
emissions scenario. Long-term loss of vascular plant species richness due to climate 
change and land use change, projected by 2050 (Panel A), expressed as additional 
percentage loss under a high emissions scenario (RCP8.5) relative to a low emissions 
scenario (RCP2.6). Reductions in vegetation carbon within the remaining habitat, 
attributable to plant biodiversity loss (Panel B), expressed as additional carbon loss [kg/m

2
] 

under high emissions scenario (RCP8.5) relative to a low emissions scenario (RCP2.6). 
Adapted from Weiskopf et al., (2024). 
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Insight 5. Accelerating depletion of groundwater  

Groundwater is the second-largest freshwater resource after the polar caps and vital for almost 

half of the world's population. It anchors water and food security for millions of people, 

particularly in places with erratic rainfall patterns. Most of the pumped groundwater is used for 

irrigation, and the United Nations' Food and Agriculture Organization estimates a 30% increase 

in irrigated agriculture, especially in developing countries, in the coming decades. With the 

prediction of drier summers and less evenly distributed rainfall in many areas across the world, 

our reliance on groundwater as a stable resource will become even more important (UNESCO, 

2022). 

At the beginning of the 20th century, global groundwater withdrawal increased roughly 

proportional to population. However, since around 1960, groundwater withdrawal rates have 

tripled from approximately 312 km³/year to over 1,000 km³/year, while the global population has 

only increased by a factor of 2.6 (Wada & Bierkens, 2014). This divergence indicates that 

factors beyond population growth, are increasingly contributing to groundwater use. Current 

projections suggest that food production must increase by 60% to feed an estimated 10 billion 

people by 2050, likely resulting in the expansion of irrigated land and a growing demand for 

groundwater (UNESCO, 2022).  

Groundwater serves as a critical buffer against the impacts of climate change on agriculture, 

enabling the cultivation of water-demanding crops, such as alfalfa or avocados, with multiple 

harvests per year in arid regions like Arizona or Chile (Ford, 2022; Sommaruga & Eldridge, 

2021). However, Bhattarai et al. (2023) caution that using groundwater as an adaptation 

strategy to counteract warming temperatures may lead to increased irrigation withdrawals, 

thereby accelerating depletion rates in already stressed groundwater zones like those in India. 

While climate change plays a significant role in altering irrigation needs, socio-economic drivers 

such as the intensification of agriculture and changes in dietary preferences are at least equally 

important in driving long-term groundwater depletion trends. Consequently, groundwater 

availability will be a major challenge for Earth's growing and increasingly prosperous population 

in the 21st century. 

Traditionally, our understanding of groundwater levels has been derived from drilled wells and 

the inspection of geological records, allowing a direct analysis of local properties (Ross, 1984).  

The launch of the Gravity Recovery and Climate Experiment (GRACE) satellite mission in 2002 

marked a turning point in global groundwater observations, enabling the visualization of 

Groundwater Storage (GWS) anomalies based on changes in Earth’s gravitational pull (Rodell & 

Famiglietti, 2002). GRACE revealed significant groundwater declines across key agricultural 

zones worldwide with a monthly resolution (B. Li et al., 2019, 2020). For instance, between 2003 

and 2024, groundwater declines of 0.26 cm/year and 1 cm/year were observed in the Central 

Valley and the southern High Plains of the USA, respectively. Notable declines of 0.66 cm/yr 

and 0.44 cm/yr were also observed in northwestern India and the North China Plain during the 

same period. 
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While GRACE has revolutionized global groundwater monitoring, recent studies have 

highlighted its limitations, including its coarse spatial resolution, a relatively short time period, 

and the difficulty distinguishing different water storage components (i.e., groundwater, soil 

moisture, and snow water storages) (Shamsudduha & Taylor, 2020). Bridging the gap between 

local groundwater measurements and remote-sensing observations is crucial for actionable 

management, especially in vulnerable regions with limited well observations, like sub-Saharan 

Africa. Here, groundwater supplies 75% of drinking water but faces climate-driven depletion 

(Kuang et al., 2024). The International Groundwater Resources Assessment Centre (IGRAC), 

founded in 2003 by UNESCO and WMO, aims to consolidate global information on 

groundwater. However, national data-sharing policies and varying data formats have made 

compiling a global well database challenging.  

Jasechko et al. (2024) compiled over 170,000 groundwater-level time series from 40 countries, 

encompassing nearly 300 million observations. This dataset spans 40 years, allowing 

comparison of trends in 1,693 aquifers worldwide between the early 21st century and the last 

two decades of the 20th century. Beyond confirming with in-situ data that groundwater decline is 

indeed widespread, the analysis observed that in almost half of the declining aquifer systems 

worldwide, the pace at which groundwater levels drop accelerated relative to the decline during 

1980-2000. Over 80% of all aquifers experiencing accelerated declines are located in cultivated 

drylands where precipitation has declined over the past decades, and agricultural land use has 

intensified (Box 2.1).  

Recent work by Kuang et al. (2024) showed that groundwater is a dynamic and climate-

sensitive component of the global water cycle, revealing critical shifts in its behavior under 

anthropogenic pressures. Their study highlights that global groundwater recharge (12,000–

17,000 km³/yr) is increasingly destabilized by climate change. These shifts in hydrological 

regimes disrupt groundwater recharge dynamics, particularly in snowmelt-dependent basins, 

where earlier peak flows reduce infiltration and exacerbate storage losses. Simultaneously, 

droughts diminish recharge rates, and intense rainfall often fails to percolate due to soil 

compaction or rapid runoff (Kuang et al. (2024). Many arid regions are projected to experience 

significant declines in recharge due to decreased precipitation and higher evapotranspiration 

(Figure 5A). 

Groundwater decline not only impacts water availability but also leaves empty pore space 

behind (Figure 5E). As a result, the land above subsides, which poses an imminent threat to 

both agricultural land (Haghshenas Haghighi & Motagh, 2024) and urban communities in 

megacities such as Bangkok, Shanghai, Jakarta, or Manila (Ao et al., 2024; Wu et al., 2022) 

(see Box 2.2). While land subsidence is by far the largest socio-economic threat associated with 

groundwater decline (Ao et al., 2024), coastal regions are additionally threatened by seawater 

intrusion into coastal aquifers (Jasechko et al., 2020; Seibert et al., 2024) (Figure 5D). Small 

islands are particularly vulnerable, as freshwater lenses floating above seawater can easily 

become salinized due to over-pumping, reduced recharge, and storm surges—all of which may 

intensify with climate change (Bakker et al., 2017). Once an aquifer is contaminated, it can take 

decades to replenish it with clean freshwater (Lu & Werner, 2013).  
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While climate change and population growth are inevitable, declining groundwater levels often 

result from water wastage and unsustainable groundwater withdrawal, which can be mitigated 

through improved irrigation methods and better water management (Bierkens & Wada, 2019). 

Kuang et al. (2024), for example, advocate for policies that address transboundary governance 

and Managed Aquifer Recharge (MAR), which currently offsets less than 10% of global 

extraction. This approach acknowledges the interdependence of groundwater, surface water, 

and the ecosystems that depend on them. Such integrated strategies are crucial for mitigating 

cascading impacts on biodiversity and human water security in an era of accelerating climate 

change. A decentralized water governance approach is often considered more effective due to 

its flexibility, adaptability, and ability to engage stakeholders while accounting for complex 

social-ecological systems (Box 2).  

Sustainable groundwater futures can be achieved by urgent action through efficient irrigation, 

inclusive governance, and climate-resilient policies to balance human needs with ecosystem 

health in an increasingly water-stressed world. Long-term monitoring of groundwater resources 

and integrating stakeholders into groundwater sustainability plans and policy-making decisions 

are key to ensuring improved outcomes of sustainable groundwater management plans. For 

example, Perrone et al. (2023) analyzed 108 plans under California's Sustainable Groundwater 

Management Act, revealing that most plans fail to comprehensively include stakeholders, 

leaving many unprotected from groundwater depletion. However, when stakeholders were 

actively engaged, their needs were better addressed. This underscores the importance of 

groundwater resource monitoring, inclusive policy-making, and the integration of diverse 

stakeholders for the long-term sustainability of groundwater.  

Figure 5. Impact of climate change on terrestrial water fluxes (A). Climate change directly 
and indirectly impacts groundwater resources: Precipitation (P) decreases in many regions 
around the world, while only a few will see a slight increase. Rising temperatures (T) under 
global warming affect evapotranspiration (ET), additionally reducing groundwater recharge 
(R) (Condon et al., 2020). As a consequence, groundwater levels decline. Additionally, 
climate change puts pressure on agricultural food production, leading to higher 
groundwater use for irrigation (W). Declining groundwater levels have severe 
consequences beyond water availability; (B) Deeper water tables lead to increased 
extraction costs for drilling wells (Jasechko & Perrone, 2021) and ultimately for wells 
running dry; (C) streams lose water to their surrounding aquifer, (D) saltwater intrudes into 
coastal aquifers, and land subsides (E). 

 

Box 2. Managing groundwater in the face of drought and decline  

2.1 Droughts and Aquifers running dry: 

● Places like California's Central Valley, the southern High Plains, and southeast Spain have seen 
severe and more frequent droughts in recent decades (Chen et al., 2025). Some Ogallala Aquifer 
fringes have already run dry, and its southern part will have insufficient water for irrigation within the 
next 2 to 3 decades (Haacker et al., 2016; Rodell et al., 2018). 

