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A B S T R A C T

As the need for sustainable agroecosystems gains recognition, new land cover classes are increasingly emerging 
in temperate landscapes. Process-based ecological models are often the most suitable initial option for predicting 
the biodiversity outcomes of such novel systems, particularly when implementation and large-scale baseline data 
remain scarce. However, there are no accepted guidelines for integrating new land covers into these models.

Using UK silvoarable alley-cropping as a case study, we explore how to introduce this emerging land cover into 
the established process-based pollinator model, poll4pop. We demonstrate several parameterisation approaches, 
including proxy land covers, field data, expert opinion and Bayesian calibration. We also provide the first field- 
scale and seasonally-resolved evaluation of poll4pop, using pollinator abundance data collected at three UK 
silvoarable sites.

Our results show that models using proxy land cover parameters can capture spatial trends in observed bee 
abundance where suitable proxies exist, but that predictions are improved by integrating field-derived floral 
cover. Neither bespoke, expert-derived, land cover attractiveness scores nor Bayesian-calibrated scores improved 
our model fit, although they did reveal valuable insights into model parameter sensitivity. Overall, poll4pop 
effectively reproduced observed fine-scale spatial variation in bumblebee and spring-flying solitary bee foraging 
activity in silvoarable systems. However, seasonal differences between communities resulted in reduced model- 
predictive performance for summer-flying solitary bees.

We demonstrate that poll4pop is suitable for modelling fine-scale pollinator abundance in complex mixed- 
cropping systems. We also present a practical framework for integrating new land cover classes into process- 
based models which can guide future modelling of emerging land use systems.

1. Introduction

Growing food demands (van Dijk et al., 2021), and the environ
mental consequences of conventional intensive agriculture (FAO, 2023; 
IPCC, 2019), have driven demand for alternative approaches such as 
organic agriculture, diversified farming, and ‘ecological intensification’ 
(Gamage et al., 2023; Jones et al., 2023; Garibaldi et al., 2019; Bom
marco et al., 2013). As sustainable land uses are increasingly incenti
vised, we must find ways to assess their contribution towards 
environmental goals and identify potential unintended consequences 
(Staley et al., 2021). This requires continued prediction and monitoring 

of their biodiversity impacts, which remains challenging over large 
scales.

Here, we consider agroforestry, an increasingly-incentivised land use 
under EU and UK policy (EU Cap Network, 2023; DEFRA, 2023), which 
shows potential for ecological intensification (International Assessment 
of Agricultural Knowledge, Science, and Technology for Development, 
2009; Tsonkova et al., 2012). Specifically, we investigate UK silvoarable 
‘alley-cropping’ systems. In alley-cropping, rows of trees are planted 
among ‘alleys’ of interspersed crop. Common tree species include or
chard fruits, willow or poplar short rotation coppice, and timber species 
such as beech or oak (Image et al., 2023; Staton et al., 2024). Generally, 
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understories are sown with wildflower or grass mixes or kept bare 
through mulching and herbicide (Burgess et al., 2003; Staton et al., 
2021). While alley-cropping is not widely practised in the UK (den 
Herder et al., 2017), the current goal is for 10 % of UK arable land to be 
converted to silvoarable agroforestry by 2050 (Department for Energy 
Security and Net Zero, 2023; Woodland Trust, 2022) to support net-zero 
and biodiversity targets.

Such emerging regenerative land uses are especially important for 
wild pollinators - particularly bees - which are a key conservation pri
ority at both national and global scales (DEFRA, 2014; FAO, 2018; Potts 
et al., 2024) due to their crucial role in food production and evidence of 
declines in the temperate zone and beyond (Potts et al., 2016; Zattara & 
Aizen, 2021). Accordingly, predicting how novel or previously-rare land 
management approaches will affect wild pollinator populations (Image 
et al., 2023) in advance of their widespread implementation is crucial. 
This can help to inform future policy, guide management recommen
dations, identify implications for different pollinator groups and support 
multifunctional landscape optimisation procedures (Knight et al., 2024). 
However, empirical investigations regarding emerging land classes are 
often limited by a lack of available survey sites and pre-existing data 
(Kletty et al., 2023). In this case, computational approaches are useful, 
and may aid proactive, rather than reactive, decision-making (Wintle 
et al., 2011).

Process-based models are particularly useful for simulating biodi
versity responses in new land cover classes which lack sufficient baseline 
data to support correlative species distribution models (Briscoe et al., 
2019). These predict species abundance by drawing on a wide range of 
knowledge sources to mechanistically simulate ecological processes 
(Gardner et al., 2024; Zurell et al., 2022). Many such models exist, 
including ALMass (Topping et al., 2003), inVEST® (Natural Capital 
Project, 2005), the wider *4pop family (Gardner et al., 2024), and 
individual-based models such as Bumble-BEEHAVE (Becher et al., 2018) 
and RangeShifter (Bocedi et al., 2021). These all rely on land cover input 
data and all face similar choices when incorporating a new land cover 
type. Although the specific parameterisation requirements will vary 
among models, the underlying challenge remains the same: how should 
we derive the required parameters for the new land cover type? Pa
rameters could come from various sources, including expert opinion, 
published estimates, existing or newly-collected data, or model cali
bration (Kopec et al., 2010; Koh et al., 2016). It may be unclear which 
option to choose when considering emerging land cover types: for 
example, there may be few experts with prior experience of the systems, 
limited pre-existing data, or few established survey sites from which to 
collect new data. Therefore, it is important to assess which parameter
isation methods maximise current model performance whilst consid
ering feasibility, efficiency, pragmatism, and future robustness.

Using UK silvoarable alley-cropping as a case study, we demonstrate 
how to incorporate a novel land cover class into an existing process- 
based model to assess biodiversity impacts. Our model, poll4pop, is a 
validated, spatially-explicit framework for predicting relative abun
dance of wild bees across landscapes (Gardner et al., 2020) and has 
already been used to evaluate diverse land-use interventions (e.g., 
Blaydes et al., 2022; Gardner et al., 2021; Image et al., 2022). Currently, 
alley-cropping is not parameterised within poll4pop nor represented in 
major UK and European land cover datasets (Morton et al., 2024; Eu
ropean Union’s Copernicus Land Monitoring Service information 2020). 
Its composite structure - trees, understory, crop, and their varied man
agement - makes representation in such models difficult (Laub et al., 
2025). Previous studies have addressed this by simplifying system 
configuration or substituting already-parameterised land classes into 
models (e.g., using orchards to approximate fruit alley-cropping; Gra
ham & Nassauer, 2019; Image et al., 2023). However, such substitutions 
may misrepresent alley-cropping configuration at scales relevant to 
pollinators, and may not accurately represent the structural and habitat 
resources provided to pollinators, thereby affecting predictions (Iles 
et al., 2018; Krimmer et al., 2019).

