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Abstract

Understanding the Microclimate predictors in coffee-pine agroforestry
systems facilitates the prediction of microclimate, enabling the
maximization of productivity and viability of the agroforestry systems.
Coffee-pine agroforestry systems represent a VIABLE integrated
system of agricultural productivity along with environmental
sustainability. The models were tested in the dataset across different
time frames of daily, weekly, and monthly. In this research, a number of
ML approaches and models, including LSTM, DLinear, Transformer,
ARIMA, and MLP, were employed in microclimate prediction with focus
on variables including Temperature, Humidity, and Intensity. The focus
of this study on the deployment of this many models, stems from the
aim of harnessing the varied strengths of models on diverse classes of
data and predictions. From the analysis, model DLinear always
performs excellently over all time frames as compared to other models,
where DLinear possesses high accuracy with a mean absolute error
(MAE) of 0.43, while LTSM, ARIMA, MLP, and Transformer possess MAE
with 1.12, 1.77, 2.27, and 4.74, respectively. These results further
enrich the existing research on predicting geographical microclimate in
agroforestry systems, providing evidence of the usefulness of various
machine learning models in understanding and managing complex
ecosystems. Given the range of these types of models, this ensures that
a wide spectrum of the problem is addressed, which helps ensure the
quality and correctness of the forecasts by using each model of its
strengths to tackle a different area of the prediction process.

1. Introduction

The exact forecasting of the climatic conditions at a micro level regarding coffee-pine-based agroforestry systems
is essential in maximizing the benefits of crop production, ecological viability, and management of agricultural
practices and environmental conservation [1]. Microclimates play a significant role in the growth of plants, the
soil, and the biodiversity of a landscape, especially in coffee-pine agroforestry, where factors such as shade,
moisture, and temperature determine the quality of the coffee and the growth of pine trees [2]. Also, learning
microclimate dynamics helps to address sustainable farming [3]. Advances in understanding micrometeorology
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in agriculture have proven to positively impact agricultural productivity and incremental improvements in
ecological resilience [4].

Predictive capabilities in various domains have been bolstered by the latest developments in big data and
machine learning. Ecology and climate science have seen improvements in many disciplines, including healthcare
and machine learning that have been applied to both disease prediction [5] [6] and species recognition with high
accuracy [7]. In climate modules, machine learning is useful for assessing risk in various scenarios and provides
guidance for informed decisions based on data [8].

DLinier (Deep Linear) Agroforestry, which incorporates the growing of coffee under pine canopies, has a
multitude of agronomic and ecological benefits. the system enhances the quality of coffee beans, nutrient cycling,
and reduces the erosion of soil [9] [10]. It also aids in climate change adaptation by promoting biodiversity and
increasing carbon sequestration [11]. Coffee-pine Agroforestry systems provide economic and ecological balance
[12].

Brawijaya University Forest is established mainly for initiatives related to sustainable agriculture and
biodiversity practices. That is why it will assist the studies regarding soil, water, and biodiversity management,
which is crucial for resilient agroforestry systems in various climates and environments [12][13] [14]. Predicting
microclimate parameters is still plagued by some challenges due to the insurmountable environmental factors,
such as canopy cover, soil, and topography [9] [13] [15]. This necessitates data-hungry approaches [15].

The research is integrating various forms of large-scale data and machine learning in microclimate prediction,
such as LSTM, DLinear, Transformer, ARIMA, and MLP. LSTM networks are particularly developed for modeling
systems where the governing factors are time-dependent and dynamic [16]. On the other hand, DLinear is more
appropriate for addressing the nonlinearities in the environmental interactions [17]. On the other hand,
Transformer works very well in data measured at discrete time steps [18], and both ARIMA and MLP have been
shown to be effective for environmental forecasting applications [19][20]. Unfortunately, machine learning
applications for microclimate prediction in coffee-pine agroforestry systems are still scarce at this time [21]. These
systems distinctly influence microclimate variables—such as air and soil temperature, humidity, and
illumination—which are critical for crop health and environmental sustainability [22][23][24].

