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As the need for sustainable agroecosystems gains recognition, new land cover classes are increasingly emerging
in temperate landscapes. Process-based ecological models are often the most suitable initial option for predicting
the biodiversity outcomes of such novel systems, particularly when implementation and large-scale baseline data
remain scarce. However, there are no accepted guidelines for integrating new land covers into these models.

Using UK silvoarable alley-cropping as a case study, we explore how to introduce this emerging land cover into
the established process-based pollinator model, poll4pop. We demonstrate several parameterisation approaches,
including proxy land covers, field data, expert opinion and Bayesian calibration. We also provide the first field-
scale and seasonally-resolved evaluation of poll4pop, using pollinator abundance data collected at three UK
silvoarable sites.

Our results show that models using proxy land cover parameters can capture spatial trends in observed bee
abundance where suitable proxies exist, but that predictions are improved by integrating field-derived floral
cover. Neither bespoke, expert-derived, land cover attractiveness scores nor Bayesian-calibrated scores improved
our model fit, although they did reveal valuable insights into model parameter sensitivity. Overall, poll4pop
effectively reproduced observed fine-scale spatial variation in bumblebee and spring-flying solitary bee foraging
activity in silvoarable systems. However, seasonal differences between communities resulted in reduced model-
predictive performance for summer-flying solitary bees.

We demonstrate that poll4pop is suitable for modelling fine-scale pollinator abundance in complex mixed-
cropping systems. We also present a practical framework for integrating new land cover classes into process-
based models which can guide future modelling of emerging land use systems.

of their biodiversity impacts, which remains challenging over large
scales.

1. Introduction

Growing food demands (van Dijk et al., 2021), and the environ-
mental consequences of conventional intensive agriculture (FAO, 2023;
IPCC, 2019), have driven demand for alternative approaches such as
organic agriculture, diversified farming, and ‘ecological intensification’
(Gamage et al., 2023; Jones et al., 2023; Garibaldi et al., 2019; Bom-
marco et al., 2013). As sustainable land uses are increasingly incenti-
vised, we must find ways to assess their contribution towards
environmental goals and identify potential unintended consequences
(Staley et al., 2021). This requires continued prediction and monitoring

Here, we consider agroforestry, an increasingly-incentivised land use
under EU and UK policy (EU Cap Network, 2023; DEFRA, 2023), which
shows potential for ecological intensification (International Assessment
of Agricultural Knowledge, Science, and Technology for Development,
2009; Tsonkova et al., 2012). Specifically, we investigate UK silvoarable
‘alley-cropping’ systems. In alley-cropping, rows of trees are planted
among ‘alleys’ of interspersed crop. Common tree species include or-
chard fruits, willow or poplar short rotation coppice, and timber species
such as beech or oak (Image et al., 2023; Staton et al., 2024). Generally,
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understories are sown with wildflower or grass mixes or kept bare
through mulching and herbicide (Burgess et al., 2003; Staton et al.,
2021). While alley-cropping is not widely practised in the UK (den
Herder et al., 2017), the current goal is for 10 % of UK arable land to be
converted to silvoarable agroforestry by 2050 (Department for Energy
Security and Net Zero, 2023; Woodland Trust, 2022) to support net-zero
and biodiversity targets.

Such emerging regenerative land uses are especially important for
wild pollinators - particularly bees - which are a key conservation pri-
ority at both national and global scales (DEFRA, 2014; FAO, 2018; Potts
et al., 2024) due to their crucial role in food production and evidence of
declines in the temperate zone and beyond (Potts et al., 2016; Zattara &
Aizen, 2021). Accordingly, predicting how novel or previously-rare land
management approaches will affect wild pollinator populations (Image
et al., 2023) in advance of their widespread implementation is crucial.
This can help to inform future policy, guide management recommen-
dations, identify implications for different pollinator groups and support
multifunctional landscape optimisation procedures (Knight et al., 2024).
However, empirical investigations regarding emerging land classes are
often limited by a lack of available survey sites and pre-existing data
(Kletty et al., 2023). In this case, computational approaches are useful,
and may aid proactive, rather than reactive, decision-making (Wintle
et al., 2011).

Process-based models are particularly useful for simulating biodi-
versity responses in new land cover classes which lack sufficient baseline
data to support correlative species distribution models (Briscoe et al.,
2019). These predict species abundance by drawing on a wide range of
knowledge sources to mechanistically simulate ecological processes
(Gardner et al., 2024; Zurell et al., 2022). Many such models exist,
including ALMass (Topping et al., 2003), inVEST® (Natural Capital
Project, 2005), the wider *4pop family (Gardner et al., 2024), and
individual-based models such as Bumble-BEEHAVE (Becher et al., 2018)
and RangeShifter (Bocedi et al., 2021). These all rely on land cover input
data and all face similar choices when incorporating a new land cover
type. Although the specific parameterisation requirements will vary
among models, the underlying challenge remains the same: how should
we derive the required parameters for the new land cover type? Pa-
rameters could come from various sources, including expert opinion,
published estimates, existing or newly-collected data, or model cali-
bration (Kopec et al., 2010; Koh et al., 2016). It may be unclear which
option to choose when considering emerging land cover types: for
example, there may be few experts with prior experience of the systems,
limited pre-existing data, or few established survey sites from which to
collect new data. Therefore, it is important to assess which parameter-
isation methods maximise current model performance whilst consid-
ering feasibility, efficiency, pragmatism, and future robustness.