In our investigation, we develop the first representation of orchard- 
fruit silvoarable alley-cropping systems - an expanding, policy-relevant 
land cover in the UK - within the poll4pop model. In so doing, we 
compare the available methods of parameterising novel land covers 
within pre-existing, process-based ecological models. We evaluate five 
approaches: i) assembling proxy parameters from similar, already- 
parameterised land cover classes; ii) incorporating corrections to 
these, and other modelled land covers, based on empirical field mea
surements; iii) gathering more expert opinion to supplement these field 
measurements; and finally, obtaining parameter values by calibrating to 
match observed bee abundances, either using iv) informed or v) unin
formed priors. We use detailed field data gathered in three UK alley- 
cropping systems to evaluate the model’s overall ability to predict 
spatial trends in the abundance of bumblebees and solitary bees when 
system components are mapped at fine resolution (3 m). Subsequently, 
we recommend land cover parameters for alley-cropping systems in 
future poll4pop modelling and provide overall recommendations for 
approaching the introduction of new land cover classes into process- 
based models in general. Simultaneously, we provide the first sub- 
field-scale, seasonally-resolved validation exercise of the poll4pop 
model, evaluating its ability to predict fine-scale spatial variation in 
foraging abundance of wild bees in complex, heterogeneous land use 
systems.

2. Materials and methods

2.1. Study area

We surveyed pollinating insects and floral cover monthly between 
March-August 2023 at three organic farms containing apple (Malus 
domestica) alley-cropping systems in the East Midlands and East of En
gland. This provided empirical data for model parameterisation, cali
bration and evaluation. All sites featured similar arrangements of apple 
trees, understories sown with flower mixes, and non-pollinator depen
dent cereals in their crop alleys. See Tables A1 and A2 for further site 
information and sample sizes.

2.2. Pollinator and flora sampling

During each survey visit, we recorded foraging bumblebee and sol
itary bee abundance along nine 50 m transects at each site - three in each 
of the tree rows, crop alleys, and field edges (Fig. A1). Two additional 
transects were established at Site 1 to capture an area of flowering clover 
ley (full details in A.1.1). After each transect walk, we estimated overall 
and species-specific percentage cover of flowering plants in three 0.5 ×
0.5 m quadrats placed at the beginning, middle and end of each transect.

We also collected pollinator community data to assess potential 
changes in the observed bee species and trait composition between 
seasons, and resulting differences in model performance. On each site 
visit, a total of 16 pan traps were left for 6-8 hours (Potts et al., 2021), 
with specimens later identified to species level (further details in A.1.2). 
These data were not used in model parameterisation, as the highly 
attractive nature of pan traps creates estimation biases, particularly for 
abundance (Potts et al., 2024, 2025).

2.3. Land cover mapping

Land cover and crop cover rasters surrounding each survey site (10 ×
10 km; 3 m resolution) were obtained from UK Centre for Ecology and 
Hydrology Land Cover, Land Cover Plus, and UK Woody Linear Feature 
spatial data (UKCEH, 2016, 2021, 2023). From these, arable field 
margin and woodland boundary edge feature maps were subsequently 
generated, following Gardner et al., 2020.

Additionally, we mapped all habitats at each survey site in the field 
and plotted them in QGIS (QGIS.org, 2025) in accordance with typical 
configurations at our field sites. Separate rasters were exported at 3 m 
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resolution for (i) ‘general’ habitat (e.g., field margins, scrub, ditches), 
(ii) silvoarable understories, and (iii) silvoarable fruit trees, to allow 
different parameter assignments.

2.4. Poll4pop model description

Poll4pop is described in full in Häussler et al. (2017), which includes 
the mathematical formulae, and Gardner et al. (2020). Here, we provide 
a concise summary of the input and output data, and the foraging, 
dispersal and population growth simulation processes.

2.4.1. Input land cover data
Poll4pop requires a rasterised land cover map (e.g., with pixel values 

indicating the locations of cereal, woodland, etc.) and edge feature maps 
as inputs. Edge features are those generally smaller than the pixel res
olution - e.g., hedgerows, arable margins - and are assigned to a pro
portion of the land cover pixel they occupy according to the ‘edge- 
feature-width’ parameters defined by the modeller. These rasters are 
typically generated from remote-sensed data, but we also augment these 
in this study to include more detailed, manually digitised features pre
sent at our survey sites (see 2.3).

2.4.2. Land cover parameters
Three parameters are assigned to each land cover class to simulate 

how pollinator groups may use them: 

1) Floral cover (0-100): the amount of floral resource it provides, 
varying seasonally (i.e., spring or summer).

2) Foraging attractiveness (0-20): its attractiveness as a foraging 
resource to each pollinator guild.

3) Nesting attractiveness (0-1): its attractiveness as a nesting location to 
each pollinator guild.

Values for these three sets of scores have previously been assigned 
using expert opinion to 35 common European land classes for four bee 
guilds: ground-nesting bumblebees, tree-nesting bumblebees, ground- 
nesting solitary bees and cavity-nesting solitary bees (Gardner et al., 
2020). Attractiveness parameter scales differ because foraging attrac
tiveness operates in arbitrary units and thus remains on its original, 
expert-elicited scale, whereas nesting attractiveness is rescaled between 
0-1 to enable meaningful multiplication with the input maximum nest 
density (Gardner et al., 2020; Image et al., 2022).

2.4.3. Other input parameters
The model also takes in parameters specifying maximum nest den

sity, foraging range, dispersal range and population growth for each 
guild. We use the values given in Gardner et al. (2020), derived from 
literature data.

2.4.4. Process overview
Using the above information, the model initially generates two out

puts: a) a nesting resources map for each guild - derived from the 
product of the nesting attractiveness score of each land cover, pixel size, 
and the specified ‘maximum nest density’; and b) seasonal floral 
resource maps for each guild - derived from the product of the floral 
cover score for each season and foraging attractiveness score of the land 
cover type in each pixel.

The model then randomly allocates nests across the landscape using 
a Poisson distribution defined by the nesting resource value assigned to 
each pixel. These nests become the source of ‘central-place foraging’, 
where the typical foraging distance from the nest (i.e., kernel size) is 
determined by the guild-specific mean foraging distance parameter. The 
amount of resource gathered by the nest is calculated using 
attractiveness-weighted distance decay kernels. Thus, the predicted 
relative abundance of foraging bees visiting a pixel from one nest is a 
function of the pixel’s proximity to the nest, its floral resource value, and 

the number of foraging bees sent out from that nest.
The amount of resource gathered is combined with the input growth 

parameters (e.g., maximum number of workers produced per queen; 
median and steepness of a lognormal growth function) to determine 
both the number of workers produced at the end of spring for social 
guilds (i.e., bumblebees), and reproductive females produced at the end 
of the active period for all guilds. The model assumes an active period to 
be one season for solitary bees, and three seasons for bumblebees, 
typically interpreted as early-spring, late-spring, and summer (Gardner 
et al., 2021). New reproductive females disperse according to a 
nesting-attractiveness-weighted distance decay kernel, which limits the 
number of nests established per pixel in the following time period by the 
maximum nest density parameter and the amount of nesting resource 
offered by the pixel.