2.2 Declining water levels leave subsiding land behind: 

● Jakarta, for example, is the fastest-sinking capital, subsiding at several centimeters per year, almost 
an order of magnitude larger than the rate of sea level rise (Oelsmann et al., 2024). Today, 40% of 
Jakarta already lies below sea level, exacerbating the threat of rising sea levels and increasing its 
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vulnerability to flooding. Sea level rise has mainly been seen as a result of melting pole caps, but 
~10–27% of sea level rise (0.82 ± 0.13 mm/yr by 2050) may be indirectly linked to groundwater 
depletion (Wada et al., 2016) 

2.3 A sign of hope: Success stories of Integrated Management Policies and Strategies for Water 
Security: 

A. China's groundwater restoration efforts have achieved remarkable progress following the 
implementation of the Regulations on Groundwater Management (2021), the country's first 
specialized administrative regulation in this domain. Guided by this policy, the Ministry of Water 
Resources and the Ministry of Natural Resources conducted a nationwide reassessment of 
overexploited groundwater zones, analyzing data from 34,929 monitoring wells with contributions from 
over 2,000 experts. Results reveal a 51% reduction (88,300 km²) in severely overexploited areas 
compared to 2015, alongside a significant decrease in extraction volumes. 

B. In Kansas, US, the Local Enhanced Management Areas (LEMAs) framework was established in 2012 
to enable groundwater management districts (GMDs) to implement targeted water-use reductions in 
depleted zones of the Ogallala Aquifer. This approach has achieved withdrawal reductions of up to 
35% in some areas while maintaining net farming profitability (Whittemore et al., 2018). 

C. In California, home to the critically depleted Central Valley aquifer, the Sustainable Groundwater 
Management Act (SGMA) was enacted in 2014 to address groundwater overdrafts and promote 
sustainable irrigation practices. This legislation empowers local agencies to form Groundwater 
Sustainability Agencies (GSAs) tasked with developing Groundwater Sustainability Plans (GSPs) that 
balance extraction and recharge, prevent undesirable outcomes such as land subsidence and water 
quality degradation, and ensure long-term water reliability.  

D. India’s participatory groundwater management program, Atal Bhujal Yojana (ABY) (Annexures in:  
Khanduja et al. 2023), promotes community-driven conservation across highly depleted states 
through decentralized governance, incentivized participation, and collaboration between state and 
grassroots institutions. The program has demonstrated some promising outcomes, including 
strengthened institutional capacity at the local level, active youth engagement, and increased 
awareness of sustainable agricultural practices. In recent years, some notable cases of increased 
adoption of micro-irrigation techniques and crop diversification have also been observed, reflecting 
growing momentum toward efficient groundwater use in agriculture. 

 

Insight 6. Climate-driven increase in global dengue — observed 
and projected 

Dengue fever, the most common mosquito-borne viral disease, has surged over the past two 

years to the largest global outbreak ever recorded, with 14.2 million cases reported in 2024 

(WHO, 2025b). Dengue outbreaks do not occur with equal intensity in all world regions each 

year. This general increase is in part driven by climate change and thermal anomalies 

(Barcellos et al., 2024), which facilitate shifts in range, resulting in a net increase in favorable 

conditions for mosquitoes. Dengue or breakbone fever is caused by an RNA virus from the 

genus Flavivirus. It consists of four serotypes with limited cross-immunity, which means that 

people can get dengue up to four times. While an estimated 75-80% of first-time dengue cases 

are mild or asymptomatic (and thus underreported), subsequent dengue infections can increase 

the risk of more severe forms of dengue fever, including dengue hemorrhagic fever (DHF), 

which can be fatal. Climate change, in conjunction with urbanization, population growth, and 

human mobility, is overwhelmingly creating more favorable conditions for mosquitoes, 
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increasing the geographic range, seasonality, and intensity of dengue transmission (Childs et 

al., 2025; de Souza & Weaver, 2024), while few areas are seeing reductions in suitability (Ryan 

et al., 2019). About half of the world's population is now at risk of dengue, with an estimated 

100–400 million infections occurring each year (WHO, 2025a). Mosquitoes that carry dengue 

virus can also carry Zika, chikungunya, and yellow fever viruses (Lim et al., 2025). 

Figure 6. Climate Suitability for dengue transmission (left; adopted from Romanello et al. 
(2024)). Global expansion and redistribution of dengue transmission risk (number of 
months of thermal transmission suitability) with climate change (adapted and modified to 
CMIP6 projections from Ryan et al. (2019)). 

Dengue fever projections indicate even steeper increases by 2050 and 2100 (Feng et al., 2024; 

Messina et al., 2019; Ryan et al., 2019). Dengue outbreaks are capable of overwhelming health-

care systems and disrupting economies (Oliveira et al., 2019; Paz-Bailey et al., 2024; Shepard 

et al., 2016), making the mosquitoes that carry dengue important to control. Warmer weather 

facilitates the geographic and seasonal spread of the mosquito and the growth of the virus, and 

changing climatic conditions are affecting the transmission of many infectious diseases of public 

health concern, including dengue (Semenza et al., 2022; Semenza & Paz, 2021). Climatic 

suitability for the transmission of dengue by Aedes albopictus and Aedes aegypti increased by 

46.3% and 10.7% respectively, between 1951–1960 and 2014–2023 (Figure 6) (Romanello et 

al., 2024). A recent climate-health detection and attribution study suggested climate change was 

responsible for up to 40% of dengue cases in some countries in the Americas (Childs et al., 

2025). 

Moreover, the official figure of reported cases in 2024 is an underestimation of the true global 

burden (WHO, 2025b). In the Americas, over 13 million cases were reported (PAHO, 2025), 

most cases were in Brazil, where 17 cities declared states of emergency. In the USA, there was 

a health alert announced with local transmission in California, Florida, and Texas, while Puerto 

Rico had a health emergency declared for dengue (CDC, 2025). 

Beyond rising numbers, dengue’s expansion involves shifts in transmission patterns and 

geography. Climate change and human activity have driven the redistribution of mosquito 

vectors, altering habitats and facilitating the spread of dengue, malaria, and Zika into previously 

unaffected areas (Abbasi, 2025; Segala et al., 2025). Some Aedes species will fly over a 

kilometer to bite a human over another species (Gubler, 1998). Aedes aegypti, the primary 

dengue vector in the Americas, thrives in hotter climates and has expanded through tropical and 

subtropical regions. It is well adapted to human environments, breeding in small amounts of 

water, which makes it difficult to control. Aedes albopictus, the “Asian tiger mosquito,” has 

extended its range into temperate areas like Europe, aided by global trade and its ability to 

survive colder winters. It will bite during the daytime, becoming an issue in schoolyards. 

However, the mere presence of these mosquitoes does not immediately lead to new dengue 

cases. Further complicating responses is that there is often a lag between their introduction and 

sustained transmission, complicating public understanding and response efforts. 

In Europe, climate is now the strongest predictor of arbovirus (i.e., those transmitted by 

arthropods, primarily mosquitoes and ticks) outbreaks, with hotter summers significantly 

increasing the risk, particularly in urban and semi-urban settings (Farooq et al., 2025). The 
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region has seen a steady rise in both imported and local dengue cases, with 2024 marking all-

time highs—over 200 locally transmitted cases in Italy and 85 in France (Arulmukavarathan et 

al., 2024). Since 2000, Europe has recorded more than 45,000 dengue cases, both imported 

and locally transmitted, highlighting its growing vulnerability (Hedrich et al., 2025). There have 

been 38 autochthonous dengue outbreaks (cases that were acquired locally) in the EU with a 

total of 579 cases (Farooq et al., 2025). 

Other places around the world are also experiencing dengue, where it was not present before. 

Nepal, in particular, observed cases across March-November in 2023, indicating more 

distributed peaks, with hotspots observed not limited to the city of Kathmandu, but across the 

country at different altitudes, suggesting ecological and climatic factors may no longer be 

effective barriers (Bhandari et al., 2024). The number of cases in Africa was nine times higher in 

2023 than in 2019. In several of the countries reporting these increased cases, surveillance, 

monitoring, and control are further complicated by ongoing conflict, larger numbers of displaced 

persons, and climate factors (Mercy et al., 2024). Under-reporting of dengue is also likely, as 

cases may be misclassified as malaria in countries endemic for both (Mercy et al., 2024), not all 

countries have monitoring systems to track widespread outbreaks accurately, and countries 

where dengue is not common may not suspect dengue. 

Dengue’s spread is not inevitable. While mosquito control remains the cornerstone of 

intervention (notably Singapore’s control measures to prevent mosquito larvae from growing), 

other approaches are being explored, including the use of Wolbachia bacteria to suppress 

dengue transmission in mosquitoes (Safaei et al., 2025). However, concerns remain about the 

sustainability of these strategies, as with decreasing exposure to dengue, the susceptibility of 

the population increases, raising questions about their long-term reliability. 