Using UK silvoarable alley-cropping as a case study, we demonstrate
how to incorporate a novel land cover class into an existing process-
based model to assess biodiversity impacts. Our model, poll4pop, is a
validated, spatially-explicit framework for predicting relative abun-
dance of wild bees across landscapes (Gardner et al., 2020) and has
already been used to evaluate diverse land-use interventions (e.g.,
Blaydes et al., 2022; Gardner et al., 2021; Image et al., 2022). Currently,
alley-cropping is not parameterised within poll4pop nor represented in
major UK and European land cover datasets (Morton et al., 2024; Eu-
ropean Union’s Copernicus Land Monitoring Service information 2020).
Its composite structure - trees, understory, crop, and their varied man-
agement - makes representation in such models difficult (Laub et al.,
2025). Previous studies have addressed this by simplifying system
configuration or substituting already-parameterised land classes into
models (e.g., using orchards to approximate fruit alley-cropping; Gra-
ham & Nassauer, 2019; Image et al., 2023). However, such substitutions
may misrepresent alley-cropping configuration at scales relevant to
pollinators, and may not accurately represent the structural and habitat
resources provided to pollinators, thereby affecting predictions (Iles
et al., 2018; Krimmer et al., 2019).
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In our investigation, we develop the first representation of orchard-
fruit silvoarable alley-cropping systems - an expanding, policy-relevant
land cover in the UK - within the poll4pop model. In so doing, we
compare the available methods of parameterising novel land covers
within pre-existing, process-based ecological models. We evaluate five
approaches: i) assembling proxy parameters from similar, already-
parameterised land cover classes; ii) incorporating corrections to
these, and other modelled land covers, based on empirical field mea-
surements; iii) gathering more expert opinion to supplement these field
measurements; and finally, obtaining parameter values by calibrating to
match observed bee abundances, either using iv) informed or v) unin-
formed priors. We use detailed field data gathered in three UK alley-
cropping systems to evaluate the model’s overall ability to predict
spatial trends in the abundance of bumblebees and solitary bees when
system components are mapped at fine resolution (3 m). Subsequently,
we recommend land cover parameters for alley-cropping systems in
future poll4pop modelling and provide overall recommendations for
approaching the introduction of new land cover classes into process-
based models in general. Simultaneously, we provide the first sub-
field-scale, seasonally-resolved validation exercise of the poll4pop
model, evaluating its ability to predict fine-scale spatial variation in
foraging abundance of wild bees in complex, heterogeneous land use
systems.

2. Materials and methods
2.1. Study area

We surveyed pollinating insects and floral cover monthly between
March-August 2023 at three organic farms containing apple (Malus
domestica) alley-cropping systems in the East Midlands and East of En-
gland. This provided empirical data for model parameterisation, cali-
bration and evaluation. All sites featured similar arrangements of apple
trees, understories sown with flower mixes, and non-pollinator depen-
dent cereals in their crop alleys. See Tables A1 and A2 for further site
information and sample sizes.

2.2. Pollinator and flora sampling

During each survey visit, we recorded foraging bumblebee and sol-
itary bee abundance along nine 50 m transects at each site - three in each
of the tree rows, crop alleys, and field edges (Fig. Al). Two additional
transects were established at Site 1 to capture an area of flowering clover
ley (full details in A.1.1). After each transect walk, we estimated overall
and species-specific percentage cover of flowering plants in three 0.5 x
0.5 m quadrats placed at the beginning, middle and end of each transect.

We also collected pollinator community data to assess potential
changes in the observed bee species and trait composition between
seasons, and resulting differences in model performance. On each site
visit, a total of 16 pan traps were left for 6-8 hours (Potts et al., 2021),
with specimens later identified to species level (further details in A.1.2).
These data were not used in model parameterisation, as the highly
attractive nature of pan traps creates estimation biases, particularly for
abundance (Potts et al., 2024, 2025).

2.3. Land cover mapping

Land cover and crop cover rasters surrounding each survey site (10 x
10 km; 3 m resolution) were obtained from UK Centre for Ecology and
Hydrology Land Cover, Land Cover Plus, and UK Woody Linear Feature
spatial data (UKCEH, 2016, 2021, 2023). From these, arable field
margin and woodland boundary edge feature maps were subsequently
generated, following Gardner et al., 2020.

Additionally, we mapped all habitats at each survey site in the field
and plotted them in QGIS (QGIS.org, 2025) in accordance with typical
configurations at our field sites. Separate rasters were exported at 3 m



E. Knight et al.

resolution for (i) ‘general’ habitat (e.g., field margins, scrub, ditches),
(ii) silvoarable understories, and (iii) silvoarable fruit trees, to allow
different parameter assignments.

2.4. Poll4pop model description

Poll4pop is described in full in Haussler et al. (2017), which includes
the mathematical formulae, and Gardner et al. (2020). Here, we provide
a concise summary of the input and output data, and the foraging,
dispersal and population growth simulation processes.

2.4.1. Input land cover data

Poll4pop requires a rasterised land cover map (e.g., with pixel values
indicating the locations of cereal, woodland, etc.) and edge feature maps
as inputs. Edge features are those generally smaller than the pixel res-
olution - e.g., hedgerows, arable margins - and are assigned to a pro-
portion of the land cover pixel they occupy according to the ‘edge-
feature-width’ parameters defined by the modeller. These rasters are
typically generated from remote-sensed data, but we also augment these
in this study to include more detailed, manually digitised features pre-
sent at our survey sites (see 2.3).

2.4.2. Land cover parameters
Three parameters are assigned to each land cover class to simulate
how pollinator groups may use them:

1) Floral cover (0-100): the amount of floral resource it provides,
varying seasonally (i.e., spring or summer).

2) Foraging attractiveness (0-20): its attractiveness as a foraging
resource to each pollinator guild.

3) Nesting attractiveness (0-1): its attractiveness as a nesting location to
each pollinator guild.

Values for these three sets of scores have previously been assigned
using expert opinion to 35 common European land classes for four bee
guilds: ground-nesting bumblebees, tree-nesting bumblebees, ground-
nesting solitary bees and cavity-nesting solitary bees (Gardner et al.,
2020). Attractiveness parameter scales differ because foraging attrac-
tiveness operates in arbitrary units and thus remains on its original,
expert-elicited scale, whereas nesting attractiveness is rescaled between
0-1 to enable meaningful multiplication with the input maximum nest
density (Gardner et al., 2020; Image et al., 2022).

2.4.3. Other input parameters

The model also takes in parameters specifying maximum nest den-
sity, foraging range, dispersal range and population growth for each
guild. We use the values given in Gardner et al. (2020), derived from
literature data.

2.4.4. Process overview

Using the above information, the model initially generates two out-
puts: a) a nesting resources map for each guild - derived from the
product of the nesting attractiveness score of each land cover, pixel size,
and the specified ‘maximum nest density’; and b) seasonal floral
resource maps for each guild - derived from the product of the floral
cover score for each season and foraging attractiveness score of the land
cover type in each pixel.