The model then outputs seasonal heat maps of predicted relative 
abundance of foraging bees (hereafter ‘predicted foraging abundance’) 
across the landscape for each specified bee guild by summing the pre
dicted foraging abundance from all nests to each pixel.

2.5. Parameterisation and validation workflow

All modelling and analyses were completed in R version 4.2.2 (R 
Core Team, 2022). We evaluated five approaches for parameterising two 
complementary elements of silvoarable alley-cropping systems - trees 
and understories - in the poll4pop model by assessing the relationship 
between observed and poll4pop-predicted foraging bee abundance in 
the 50 m transects conducted at each site. This workflow is summarised 
in Fig. 1 and parameterisation approaches are described in more detail 
below. Parameters were assumed to correspond specifically to orchard 
fruit trees and flower-sown understory types because these were present 
in all surveyed systems. They were only assigned for bee guilds observed 
during field surveys, i.e., ground-nesting bumblebees and 
ground-nesting solitary bees.

2.5.1. Parameterisation approaches
Our five approaches for assigning floral cover, floral attractiveness, 

and nesting attractiveness scores to the new ‘silvoarable tree’ and ‘sil
voarable understory’ land cover types are summarised in Table 1. Here, 
proxy land cover parameters serve as the baseline method for inte
grating new land classes into poll4pop. The additional approaches pre
sented are intended as diagnostic refinements. Their purpose is to assess 
whether proxy values are sufficient, identify which parameters most 
influence model-data agreement, and determine whether empirical or 
expert information can meaningfully improve predictions. Each 
approach is discussed in more detail below.

2.5.1.1. Approach 1: proxy land covers. In Approach 1 we imitated the 
methodology of previous studies (e.g., Image et al., 2023) by using 
already-parameterised land covers as proxies for the components of 
silvoarable systems. Following Image et al., we represented silvoarable 
fruit trees using ‘orchard’ parameters, with an additional understory 
represented by ‘unimproved meadow’, chosen due to its high floral 
cover ranking among poll4pop land covers. Proxy land covers were 
assumed to be conventionally managed during the original model 
parameterisation process.

2.5.1.2. Approach 2: field-derived floral cover. Accounting for site-level 
variation in floral cover may help poll4pop to better simulate varia
tion in observed bee abundance. In Approach 2, we replaced our proxy 
floral cover scores with scores derived from site-, season- and land cover- 
specific floral cover data collected in the field (see section 2.2). This was 
applied to all land covers on which transect surveys were conducted, i.e., 
not only the newly-parameterised silvoarable understories, but also 
other elements constituting the silvoarable system, including alley 
crops, grassy field margins, and the area of clover ley at Site 1.
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Floral cover for the silvoarable fruit trees was taken from the original 
poll4pop orchard expert-opinion scores because peak apple bloom (a 
~2-week period) occurred and finished between our late-April and late- 
May field visits. Although peak bloom dates were known, on-site floral- 
resource measurements would have underestimated cover. The original 
poll4pop orchard floral-cover parameter is normally weighted 90:10 for 
early-spring:late-spring (March:mid-April vs. mid-April:May) for bum
blebees, but we reversed this weighting to match the observed flowering 
period at our sites. This ensured the trees’ peak flowering was accurately 
represented in the model, despite floral cover not being derived directly 
from in-field measurements.

See A.2 for more details. Foraging and nesting attractiveness scores 
were kept fixed at the proxy values used in Approach 1.

2.5.1.3. Approach 3: bespoke attractiveness scores. Following the orig
inal poll4pop procedure, Approach 3 used expert-elicited foraging and 
nesting attractiveness scores for silvoarable alley-cropping components. 
Six UK experts in pollinator ecology and agroforestry scored the 
attractiveness of tree and understory components on a six-point ‘none- 
very high’ scale, plus a matching confidence score. These qualitative 
scores were quantified using the original model protocol (Gardner et al., 
2020; Image et al., 2022), and beta distributions were derived for each 
parameter for input to the model (see Section A.2.2). Field-derived 
floral-cover scores from Approach 2 were retained because model out
puts showed they reduced site-level variation, providing a more stable 

baseline for comparing parameterisation approaches.

2.5.1.4. Approaches 4 and 5: Bayesian calibration. We replaced the 
Approximate Bayesian Computation-like routine used by Gardner et al. 
(2020) in the original model calibration with a fully Bayesian MCMC 
calibration that samples directly from the posterior, allowing uncer
tainty from expert opinion and the small number of field sites to be 
propagated through the model and reducing the risk of site-specific 
over-tuning (Van Oijen et al., 2005). This was completed using the 
“BayesianTools” R package (Hartig et al., 2023), with three DEzs chains 
of length 10,000. Because of run-time limitations, calibration was con
ducted only for bumblebees, not solitary bees. In Approach 4, informed 
priors were taken from the expert-derived beta distributions of 
Approach 3. The likelihood ran poll4pop with candidate parameters 
then drew from a normal distribution informed by the difference be
tween observed and predicted foraging abundance at exact transect lo
cations, scaled using z-scores and assuming a Gaussian distribution of 
errors (Van Oijen et al., 2005). Field-derived floral-cover scores from 
Approach 2 were again used. We added a ‘scaling factor’ to adjust the 
Gaussian error width, accounting for systematic variation in observa
tions (Van Oijen, 2008). For comparison, Approach 5 repeated the 
calibration using uniform, uninformed priors.

After removing a 1,000-iteration burn-in from each chain, conver
gence was checked visually and using Gelman-Rubin diagnostics (values 
≈1 acceptable; >1.1 non-converged; Gelman et al., 2004). Parameter 

Fig. 1. The process of parameterising and evaluating silvoarable trees and understories as new land cover classes in the poll4pop model, using five proposed 
parameterisation approaches.
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correlations (|r| > 0.7 flagged as major) were assessed using the sum
mary() function in “BayesianTools”. Final beta parameter distributions 
for poll4pop were extracted using the “fitdistrplus” package 
(Delignette-Muller et al., 2025). Section A.2.3 provides further details 
on the calibration process.

2.5.2. Model evaluation
For each parameter set, poll4pop was run 100 times with a random 

seed, using parameter sampling (See A.2.2). The model was run on 10 ×
10 km landscapes surrounding each study site to fully capture pollinator 
movement and dispersal ranges. During runs, the field-mapped habitat 
and silvoarable understory rasters were overlaid on UKCEH 2023 land 
cover maps, and silvoarable tree rasters were included as a 1 m 
edge-feature layer. 100 output predicted foraging abundance rasters 
were output for each parameterisation approach, which we averaged 
then extracted total predicted abundance in the 3 m² pixels matching the 
exact transect locations for each site, season, and pollinator guild. This 
enabled a fine-scale, spatio-temporal comparison of spatial trends in 
observed vs predicted foraging abundance across the sample of tran
sects. We tested trends because poll4pop outputs relative foraging 
abundance, whereas field data represent absolute counts; direct evalu
ations of accuracy or reliability is therefore not possible.