This research builds on the earlier works that informed the dissertation entitled Monitoring and Optimization
of Microclimate for Coffee Production through Modeling in Coffee-Pine Agroforestry Systems [25]. The initial
investigation described an IoT-attached Microclimate recording device. The aim of the study was to evaluate the
performance and potential of this system in modifying management practices, increasing productivity growth,
and reducing environmental aggressiveness in coffee-pine agroforestry systems. The study will record this data
and will allow downloading of the information from the IoT server as and when desired, without being physically
present at the Sensor node location [22]. In the following research outcomes, the data circumscribed by the tape
was processed and implemented as an input into a computational learning approach for the hypothetical
microclimate information of coffee-pine agroforestry changed by a machine learning technique. So, as a result of
this process being applied in practice, given the presence of incomplete data series due to various field-related
challenges, the process of infilling incomplete microclimate data was addressed for coffee-pine agroforestry
landscapes owing to the relevance of machine learning methods [26]. As a follow-up study, research was
conducted to build and test a comprehensive and evidence-based model to help predict climate variables at the
micro scale in the coffee-pine agroforestry system, using the convergence of big data analysis and machine
learning algorithms. Thus, this study hopes to fill the gaps in the existing literature, especially regarding
microclimate prediction in areas that use agroforestry systems, which aim to increase agricultural productivity
and ecological balance. Upon completion, the hope is that the multifaceted model will be fully validated and able
to predict microclimates, then make recommendations to other agroforestry projects across various locations. If
this outcome can be achieved, it will transform the way we approach agriculture, environmental conservation,
and numerous other sectors that intersect with the environment. The potential benefits for the world are
astounding.

That being said, there is limited research that uses advanced deep learning architectures for microclimate
predictions in coffee-pine agroforestry systems and even less that analyzes the IoT data in the context of
comparing linear and non-linear models. This research attempts to fill the void in the literature by assessing the
DLinear model against other benchmarks.

2. Related Works

This part considers earlier work related to agroforestry systems microclimate prediction from ecosystemic,
technological, and methodological angles. Previous studies showed that temperatures, moisture, and light
intensities, microclimates, and other variables are determining agroforestry productivity and sustainability.
Recent developments in remote sensing, machine learning, and big data provide a greater ability to model and
predict different variables in the environment, thus aiding in more accurate predictions. This study, from
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published works, focuses on environmental monitoring and machine learning to fill in gaps in prediction for
coffee-pine agroforestry systems.

2.1 Agroforestry Microclimates

This evidence is important because remote sensing technology is now advancing remote sensing even more
through modeling and analyzing microclimates, which is valuable for assisting in understanding microclimatic
variability in agroforestry systems. This also illustrates the remote sensing ability to foresee the responses of
species to global warming and, hence, it is tied to contemporary studies in this section.

This having been said, [27] has continued with this field by looking at the carbon stocks of various
agroforestry systems with a focus on the climatic variables of temperature and humidity, which have an impact
on microclimate. Importantly, the paper also makes global comparisons of an agroforestry system in Indonesia.

Imanuddin looks at the intercropping with coffee of Sumatran pine forests and tries to assess the feasibility
of agroforestry systems and their possible economic advantages [28]. This covers the explanatory part of the
ecological and economic gains accruing from coffee-pine agroforestry systems.

Moreover, Suprayogo studied the litter layer and earthworm populations as indicators of soil health and
biodiversity in coffee-pine-based agroforestry systems [29]. Suprayogo also contributed. Sudharta examined soil
organic carbon and nitrogen in coffee-pine agroforestry systems under different types of management within the
coffee bean production context, which seems particularly relevant to the tremendously important debates about
the soil health and agricultural productivity of coffee-pine agroforestry systems [1]. Cahyono focuses on
agroforestry innovations, more particularly on pinenut coffee systems, which go hand in hand with the study of
the changes and environmental effects of agroforestry systems, especially the UB Forest [30]. Purnomo
investigates climate change in relation to soybean agroforestry and discusses canopy and related issues, which
squarely relate to the climate change adaptive mechanisms to agroforestry practices in UB Forest [31].

2.2 Big Data in Environmental Science

Real-time and the sheer bulk of data created in a day within the scope of Environmental science and engineering
(ESE) brings with it a big body of work in terms of improving how data can be analyzed [32]. Incorporation of
machine learning processes into the routines of ecologist's workflows can improve the parameters of ecological
models and therefore the integrated development of hybrid modeling approaches [33]. This paper seeks to assess
the evolution of climate technologies used in the Agriculture Big Data context [12]. To be precise, the inputs
include states and trends of different oceanographic and atmospheric parameters such as sea-ice extent, sea-
surface temperature, ice motion, ice depth, net shortwave radiation, ice surface skin temperature, and salinity at
the sea surface, as well as a land-sea mask in the model input [34].