The model then randomly allocates nests across the landscape using
a Poisson distribution defined by the nesting resource value assigned to
each pixel. These nests become the source of ‘central-place foraging’,
where the typical foraging distance from the nest (i.e., kernel size) is
determined by the guild-specific mean foraging distance parameter. The
amount of resource gathered by the nest is calculated using
attractiveness-weighted distance decay kernels. Thus, the predicted
relative abundance of foraging bees visiting a pixel from one nest is a
function of the pixel’s proximity to the nest, its floral resource value, and
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the number of foraging bees sent out from that nest.

The amount of resource gathered is combined with the input growth
parameters (e.g., maximum number of workers produced per queen;
median and steepness of a lognormal growth function) to determine
both the number of workers produced at the end of spring for social
guilds (i.e., bumblebees), and reproductive females produced at the end
of the active period for all guilds. The model assumes an active period to
be one season for solitary bees, and three seasons for bumblebees,
typically interpreted as early-spring, late-spring, and summer (Gardner
et al, 2021). New reproductive females disperse according to a
nesting-attractiveness-weighted distance decay kernel, which limits the
number of nests established per pixel in the following time period by the
maximum nest density parameter and the amount of nesting resource
offered by the pixel.

The model then outputs seasonal heat maps of predicted relative
abundance of foraging bees (hereafter ‘predicted foraging abundance’)
across the landscape for each specified bee guild by summing the pre-
dicted foraging abundance from all nests to each pixel.

2.5. Parameterisation and validation workflow

All modelling and analyses were completed in R version 4.2.2 (R
Core Team, 2022). We evaluated five approaches for parameterising two
complementary elements of silvoarable alley-cropping systems - trees
and understories - in the poll4pop model by assessing the relationship
between observed and poll4pop-predicted foraging bee abundance in
the 50 m transects conducted at each site. This workflow is summarised
in Fig. 1 and parameterisation approaches are described in more detail
below. Parameters were assumed to correspond specifically to orchard
fruit trees and flower-sown understory types because these were present
in all surveyed systems. They were only assigned for bee guilds observed
during field surveys, i.e., ground-nesting bumblebees and
ground-nesting solitary bees.

2.5.1. Parameterisation approaches

Our five approaches for assigning floral cover, floral attractiveness,
and nesting attractiveness scores to the new ‘silvoarable tree’ and ‘sil-
voarable understory’ land cover types are summarised in Table 1. Here,
proxy land cover parameters serve as the baseline method for inte-
grating new land classes into poll4pop. The additional approaches pre-
sented are intended as diagnostic refinements. Their purpose is to assess
whether proxy values are sufficient, identify which parameters most
influence model-data agreement, and determine whether empirical or
expert information can meaningfully improve predictions. Each
approach is discussed in more detail below.

2.5.1.1. Approach 1: proxy land covers. In Approach 1 we imitated the
methodology of previous studies (e.g., Image et al., 2023) by using
already-parameterised land covers as proxies for the components of
silvoarable systems. Following Image et al., we represented silvoarable
fruit trees using ‘orchard’ parameters, with an additional understory
represented by ‘unimproved meadow’, chosen due to its high floral
cover ranking among poll4pop land covers. Proxy land covers were
assumed to be conventionally managed during the original model
parameterisation process.

2.5.1.2. Approach 2: field-derived floral cover. Accounting for site-level
variation in floral cover may help poll4pop to better simulate varia-
tion in observed bee abundance. In Approach 2, we replaced our proxy
floral cover scores with scores derived from site-, season- and land cover-
specific floral cover data collected in the field (see section 2.2). This was
applied to all land covers on which transect surveys were conducted, i.e.,
not only the newly-parameterised silvoarable understories, but also
other elements constituting the silvoarable system, including alley
crops, grassy field margins, and the area of clover ley at Site 1.
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Fig. 1. The process of parameterising and evaluating silvoarable trees and understories as new land cover classes in the poll4pop model, using five proposed

parameterisation approaches.

Floral cover for the silvoarable fruit trees was taken from the original
poll4pop orchard expert-opinion scores because peak apple bloom (a
~2-week period) occurred and finished between our late-April and late-
May field visits. Although peak bloom dates were known, on-site floral-
resource measurements would have underestimated cover. The original
poll4pop orchard floral-cover parameter is normally weighted 90:10 for
early-spring:late-spring (March:mid-April vs. mid-April:May) for bum-
blebees, but we reversed this weighting to match the observed flowering
period at our sites. This ensured the trees’ peak flowering was accurately
represented in the model, despite floral cover not being derived directly
from in-field measurements.

See A.2 for more details. Foraging and nesting attractiveness scores
were kept fixed at the proxy values used in Approach 1.

2.5.1.3. Approach 3: bespoke attractiveness scores. Following the orig-
inal poll4pop procedure, Approach 3 used expert-elicited foraging and
nesting attractiveness scores for silvoarable alley-cropping components.
Six UK experts in pollinator ecology and agroforestry scored the
attractiveness of tree and understory components on a six-point ‘none-
very high’ scale, plus a matching confidence score. These qualitative
scores were quantified using the original model protocol (Gardner et al.,
2020; Image et al., 2022), and beta distributions were derived for each
parameter for input to the model (see Section A.2.2). Field-derived
floral-cover scores from Approach 2 were retained because model out-
puts showed they reduced site-level variation, providing a more stable

baseline for comparing parameterisation approaches.

2.5.1.4. Approaches 4 and 5: Bayesian calibration. We replaced the
Approximate Bayesian Computation-like routine used by Gardner et al.
(2020) in the original model calibration with a fully Bayesian MCMC
calibration that samples directly from the posterior, allowing uncer-
tainty from expert opinion and the small number of field sites to be
propagated through the model and reducing the risk of site-specific
over-tuning (Van Oijen et al., 2005). This was completed using the
“BayesianTools” R package (Hartig et al., 2023), with three DEzs chains
of length 10,000. Because of run-time limitations, calibration was con-
ducted only for bumblebees, not solitary bees. In Approach 4, informed
priors were taken from the expert-derived beta distributions of
Approach 3. The likelihood ran poll4pop with candidate parameters
then drew from a normal distribution informed by the difference be-
tween observed and predicted foraging abundance at exact transect lo-
cations, scaled using z-scores and assuming a Gaussian distribution of
errors (Van Oijen et al., 2005). Field-derived floral-cover scores from
Approach 2 were again used. We added a ‘scaling factor’ to adjust the
Gaussian error width, accounting for systematic variation in observa-
tions (Van Oijen, 2008). For comparison, Approach 5 repeated the
calibration using uniform, uninformed priors.