A variety of vector control methods have proven effective. Vaccines have been developed, but 

are not yet widespread or universally recommended, making surveillance and early-warning 

systems (Sebastianelli et al., 2024) key components of prevention and intervention in a 

changing world. While climate change creates conditions conducive to transmission, global 

travel and trade also play key roles in introducing both mosquitoes and the virus to new regions 

(Harish et al., 2024). Travelers can unknowingly transport dengue to areas with susceptible 

mosquito populations, fueling outbreaks (Yan et al., 2024), as previously found in Florida, USA 

(F. K. Jones et al., 2024). Surveillance systems that track infections in travelers (e.g., phone 

apps leveraging traveller self-reporting) have become valuable early-warning tools (Lovey et al., 

2024; Taylor-Salmon et al., 2024), especially for countries with weaker health monitoring. As the 

world faces the continued expansion of Aedes-transmitted diseases, a combination of robust 

public health interventions, innovative vector control strategies, and enhanced surveillance will 

help stay ahead of this growing threat. 

Insight 7. Global labour productivity and income loss due to 

climate change 

Estimates of the economic costs of climate change are crucial for informing decisions about 

mitigation and adaptation measures. These estimates can reveal important channels through 
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which climate change can impact the economy, identify risks across regions, sectors and 

demographics, as well as highlight issues related to justice and equity, and motivate emission 

mitigation. 

A key insight of recent years is the prominent role of labour productivity as a channel through 

which climate change impacts the economy (Figure 7A,7B). While consistent definitions for heat 

stress that account for variables beyond temperature (e.g., humidity) are still emerging, there is 

a clear consensus that climate change will bring large increases in future exposure and impacts 

(Dasgupta et al., 2024). Additional global warming of 1°C is set to expose over 800 million 

people in tropical regions to unsafe levels of heat stress which would reduce working hours by 

50% (Masuda et al., 2024). Such effects reduce the overall productivity and supply of labour to 

economic markets, with a recent review concluding that 3°C of warming would cause effective 

labour in high-exposure sectors across the entirety of the African and Asian continents to 

decline by 33% and 25%, respectively, with low-exposure sectors facing smaller but substantial 

effects (Dasgupta et al., 2024). High-exposure sectors are mainly those consisting of outdoor 

work such as agriculture and construction, where impacts are particularly large (Nelson et al., 

2024). Importantly, impacts on labour can then become amplified along supply chains. Sun et al 

(2024) found that by 2060, the indirect losses via global trade and supply chains would account 

for 12-43% of the expected global economic losses from heat stress, with different effects 

across regions and sectors. Importantly, there are large global inequalities to exposure of labour 

to heat extremes, with global trade enabling developed countries to benefit from imports 

produced in increasingly heat-exposed developing countries (M. Li et al., 2025). 

Figure 7. Impacts of climate change on labour and global gross domestic product (GDP): 
projected loss of effective labour (combination of labour supply and productivity changes) 
under a 2

o
C (A) and 3

o
C (B) increase in global mean temperature relative to preindustrial 

levels (Dasgupta et al., 2024), and; range of impacts on global GDP at 2
o
C (C) and 3

o
C (D) 

of global warming from structural and statistical modeling estimates from the literature, 
measured in terms of annual percent global GDP loss relative to GDP without additional 
climate change (Morris et al., 2025).  

Since labour is a major component of aggregate economic productivity, impacts of climate 

change on labour have serious consequences for the global economy and the loss of global 

incomes due to climate change. Recent studies have found that for a high-emissions scenario 

(RCP8.5), labour productivity loss from heat could result in annual global gross domestic 

product (GDP) losses of 1.4%-2.6% (Dasgupta et al., 2024), and up to 2.9%-4.5% annually if 

also accounting for health costs and supply chain disruptions due to climate impacts on labour 

(Y. Sun et al., 2024). Mitigation to RCP2.6 or RCP1.9 levels could reduce the annual GDP 

reductions due to labour impacts to only 0.1%-0.8% (Daspgupta et al. 2024, Sun et al. 2024).  

While understanding of the important role of climate change impacts on labour productivity has 

improved in recent years, estimates of the aggregate economic impacts of climate change from 

all possible impact channels remain wide, although a consensus of negative impacts on global 

incomes is clear (Figure 7C,7D) and important new developments have been made in recent 

years. First, it is increasingly clear that estimates vary based on the method employed, with a 

divergence between “structural” and “statistical” modeling approaches (Box 3) (Morris et al., 

2025; Rose et al., 2022). Statistical approaches benefit from their ability to capture the 

aggregate effects of a range of sectoral impact mechanisms and their interactions, but they 
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consequently provide less insight into the relative role of those mechanisms. Furthermore, their 

sensitivity to model specification and extrapolation of historical relationships into quite different 

potential futures have been sources of widespread debate. On the other hand, structural models 

offer mechanistic clarity by explicitly enumerating specific impact chains, but rely on model and 

parameter assumptions and struggle to capture all the relevant impact channels. These different 

approaches are therefore likely not directly comparable (Rose et al., 2022) and should be 

treated as different lines of evidence rather than as interchangeable substitutes. This finding is 

already spurring research efforts to better understand and reconcile differences in methods and 

thereby reduce uncertainties. 

Furthermore,statistical estimates of aggregate economic impacts have undergone major 

revisions in recent years, which have typically increased estimates of the costs of climate 

change over time (Tol, 2023). First, recent work has highlighted the role of additional climate 

hazards, including extremes and variability of temperature and precipitation (Callahan & Mankin, 

2022, 2023; Kotz et al., 2021, 2022; Waidelich et al., 2024) in addition to only average 

temperatures. Second, a complementary research strand has highlighted the global nature of 

climate shocks, finding that incorporating metrics of global temperature into empirical work more 

than doubles estimates from prior findings (Bilal & Känzig, 2024; Neal et al., 2025). Third, 

constraints on the persistence of impacts on economic growth have found at least partially 

persistent effects (Bastien-Olvera et al., 2024), resolving a source of prior discrepancies and 

supporting estimates of larger overall impacts. 

While these insights have advanced the understanding of the economic impacts of climate 

change, there are some persistent knowledge gaps. Foremost is understanding the 

discrepancies in estimates from different methodological approaches. In particular, why 

structural models do not reproduce the impacts observed by statistical models in historical data, 

as discussed above. Relatedly, while advances have highlighted several key impact categories, 

such as heat stress and labour, other climate impacts have yet to be widely included, 

particularly climate extremes such as drought, tropical storms and wildfires. Similarly, the costs 

of impacts on “non-market” sectors (e.g., biodiversity, crime and conflict, migration) remain 

largely omitted due to challenges in their monetisation, despite some recent advances for 

ecosystem services (Bastien-Olvera et al., 2024). More attention to the effects of compounding 

climate hazards and their cascading effects across systems is also needed. Finally, the role of 

adaptation remains a large source of uncertainty, as statistically observed responses to weather 

may change under fundamentally different future socioeconomic and climate conditions. 

Evidence exists for successful adaptation against heat-related mortalities (Carleton et al., 2022), 

but other sectors show much less clear evidence of adaptation occurring historically (Burke et 

al., 2024; Burke & Emerick, 2016; Callahan, 2025). A more concerted focus to understand and 

integrate adaptive responses is needed in both statistical and structural models to better 

understand the aggregate costs of climate change (Wei & Aaheim, 2023). 

The new insights over recent years on global labour productivity and income loss due to climate 

change strengthens the case for mitigation (Glanemann et al., 2020), can help direct the focus 

of adaptation efforts, and can help anticipate loss and damage (Callahan, 2025). Some 

important commonalities have arisen across approaches. First, heat impacts on labour are a 
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critical impact channel, providing guidance for adaptation strategies. Second, advances in 

statistical approaches, particularly in accounting for further climate hazards and global effects, 

have increased estimates of the economic cost of climate change. Third, the economic costs of 

climate change vary substantially by region, sector and demographic, with a growing consensus 

that lower-income countries face the highest economic losses due to climate change, due to 

their higher dependence on climate-sensitive industries, lower adaptive capacity, and location in 

more vulnerable regions. Recognizing these vulnerabilities will allow for the design of policies 

that not only mitigate economic losses, but also foster resilient, equitable systems capable of 

withstanding future climatic shocks. This is important for global policy discussions and action 

related to climate justice. Finally, domestic economies are impacted by climate change directly 

as well as indirectly via global trade effects driven by climate impacts that occur in other parts of 

the world. In a world that is interconnected by global supply chains and already experiencing a 

growing number of climate extreme events, it becomes increasingly important to design policy 

and business strategies toward proactive supply chain resilience and international cooperation 

to mitigate the economic impacts and address transboundary risks.  

BOX 3. History of estimating the aggregate economic impacts of climate change 
Attempts to estimate the global aggregate economic impacts of climate change date back to the early 1990s 
when William Nordhaus pioneered the development of a “climate damage function” relating changes in global 
average temperature to dollars lost in the economy (Nordhaus, 1993). Within his structural climate-economic 
model (DICE), Nordhaus used a macroeconomic model component to add up estimates of damages from 
different climate impact categories, which were informed by existing studies and expert elicitation. He 
estimated a 1.33% loss in global output for 3°C of global average warming. Following estimates from DICE, 
similar cost-benefit integrated assessment models (IAMs) have found global GDP losses due to 3°C of 
warming in the range of -3% (net benefits) to 5% (e.g. Tol, 2002; Rose et al., 2017). Efforts to use more 
complex "structural", or "process-based", economic models, such as economy-wide computable general 
equilibrium (CGE) models, to estimate the economic impacts of climate change via different impact categories 
have found similar levels of global GDP loss (e.g., (Dellink et al., 2019; Kompas et al., 2018; Roson & 
Mensbrugghe, 2012; Takakura et al., 2019), though they include different subsets of climate impact channels. 
While inclusion of a more comprehensive set of impact channels in these models would increase estimates of 
aggregate economic climate impacts, inclusion of additional adaptive responses would offset some of those 
increases, and further research is needed along both of those dimensions.  