In total, 161 transects were assessed: 74 in spring (March-May) and 
87 in summer (June-August). For bumblebees, early- and late-spring 
predicted foraging abundance rasters were summed to produce a total 
spring prediction. Solitary bees were analysed separately by season 
because poll4pop treats spring and summer populations as independent 
(i.e., it does not account for bivoltinism), and because solitary-bee 

community composition from pan traps differed markedly between 
seasons. Bumblebees, however, were analysed jointly across seasons 
since poll4pop simulates a single, continuous population and their 
functional identity is not expected to vary substantially between spring 
and summer.

Observed and predicted foraging abundance for each 50 m transect 
were compared using GLMs (“lme4”; Bates et al., 2025). Spring solitary 
bees were modelled with a Poisson distribution; bumblebees and sum
mer solitary bees were overdispersed, so negative binomial models were 
fitted (“MASS”; Ripley et al., 2025). Spatial variables were omitted 
because poll4pop already accounts for spatial heterogeneity. One 
weather variable (recorded at the start of each transect) was included 
per guild, selected via initial correlation checks (see A.3.1 for model 
variable choices). Model assumptions were checked using “DHARMA” 
(Hartig et al., 2024).

Starting models were:
Bumblebees: Observed Abundance ∼ Predicted Abundance ∗ Site+

Temperature
Solitary bees: Observed Abundance ∼ Predicted Abundance ∗ Site+

Wind
We then performed stepwise regression to remove non-significant 

terms and obtain the most parsimonious models. Final variables for 
each guild and parameter set are listed in Table A5. Predictive perfor
mance (agreement between spatial trends in observed vs predicted 
abundance) was evaluated using GLM beta values and significance 
levels, and model fit was compared using AICc (“MuMIn”; Bartoń, 
2024). We also assessed observed-predicted relationships using partial 
correlations: both variables were regressed against their significant fixed 
effects, and Spearman’s rank correlation was computed between the 
resulting residuals.

To investigate why the model performance for solitary bees differed 
according to season, we compared the foraging range of spring and 
summer solitary bee species found in pan traps, using a Gamma GLM 
including site as a fixed effect. Foraging ranges were calculated from 
intertegular distance using formulae taken from Greenleaf et al. (2007; 
Roberts, 2025, personal communication).

3. Results

3.1. Approaches 1 & 2: proxy & field-derived floral cover parameter 
values

There was high site-level variation in the floral cover of surveyed 
habitats (Fig. 2). The field-derived floral cover parameters differed much 
more from their poll4pop defaults in summer than in spring. The default 
floral cover parameter values supplied with the poll4pop model for 
cereal, grassy field margins and legume ley typically underpredicted the 
actual floral cover measured in these land cover types in summer, 
consistent with the fact that the proxy parameters were assigned 
assuming conventional management, whereas the data for field-derived 
parameters was collected in organic systems. Conversely, the proxy 
floral cover parameter values used for silvoarable understories (i.e., 
those corresponding to unimproved meadow) predominantly over
predicted floral cover at all sites in both seasons. Note that x and y values 
for silvoarable trees in Fig. 2 are approximately the same for all sites 
because we retained the default scores for orchards due to absence of 
replacement floral survey data (see section 2.5.1 for rationale).

3.2. Approach 3: bespoke attractiveness parameter values

Newly-elicited expert scores suggested that the foraging attractive
ness of silvoarable trees would be roughly similar to that of orchards 
(their land cover proxy) for both bumblebees and solitary bees (Fig. 3). 
This resulted in large overlap in the 95 % confidence interval of the 
parameter values sampled from each distribution in each poll4pop 
model run.

Table 1 
Source of poll4pop floral cover and floral/nesting attractiveness parameters of 
the new ‘silvoarable tree’ and ‘silvoarable understory’ land classes in each model 
parameterisation approach. In ‘proxy’ approaches, silvoarable trees are repre
sented by default Poll4pop ‘orchard’ parameters, and the understories are rep
resented by ‘unimproved meadow’ parameters, which were derived from expert 
opinion in the original model parameterisation (Gardner et al., 2020). Attrac
tiveness parameters were determined separately for ground-nesting bumblebees 
and ground-nesting solitary bees for each approach.

Parameterisation 
Approach

Parameter Source Data Source(s) †

Floral cover Floral/nesting 
attractiveness

1) Proxy Land 
Covers

Existing poll4pop 
expert scores for 
orchards and 
unimproved 
meadow

Existing poll4pop 
expert scores for 
orchards and 
unimproved 
meadow

​

2) Field-Derived 
Floral Cover (Site- 
Specific)

Field-collected 
floral cover data

Existing poll4pop 
expert scores for 
orchards and 
unimproved 
meadow

3) Bespoke 
Attractiveness 
Scores

Field-collected 
floral cover data

Newly-elicited 
expert scores for 
silvoarable trees 
and understories

4) Bayesian 
Calibration 
(Informed)

Field-collected 
floral cover data

Bayesian 
calibration using 
expert-informed 
priors from 
Approach 3

5) Bayesian 
Calibration 
(Uninformed)

Field-collected 
floral cover data

Bayesian 
calibration using 
uninformed priors

†Data sources newly collected for this paper to parameterise silvoarable trees 
and understories in poll4pop, additional to the default parameters of the original 

model. = Field-derived floral cover data. = bespoke, expert-elicited land 

cover attractiveness scores. = In-field pollinator abundance data collected via 
transects.
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In contrast, the expert score distributions for understory foraging 
attractiveness, and the nesting attractiveness of both silvoarable com
ponents (trees and understory), were less similar to their land cover 
proxy for both pollinator guilds. The surveyed experts predicted that the 
foraging attractiveness and nesting attractiveness of silvoarable un
derstories would be higher than their proxy land cover, unimproved 
meadow, and that the nesting attractiveness of the silvoarable trees 
would be lower than their proxy, orchards. These subsequently had no 
overlap in their 95 % confidence intervals.

3.3. Approaches 4 & 5: Bayesian-calibrated parameter values

The Gelman-Rubin multivariate diagnostic indicated convergence 
for all chains in both the informed (R̂=1.025) and uninformed calibra
tions (R̂=1.019). There were no major correlations between any pa
rameters, suggesting adequate mixing of chains and independence in 
posterior sampling.