After removing a 1,000-iteration burn-in from each chain, conver-
gence was checked visually and using Gelman-Rubin diagnostics (values
~1 acceptable; >1.1 non-converged; Gelman et al., 2004). Parameter
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Table 1

Source of poll4pop floral cover and floral/nesting attractiveness parameters of
the new ‘silvoarable tree’ and ‘silvoarable understory’ land classes in each model
parameterisation approach. In ‘proxy’ approaches, silvoarable trees are repre-
sented by default Poll4pop ‘orchard’ parameters, and the understories are rep-
resented by ‘unimproved meadow’ parameters, which were derived from expert
opinion in the original model parameterisation (Gardner et al., 2020). Attrac-
tiveness parameters were determined separately for ground-nesting bumblebees
and ground-nesting solitary bees for each approach.

Parameterisation Parameter Source Data Source(s)
A h
pproac Floral cover Floral/nesting
attractiveness
1) Proxy Land Existing poll4pop Existing poll4pop

Covers

2) Field-Derived

Floral Cover (Site-

Specific)

3) Bespoke
Attractiveness
Scores

4) Bayesian
Calibration
(Informed)

5) Bayesian
Calibration
(Uninformed)

expert scores for
orchards and
unimproved
meadow
Field-collected
floral cover data

Field-collected
floral cover data

Field-collected
floral cover data

Field-collected
floral cover data

expert scores for
orchards and
unimproved
meadow
Existing poll4pop
expert scores for
orchards and
unimproved
meadow
Newly-elicited
expert scores for
silvoarable trees
and understories
Bayesian
calibration using
expert-informed
priors from
Approach 3
Bayesian
calibration using
uninformed priors

ok

tData sources newly collected for this paper to parameterise silvoarable trees
and understories in poll4pop, additional to the default parameters of the original

model. *: Field-derived floral cover data. & = bespoke, expert-elicited land

cover attractiveness scores. ¥ = In-field pollinator abundance data collected via
transects.

correlations (|r| > 0.7 flagged as major) were assessed using the sum-
mary() function in “BayesianTools”. Final beta parameter distributions
for poll4dpop were extracted using the “fitdistrplus” package
(Delignette-Muller et al., 2025). Section A.2.3 provides further details
on the calibration process.

2.5.2. Model evaluation

For each parameter set, poll4pop was run 100 times with a random
seed, using parameter sampling (See A.2.2). The model was run on 10 x
10 km landscapes surrounding each study site to fully capture pollinator
movement and dispersal ranges. During runs, the field-mapped habitat
and silvoarable understory rasters were overlaid on UKCEH 2023 land
cover maps, and silvoarable tree rasters were included as a 1 m
edge-feature layer. 100 output predicted foraging abundance rasters
were output for each parameterisation approach, which we averaged
then extracted total predicted abundance in the 3 m? pixels matching the
exact transect locations for each site, season, and pollinator guild. This
enabled a fine-scale, spatio-temporal comparison of spatial trends in
observed vs predicted foraging abundance across the sample of tran-
sects. We tested trends because poll4pop outputs relative foraging
abundance, whereas field data represent absolute counts; direct evalu-
ations of accuracy or reliability is therefore not possible.

In total, 161 transects were assessed: 74 in spring (March-May) and
87 in summer (June-August). For bumblebees, early- and late-spring
predicted foraging abundance rasters were summed to produce a total
spring prediction. Solitary bees were analysed separately by season
because poll4pop treats spring and summer populations as independent
(i.e., it does not account for bivoltinism), and because solitary-bee
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community composition from pan traps differed markedly between
seasons. Bumblebees, however, were analysed jointly across seasons
since poll4pop simulates a single, continuous population and their
functional identity is not expected to vary substantially between spring
and summer.

Observed and predicted foraging abundance for each 50 m transect
were compared using GLMs (“lme4”; Bates et al., 2025). Spring solitary
bees were modelled with a Poisson distribution; bumblebees and sum-
mer solitary bees were overdispersed, so negative binomial models were
fitted (“MASS”; Ripley et al., 2025). Spatial variables were omitted
because poll4pop already accounts for spatial heterogeneity. One
weather variable (recorded at the start of each transect) was included
per guild, selected via initial correlation checks (see A.3.1 for model
variable choices). Model assumptions were checked using “DHARMA”
(Hartig et al., 2024).

Starting models were:

Bumblebees: Observed Abundance ~ Predicted Abundance = Site +

Temperature
Solitary bees: Observed Abundance ~ Predicted Abundance + Site +
Wind

We then performed stepwise regression to remove non-significant
terms and obtain the most parsimonious models. Final variables for
each guild and parameter set are listed in Table A5. Predictive perfor-
mance (agreement between spatial trends in observed vs predicted
abundance) was evaluated using GLM beta values and significance
levels, and model fit was compared using AICc (“MuMIn”; Barton,
2024). We also assessed observed-predicted relationships using partial
correlations: both variables were regressed against their significant fixed
effects, and Spearman’s rank correlation was computed between the
resulting residuals.

To investigate why the model performance for solitary bees differed
according to season, we compared the foraging range of spring and
summer solitary bee species found in pan traps, using a Gamma GLM
including site as a fixed effect. Foraging ranges were calculated from
intertegular distance using formulae taken from Greenleaf et al. (2007;
Roberts, 2025, personal communication).

3. Results

3.1. Approaches 1 & 2: proxy & field-derived floral cover parameter
values

There was high site-level variation in the floral cover of surveyed
habitats (Fig. 2). The field-derived floral cover parameters differed much
more from their poll4pop defaults in summer than in spring. The default
floral cover parameter values supplied with the poll4pop model for
cereal, grassy field margins and legume ley typically underpredicted the
actual floral cover measured in these land cover types in summer,
consistent with the fact that the proxy parameters were assigned
assuming conventional management, whereas the data for field-derived
parameters was collected in organic systems. Conversely, the proxy
floral cover parameter values used for silvoarable understories (i.e.,
those corresponding to unimproved meadow) predominantly over-
predicted floral cover at all sites in both seasons. Note that x and y values
for silvoarable trees in Fig. 2 are approximately the same for all sites
because we retained the default scores for orchards due to absence of
replacement floral survey data (see section 2.5.1 for rationale).