Beginning in the early 2010s, an alternative approach emerged using statistical methods to estimate the 
impacts of climate change on aggregate economic output directly from historical data. These are commonly 
referred to as “statistical”, “econometric” or "empirical" estimates. An early effort (Dell et al., 2012) used 
country-level data and found strong effects of warming on economic growth in poor nations. Subsequent 
studies with different approaches have offered new insights into the distribution and drivers of damages (Bilal 
& Känzig, 2024; Burke et al., 2015, 2018; Kahn et al., 2021; Kalkuhl & Wenz, 2020; Neal et al., 2025; Pretis et 
al., 2018). These approaches have typically found much larger estimates of the economic impacts of climate 
change compared to structural approaches, in some recent cases leading to very large impacts, for example 
of more than 30% global GDP losses with 2°C warming, and 50% with 3°C warming (Bilal & Känzig, 2024; 
Burke et al., 2015, 2018; Neal et al., 2025). 
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Insight 8. Carbon dioxide removal needs to be safely and 

significantly scaled to tackle hard-to-abate emissions and climate 

risks 

Achieving the Paris Agreement's climate objectives requires scaling up carbon dioxide removal 

(CDR) alongside deep and sustained emissions reductions (Riahi et al., 2023). However, CDR 

deployment faces risks and uncertainties. Recent integrated assessment modelling (IAM) 

evidence shows: (1) CDR scale-up is limited by sustainability constraints, implying that it may 

only be sufficient to compensate for the most hard-to-abate emissions; (2) a ‘preventive’ CDR 

capacity would help address to address overshoot and to hedge against physical climate 

uncertainties; and (3) national plans do not yet reflect a level of CDR scale-up consistent with 

the Paris Agreement temperature goal (Figure 8).  

CDR involves extracting CO₂  from the atmosphere and storing it in geological sinks, the 

biosphere, or products (S. M. Smith et al., 2024). ‘Conventional’ CDR methods (Box 4) include 

afforestation/reforestation and forest management practices and are widely used, while ‘novel’ 

CDR methods (Box 4) such as Bioenergy with Carbon Capture and Storage (BECCS), Direct Air 

Carbon Capture and Storage (DACCS), enhanced weathering, carbon mineralization, or 

biochar, are technically feasible but not yet scaled up (see Box 4 for key CDR terms). Current 

CDR deployment levels are low at 2 Gt CO₂ /yr and comprise primarily conventional CDR. 

Further, overall net emissions from land-use and forestry are about 4.4 Gt CO₂ /yr, meaning 

that emissions from deforestation and peat fires still significantly outweigh CDR in the land 

sector (P. M. Forster et al., 2024; Friedlingstein et al., 2025; S. M. Smith et al., 2024). 

A key purpose of CDR is to compensate for future “residual emissions” (Box 4), and thus allow 

countries and other sub-national or private entities to achieve net zero emissions targets by a 

given date, e.g., 2050 (Figure 8A). Residual emissions will remain because it may not be 

possible to eliminate all sources of emissions, especially those that are “hard-to-abate” (Box 4) 

due to high mitigation costs and limited substitution options, such as emissions from livestock, 

international aviation or some heavy industry (Box 4) (Edelenbosch et al., 2024; Fuhrman et al., 

2024; Lamb, Schleussner, et al., 2024). However, emissions in these sectors could be brought 

down to low levels via demand-side measures (Creutzig et al., 2022; Edelenbosch et al., 2024).  

 

The interplay between CDR and residual emissions can be observed in IAM scenarios (Ganti et 

al., 2024; Shindell & Rogelj, 2025). For example, in C2 scenarios (1.5 °C scenarios with high 

overshoot, see Box 4), CDR deployment needs reach 13 Gt CO₂ /yr averaged over 2050–2100, 

with a standard deviation of 3-4 Gt CO₂ /yr, across 81 scenarios (Shindell & Rogelj, 2025). This 

CDR balances 13 Gt CO₂ e/yr residual emissions of CO₂ , N₂ O and F-gases (Box 4) averaged 

over this period, though late in the century, CDR needs often reach levels of >15 Gt CO₂ e/yr or 

even >20 Gt CO₂ e/yr, becoming substantially larger than the residual long-lived GHG 

emissions. A slightly smaller average of 10 Gt CO₂ /yr CDR is deployed over 2050-2100 in C1 

(1.5 °C scenarios with no or limited overshoot) or C3 (2 °C with no or limited overshoot) 

scenarios.  
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While results are highly model-dependent, deployment of CDR at the levels envisioned in IAMs 

implies large sustainability risks. Conventional CDR will compete for other land uses such as 

food production and biodiversity protection, while novel CDR could entail additional, significant 

energy and material demands (Perkins et al., 2023; SEI et al., 2020) (Figure 8B). For example, 

Gidden et al. (2024) find that “more sustainable C1-C3 scenarios” which take into account these 

considerations have lower overall CDR deployment levels and more stringent and deep 

emissions reductions in the near-term. 

Given the sustainability constraints facing CDR, in order to achieve long-term temperature 

decline it is essential to minimise economy-wide emissions, such that achievable CDR capacity 

is able to compensate for ‘residual emissions’, i.e. from sectors that are truly hard-to-abate and 

serve critical needs (Figure 8C). Despite this, many IAM scenarios deploy CDR to compensate 

for emissions that are relatively easier to abate, such as the power sector where cost-effective 

alternatives are readily available (Lamb, 2024; Shindell & Rogelj, 2025). Similarly, requires an 

adjustment consistent with the limited supply of CDR (Arendt, 2024; Shindell & Rogelj, 2025). 

A second key purpose of CDR is to aim for long-term global temperature decline after overshoot 

(Reisinger et al., 2025). Commonly, exploration of CDR needs in emission pathways focuses on 

median warming outcomes (i.e., 50% chance to limit warming to 1.5°C in 2100, for example, in 

IPCC 2022). However, to comprehensively assess overshoot risks and CDR requirements for 

warming reversal, uncertainties in Earth system feedbacks must also be considered. 

Schleussner et al. (2024) establish that hundreds of gigatonnes of additional CDR, beyond 

those already allocated in emission pathways, may be required to compensate for stronger-

than-expected Earth System feedbacks. They estimate that for a 1.5°C no-overshoot pathway, 

the cumulative CDR requirements to compensate for a high warming outcome (with a 1-in-4 

chance of occurring) would be as much as 400 Gt CO2 by 2100, an approximate doubling of 

CDR needs compared to IPCC AR6 WGIII scenarios. 

Given the importance of CDR for meeting climate goals, it is increasingly important to evaluate 

national plans for implementing and scaling CDR activities. Lamb et al. (2024) explored how 

countries are planning for CDR in their Nationally Determined Contributions and Long-Term 

Low-Emission Development Strategies under the Paris Agreement. They found that countries 

plan minimal additions of 0.05 to 0.53 Gt CO₂ /yr by 2030 in their NDCs, using conventional 

CDR methods. By 2050, long-term strategies suggest additions of 1.5 to 1.9 Gt CO₂ /yr, 

potentially including novel CDR methods (Figure 8C, 8D). However, these plans fall short of the 

levels needed to limit warming to 1.5°C, even in scenarios focusing on reducing demand and 

limiting CDR dependence. This indicates an emerging "CDR gap" between country plans and 

future deployment levels in IAMs, which themselves are uncertain and are strongly conditional 

on achieving emissions reductions. The CDR gap highlights the importance of more ambitious 

commitments, early policy support for CDR, and strengthened emissions reductions, especially 

with a view to minimising residual emissions. 

Despite the critical role of CDR, there are limited dedicated deployments, finance and policies to 

support its large-scale implementation (Fuss et al., 2024; Schenuit et al., 2024). Without robust 

and comprehensive policy action on CDR in the near term, achieving the several gigatonne 
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CO₂  removal required by mid-century to limit warming to 1.5°C will be challenging (Nemet et 

al., 2023). Effective policies would include funding for research, development, and 

demonstration projects across multiple CDR pathways (RMI, 2023), as a diverse portfolio of 

CDR solutions that makes use of a wide range of resource inputs will be necessary to address 

sustainability constraints and justice concerns (Bezos Earth Fund and RMI, 2024; Maesano et 

al., 2025). Policies could also include incentives for commercial-scale deployment, as well as 

regulatory support for high-quality monitoring, reporting and verification. Further, implementing 

ambitious emissions reduction policies, alongside measures to scale up CDR, minimizing 

residual emissions from hard-to-abate sectors, and reducing energy demand would improve the 

odds of equitably and safely limiting global warming. Importantly, policies will be most effective if 

they consider regional constraints, equity, fairness and procedural justice. This means ensuring 

that the burden of CDR, including the costs of financing, but also the distribution of benefits, is 

fairly shared across societies and generations, and between countries. Responsibilities for 

sharing the burden of preventative CDR can be based on equity and fairness principles (Ganti 

et al., 2024). 

At COP28, discussions emphasized the need for global commitments to scale CDR 

technologies alongside emission reductions. An important first step is to strengthen net 

emission reduction pledges in the NDCs while increasing transparency and clarity on the role of 

CDR in meeting these targets (Lamb, Schleussner, et al., 2024). While sustainability risks 

associated with CDR deployment at scale exist and warrant careful consideration in policies and 

pledges going forward, they must also be balanced against the risks of inaction - risks that will 

disproportionately affect vulnerable populations (Pörtner et al., 2022; Romanello et al., 2024). 