2.3 Machine Learning Applications

Le developed LSTM models for time series forecasting, similar to agricultural time-series predictions like weather
and crop cycles [35][36]. Wang used LSTM networks for short- and medium-term load forecasting, demonstrating
LSTM'’s versatility for agricultural yield predictions [37]. Park show LSTM predicting soil moisture in soybean
farming, applicable to climate and soil condition forecasting [38]. However, they face challenges in long-term time
series forecasting (LTSF) because the recurrent iterations inherent to LSTM over extended lookback and forecast
horizons result in the accumulation of errors. The study to utilize supervised machine learning to predict customer
churn in a telecom company based in California [39].

The linear activation functions in DLinear models were specifically discussed by O'Shea and Hoydis for deep
learning applications in wireless communication [40]. Christin found such emerging deep learning models horizon
unexplored by scientists in the ecological arena; they underscored the ability of deep learning to address complex
and heterogeneous data [41]. Apart from bringing the best out of optimizing configurations, transformer
architectures have dramatically contributed to transforming the scope of sequence prediction in agriculture by
providing the finest-tuned efficient solutions for temporal modelling [9]. Transformers have previously been used
for some agricultural problems, which include forecasting in crop yield prediction, land cover classification, and
monitoring, etc. [14].

The traditional approaches of machine learning were able to achieve good results from ARIMA and multi-
layer perceptrons in environmental and health-related forecasting. Comparatively, the longer the data period of
windows is, the better ARIMA performs, and the worse LSTM performs. With regard to this, an example of Alim
used ARIMA and XGBoost in modeling human brucellosis outbreaks in China [42]. Tsan later applied LSTM and
ARIMA models to forecast influenza-like illness incidence [43]. MLPs were also able to improve dam inflow
prediction accuracy, thus showing evidence of the increasing role of A.l in environmental forecasting [44].
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3. Materials and Methods

A Current Work was conducted within the Coffee-Pine agroforestry System, which is in UB Forest and Mount
Arjuno slopes, that is located within Sumbersari Hamlet, Tawang Argo Village, Karangploso, Malang. It could be
noted at 7 days49 minutes, and 26 seconds South and 1.

2 degrees 34 minutes, and 41 seconds east. Elevation-1200-1800 m a.s.l, Researchers took UB Forest as a core
research area because it comprises diverse environmental conditions with all kinds of agroforestry practices
appropriate for machine learning applications. This forest has a huge altitudinal gradient, showing hilly lands,
lowlands, diverse microclimates, and therefore a great place for full environmental understanding.

3.1 Research Area Description

A Current Work was conducted within the Coffee-Pine agroforestry System, which is in UB Forest and Mount
Arjuno slopes, that is located within Sumbersari Hamlet, Tawang Argo Village, Karangploso, Malang. It could be
noted at 7 days49 minutes, and 26 seconds South and 112 degrees 34 minutes and 41 seconds east. Elevation-
1200-1800 m a.s.l., Researchers took UB Forest as a core research area because it comprises a diverse
environmental conditions with all kinds of agroforestry practices appropriate for machine learning application.
This forest has a huge altitudinal gradient, showing hilly lands, lowlands, diverse microclimate, and therefore a
great place for full environmental understanding.

A total of 4 sensor nodes were deployed across four management intensity plots (BAU, LC, MC, HC), with five
sensors (Air temperature, Air humidity, Soil temperature, Soil humidity, and Sunlight Intensity) in each plot.
Sensors were placed at representative positions within the coffee-pine zones, approximately 1 m above ground
for air temperature and humidity, and 15 cm depth for soil moisture measurements.

3.2 Data Collection

Data were collected from April 2024 to December 2024, focusing on environmental variables: moisture,
temperature, and sunlight. Modern sensors recorded humidity and soil moisture at various depths and locations
within the forest. Instruments included HOBO Solar Radiation Shield with Lascar CAP-2200 (temperature and
humidity logger), Odyssey Soil Moisture Sensor Probe, and MX2202 HOBO MX (temperature and light logger).
Data were retrieved monthly via USB by field operators. Sensors were placed across plots with different
management intensities (BAU, LC, MC, HC) to capture environmental variability critical for coffee-pine
agroforestry microclimate modeling. The tools at the UB Forest for gathering the microclimate data are depicted
in Fig. 1.