3.2. Approach 3: bespoke attractiveness parameter values

Newly-elicited expert scores suggested that the foraging attractive-
ness of silvoarable trees would be roughly similar to that of orchards
(their land cover proxy) for both bumblebees and solitary bees (Fig. 3).
This resulted in large overlap in the 95 % confidence interval of the
parameter values sampled from each distribution in each poll4pop
model run.
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In contrast, the expert score distributions for understory foraging
attractiveness, and the nesting attractiveness of both silvoarable com-
ponents (trees and understory), were less similar to their land cover
proxy for both pollinator guilds. The surveyed experts predicted that the
foraging attractiveness and nesting attractiveness of silvoarable un-
derstories would be higher than their proxy land cover, unimproved
meadow, and that the nesting attractiveness of the silvoarable trees
would be lower than their proxy, orchards. These subsequently had no
overlap in their 95 % confidence intervals.

3.3. Approaches 4 & 5: Bayesian-calibrated parameter values

The Gelman-Rubin multivariate diagnostic indicated convergence
for all chains in both the informed (R=1.025) and uninformed calibra-
tions (R=1.019). There were no major correlations between any pa-
rameters, suggesting adequate mixing of chains and independence in
posterior sampling.

The marginal posterior distributions were almost identical to their
priors for three out of four parameters (foraging and nesting attrac-
tiveness of trees; nesting attractiveness of understories) in both the
informed and uninformed calibrations (Fig. 4), suggesting limited model
sensitivity to these parameters. In contrast, the understory foraging
attractiveness posterior deviated substantially from its prior, with a peak
density of around 12.5 in the informed calibration and 5.5 in the un-
informed calibration - both lower than the expert-informed prior mode
of 17. This demonstrates that the empirical bee abundance data used
was informative for this parameter during calibration and also suggests
that the bespoke expert scores overpredicted understory foraging
attractiveness. Trace plots and posterior summary statistics can be found
in B.1.

3.4. Comparing model performance

Table 2 and Fig. 5 indicate that in every parameterisation approach,
there was a significant positive relationship between observed and
predicted foraging abundance of bumblebees and of spring solitary bees.
This was not true of summer solitary bees for any parameterisation
approach. The positive relationship was more statistically significant for

bumblebees than for spring solitary bees across all approaches, indi-
cating a stronger correspondence between observed and predicted pat-
terns for bumblebees.

When site-specific floral cover was incorporated compared to when
default floral cover scores and proxy land covers were used, model fit
(AICc) improved significantly (i.e., decreased by >2) and the positive
relationship between observed and predicted abundance (partial cor-
relation) increased and became more significant for bumblebees. Addi-
tionally, the interaction between site and predicted foraging abundance
became non-significant in our bumblebee GLMs, showing that signifi-
cant site-level variation in predictive ability was eliminated when site-
specific floral cover data were included. Conversely, AICc increased
significantly for spring solitary bees when site-level floral cover data was
included, and partial correlation decreased.

Integrating bespoke attractiveness scores had no meaningful effect
on any metric of model performance for any bee guild in any season
compared to using proxy attractiveness scores. Similarly, including
attractiveness scores for bumblebees derived from either informed or
uninformed Bayesian calibrations had no meaningful effect on any
metric of model performance. We highlight that we evaluated model
performance using the parameters derived in our Bayesian calibrations
with the same data that was used for calibration. This was because all
observed data were used in the calibration process due to the small
sample size and to maintain consistency with all relevant information at
the time of parameterisation (Philips et al., 2004). This had the potential
to lead to overfitting, and hence conclusions about model outputs should
be approached with caution; however, we present these results to aid
discussion of model sensitivity to these parameters and of the Bayesian
calibration process.

In summary, using site-specific floral cover improved the model fit
and correlation between poll4pop predicted abundance and observed
abundance for bumblebees but not for solitary bees (in fact, the reverse
was true for spring-flying solitary bees). None of the other approaches
led to any additional meaningful improvements.

3.5. Seasonal differences observed in solitary bee communities

The proportion of Andrenidae found in pan traps was much higher in
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spring (56 %) than summer (9 %) at all sites (Fig. 6A), whereas the
summer communities were more dominated by smaller Lasioglossum
species (18 % in spring and 74 % in summer). The expected foraging
range of the solitary bee species found in pan traps in summer was
consequently significantly shorter than of those found in spring (Fig. 6B;
Gamma GLM; p < 0.01, df=66), with no significant influence of site on
this effect. We attempted re-running poll4pop simulations for solitary
bees with their model-defined foraging range adapted to reflect these
differences, but this did not improve model-data agreement for the
summer solitary bees (See Fig. B4 and Table B2). Polylectic species
dominated in both seasons (Fig. B5). The overall species richness of
flowering plants found at transect locations was much higher in summer
than spring (Fig. 6C). In particular, more flowering species of Asteraceae
were found in Summer at each survey site. Note that bee abundance
estimates from pan traps are dependent on local floral density
(O’ Connor et al., 2019; Potts et al., 2025) and in fact we found no overall
difference in solitary bee abundance between spring and summer in our
transect observations (Fig. B6).

4. Discussion
4.1. Evaluation of general model performance

By realistically representing silvoarable alley-cropping components
(tree rows, understory and crop) in our digital input landscapes, we were
able to capture spatial trends in fine-scale foraging abundance of bum-
blebees and spring-flying solitary bees inside alley-cropping fields using
poll4pop, as shown by a significant positive linear relationship between
observed and predicted foraging abundance in our GLMs, supported by
significant partial correlations for both guilds (Fig. 5; Table 2). This
ability to model variation in abundance at fine-scale resolution (i.e., 50
m transects) is particularly important for complex cropping systems with
multiple elements such as alley-cropping systems. This is because
management options such as tree species, understory management, alley
width, etc. can be extremely variable and likely influence the way spe-
cies use these systems for nesting and foraging. This is also useful when
considering other forms of multi-species farming such as relay inter-
cropping or row intercropping, which are gaining popularity alongside
recognition of the need for ecological intensification (Amossé et al.,
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2014; Schulz et al., 2020; van Oort et al., 2020).