Rapidly scaling up carbon dioxide removal to eventually achieve net-negative emissions will be 

critical to mitigating the severe impacts of climate change.  

 

Box 4. Definitions of key CDR terms 

Conventional CDR: Well-established methods of carbon dioxide removal that have been widely implemented 
and validated over time such as afforestation and reforestation or improved forest management, soil carbon 
sequestration, peatlands and wetlands restorations, and more. 

F-gases: Industrial chemicals containing fluorine that are also greenhouse gases.  

Novel CDR: Emerging and innovative technologies that are still in the early stages of development and 
deployment including biochar, bioenergy with carbon capture and storage (BECCS), direct air capture and 
carbon storage (DACCS), enhanced weathering and mineralization, and more. 

Residual emissions: The gross emissions that are compensated by CDR at the point of net-zero CO2. 

Hard-to-Abate: Economic activities that are difficult to mitigate, typically defined in terms of higher abatement 
costs relative to other sectors. 

Negative Emissions: removing more CO₂  through anthropogenic activities than is emitted. 

Overshoot: Temporary exceedance of global warming levels, before global temperatures are brought back 
down below through mitigation efforts and CDR technologies. 

 

Figure 8. Assessments of the emissions and CDR gap. A stylized sketch of the possible 

scenario pathways that reach net-zero CO₂  and GHG emissions. Emissions reductions and 
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carbon dioxide removal (CDR) are needed to limit warming. CDR can compensate for 

“residual emissions” and allow net negative  H  emissions to be reached to address 

overshoot; however, it will be limited by land area and other sustainability constraints (A). 

This implies the need for faster and deeper emissions reductions, reserving CDR to 

compensate only residual emissions from “critical needs”. A “preventative CDR capacity” 

may be required to address unexpected Earth system responses (B). This implies even 

stronger efforts on emissions reductions and/or potential sustainability conflicts from CDR 

deployment. As it stands, there is a gap between country proposals for scaling CDR and 

conservative levels of CDR in scenarios (C). To take into account the need for a preventative 

CDR capacity, countries would need to strengthen pledges and implementation for 

reductions and CDR scaling. (A, B, and C, based on (Lamb, Schleussner, et al., 2024).  

Insight 9. Carbon credit markets - Persistent integrity challenges 

and emerging responses 

Markets for carbon credits allow a variety of actors to generate revenue by implementing climate 

change mitigation activities, for example, those involving improved forest management or 

renewable energy deployment. Carbon credits are traded in diverse settings, including voluntary 

markets where entities or individuals purchase credits to “offset” their emissions; regulated 

markets such as emissions-trading schemes that legally require companies to reduce 

emissions, and mechanisms under the UNFCCC that allow countries to transfer emissions 

reductions (Trouwloon et al., 2023). Voluntary markets dominate this landscape, accounting for 

76% of the nearly 250 million credits retired in 2024 (World Bank, 2025a).  

Following rising demand from decarbonization ambitions in government and company policies, 

credit issuances grew from approximately 200 million in 2020 to 350 million in 2021, but have 

since dropped consistently, sliding to 290 million in 2024 (World Bank, 2025a). This drop 

reflects persistent concerns about the quality of carbon credits and growing uncertainty about 

their role in voluntary climate action (Mikolajczyk et al., 2025; Mikolajczyk & Díaz, 2024). This 

section presents new evidence of persisting challenges in voluntary and compliance markets, 

demonstrating that carbon credits are not a reliable substitute for fossil-fuel cuts, and explores 

emerging responses and unresolved issues. 

Evidence of quality issues on the supply side of carbon credit markets has accumulated. While 

the effectiveness of carbon credits relies heavily on sound decisions by individual project 

developers, recent work shows how standards and methodologies in carbon crediting 

mechanisms systematically undermine climate change mitigation effectiveness (Probst et al., 

2024). Particularly, flexibility allowing project developers to select favorable data or make 

unrealistic assumptions (Gill-Wiehl et al., 2024; Probst et al., 2024), along with issues like 

adverse selection, outdated data, or inappropriate methodologies, all undermine the integrity of 

carbon credits. An analysis of nearly one billion tons of carbon credits—around one-fifth of all 

issued—found that less than 16% represented actual emission reductions (Figure 9) (Probst et 

al., 2024). Many project types, including wind power in China and improved forest management 

in the U.S., showed no statistically significant climate benefits. Similarly, others, like cookstove 

and deforestation avoidance projects, achieved lower emission reductions than claimed (Figure 
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9). These findings highlight systemic flaws in how credits have been generated, verified, and 

sold.  

Figure 9. Results from Probst et al., 2024 analysing 972 MT CO₂  credits issued 
across the globe. Panel A (left) illustrates the emissions reductions achieved. Less than 
16% of credits are estimated to have met their emission reduction targets, while at least 
84% did not. 16% is estimated as an upper bound as not all sources of over-crediting were 
analysed by the reviewed studies in Probst et al., 2024. Panel B (right) shows a 
comparison of the Offset Achievement Ratio (OAR), which is the emission reduction likely 
achieved relative to the quantity of carbon credits issued to the projects examined in the 
reviewed studies. (Modified from Probst et al., 2024). 

Evidence of low-quality carbon credits has mostly concerned “avoidance” projects such as 

forest conservation and renewable energy. However, recent studies highlight how nature-based 

removal approaches, including afforestation and soil management, also overestimate carbon 

sequestration (Macintosh et al., 2024) and lack additionality (i.e., benefits beyond a baseline 

scenario) (Barbato & Strong, 2023). Besides, upscaling natural sinks to counterbalance 

emissions from fossil fuels faces innate limitations such as slow absorption rates, increasing 

reversal risks from wildfires (Byrne et al., 2024; Dooley et al., 2022), and the unavailability of 

suitable land (Naef et al., 2025). Despite optimistic assumptions about terrestrial absorption in 

IPCC assessed models and national decarbonization plans, there is thus considerably less 

capacity for further land-based emissions removals than previously assumed (Deprez et al., 

2024; Roebroek et al., 2023). Collectively, these recent findings suggest that nature-based 

carbon removals cannot reliably substitute for cuts in fossil-fuel emissions (Allen et al., 2025) or 

resolve the fundamental quality issues associated with avoidance credits.  

Recent work reveals that quality problems are also influenced by demand-side dynamics. 

Trencher et al. (2024) analyzed carbon credits purchased by the 20 largest corporate buyers for 

voluntary purposes between 2020 and 2023, finding that most companies have consistently 

relied on low-quality, low-cost avoidance credits with a high risk of overstating emission 

reductions. With most credits originating from aged projects that started issuing credits a 

decade or more earlier, corporate offset spending has largely failed to support new investments 

in climate mitigation.  

While carbon credits are often linked to claims about net-zero or carbon neutrality, including 

products, services and operations (Trouwloon et al., 2023), most companies do not explicate 

how they use offsets in GHG accounting (Green et al., 2024). A perennial concern is that 

reliance on offsetting could delay or weaken decarbonization if companies prioritized credit 

purchases and diverted funds away from internal decarbonization and fossil fuel phase-out 

initiatives. An earlier analysis of net-zero strategies by oil majors (Trencher et al., 2023) 

supports concerns about a “delay effect”, revealing the use of carbon credits to legitimize the 

continued production and consumption of conventional fossil fuels. Stolz & Probst (2024) find 

that while carbon credits are unlikely to eliminate internal decarbonization efforts for most 

companies, they could divert considerable funds within large polluters like airlines.  

Carbon credit projects have been continuously criticized for failing to realize or systematically 

quantify socio-economic and environmental non-carbon benefits (NCB) (Nantongo et al., 2024; 

Theresia et al., 2025). Nantongo et al. (2024) suggest that adequate project design can help 
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reduce carbon emissions while simultaneously improving social welfare. However, other studies 

underscore inherent tradeoffs between project success and equity in forest carbon initiatives, 

revealing how efforts to reduce carbon emissions disproportionately benefit more affluent or 

environmentally destructive communities (Pande, 2024), while upfront and transaction costs are 

entry barriers for small-scale projects (Roy & Bhan, 2024). Although more funding is needed to 

effectively address global deforestation, especially in tropical regions, and to secure critical non-

carbon benefits like biodiversity (Buma et al., 2024; J. P. G. Jones, 2024), these challenges 

highlight the limitations of using carbon credits as the primary funding vehicle.  

Carbon market actors are responding to these problems in multiple ways. Initiatives like the 

Integrity Council for Voluntary Carbon Markets (ICVCM) have established governance and 

quality benchmarks. Several carbon credit rating services provide customers with detailed 

project-specific insights about relative credit quality, including co-benefits (Wawrzynowicz et al., 

2023). Though impacts are still uncertain, research suggests there is growing voluntary demand 

for higher-quality credits (Berends et al., 2025). To address demand-side concerns, standard-

setters such as Science-Based Targets initiative and the Voluntary Carbon Markets Integrity 

initiative have stressed that carbon credits should not substitute direct decarbonization. This has 

bolstered ongoing calls for a paradigm shift, under which carbon credits would be used to 

provide additional “contributions” to global mitigation efforts, rather than offset emissions (L. 

Blanchard et al., 2024). Nominally, this could alleviate concerns about delay effects.  