(@) (b) (9

Fig. 1 A HOBO solar radiation shield (a) together with the Lascar electronic temperature and humidity sensors; (b)
Offset Soil Moisture Sensor Probe (Odyssey); (c) Hobo MX light intensity & temperature data logger MX2202

3.3 Data Preprocessing

Data cleaning involved identifying as well as correcting the missing or erroneous values using statistical
techniques like mean imputation or K-Nearest Neighbors to increase data quality. In addition, some outliers were
detected and managed using z-score methods and IQRs. The cleaned data were then normalized using min-max
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scaling to [0,1] to hasten learning convergence [45] [46]. Z-scores were then applied to the cleaned data as
standardization, such that all variables had mean=0 and standard deviation=1-an essential step for algorithms
sensitive to variable scale [47][48]. Overall, this process improved data quality while the learning model became
more efficient [46][49][50].

3.4 Data Analysis Process

The implemented dataset has been prepared for data analysis which includes feature selection and feature
engineering prior to training five models: LSTM; DLinear; Transformer; ARIMA; MLP. The performance result of
the model will be evaluated by metrics such as MAE, MSE, RMSE, and MAPE, with smaller values indicating that
the model is closer to making accurate predictions [51][52]. Such approaches had been exploited for Big Data and
machine learning application purposes to improve the prediction of agroforestry complexities concerning
microclimates [53].

3.5 DLinier (Deep Linear) Model

This DLinear ( Deep Linear model) is accurate in working on time series forecasts by decomposing the given input
data into two fundamental components associated with each input: seasonality and trend. The model's view is
that the behaviour of any time series can be convincingly captured with those two additive components to achieve
a simplified but accurate prediction.

The study employed a linear model specifically created for the advancement of predictions of microclimate
under big data applications. The architecture comprises an input layer, a number of linear hidden layers, and an
output layer. Raw sensor inputs like temperature and humidity are directed to the input layers. Hidden layers
perform linear transformation without nonlinear activation functions; hence, they retain simplicity and
interpretability. The output layer has predictions on important microclimate variables [54].

The input time series x, comprises observations at discrete time steps. This data is processed separately in
the model to yield the seasonality (S;) and trend (7;) parts by linear transformations: S, = Wyx, + byand T, =
W.x, + b;, where W, and W, are weight matrices and bg and b, are biases. The final prediction ¥, thus is a
summation of both components:

Ve=S+T, (1)

The DLinear model philosophy involves dealing with it additively, which makes it easy to discern short and
long-term trends, which also improves robustness and interpretability of the model. Furthermore, the
computational efficiency that comes with the model's use of linear transformations gives great value to the model
since it performs optimally on large datasets and on environments with poor computational resources. The
simplicity of DLinear makes it learn complicated temporal structures efficiently, resulting in accurate and effective
microclimate predictions in agroforestry environments. Predictability and the relative ease of use, not to mention
the increased trust by users, are also great advantages [37].

The model, therefore, confines itself to linear transformations of the data and hence makes no use of nonlinear
activations. This contributes toward maintaining maximum simplicity and interpretability. Such transparent
models will be more useful for researchers to track and communicate predictions in environmental studies and
policy contexts [50].

Data on short-term microclimatic phenomena observed over time form the grist of the model here. Initial
noise from short periods of time is suppressed using moving averages, which then permit the longer-term trends
to emerge. Then the seasonal, trend, and residual components result from the decomposition of these series in
two parallel linear processing branches, that is, those that bring together the multiple variables celebrated on
season features and those that bring trend features together. The summation of branch outputs follows, then
passing to the final layer for forecasting time series data analysis. It perfectly models complex trends, although it
is critically suited for imputing seasonal patterns vital for microclimate forecasting in coffee-pine agroforestry
systems [55], and can therefore be seen indelibly from Fig. 2.
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Fig. 2 DLinear architecture

It was discovered that integrating moving average smoothing with decomposing series removed noise while
extracting meaningful trends and seasonality from microclimate time series data, therefore improving the quality
of the fitting [56]. The linear layers facilitate the processing of the seasonal and trend components in a transparent
manner that keeps simplicity and interpretability. Such an interpretation facilitates researchers’ ability to
understand and trust model outputs [57]. The final output layer integrates seasonal behavior with long-term
trends, providing an overall forecast of microclimate at both short- and long-term timescales in the agro-
silvopastoral setting [58].