In contrast, none of the poll4pop parameterisations we tested were
successful at predicting spatial trends in abundance of summer solitary
bee species in these systems. Whilst there are 25 species of bumblebee in
the UK, there are more than 100 species of ground-nesting solitary bees,
over 50 of which are key crop pollinators (Falk, 2015; Hutchinson et al.,
2021). Therefore, condensing this large and varied group into one set of
model parameters may result in overgeneralisations which decrease
model predictive ability. Furthermore, differences in guild species
composition between seasons may affect modelling outcomes (Gardner
et al., 2020). Whilst parameterising species-level or finer guild models
would require new expert scorings and plant-species-level habitat maps
beyond the scope of this study, we ran a post-hoc trial in which we
calculated a shorter mean foraging range based on size of the solitary
bee species found in summer compared to spring at each site (Fig. 6B).
However, re-running the model whilst accounting for this shorter
foraging range did not improve model performance for solitary bees in
summer (Fig. B4), suggesting that this was not the mechanism behind
decreased model predictive ability in this season.

Another potential explanation is that small-bodied bees are generally
more difficult to detect on transects, so they may be under-represented
in the observational data used to check model predictions (Hutchinson
et al., 2022). This human error is difficult to correct for: pan traps
overcome the detection problem but they are unreliable for assessing
abundance due to the influence of surrounding floral availability on
catches (O’Connor et al., 2019; Potts et al., 2025). Alternatively, the
seasonal mismatch may reflect differences in the composition and dis-
tribution of floral resource abundance among elements of the system. In
spring, a single dominant resource - apple blossom - provides a
concentrated and spatially distinct foraging target (Fig. 2: Silvoarable
Trees). This aligns with the higher proportion of Andrenids recorded in
spring, which are key apple pollinators (Burns & Stanley, 2022), and

may explain the higher model performance observed in this season. In
summer, however, floral resources are more abundant, species-rich, and
distributed among the system in the understories, crops, and field
margins (Fig. 2; Fig. 6C). This diffuse and taxonomically-mixed floral
community is harder for the model to represent accurately. If only a
subset of these flowers is actually useable to summer solitary bees -
particularly species with specialist dietary or morphological re-
quirements (Garibaldi et al., 2015) - then the model may overestimate
the value of habitats containing many irrelevant flowers, or underesti-
mate habitats containing fewer but more suitable resources. This pro-
vides a potential explanation for reduced predictive performance in
summer.

Our results demonstrate the importance of evaluating model per-
formance in novel systems against real-world data. They also offer the
first seasonally-resolved evaluation of the poll4pop model, showing the
value of considering how the communities of modelled taxa may differ
throughout the year in relation to the resources available. Future work
could address the underperformance for summer-flying solitaries by
parameterising these to the genus- rather than guild-level, or alterna-
tively by specified functional groups, with the choice of groupings
refined by the study intention, e.g., key crop pollinators or species of
conservation interest. We suggest that the solitary bee parameters
determined in this study are assumed to represent typical or common
Andrenidae species, which were the most predominant genus found in
spring, when model predictive performance was highest. Overall, our
results show that poll4pop is nonetheless suitable for annual-level
modelling of UK crop pollination service at fine scales because many
UK pollinator-dependent crops flower in spring - e.g., apples, oilseed
rape, field beans - when the model best captured spatial trends in soli-
tary bee abundance. Furthermore, bumblebees, which were well pre-
dicted across both seasons, are often the main recorded pollinator in UK
summer-flowering, pollinator-dependent crops (Hutchinson et al.,
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Outcomes of generalised linear models (GLMs) assessing the relationship between observed and predicted foraging abundance of bumblebees and solitary bees in each
parameterisation approach, after stepwise regression. Negative binomial GLMs were used for bumblebees and summer solitary bees, and Poisson GLMs were used for
spring solitary bees. Number of transects: Ngpring=74 and Ngummer=87. An AICc value of two lower than another in the same pollinator group indicates significantly-
improved model fit, i.e., the predicted abundance fits the observed abundance better. Partial correlation was used when more than one model term was significant (see
methods), otherwise a regular Spearman’s Rank correlation test was conducted. * p < 0.05; ** p < 0.01; *** p < 0.001.

Pollinator Parameterisation Approach Data Source(s) *  Significant Model Terms AlCc (Partial)
Correlat-i
Predicted Foraging Site Temp (bumble-bees) or S*V orretat-ion
Abundance (V) (O] Wind (solitary bees)

Bumblebees (Spring 1) Proxy Land Covers

*

355.95 0.25

and Summer) 2) Field-derived Floral Cover * i 352.60
(Site-specific)
3) Bespoke Attractiveness (X ] 0.01 £ 0.003*** o o 352.60 0.42%**
atw
Scores
4) Bayesian Calibration * [N ] 0.01 £ 0.003*** o ok 352.14 0.45%**
% %3
(Informed Prior) -
5) Bayesian Calibration * % 0.01 + 0.003*** el ok 352.24  0.52%**
(Uninformed Prior)
Solitary Bees  (Spring) 1) Proxy Land Covers - 329+ 2% i * 146.67  0.27*
2) Field-derived Floral Cover * 5.85+2* ok 149.31 0.20*
(Site-specific)
3) Bespoke Attractiveness * 2 && 589 +2* o 149.12  0.20*
Scores
Solitary Bees (Summer) 1) Proxy Land Covers - 0.00+ 0.7 203.93 0.14*
t 2) Field-derived Floral Cover * -0.30 + 0.7 203.78 0.10*
(Site-specific)
3) Bespoke Attractiveness * (K] -0.28 + 0.7 203.80 0.10%
atw
Scores

tBayesian approaches not tested for solitary bees due to run-time constraints.

iData sources newly collected for this paper in order to parameterise silvoarable trees and understories in poll4pop, additional to the default parameters of the original

model. *: Field-derived floral cover data. 8g2& = bespoke, expert-elicited land cover attractiveness scores. ¥ = In-field pollinator abundance data collected via

transects.

2021).