Some governments have begun to respond with regulations and guidance. Under the EU 

Corporate Sustainability Reporting Directive (the implementation of which has now been 

delayed) (Toms et al., 2025), large companies would be required to elucidate the quality of 

carbon credits they use and explain how their use does not impede decarbonization efforts. In 

2024, the US government (under a previous administration) issued a statement endorsing 

similar principles. Similar efforts are underway in other jurisdictions. The biggest test lies ahead 

under Article 6 of the Paris Agreement, where policymakers are establishing international 

standards that could set a quality benchmark for all carbon credit markets. Paying close 

attention to the unresolved quality challenges of existing standards could help ensure the 

world’s largest nascent quasi-compliance market avoids the same pitfalls and works to 

accelerate climate action rather than undermine it. 

Insight 10. Policy mixes outperform standalone measures in 

advancing emissions reductions  

Identifying effective climate policies is critical for guiding impactful interventions. Jurisdictions 

around the world are pursuing a wide range of climate policies to reduce GHG emissions. From 

an economic perspective, the standard principle has been that one policy instrument should be 

employed to address each market failure (Tinbergen, 1952), for example a carbon price to 

internalize climate damages, R&D funding to address knowledge spillovers, and other 

incentives to overcome lock-in and network externalities (Bennear & Stavins, 2007; Stiglitz et 

al., 2023). Yet, few jurisdictions have implemented an explicit carbon price near the social cost 

of carbon (Rennert et al., 2022; World Bank, 2025b) , let alone adopted a coordinated policy mix 
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to address all market failures. In practice, the complex mix of policy instruments in place today 

has historically developed across years, successive governments, and jurisdictional levels, at 

times resulting in policy overlap with limited coordination (Howlett & Rayner, 2007; Kern et al., 

2017; Scott et al., 2023). Interactions between policies can alter their total emissions impact to 

be more, or less, than the sum of its parts (Fischer, 2010; van den Bergh et al., 2021; Ye et al., 

2024). For example, simulations of residential heating in France suggest that the combination of 

bans on gas boilers and a subsidy scheme may increase the likelihood of carbon neutrality 

while reducing overall system costs and addressing distribution issues (Escribe & Vivier, 2025). 

Complementarities between policies may arise along different pathways due to spatial, 

temporal, or functional relationships (Trencher & van der Heijden, 2019). For example, possible 

explanations for complementarities include that individual policies may have a limited scope and 

are subject to rebound effects (Gillingham et al., 2013) and thus require additional instruments 

such as pricing to overcome those (Dimanchev & Knittel, 2023; van den Bergh et al., 2021). 

Additionally, policy mixes can address a multitude of market failures (O. Blanchard et al., 2023), 

increase overall policy stringency (Meckling et al., 2015) and maximize credibility, shaping the 

expectations of consumers and investors (Dolphin et al., 2023). Identifying which instruments 

and policy combinations are most effective at contributing additional emissions reductions and 

managing trade-offs across additional policy objectives represents a rapidly developing area of 

climate policy research.  

A global, systematic ex-post evaluation of 1,500 climate policy measures implemented across 

41 countries over the last two decades shows: emission reductions on a magnitude that 

matches zero-emissions targets are possible - but need to be scaled (Stechemesser et al., 

2024). This comprehensive, empirical assessment of climate policy identified 63 large emissions 

reductions leading to an average emissions cut of 19% with total emission reductions between 

0.6 billion and 1.8 billion metric tonnes CO₂  (Stechemesser et al., 2024). These successful 

cases form a collective evidence base of country-specific experiences to learn from, and can all 

be explored in detail through a complementary online tool. The empirical evidence shows that 

carefully designed combinations of policy measures may perform better than stand-alone 

instruments in many instances (Figure 10A). A number of popular instruments - such as bans, 

building codes, energy efficiency mandates, and subsidies—are either only ever detected in 

policy mixes or have smaller average effect sizes if they are associated as stand-alone policy 

with a large emissions reduction. Comparing the effect sizes of policy mixes that combine non-

price-based instruments with taxation or reduced fossil fuel subsidies as opposed to mixes 

without pricing elements shows that pricing is often the complement that enables large emission 

reductions (Figure 10A, black bars). Taxation further stands out as the only instrument that 

causes large emission reductions as a stand-alone policy (Stechemesser et al., 2024).  

While policy combinations can outperform standalone instruments, effective mixes vary by 

sector, country context, and stage of economic development (Figure 10B) (Stechemesser et al., 

2024). Desirable policy packages must be tailored to the characteristics of targeted actors, 

technologies, and institutional capacity (Cocker, 2025). Effective implementation requires 

iterative learning and adjustment. This includes robust governance structures, systems for data 

collection, transparency, monitoring, and ongoing policy evaluation—key elements for ensuring 

that policies remain effective over time and responsive to changing conditions (Armitage et al., 
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2024; Edmondson et al., 2025). Such coordination and evaluation can be a particular challenge 

in jurisdictions where climate policy is implemented across multiple jurisdictions and scales 

(Scott et al., 2023). ‘’’ 

Figure 10. Results from Stechemesser et al. (2024) comparing effective policy mixes. 
Panel A compares the average size of the emissions reduction if a policy instrument 
was successful individually vs in a policy mix. For non-price-based policies, the black 
thick line indicates the average effect size of a mix with a given policy instrument and 
pricing instruments. Policy mixes often result in greater reduction effects compared to 
stand-alone implementations. Pricing instruments (taxation or reduced fossil fuel 
subsidies) are part of successful mixes with popular subsidy schemes and regulatory 
tools such as bans, building codes and energy efficiency mandates. Panel B provides 
further details on the variation in effective policy mixes across sectors, country contexts, 
and stages of economic development. For each circle area, the percentage indicates 
which share of successful interventions in this sector was made up by a specific 
individual policy type or a specific combination of policy types. (Redrawn from 
Stechemesser et al., 2024).  

There is no one-size-fits-all policy mix to effectively reduce GHG emissions. However, empirical 

and theoretical evidence on interaction effects of frequently used policy instruments is 

emerging, providing key lessons for policymakers. For example, Dimanchev and Knittel (2023) 

develop a framework for evaluating policy interactions and tradeoffs and demonstrate that even 

a modest carbon price can significantly enhance the cost-effectiveness of the policy mix when 

paired with a performance standard. They also show that this relationship is nonlinear, with 

diminishing marginal returns as reliance on pricing increases. The importance of pricing is 

supported by observed emissions trajectories, where Stechemesser et al. (2024) find that a key 

characteristic of successful cases of large emission reductions within developed economies is 

the integration of tax and price incentives in well-designed policy mixes. While carbon pricing 

often encounters political resistance, the use of performance standards has expanded with 

greater public support and policy durability (Meckling et al., 2017; Rhodes et al., 2021). These 

findings suggest that well-designed policy mixes can leverage the strengths of different 

instruments to balance trade-offs across multiple policy objectives.  

The type and design of policy instruments fundamentally shape how they interact with others in 

the policy mix (Perino et al., 2019). For instance, when additional policies overlap with a fixed-

quantity instrument (e.g., emissions cap), they may not achieve additional emissions reductions 

because the total quantity of allowances is unchanged (Gerlagh et al., 2023). This waterbed 

effect occurs when overlapping policies reduce demand for emissions allowances without 

altering the total limit set by the cap (Rosendahl, 2019). Therefore, fixed-quantity instruments 

must incorporate design mechanisms to dynamically adjust the cap in response to market 

conditions reflecting lower demand (Heijmans, 2023; Willner & Perino, 2022). The European 

Union Emission Trading Scheme's Market Stability Reserve is one such design innovation that 

can help mitigate the waterbed effect by automatically reducing the supply of allowances as 

other policies reduce demand (Borghesi et al., 2023; Perino et al., 2022). Without accounting for 

these interaction effects, additional policies may even increase total emissions by shifting 

emissions toward unregulated sources, sectors, and facilities (Scott, 2024). Unlike fixed-quantity 

instruments, fixed-price instruments, such as a carbon tax, maintain their price incentive 

regardless of overlapping policies. When paired with other policies, additional emissions 

reductions are more likely because the incentive from the price signal remains unchanged 
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providing a cumulative incentive for emissions reductions (Scott, 2024).  

In an increasingly complex climate policy environment, a growing body of research emphasizes 

the importance for policymakers to consider interactions and combined effects of climate 

policies to reduce GHG emissions. Climate policies do not exist in isolation and therefore cannot 

be effectively evaluated in isolation. It is important to account for interactions in the climate 

policy mix, both to promote policy combinations that generate positive synergies and to avoid 

negative or offsetting effects (van den Bergh et al., 2021). Leveraging available evidence from 

policy mixes used in practice provides an opportunity to learn from where observed structural 

breaks in emissions trajectories have occurred (see, for example, the tool: Climate Policy 

Explorer (2024)).  

Finally, climate policy mixes rarely pursue emissions reductions alone. In practice, they are 

often designed, or evolve, to achieve multiple policy objectives including cost effectiveness, 

distributional equity, innovation, energy security, and political feasibility (Edmondson et al., 

2025; Goulder & Parry, 2008; Grubb et al., 2023). The implementation of policies is further 

influenced by policy acceptance, for which policy sequencing may play a critical role. For 

example, recent evidence shows that the perceived effectiveness of prior policy-induced 

benefits is related to more public support for higher carbon prices across sectors (Linsenmeier 

et al., 2022; Meckling et al., 2017; Montfort et al., 2023). Future research is needed to extend 

the knowledge base on how policy combinations and interactions alter outcomes across multiple 

objectives and perform dynamically over time (Bhardwaj et al., 2020; Cocker, 2025; Z. Jia et al., 

2024; Scott, 2025). Designing effective combinations thus requires understanding sector-

specific interactions, managing trade-offs, and adapting instruments to jurisdictional needs—

pointing to a critical opportunity to close both the emissions gap and the emerging knowledge 

gap on policy effectiveness. 