The marginal posterior distributions were almost identical to their 
priors for three out of four parameters (foraging and nesting attrac
tiveness of trees; nesting attractiveness of understories) in both the 
informed and uninformed calibrations (Fig. 4), suggesting limited model 
sensitivity to these parameters. In contrast, the understory foraging 
attractiveness posterior deviated substantially from its prior, with a peak 
density of around 12.5 in the informed calibration and 5.5 in the un
informed calibration - both lower than the expert-informed prior mode 
of 17. This demonstrates that the empirical bee abundance data used 
was informative for this parameter during calibration and also suggests 
that the bespoke expert scores overpredicted understory foraging 
attractiveness. Trace plots and posterior summary statistics can be found 
in B.1.

3.4. Comparing model performance

Table 2 and Fig. 5 indicate that in every parameterisation approach, 
there was a significant positive relationship between observed and 
predicted foraging abundance of bumblebees and of spring solitary bees. 
This was not true of summer solitary bees for any parameterisation 
approach. The positive relationship was more statistically significant for 

bumblebees than for spring solitary bees across all approaches, indi
cating a stronger correspondence between observed and predicted pat
terns for bumblebees.

When site-specific floral cover was incorporated compared to when 
default floral cover scores and proxy land covers were used, model fit 
(AICc) improved significantly (i.e., decreased by >2) and the positive 
relationship between observed and predicted abundance (partial cor
relation) increased and became more significant for bumblebees. Addi
tionally, the interaction between site and predicted foraging abundance 
became non-significant in our bumblebee GLMs, showing that signifi
cant site-level variation in predictive ability was eliminated when site- 
specific floral cover data were included. Conversely, AICc increased 
significantly for spring solitary bees when site-level floral cover data was 
included, and partial correlation decreased.

Integrating bespoke attractiveness scores had no meaningful effect 
on any metric of model performance for any bee guild in any season 
compared to using proxy attractiveness scores. Similarly, including 
attractiveness scores for bumblebees derived from either informed or 
uninformed Bayesian calibrations had no meaningful effect on any 
metric of model performance. We highlight that we evaluated model 
performance using the parameters derived in our Bayesian calibrations 
with the same data that was used for calibration. This was because all 
observed data were used in the calibration process due to the small 
sample size and to maintain consistency with all relevant information at 
the time of parameterisation (Philips et al., 2004). This had the potential 
to lead to overfitting, and hence conclusions about model outputs should 
be approached with caution; however, we present these results to aid 
discussion of model sensitivity to these parameters and of the Bayesian 
calibration process.

In summary, using site-specific floral cover improved the model fit 
and correlation between poll4pop predicted abundance and observed 
abundance for bumblebees but not for solitary bees (in fact, the reverse 
was true for spring-flying solitary bees). None of the other approaches 
led to any additional meaningful improvements.

3.5. Seasonal differences observed in solitary bee communities

The proportion of Andrenidae found in pan traps was much higher in 

Fig. 2. Comparison of field-derived floral cover parameter values with default poll4pop floral cover parameter values for land covers and proxy land covers at each 
survey site. The dashed 1:1 line represents equal field-derived and default parameter values. Values above the dashed line signify a land cover with a higher field- 
derived floral cover value than that of its poll4pop default, and vice versa. Error bars represent standard error. Spring = March, April, May; Summer = June, July, 
August. Values represent the mean of 100 values sampled from probability distributions associated with each parameter (See A.2.2). Beta distributions were used for 
the default poll4pop parameters, determined by expert scoring, and zero-inflated beta distributions were used for field-derived parameters, determined by floral 
quadrat surveys conducted at each field site. Sample sizes for calculation of zero-inflated beta distributions can be found in Table A3. Each probability distribution is 
defined by the uncertainty on the measured or default score. All floral cover values are bounded between 0-100.
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spring (56 %) than summer (9 %) at all sites (Fig. 6A), whereas the 
summer communities were more dominated by smaller Lasioglossum 
species (18 % in spring and 74 % in summer). The expected foraging 
range of the solitary bee species found in pan traps in summer was 
consequently significantly shorter than of those found in spring (Fig. 6B; 
Gamma GLM; p < 0.01, df=66), with no significant influence of site on 
this effect. We attempted re-running poll4pop simulations for solitary 
bees with their model-defined foraging range adapted to reflect these 
differences, but this did not improve model-data agreement for the 
summer solitary bees (See Fig. B4 and Table B2). Polylectic species 
dominated in both seasons (Fig. B5). The overall species richness of 
flowering plants found at transect locations was much higher in summer 
than spring (Fig. 6C). In particular, more flowering species of Asteraceae 
were found in Summer at each survey site. Note that bee abundance 
estimates from pan traps are dependent on local floral density 
(O’Connor et al., 2019; Potts et al., 2025) and in fact we found no overall 
difference in solitary bee abundance between spring and summer in our 
transect observations (Fig. B6).

4. Discussion

4.1. Evaluation of general model performance

By realistically representing silvoarable alley-cropping components 
(tree rows, understory and crop) in our digital input landscapes, we were 
able to capture spatial trends in fine-scale foraging abundance of bum
blebees and spring-flying solitary bees inside alley-cropping fields using 
poll4pop, as shown by a significant positive linear relationship between 
observed and predicted foraging abundance in our GLMs, supported by 
significant partial correlations for both guilds (Fig. 5; Table 2). This 
ability to model variation in abundance at fine-scale resolution (i.e., 50 
m transects) is particularly important for complex cropping systems with 
multiple elements such as alley-cropping systems. This is because 
management options such as tree species, understory management, alley 
width, etc. can be extremely variable and likely influence the way spe
cies use these systems for nesting and foraging. This is also useful when 
considering other forms of multi-species farming such as relay inter
cropping or row intercropping, which are gaining popularity alongside 
recognition of the need for ecological intensification (Amossé et al., 

Fig. 3. Beta distributions of attractiveness scores for each parameterisation approach, as determined by expert opinion surveys (n = 6). Foraging attractiveness is 
scored between 0-20 in poll4pop, whereas nesting attractiveness is scored between 0-1. Scores in parameterisation approaches 1 and 2 are the default poll4pop values 
of their land cover proxies (orchards for silvoarable trees and unimproved meadow for silvoarable understories), whereas scores in parameterisation approach 3 are 
bespoke, newly-elicited values for the silvoarable components. Stars represent means of the raw expert score distributions. Square points and error bars above show 
the mean and 95 % confidence interval of the 100 parameter values sampled from each parameter’s distribution as used in each of the 100 poll4pop model runs for 
each parameterisation approach.
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2014; Schulz et al., 2020; van Oort et al., 2020).
In contrast, none of the poll4pop parameterisations we tested were 

successful at predicting spatial trends in abundance of summer solitary 
bee species in these systems. Whilst there are 25 species of bumblebee in 
the UK, there are more than 100 species of ground-nesting solitary bees, 
over 50 of which are key crop pollinators (Falk, 2015; Hutchinson et al., 
2021). Therefore, condensing this large and varied group into one set of 
model parameters may result in overgeneralisations which decrease 
model predictive ability. Furthermore, differences in guild species 
composition between seasons may affect modelling outcomes (Gardner 
et al., 2020). Whilst parameterising species-level or finer guild models 
would require new expert scorings and plant-species-level habitat maps 
beyond the scope of this study, we ran a post-hoc trial in which we 
calculated a shorter mean foraging range based on size of the solitary 
bee species found in summer compared to spring at each site (Fig. 6B). 
However, re-running the model whilst accounting for this shorter 
foraging range did not improve model performance for solitary bees in 
summer (Fig. B4), suggesting that this was not the mechanism behind 
decreased model predictive ability in this season.