4.2. Assessment of parameterisation approaches

4.2.1. Field-derived floral cover scores

Model predictive ability improved significantly for bumblebees
when including field-measurement-derived floral cover scores
compared to using the default expert-derived scores of proxy land covers
(hereafter proxy scores), showing that using field-data for parameter-
isation can be a valuable step when modelling at the field scale (Fig. 5;
Table 2). The underprediction of field-derived floral cover by proxy land
cover scores was also consistent with the fact that the proxy land cover
parameters were originally assigned for conventional systems, whereas
all three survey sites used in this study were organically managed.
Therefore, more flowering resources (weeds) would be expected in the
latter. Such in-field assessment of resource availability may help to ac-
count for different management choices at the parameterisation stage
for new land covers. This is especially true when considering systems
such as alley cropping, whose management approaches may vary widely
between sites, e.g., differences in tree selection or sown understory
mixes (Table Al). Our results reflect this, revealing high variation in
floral cover between land cover types and between sites (Fig. 2).

In contrast, model predictive performance decreased for solitary bees
in spring when field-derived scores were included instead of proxy
scores (Table 2). As discussed in Section 4.1, this could be because, when
taking floral measurements in the field, we did not consider that the
habitat preferences of solitary bees in each season may differ. Therefore,
we suggest that including field-level floral measurements during
parameterisation may be most useful either when considering generalist

groups of taxa, or groups whose floral specialisms are concordant (in
which case only the cover of specific floral species should be measured).
Note that including field-derived floral cover scores made no meaningful
difference to model performance for solitary bees in summer compared
to using proxy scores.

While collecting field-level floral cover data for every site is not
feasible for large-scale or scenario-based applications, our results show
that such data are nevertheless valuable during the parameterisation
stage for two reasons. First, site-specific floral cover enabled us to reduce
site-level variation and thereby establish a clearer baseline of model-
data correspondence from which other, more generalisable parameters
(e.g., foraging and nesting attractiveness) could be derived and/or
evaluated. This diagnostic use of field-derived data can be helpful in any
model where key parameters are expected to vary substantially across
sites. Second, the comparison between proxy and field-derived floral
cover scores provides insight into how reliance on proxies may influence
model performance at broader scales. For example, proxies consistently
underrepresented floral cover in certain habitats at our study sites
(Fig. 2), which was associated with lower correspondence between
predicted and observed abundance for bumblebees (Fig. 5). Such com-
parisons help identify where proxy parameters are robust and where
they may introduce systematic biases.

To explore generalisability, we tested a post hoc floral-cover
parameterisation using the mean of our field-derived values for each
land cover across sites (Fig. B4). Its performance was comparable to that
of the proxy approach (Table B2). This suggests that, given the wide
variation in floral cover across our sites, proxy parameters currently
provide a reasonable starting point for representing silvoarable alley-
cropping systems, when a general (rather than site-specific) metric is
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around regression lines represents 95 % confidence intervals.

required. Further monitoring of floral cover across more sites would help
to determine whether variability in floral cover reduces as these systems
become more commonly implemented and standard approaches begin
to emerge. This could potentially enable more widely representative
floral cover field measurements to be calculated in future.

4.2.2. Bespoke, newly-elicited attractiveness scores

Using bespoke foraging and nesting attractiveness scores for sil-
voarable trees and understories, newly elicited via an expert opinion
survey, did not affect poll4pop model performance compared to using
proxy attractiveness scores (Fig. 5; Table 2). This might be due to sim-
ilarities in the parameter distributions of proxy and bespoke foraging
attractiveness scores for each land cover (Fig. 3). Although the quanti-
tative values of the different parameter sets may be different for each
land cover, their relative ranking among other land cover types in the
surveyed fields did not change drastically (Table B3). Therefore, both
parameterisations might represent a roughly equally attractive resource
to the simulated bee populations, relative to the surrounding landscape.
Indeed, the location of pollen resources, alongside their quality, has
been shown to be a key contributing factor to increased bee abundance
(Ganser et al., 2021).

Although including bespoke attractiveness scores seemed to have no
effect on model performance in our study, this was a valuable explora-
tion of the extent to which experts might need to be engaged when
parameterising new and lesser-studied land cover classes. Expert-score
elicitation may be more necessary when proxies that appropriately
represent the resources offered by a new land use do not already exist
within the model being parameterised. Furthermore, gathering these

10

bespoke scores served a second purpose of ensuring expert-informed
probability distributions were available for use as informed priors in a
Bayesian calibration of parameters, thereby providing a starting point
for posterior parameter likelihood distributions that can be updated as
more data surrounding pollinator abundance in alley-cropping systems
becomes available (Arhonditsis et al., 2007).

4.2.3. Bayesian-calibrated attractiveness scores

The results of our calibrations suggest limited model sensitivity and
possibly parameter redundancy for three out of four of the calibrated
parameters, given the model structure and available observational data
(Fig. 4). Only the silvoarable understory foraging attractiveness
parameter showed notable deviation from its prior, indicating both
stronger empirical support and an overestimation by experts. These
findings may reflect inherent ecological characteristics of these land
covers, and related survey limitations. Tree-related parameters may
have had minimal influence because the apple tree flowering period is
brief (~ two weeks) and poorly aligned with our observational data
collection period (~ six months). Moreover, tree nesting attractiveness
likely had little effect in this context as the model was calibrated solely
for ground-nesting species. In contrast, understories provide foraging
resources throughout the pollinator active season (Staton et al., 2021)
and thus likely influenced observed bee abundance more directly.
Furthermore, the metric used for evaluation was predicted relative
foraging abundance, which is strongly influenced by the foraging
attractiveness of the land cover. It is likely that field data on nest den-
sities would need to be collected and compared to the
poll4pop-predicted nest densities to provide sufficient power for
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effective calibration of the nesting attractiveness parameters. However,
such field data is challenging to collect (Tsiolis et al., 2022).