Discussion 

The year 2025 marks a critical moment for global climate governance: ten years since the 

adoption of the Paris Agreement and the midpoint of the ‘crucial decade’ for climate action. 

Despite prior global commitments, climate indicators continue to worsen. This review paper is 

part of a scientist-led initiative intended to improve interdisciplinary understanding across the 

broad and diverse research community working on climate change, thereby equipping the 

community to produce more robust scientific advice for policymakers and government officials. 

This paper also provides the basis for the scientific messages of a science-policy report which 

will be shared with all the Party delegations to the UNFCCC ahead of COP30 in Belém.  

In this section, we synthesise and connect the ten insights, presenting them as three interlinked 

clusters of messages: Earth system processes, Severe climate impacts, and Enhancing 

mitigation. 
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Earth system processes 

The first cluster of insights is focused on advances in scientific understanding of Earth system 

processes and what these mean in terms of a possible acceleration of global warming. The first 

two insights synthesise multiple lines of evidence to provide an explanation of the geophysical 

processes underlying the record warm years of 2023 and 2024 (Insight 1), and the acceleration 

of ocean warming (Insight 2). These insights clearly convey that 2023 and 2024 were not simply 

additional gradual steps in the warming trend of the past five decades, but rather the constitute 

a significant surge, driven by a combination of long-term GHG forcing, other forcings including 

the recent change in aerosols loading, internal variability, and feedback processes leading to an 

elevated Earth energy imbalance (EEI) (P. M. Forster et al., 2024, 2025; Hodnebrog et al., 

2024; Loeb, Doelling, et al., 2024; Merchant et al., 2025; Min, 2024). Record global sea surface 

temperatures were driven by accelerated ocean heat uptake and the EEI (Merchant et al., 

2025). As the largest sink for Earth's accumulating heat, the ocean sets the pace for global 

warming, and that pace may be accelerating (Terhaar et al., 2025; von Schuckmann et al., 

2023).  

The sustained inadequacy of global mitigation efforts is now reflected in what appears to be an 

acceleration of global warming, which implies that even larger efforts will be required to 

minimise the magnitude and duration of overshoot of the +1.5°C limit goal (Bustamante et al., 

2023). Climate models face significant challenges in reconciling the 2023-2024 warming surge, 

reflecting both well-documented limitations in representing aerosol-cloud interactions and the 

extreme statistical rarity of the observed temperature anomalies (Rantanen & Laaksonen, 2024; 

Terhaar et al., 2025). While updated model experiments incorporating recent forcings are still 

emerging, the magnitude of the warming suggests that either known feedback processes are 

stronger than currently modeled, or additional mechanisms may be contributing to accelerated 

warming. 

Climate-biosphere processes also have direct impacts on global warming. We highlight the state 

of land carbon sinks, with a focus on the Northern Hemisphere (Insight 3) and the relationship 

between biodiversity loss and climate change (Insight 4). Concerns about the response of 

natural carbon sinks to additional climate change (Bustamante et al., 2023) continue to grow. 

The record temperatures and extreme weather events across multiple biomes resulted in a 

sharp decline in the global land carbon sink in 2023 (Friedlingstein et al., 2025; Ke et al., 2024). 

The effect of long-term CO2 fertilization (which enhances land sinks), is now being offset by 

intensifying disturbances (fire, drought, insect outbreaks). As a result, important changes are 

being documented, not only on tropical regions but also in high-latitude ecosystems, which in 

the past have been more stable: Boreal forests are becoming carbon sources (Byrne et al., 

2024; Virkkala et al., 2025) and permafrost regions potentially are already net GHG sources 

(Hugelius et al., 2024; Ramage et al., 2024). Furthermore, the problem extends beyond the 

terrestrial biosphere, as carbon uptake in oceans is also reduced by marine heatwaves (C. Li, 

Huang, et al., 2024). Biodiversity loss in itself can have a direct effect on carbon storage and 

sequestration (Brodie et al., 2025; Domeignoz-Horta et al., 2024; Weiskopf et al., 2024). Given 

that climate change is a primary driver of biodiversity loss, these processes might underpin a 

destabilizing feedback further amplifying climate change. The recognition of this link reinforces 
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the call for joint governance for these two interrelated global environmental crises (Boran & 

Pettorelli, 2024; Bustamante et al., 2023). In particular, meeting the targets of the Kunming-

Montreal Global Biodiversity Framework (KMGBF) can be synergistic with the Paris Agreement 

goal to limit global warming, by reducing biodiversity-loss-driven carbon debt. Together, these 

four insights reinforce that rapid GHG emissions reductions are increasingly important, as 

further delays are expected to make climate stabilisation much harder due to Earth system 

responses. 

Severe climate impacts 

This cluster of insights focuses on different types of climate-related impacts affecting water 

security, human health, livelihoods, and productivity. These impacts are already being 

observed, and adaptation efforts must be significantly upscaled to reduce their socioeconomic 

consequences. However, there are limits to adaptation (Martin et al., 2022), and in the absence 

of ambitious mitigation action these impacts will become increasingly more severe. 

● Groundwater depletion has accelerated globally (Insight 5) due to intensified agricultural 

landscapes with rising irrigation demands (Bhattarai et al., 2023; Jasechko et al., 2024), 

compounded by shifts in precipitation patterns, reduced snowmelt infiltration, and 

intensified droughts that disrupt aquifer recharge (Kuang et al., 2024).  

● The rising incidence of dengue (Childs et al., 2025; Mercy et al., 2024), driven by the 

enhanced habitat suitability for the vector mosquito due to climate change (Insight 6), 

has led to longer transmission seasons and an expanded geographical range into 

temperate regions and higher-altitude areas (Bhandari et al., 2024; Farooq et al., 2025).  

● Heat stress impacts economic growth, primarily through labour productivity loss (Insight 

7). Revised econometric estimates that incorporate nonlinear feedbacks and global 

interdependencies reveal substantially higher economic costs associated with climate 

change than previously understood (Dasgupta et al., 2024; Masuda et al., 2024).  

The acceleration of climate change described in the previous cluster (particularly Insight 1) 

would further amplify these impacts. Moreover, in some regions, these impacts are likely to 

exacerbate each other. For example, the expansion of vector-borne diseases into previously 

unaffected areas can worsen labor productivity losses (Marczell et al., 2024). Similarly, reduced 

freshwater availability affects irrigation and agricultural livelihoods (Ingrao et al., 2023), as well 

as increasing risk of gastrointestinal diseases and other public health problems (Maslin et al., 

2025). Together, these three insights shed light on critical and urgent adaptation needs as 

communities across the world confront the climate-related impacts of a planet approaching a 

+1.5°C temperature overshoot.  

Enhancing mitigation action 

The final cluster of insights focuses on three areas where scientific and technical knowledge is 

crucial for designing effective policies for more rapid emissions reductions, while minimising 
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socioeconomic and environmental trade-offs: scaling-up CDR (Insight 8), addressing integrity 

challenges in carbon credit markets (Insight 9), and designing policy mixes for effective 

emissions reductions (Insight 10). This cluster also illustrates the importance of interdisciplinary 

analysis for critically assessing different narratives that shape political debates regarding climate 

action.  

Scaling CDR is needed in all pathways compatible with the Paris Agreement, as a complement 

to deep and sustained GHG emissions reductions (Rogelj et al., 2018). Insight 8 synthesises the 

key requirements and constraints that make the safe scale-up of CDR a pressing governance 

issue. Yet, current national plans fall far short from the best available estimates of what is 

needed to achieve climate goals, creating a substantial “CDR gap” (Lamb, 2024; Lamb, Gasser, 

et al., 2024). The vast majority of CDR capacity currently deployed is land-based, but scaling 

these methods has inherent sustainability constraints, due to competition for land and other 

resources (Deprez et al., 2024; Perkins et al., 2023). While novel CDR deployment is beginning 

to grow, its appropriate role is as a complement for direct mitigation efforts, offsetting hard-to-

abate emissions, rather than substituting for emissions reductions in sectors where 

decarbonization options are readily available (Bustamante et al., 2023; Deprez et al., 2024; 

Shindell & Rogelj, 2025). In the context of the impending temperature overshoot, CDR will also 

be necessary to achieve net-negative emissions and eventually bring temperatures back within 

the Paris Agreement temperature range.  

Voluntary carbon markets (VCMs) are expanding in anticipation of stricter compliance schemes, 

such as the Internationally Transferred Mitigation Outcomes, under Article 6 of the Paris 

Agreement. However, evidence points to systemic flaws that undermine the integrity of VCMs, 

resulting in low-quality credits (Insight 9). A substantial majority of projects either lack 

additionality or overestimate carbon sequestration (Allen et al., 2025; Probst et al., 2024). 