The dataset was split into 70% for training, 15% for validation, and 15% for testing to ensure balanced
evaluation across temporal patterns. The DLinear model was trained using the Adam optimizer with a learning
rate of 0.001, batch size of 32, and 10 epochs. These parameters were determined empirically after preliminary
tuning to minimize validation loss and prevent overfitting.

3.6 LSTM (Long Short-Term Memory)

Long Short Term Memory networks have significantly improved over the normal recurrent networks in both
design and application. Vanishing gradient problems are gradually solved next by adding memory cells and then
putting into the memory an input, forget, and output gate mechanism for controlling information flow. This allows
models to learn long-term dependency in sequential data, which is a prerequisite for such applications as
microclimate analysis. Anyway, LSTMs have proved their mettle for a number of time series prediction tasks
ranging from weather forecasting, speech recognition to financial modeling [59][60][61]. Consequently, more
improvements, such as the addition of residual connections and sentiment features, have even enhanced the
effectiveness of LSTM in difficult situations [62][63].

3.7 ARIMA (Autoregressive Integrated Moving Average)

The ARIMA model is a classical time series analysis approach with three main components: autoregression (AR),
differencing (I), and moving average (MA). The ARIMA architecture is particularly effective for non-stationary
data because it differentiates to achieve mean stability and then models temporal correlation with autoregressive
and moving average terms. Accordingly, we choose (p, d, q) parameters that capture data patterns and noise. Thus,
ARIMA is used in the fields of economics, meteorology, and epidemiological studies. In addition, hybrid
approaches combining ARIMA with neural network models such as LSTM have been shown to enhance forecasting
skills [64][65].

3.8 MLP (Multi-Layer Perceptron)

A Multi Layer Perceptron (MLP) is a type of feedforward neural network that includes fully coupled input, hidden,
and output layers. Thus, MLPs can model non-linear complicated relationships on data with the help of the
activation function ReLU. Training is accomplished using the backpropagation and gradient-based optimization
algorithms. MLP is general-purpose and can be applied to classification, regression, or time series predictions; its
performance is closely related to appropriate hyperparameter tuning and enough data. The application of
regularization techniques is important to avoid overfitting in practice. MLP is found in applications ranging from
medical diagnosis, finance modeling, to environmental modeling [65][66][67].
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3.9 Transformer

Transformers are the newest emerging state-of-the-art architecture for sequential data processing, relying on an
encoder-decoder structure maintained with the use of multiple heads of self-attention to model complex
dependencies without recurrence. Therefore, it allows fast and flexible parallel computation as well as robust
performance in natural language processing and can be adapted to temporal series forecasting or image analysis,
with positional encoding included to maintain the sequential order of input data. The increased scale and
computational efficiency of Transformers enable their extensive use in very sophisticated modeling tasks
[68][69][70]. Current focus has been directed in this direction to improve interpretability, particularly for critical
applications, where the “black box” nature of the transformed is still a serious concern [71].

4. Results and Discussion

This section presents the experimental outcomes and interprets the findings in the context of microclimate
prediction. Model performance was assessed using metrics such as MAE, MSE, RMSE, and MAPE across different
forecasting horizons (daily, weekly, and monthly). The results show how DLinear model outperforms others with
regard to accuracy and efficiency, especially in microclimate data with seasonal and trend components. There
were comparisons made with LSTM, Transformer, ARIMA, and MLP to show the balance among complexity,
accuracy, and computational. Within agroforestry management, the discussion illustrates the enhanced benefits
and machine learning productivity to real ecological sustainability.

4.1 Datasets

The study focuses mainly on the two abundant datasets. The first consists of relative light intensity measurements
in the coffee-pine agroforestry landscape. This data holds the most importance in understanding the plant growth-
related photonic condition and the system's photosynthetic activities. The second dataset involves air
temperature and humidity, which are essential for understanding the microclimate surrounding plant growth,
hence the system's health. The two very well-curated datasets offer an excellent frame for understanding the UB
Forest competing ecosystem.

4.2 Experiment Settings

In designing this experiment, achieving perfect accuracy and reliability in the results was of utmost importance.
To have a good representation of the different microclimatic zones in the coffee-pine agroforestry system, UB
Forest plots were equipped with several sensors measuring the microclimate variables of light, temperature, and
humidity. Collecting data over an extended period of time was needed to capture differences in weather events on
a macro and micro scale. This ensured that the sensors broadcast real-time data over long periods for full analysis.
Data pre-processing, which included cleaning, normalization, and standardization, was performed before the
application of machine learning. The said results conduct a thorough characterization of the microclimate at UB
Forest and exhibit the high potential of up-to-date machine learning methods for use in the ecological domain. In
support of sustainable agroforestry management, these results show the relevance of big data and machine
learning in environmental science.