Another potential explanation is that small-bodied bees are generally 
more difficult to detect on transects, so they may be under-represented 
in the observational data used to check model predictions (Hutchinson 
et al., 2022). This human error is difficult to correct for: pan traps 
overcome the detection problem but they are unreliable for assessing 
abundance due to the influence of surrounding floral availability on 
catches (O’Connor et al., 2019; Potts et al., 2025). Alternatively, the 
seasonal mismatch may reflect differences in the composition and dis
tribution of floral resource abundance among elements of the system. In 
spring, a single dominant resource - apple blossom - provides a 
concentrated and spatially distinct foraging target (Fig. 2: Silvoarable 
Trees). This aligns with the higher proportion of Andrenids recorded in 
spring, which are key apple pollinators (Burns & Stanley, 2022), and 

may explain the higher model performance observed in this season. In 
summer, however, floral resources are more abundant, species-rich, and 
distributed among the system in the understories, crops, and field 
margins (Fig. 2; Fig. 6C). This diffuse and taxonomically-mixed floral 
community is harder for the model to represent accurately. If only a 
subset of these flowers is actually useable to summer solitary bees - 
particularly species with specialist dietary or morphological re
quirements (Garibaldi et al., 2015) - then the model may overestimate 
the value of habitats containing many irrelevant flowers, or underesti
mate habitats containing fewer but more suitable resources. This pro
vides a potential explanation for reduced predictive performance in 
summer.

Our results demonstrate the importance of evaluating model per
formance in novel systems against real-world data. They also offer the 
first seasonally-resolved evaluation of the poll4pop model, showing the 
value of considering how the communities of modelled taxa may differ 
throughout the year in relation to the resources available. Future work 
could address the underperformance for summer-flying solitaries by 
parameterising these to the genus- rather than guild-level, or alterna
tively by specified functional groups, with the choice of groupings 
refined by the study intention, e.g., key crop pollinators or species of 
conservation interest. We suggest that the solitary bee parameters 
determined in this study are assumed to represent typical or common 
Andrenidae species, which were the most predominant genus found in 
spring, when model predictive performance was highest. Overall, our 
results show that poll4pop is nonetheless suitable for annual-level 
modelling of UK crop pollination service at fine scales because many 
UK pollinator-dependent crops flower in spring - e.g., apples, oilseed 
rape, field beans - when the model best captured spatial trends in soli
tary bee abundance. Furthermore, bumblebees, which were well pre
dicted across both seasons, are often the main recorded pollinator in UK 
summer-flowering, pollinator-dependent crops (Hutchinson et al., 

Fig. 4. Posterior and prior distributions for the four poll4pop land cover attractiveness parameters included in A) informed and B) uninformed Bayesian calibrations. 
Informed priors were beta distributions determined by expert opinion during Parameterisation Approach 3. Uninformed priors were uniform distributions.

E. Knight et al.                                                                                                                                                                                                                                  Ecological Modelling 514 (2026) 111489 

8 



2021).

4.2. Assessment of parameterisation approaches

4.2.1. Field-derived floral cover scores
Model predictive ability improved significantly for bumblebees 

when including field-measurement-derived floral cover scores 
compared to using the default expert-derived scores of proxy land covers 
(hereafter proxy scores), showing that using field-data for parameter
isation can be a valuable step when modelling at the field scale (Fig. 5; 
Table 2). The underprediction of field-derived floral cover by proxy land 
cover scores was also consistent with the fact that the proxy land cover 
parameters were originally assigned for conventional systems, whereas 
all three survey sites used in this study were organically managed. 
Therefore, more flowering resources (weeds) would be expected in the 
latter. Such in-field assessment of resource availability may help to ac
count for different management choices at the parameterisation stage 
for new land covers. This is especially true when considering systems 
such as alley cropping, whose management approaches may vary widely 
between sites, e.g., differences in tree selection or sown understory 
mixes (Table A1). Our results reflect this, revealing high variation in 
floral cover between land cover types and between sites (Fig. 2).

In contrast, model predictive performance decreased for solitary bees 
in spring when field-derived scores were included instead of proxy 
scores (Table 2). As discussed in Section 4.1, this could be because, when 
taking floral measurements in the field, we did not consider that the 
habitat preferences of solitary bees in each season may differ. Therefore, 
we suggest that including field-level floral measurements during 
parameterisation may be most useful either when considering generalist 

groups of taxa, or groups whose floral specialisms are concordant (in 
which case only the cover of specific floral species should be measured). 
Note that including field-derived floral cover scores made no meaningful 
difference to model performance for solitary bees in summer compared 
to using proxy scores.

While collecting field-level floral cover data for every site is not 
feasible for large-scale or scenario-based applications, our results show 
that such data are nevertheless valuable during the parameterisation 
stage for two reasons. First, site-specific floral cover enabled us to reduce 
site-level variation and thereby establish a clearer baseline of model- 
data correspondence from which other, more generalisable parameters 
(e.g., foraging and nesting attractiveness) could be derived and/or 
evaluated. This diagnostic use of field-derived data can be helpful in any 
model where key parameters are expected to vary substantially across 
sites. Second, the comparison between proxy and field-derived floral 
cover scores provides insight into how reliance on proxies may influence 
model performance at broader scales. For example, proxies consistently 
underrepresented floral cover in certain habitats at our study sites 
(Fig. 2), which was associated with lower correspondence between 
predicted and observed abundance for bumblebees (Fig. 5). Such com
parisons help identify where proxy parameters are robust and where 
they may introduce systematic biases.

To explore generalisability, we tested a post hoc floral-cover 
parameterisation using the mean of our field-derived values for each 
land cover across sites (Fig. B4). Its performance was comparable to that 
of the proxy approach (Table B2). This suggests that, given the wide 
variation in floral cover across our sites, proxy parameters currently 
provide a reasonable starting point for representing silvoarable alley- 
cropping systems, when a general (rather than site-specific) metric is 

Table 2 
Outcomes of generalised linear models (GLMs) assessing the relationship between observed and predicted foraging abundance of bumblebees and solitary bees in each 
parameterisation approach, after stepwise regression. Negative binomial GLMs were used for bumblebees and summer solitary bees, and Poisson GLMs were used for 
spring solitary bees. Number of transects: nspring=74 and nsummer=87. An AICc value of two lower than another in the same pollinator group indicates significantly- 
improved model fit, i.e., the predicted abundance fits the observed abundance better. Partial correlation was used when more than one model term was significant (see 
methods), otherwise a regular Spearman’s Rank correlation test was conducted. * p < 0.05; ** p < 0.01; *** p < 0.001.