Whilst limited conclusions can be drawn from model evaluation
using these parameters because we used the same observed data for both
calibration and evaluation, we note here that they resulted in no
meaningful improvement in model predictive ability compared to using
proxy parameters, consistent with our results when using bespoke,
expert-derived attractiveness parameters (Fig. 5; Table 2). This may
relate to the lack of sensitivity shown during the calibration to three of
four of the attractiveness parameters. Thus, whilst our calibrations did
not yield different results to other parameterisation approaches, they did
reveal insights into model sensitivity to our new land cover parameters.
This aids assessment of whether either expert priors or empirical data
are informative when generating parameters for new land cover classes.
Furthermore, as more survey sites and data become available, these can
be used to update the posterior distributions of parameters output by the
Bayesian calibration, whilst using the previous posteriors as informed
priors. This can be a particularly effective method of finding and
updating parameters for emerging land covers such as silvoarable alley-
cropping in the UK, which do not have many baseline data or established
survey sites to draw upon initially.
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4.3. Caveats & future work

Our simulations were run at a 3 m resolution in order to compare
observed and predicted foraging abundance at a fine scale whilst
capturing the spatial configuration of the alley-cropping components.
However, this level of resolution would likely be too computationally
expensive to maintain when modelling areas significantly larger than
our 10 x 10 km study landscapes with standard computing resources.
This could be addressed by running the model at a coarser resolution and
including the silvoarable tree rows as edge features in the model inputs,
alongside the silvoarable trees. In this case, the model will assume the
tree rows only occupy a specified proportion of the pixels in which they
are present. This may reduce the correspondence between observed
abundance and predicted visitation at the field scale, but would still be
sufficient to capture relevant patterns for regional- or national-scale
applications.

As alley-cropping systems can vary widely in their configurations
and management, the parameters determined in this paper are either
reflective of the specific systems surveyed (in the case of the field-
derived parameters) or somewhat generalist (in the case of the
bespoke, newly-elicited expert parameters). Whilst we only studied
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three sites due to limited availability, we stress that systems with
different configurations of silvoarable elements can be incorporated into
the model by realistically representing their configuration in input
maps, since poll4pop accounts for these elements of context dependence
through its spatially-explicit nature. Furthermore, if the composition of
the modelled silvoarable elements varies significantly from our sites, our
results suggest that spatial variation in abundance can be captured by
finding suitable proxy land covers. If the time and resources are avail-
able, representing the field-level floral cover of systems should be pri-
oritised to achieve the best model predictions, since we found this had
the largest influence on predictive ability and enabled poll4pop to
reproduce the observed between-site differences, thereby reducing the
need to artificially control for these in the model-data comparisons. This
is especially relevant in studies, like ours, which seek to parameterise a
new land cover using data collected in organically-managed field sites,
but where the land cover could also fall under conventional manage-
ment, thereby creating discrepancies in the floral availability provided
by in-crop weeds (Milberg et al., 2025). This may be common when
considering emerging regenerative and/or agroecological land uses,
whose pioneering practitioners are often progressive and may already
carry out sustainable land management practices such as organic
agriculture.

Whilst our method of carrying out multiple model runs, each sam-
pling parameters from their uncertainty distributions, accounted for
uncertainty in the underlying parameter values of the poll4pop model,
there are other sources of uncertainty that this did not capture. This
includes potential observation error in field measurements, the small
number of survey sites visited, and simplified assumptions of pollinator
behaviour in the poll4pop model. Observation and measurement error
of empirical abundance data could be accounted for in studies using
mean observed values to validate model predictions by weighting each
survey measurement by the inverse of its standard error, however this
was not possible in our study because we treated each transect as a
separate datapoint. Future work could also focus on increasing the
number of study sites as they become available, and conducting long-
term monitoring in silvoarable alley-cropping systems to generate
larger datasets for refining parameter estimates and thus improving the
representation of these systems at the landscape level. Beyond this,
incorporating Bayesian calibration with iterative updates as new data
become available could help to address some of this uncertainty.

5. Conclusions

We have integrated the spatial representation of silvoarable alley-
cropping systems into the process-based poll4pop model and demon-
strated its ability to capture spatial variation in bumblebee and spring-
flying solitary bee foraging abundance in these systems. We have also
provided the first within-year, sub-field scale, seasonally-resolved vali-
dation of poll4pop, demonstrating its capabilities in the fine-scale sim-
ulations of pollinator populations in novel or emerging agroecosystems.
Based on our results, we suggest that future studies using poll4pop to
predict pollinator abundance in silvoarable alley-cropping systems can
use proxy parameters to represent floral cover parameters but should
supplement with field data if possible, and bespoke expert-derived
attractiveness scores as a generic parameter set for initial landscape-
level modelling (available in Table B4). These results facilitate future
investigations of how pollination service and ecosystem function in our
UK farmed landscapes may change if, as encouraged, high proportions of
silvoarable alley-cropping are implemented in the near future
(Department for Energy Security and Net Zero, 2023), thereby better
informing policy and practice in agrifood systems.

For others attempting to introduce novel land cover class parame-
terisations into existing process-based models, we make the following
recommendations, which may be progressed through as increasing
amounts of knowledge/data become available:
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Proxy land cover parameters, if suitable options are available, can
produce reasonable model predictions for novel landcover classes.
These may be the only option available for very newly implemented
land covers.

Bespoke expert opinion may be elicited, as the land cover begins to
be implemented and initial studies and field experience begin to be
gathered. These may be especially suitable when large-scale field
data collection is still impractical.

Field-measured values may be preferred for parameters that are hard
for experts to estimate and/or likely to vary widely in different sit-
uations (as was the case for floral cover in our study), in which case
initiating dedicated small-scale studies to gather this parameter-
isation information is valuable.

Site-level variation in implementation is high for novel landcover
classes for which a community of practice is still developing. Iden-
tifying influential parameters (in our case, floral cover) for which it is
possible to gather field data is beneficial for removing site-level
variation, potentially making the calibration and/or evaluation of
other parameters more accurate/feasible.

Bayesian calibration is a time-intensive approach to finding param-
eters, and the results depend on the context of the calibration data.
We showed it valuable for revealing potential overestimation by
expert opinion parameters but it is likely to be more powerful at later
stages when implementation and data-providing field studies of the
novel landcover are more widespread and can be used to improve on
priors based on previous expert opinion.

Code and data availability

All reproducible code and processed data are available at: https://do
i.org/10.5281/zenodo.17715001. Poll4pop model code is freely avail-
able to download from https://github.com/yclough/poll4pop
(https://doi.org/10.5281/zenodo.4001015, Gardner et al., 2020b).
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