Researchers have also raised concerns about a “delay effect” by corporate actors who rely on 

predominantly low-quality offsets instead of pursuing direct decarbonization (Mikolajczyk et al., 

2025; Stolz & Probst, 2024; Trencher et al., 2024). Furthermore, the impact of extreme weather 

events and other ecological disturbances on the stability of land carbon sinks (Insight 3), 

constitutes an additional challenge to the durability of storage in land-based CDR approaches 

(Insight 8) and the reliability of associated carbon credits (Insight 9).  

To close the ‘CDR gap’ and address the systemic integrity flaws in VCMs, comprehensive policy 

frameworks are suggested in the literature. For CDR, this includes combining regulatory 

standards, public investment, and pricing mechanisms to ensure safe and effective scaling 

(Fuss et al., 2024; Odeh et al., 2024). For VCMs, recent initiatives are emerging to improve 

integrity of carbon credits by establishing quality benchmarks, legitimate crediting and rating 

systems, and stronger regulations (J. P. G. Jones, 2024; Pande, 2024; Theresia et al., 2025). 

The latest science emphasises that both CDR and carbon credits can be appropriately 

integrated as additional contributions to mitigation efforts, rather than as substitutes for direct 

emissions reductions, a principle firmly embedded in IPCC reports (Rogelj et al., 2018). One 

concrete policy recommendation from the European Scientific Advisory Board on Climate 

Change, is to set separate legally-binding targets for emission reductions, permanent removals 

and temporary removals (ESABCC, 2025). CDR and VCM are related, but distinct and 
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complementary elements as part of comprehensive mitigation strategies, but their potential is 

best understood in the context of their limitations.  

Nearly four decades after climate policies started to be introduced, climate mitigation has 

matured as a policy field. Despite the challenges, many jurisdictions have achieved substantial 

emission reductions, with little or no evidence of substantial negative impacts on social and 

economic development (Freire-González et al., 2024; Lamb et al., 2022). Insight 10 synthesises 

key lessons stemming from ongoing experimentation with policy instruments and systematic 

analyses of “what works” (H. Pearson, 2024; Stechemesser et al., 2024). In particular, evidence 

shows that carefully designed combinations of policy measures often outperform stand-alone 

measures, resulting in larger emissions reductions, especially when these include carbon 

pricing or reduced subsidies for fossil fuels (Dimanchev & Knittel, 2023; Stechemesser et al., 

2024). Importantly, which policy mixes are most effective, vary by sector and national context 

(Cocker, 2025; Stechemesser et al., 2024). For more on this growing area of policy-relevant 

research, see What Works Climate Solutions (WWCS, 2025), a scientist-led initiative for 

international collaboration focused on systematic review and synthesis of effective climate 

policies. 

Expectations for COP30 and 2026 

Insights 1-4 highlight Earth system-level dynamics that appear beyond the control of any 

governance body; a challenge that afflicts all global or ‘planetary commons’ (Rockström et al., 

2024). The sense of detachment and lack of agency that this situation engenders is what the the 

Brazilian COP30 Presidency tried to overcome putting forward the framing and strategy of a 

Global Mutirão, a collective effort, integrating local actions into a unified global movement to 

reinvigorate multilateralism (2025a, 2025b, 2025c). To operationalise this strategy, four 

“ eadership Circles” were proposed, intended to complement formal negotiations, generate 

political momentum, enhance inclusivity, and bridge gaps in implementation. One of these 

circles is led by the UN Secretary-General and the Brazilian President, and is designed to 

complement the technical Global Stocktake (GST) with an ethical and values-based 

assessment of climate action and implementation gaps. This Global Ethical Stocktake aims to 

drive ambitious NDCs that implement GST outcomes, supporting the "UAE Consensus" to 

transition away from fossil fuels and tripling renewables (UNFCCC, 2023). 

The severity of impacts illustrated on Insights 5–7, especially in the context of looming risks of 

an accelerating dynamic suggested by Insights 1–4, underscore arguments for ambitious 

climate action raised by some Parties to the UNFCCC. On mitigation, key tasks at after COP29 

revolve around defining the structure of the ‘Ambition Cycle’, providing guidance for Parties to 

implement the GST outcomes, and defining the role and mandate of the Mitigation Work 

Programme (MWP) after 2025 [See Note S7 for a brief explanation of these terms]. These 

issues, especially the first two, are core elements of how the Paris Agreement was originally 

designed, and addressing them successfully is an important step for course correction.  

Forests and their role in stabilising the climate featured prominently in the lead-up to COP30, 

something that is well supported by Insights 3 and 4. In this regard, another outcome of the GST 
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featured prominently in the lead up to COP30 given its centrality to achieving Paris Agreement 

temperature goals is the halting and reversing deforestation and forest degradation by 2030. 

Brazil's flagship initiative is the long-announced Tropical Forests Forever Facility (TFFF), a 

mechanism to provide long-term, predictable funding for tropical forest conservation through 

payments for verified deforestation reduction and forest restoration. Moreover, The COP30 

Presidency has repeatedly emphasised its vision to "address, in a comprehensive and 

synergetic manner, the interlinked global crises of climate change and biodiversity loss in the 

broader context of achieving the [Sustainable Development  oals]” (COP30 President-

Designate, 2025d). One of the ‘ eadership Circles’ will convene former UNFCCC COP 

presidents (from COP21 to COP29) alongside current Presidents of the other Rio Conventions 

(UNCBD and UNCDD), creating a unique opportunity for advancing towards the integration of 

the Convention agendas (Bustamante et al., 2023) and a closer collaboration between the IPCC 

and IPBES (Pörtner et al., 2021, 2023).  

  

On Adaptation, COP30 saw the conclusion of work on indicators for the Global Goal on 

Adaptation (GGA). The expert groups on the UAE-Belém Work Programme refined an initial list 

of over 9,000 potential indicators down to 100 globally applicable indicators to inform decisions 

regarding adaptation progress measurement (UNFCCC, 2025b). Some of which connect 

directly to insights 5-7: 

●  roundwater availability: Under target 9(a) “Significantly reducing climate-induced water 

scarcity and enhancing climate resilience to water-related hazards”: Change in water 

stress levels over time (Indicator 9a01), Change in water-use efficiency over time 

(Indicator 9a02), and Proportion of bodies of water with good ambient water quality 

(Indicator 9a08). 

● Dengue incidence: Under target 9(c) “Attaining resilience against climate change related 

health impacts, promoting climate-resilient health services and significantly reducing 

climate-related morbidity and mortality”: Change in the incidence of climate-sensitive 

infectious diseases (Indicator 9c02) and Early Warning Systems [in health] (Indicator 

9c08) is directly tied to managing outbreaks related to climate impacts. 

● Labour productivity: Also under target 9(c): Change in the annual rate of reported heat-

related occupational injuries and deaths (Indicator 9c03). As well as indicators under 

other targets: on vulnerable labour force (Indicator 9f04), and on labour and agricultural 

income (Indicator 9b09). 

 

Other priorities on the Adaptation agenda include strengthening implementation mechanisms of 

National Adaptation Plans (NAPs), clarifying the role of the ‘Baku Adaptation Roadmap’, and 

securing adaptation finance at adequate levels. 

The COP30 Presidency aimed to position this as an "implementation COP", implying a focus on 

assessing why existing climate commitments are not being fully implemented. Discussions on 

the need for COP reforms for this new "post-negotiation phase" will continue after Belém. 
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Inevitably, climate finance will remain front and centre. At COP29, an aspirational goal was set 

to scale climate finance for developing countries to 1.3 trillion USD annually by 2035. The ‘Baku 

to Belém Roadmap’ has the purpose of defining how to achieve this goal, laying out clear 

actions, milestones, and yearly targets. Beyond finance, much of the necessary political and 

technical work to accelerate implementation has to be focused on the NDCs and NAPs. There is 

a rich knowledge base on available climate policy instruments and a wealth of lessons to design 

and successfully implement ambitious policy mixes (Insight 10). The Climate Policy Explorer 

(PIK, 2024), which helps to make the outcomes of the WWCS (2025) more accessible, is an 

example of a tool to make this knowledge more accessible for policymakers, and could be 

gainfully shared with the Parties.  

Finally, Insights 8 and 9 highlight opportunities to improve implementation and accountability: 

integrity and credibility in VCMs, and closing the ‘CDR gap’. Moving forward, developments 

around Article 4, 5 and 6 of the Paris Agreement (on Mitigation, LULUCF, and carbon markets, 

respectively) should stress the role of CDR as complementary to, rather than a substitute for, 

deep emissions cuts. Both the NDCs and corporate disclosures should transparently distinguish 

emissions reductions from actual removals, removal projects from ‘avoidance’ projects, and 

between CDR types, storage durability, and social and environmental safeguards, and 

alignment with the ongoing operationalization of Article 6. For this purpose, technical work could 

be requested to the Subsidiary Bodies (SBSTA and SBI) to develop guidance for NDCs, as well 

as protocols for MRV (Measurement, Reporting, Verification) for removals. Parties could 

formally recognise and give preference to high-integrity credits, such as those following Core 

Carbon Principles (CCPs, developed by the Integrity Council for the Voluntary Carbon Market, 

ICVCM) [See Note S7]. 

Together, these ten insights illustrate the rapidly evolving and increasingly concerning state of 

the climate, emphasising the importance of scientific evidence in informing policy and guiding a 

course correction. Advancing the alignment between scientific knowledge and decision-making 

stands out as the central priority of the 10 New Insights in Climate Science by disseminating 

recent findings and fostering trust in science to inspire more informed policy responses and 

advance climate action.  
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