Pollinator Parameterisation Approach Data Source(s) ‡ Significant Model Terms AICc (Partial) 
Correlat-ion

Predicted Foraging 
Abundance (V)

Site 
(S)

Temp (bumble-bees) or 
Wind (solitary bees)

S*V

Bumblebees (Spring 
and Summer)

1) Proxy Land Covers - 0.02 ± 0.005*** ** *** ** 355.95 0.25**
2) Field-derived Floral Cover 
(Site-specific)

0.01 ± 0.003*** ** *** ​ 352.60 0.43***

3) Bespoke Attractiveness 
Scores

0.01 ± 0.003*** ** *** ​ 352.60 0.42***

4) Bayesian Calibration 
(Informed Prior)

0.01 ± 0.003*** ** *** ​ 352.14 0.45***

5) Bayesian Calibration 
(Uninformed Prior)

0.01 ± 0.003*** ** *** ​ 352.24 0.52***

Solitary Bees † (Spring) 1) Proxy Land Covers - 3.29 ± 2 * ** * ​ 146.67 0.27*
2) Field-derived Floral Cover 
(Site-specific)

5.85 ± 2 * ** ​ ​ 149.31 0.20*

3) Bespoke Attractiveness 
Scores

5.89 ± 2 * ** ​ ​ 149.12 0.20*

Solitary Bees (Summer) 
†

1) Proxy Land Covers - 0.00± 0.7 ​ ​ ​ 203.93 0.14*
2) Field-derived Floral Cover 
(Site-specific)

-0.30 ± 0.7 ​ ​ ​ 203.78 0.10*

3) Bespoke Attractiveness 
Scores

-0.28 ± 0.7 ​ ​ ​ 203.80 0.10*

†Bayesian approaches not tested for solitary bees due to run-time constraints.
‡Data sources newly collected for this paper in order to parameterise silvoarable trees and understories in poll4pop, additional to the default parameters of the original 

model. = Field-derived floral cover data. = bespoke, expert-elicited land cover attractiveness scores. = In-field pollinator abundance data collected via 

transects.
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required. Further monitoring of floral cover across more sites would help 
to determine whether variability in floral cover reduces as these systems 
become more commonly implemented and standard approaches begin 
to emerge. This could potentially enable more widely representative 
floral cover field measurements to be calculated in future.

4.2.2. Bespoke, newly-elicited attractiveness scores
Using bespoke foraging and nesting attractiveness scores for sil

voarable trees and understories, newly elicited via an expert opinion 
survey, did not affect poll4pop model performance compared to using 
proxy attractiveness scores (Fig. 5; Table 2). This might be due to sim
ilarities in the parameter distributions of proxy and bespoke foraging 
attractiveness scores for each land cover (Fig. 3). Although the quanti
tative values of the different parameter sets may be different for each 
land cover, their relative ranking among other land cover types in the 
surveyed fields did not change drastically (Table B3). Therefore, both 
parameterisations might represent a roughly equally attractive resource 
to the simulated bee populations, relative to the surrounding landscape. 
Indeed, the location of pollen resources, alongside their quality, has 
been shown to be a key contributing factor to increased bee abundance 
(Ganser et al., 2021).

Although including bespoke attractiveness scores seemed to have no 
effect on model performance in our study, this was a valuable explora
tion of the extent to which experts might need to be engaged when 
parameterising new and lesser-studied land cover classes. Expert-score 
elicitation may be more necessary when proxies that appropriately 
represent the resources offered by a new land use do not already exist 
within the model being parameterised. Furthermore, gathering these 

bespoke scores served a second purpose of ensuring expert-informed 
probability distributions were available for use as informed priors in a 
Bayesian calibration of parameters, thereby providing a starting point 
for posterior parameter likelihood distributions that can be updated as 
more data surrounding pollinator abundance in alley-cropping systems 
becomes available (Arhonditsis et al., 2007).

4.2.3. Bayesian-calibrated attractiveness scores
The results of our calibrations suggest limited model sensitivity and 

possibly parameter redundancy for three out of four of the calibrated 
parameters, given the model structure and available observational data 
(Fig. 4). Only the silvoarable understory foraging attractiveness 
parameter showed notable deviation from its prior, indicating both 
stronger empirical support and an overestimation by experts. These 
findings may reflect inherent ecological characteristics of these land 
covers, and related survey limitations. Tree-related parameters may 
have had minimal influence because the apple tree flowering period is 
brief (~ two weeks) and poorly aligned with our observational data 
collection period (~ six months). Moreover, tree nesting attractiveness 
likely had little effect in this context as the model was calibrated solely 
for ground-nesting species. In contrast, understories provide foraging 
resources throughout the pollinator active season (Staton et al., 2021) 
and thus likely influenced observed bee abundance more directly. 
Furthermore, the metric used for evaluation was predicted relative 
foraging abundance, which is strongly influenced by the foraging 
attractiveness of the land cover. It is likely that field data on nest den
sities would need to be collected and compared to the 
poll4pop-predicted nest densities to provide sufficient power for 

Fig. 5. Observed vs poll4pop-predicted relative abundance of foraging bumblebees and solitary bees in transects at all three UK silvoarable survey sites in 2023. 
Solitary bee results are considered separately for spring and summer because the poll4pop model assumes the summer-flying solitary bee populations are inde
pendent of the spring-flying populations (i.e., representing different species with later flight periods), whereas bumblebee populations are treated as the same 
colonies being continuously active across multiple seasons. Number of transects: nspring=74 and nsummer=87. Bayesian approaches were only conducted for bum
blebees, not solitary bees, due to run-time constraints. Predicted foraging abundances (x-axis) were rescaled to 0–1 within each panel to remove arbitrary between- 
guild differences arising from guild-specific parameters within the model. Fitted curves represent the GLMs described in Section 2.5.2 and Table A5. Error shading 
around regression lines represents 95 % confidence intervals.
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effective calibration of the nesting attractiveness parameters. However, 
such field data is challenging to collect (Tsiolis et al., 2022).

Whilst limited conclusions can be drawn from model evaluation 
using these parameters because we used the same observed data for both 
calibration and evaluation, we note here that they resulted in no 
meaningful improvement in model predictive ability compared to using 
proxy parameters, consistent with our results when using bespoke, 
expert-derived attractiveness parameters (Fig. 5; Table 2). This may 
relate to the lack of sensitivity shown during the calibration to three of 
four of the attractiveness parameters. Thus, whilst our calibrations did 
not yield different results to other parameterisation approaches, they did 
reveal insights into model sensitivity to our new land cover parameters. 
This aids assessment of whether either expert priors or empirical data 
are informative when generating parameters for new land cover classes. 
Furthermore, as more survey sites and data become available, these can 
be used to update the posterior distributions of parameters output by the 
Bayesian calibration, whilst using the previous posteriors as informed 
priors. This can be a particularly effective method of finding and 
updating parameters for emerging land covers such as silvoarable alley- 
cropping in the UK, which do not have many baseline data or established 
survey sites to draw upon initially.

4.3. Caveats & future work

Our simulations were run at a 3 m resolution in order to compare 
observed and predicted foraging abundance at a fine scale whilst 
capturing the spatial configuration of the alley-cropping components. 
However, this level of resolution would likely be too computationally 
expensive to maintain when modelling areas significantly larger than 
our 10 × 10 km study landscapes with standard computing resources. 
This could be addressed by running the model at a coarser resolution and 
including the silvoarable tree rows as edge features in the model inputs, 
alongside the silvoarable trees. In this case, the model will assume the 
tree rows only occupy a specified proportion of the pixels in which they 
are present. This may reduce the correspondence between observed 
abundance and predicted visitation at the field scale, but would still be 
sufficient to capture relevant patterns for regional- or national-scale 
applications.

As alley-cropping systems can vary widely in their configurations 
and management, the parameters determined in this paper are either 
reflective of the specific systems surveyed (in the case of the field- 
derived parameters) or somewhat generalist (in the case of the 
bespoke, newly-elicited expert parameters). Whilst we only studied 

Fig. 6. A) Mean abundance of solitary bee genera found in pan trap samples in spring and summer at three UK silvoarable survey sites in 2023. Nbees=509. B) Mean 
foraging range of solitary bee species found in pan traps in spring and summer, calculated from intertegular distance using formulae taken from Greenleaf et al. 
(2007.) C) Overall species richness of plant families found on transects in silvoarable understories, crops, and grassy field margins in spring and summer at three UK 
silvoarable survey sites in 2023. Error bars represent standard error in all cases.
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three sites due to limited availability, we stress that systems with 
different configurations of silvoarable elements can be incorporated into 
the model by realistically representing their configuration in input 
maps, since poll4pop accounts for these elements of context dependence 
through its spatially-explicit nature. Furthermore, if the composition of 
the modelled silvoarable elements varies significantly from our sites, our 
results suggest that spatial variation in abundance can be captured by 
finding suitable proxy land covers. If the time and resources are avail
able, representing the field-level floral cover of systems should be pri
oritised to achieve the best model predictions, since we found this had 
the largest influence on predictive ability and enabled poll4pop to 
reproduce the observed between-site differences, thereby reducing the 
need to artificially control for these in the model-data comparisons. This 
is especially relevant in studies, like ours, which seek to parameterise a 
new land cover using data collected in organically-managed field sites, 
but where the land cover could also fall under conventional manage
ment, thereby creating discrepancies in the floral availability provided 
by in-crop weeds (Milberg et al., 2025). This may be common when 
considering emerging regenerative and/or agroecological land uses, 
whose pioneering practitioners are often progressive and may already 
carry out sustainable land management practices such as organic 
agriculture.

Whilst our method of carrying out multiple model runs, each sam
pling parameters from their uncertainty distributions, accounted for 
uncertainty in the underlying parameter values of the poll4pop model, 
there are other sources of uncertainty that this did not capture. This 
includes potential observation error in field measurements, the small 
number of survey sites visited, and simplified assumptions of pollinator 
behaviour in the poll4pop model. Observation and measurement error 
of empirical abundance data could be accounted for in studies using 
mean observed values to validate model predictions by weighting each 
survey measurement by the inverse of its standard error, however this 
was not possible in our study because we treated each transect as a 
separate datapoint. Future work could also focus on increasing the 
number of study sites as they become available, and conducting long- 
term monitoring in silvoarable alley-cropping systems to generate 
larger datasets for refining parameter estimates and thus improving the 
representation of these systems at the landscape level. Beyond this, 
incorporating Bayesian calibration with iterative updates as new data 
become available could help to address some of this uncertainty.

5. Conclusions

We have integrated the spatial representation of silvoarable alley- 
cropping systems into the process-based poll4pop model and demon
strated its ability to capture spatial variation in bumblebee and spring- 
flying solitary bee foraging abundance in these systems. We have also 
provided the first within-year, sub-field scale, seasonally-resolved vali
dation of poll4pop, demonstrating its capabilities in the fine-scale sim
ulations of pollinator populations in novel or emerging agroecosystems. 
Based on our results, we suggest that future studies using poll4pop to 
predict pollinator abundance in silvoarable alley-cropping systems can 
use proxy parameters to represent floral cover parameters but should 
supplement with field data if possible, and bespoke expert-derived 
attractiveness scores as a generic parameter set for initial landscape- 
level modelling (available in Table B4). These results facilitate future 
investigations of how pollination service and ecosystem function in our 
UK farmed landscapes may change if, as encouraged, high proportions of 
silvoarable alley-cropping are implemented in the near future 
(Department for Energy Security and Net Zero, 2023), thereby better 
informing policy and practice in agrifood systems.

For others attempting to introduce novel land cover class parame
terisations into existing process-based models, we make the following 
recommendations, which may be progressed through as increasing 
amounts of knowledge/data become available: 

• Proxy land cover parameters, if suitable options are available, can 
produce reasonable model predictions for novel landcover classes. 
These may be the only option available for very newly implemented 
land covers.

• Bespoke expert opinion may be elicited, as the land cover begins to 
be implemented and initial studies and field experience begin to be 
gathered. These may be especially suitable when large-scale field 
data collection is still impractical.

• Field-measured values may be preferred for parameters that are hard 
for experts to estimate and/or likely to vary widely in different sit
uations (as was the case for floral cover in our study), in which case 
initiating dedicated small-scale studies to gather this parameter
isation information is valuable.

• Site-level variation in implementation is high for novel landcover 
classes for which a community of practice is still developing. Iden
tifying influential parameters (in our case, floral cover) for which it is 
possible to gather field data is beneficial for removing site-level 
variation, potentially making the calibration and/or evaluation of 
other parameters more accurate/feasible.

• Bayesian calibration is a time-intensive approach to finding param
eters, and the results depend on the context of the calibration data. 
We showed it valuable for revealing potential overestimation by 
expert opinion parameters but it is likely to be more powerful at later 
stages when implementation and data-providing field studies of the 
novel landcover are more widespread and can be used to improve on 
priors based on previous expert opinion.

Code and data availability

All reproducible code and processed data are available at: https://do 
i.org/10.5281/zenodo.17715001. Poll4pop model code is freely avail
able to download from https://github.com/yclough/poll4pop
(https://doi.org/10.5281/zenodo.4001015, Gardner et al., 2020b).
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