4.3 Result Prediction Daily Time Frame

The modeling in this study results in the generation of graphs and assessment metrics (MAE, MSE, RMSE, MAPE)
pertaining to every variable (Temperature, Humidity, Intensity) for all models (LSTM, DLinear, Transformer,
ARIMA, MLP) over all time frames considered (Daily, Weekly, Monthly). Due to space limitations in this article, it
is only displayed in the daily time range. Due to limited space in this article, it is only displayed in the daily time
range. The visibility of Fig. 3 shows the results graph for LSTM, DLinear, Transformer, ARIMA, and MLP models in
the context of daily temperature prediction.
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Fig. 3 Graph for the LSTM, DLinear, transformer, ARIMA, and MLP models to predict temperature for daily time
frame

The results graph for the LSTM, DLinear, transformer, ARIMA, and MLP models to predict humidity in time
daily can be seen in Fig. 4.
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Fig. 4 Graph for the LSTM, DLinear, transformer, ARIMA, and MLP models to predict humidity for a daily time
frame
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Visibility of Fig. 5 shows the results graph for LSTM, DLinear, Transformer, ARIMA, and MLP models in the
context of daily Intensity prediction.
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Fig. 5 Graph for the LSTM, DLinear, transformer, ARIMA, and MLP models to predict Intensity for daily

4.4 Discussion

This is a comprehensive data analysis, covering all variables (Temperature, Humidity, Intensity), for each model
(LSTM, DLinear, Transformer, ARIMA, MLP), across all time frames (Daily, Weekly, Monthly), with a focus on
evaluation metrics (MAE, MSE, RMSE, MAPE). Evaluation metrics with LSTM, DLinear, Transformer, ARIMA, and
MLP models to predict temperature in all time frames can be seen in Table 1.

Table 1 serves as the foundation for modeling an explanatory variable such as Temperature. In the daily scale,
DLinear was the most accurate model, considering that the model’s error metrics were the least with metric
evaluation MAE 0.68947, MSE 0.87247, RMSE 0.93406, and MAPE 0.03345. During the weekly time frame, DLinear
was again the most precise model. DLinear’s performance was also outstanding in the monthly time frame.
Therefore, in the case of a variable temperature, the model DLinear has more superiority in both daily and weekly
time frames in accuracy and related error measures. This measurement possibly could be ascribed to its capacity
to measure the linear correlation of prediction in such data sets of temperature. Add in Islamic agents, LSTM
performs the best, but naturally, there is declining performance from the Transformer structure, which has proven
to be useful in data that is sequential.

The performance of the Linear model in the accuracy and error metrics is better for both daily and weekly
time frames when temperature data is considered. This is due to the concentrated nature of this model in
predicting extreme values within the temperature data [72]. However, the Transformer model, which is designed
to handle sequence data, offers good performance too, although it is not as good as the other architectures such
as LSTM, MLP, and ARIMA [73].
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Table 1 All time frame temperature prediction assessment metrics

E;;nrie Model MAE MSE RMSE  MAPE
LSTM 1.7983 5.28985 2.29997 0.09102
MLP 2.0996 8.24172 2.87084 0.10504
Daily Transformer 1.3161 3.03906 1.74329 0.0609
ARIMA 2.178 7.95948 2.82125 0.1098
Dlinear 0.68947 0.87247 0.93406 0.03345
LSTM 1.4406 3.67688 1.91752 0.0705
MLP 2.1216 8.38098 2.89499 0.10239
Weekly  Transformer 1.3769 3.3751 1.83714 0.06047
ARIMA 2.2287 9.15619 3.02592 0.10773
Dlinear 0.51129 0.46679 0.68322 0.02436
LSTM 1.1215 2.0563 1.434 0.0572
MLP 2.2718 7.9992 2.8283 0.1161
Monthly Transformer 4.7355 31.9899 5.656 0.2232
ARIMA 1.7672 4.9808 2.2318 0.0893
Dlinear 0.4336 0.3426 0.5853 0.0217

Table 2 illustrates the Assessment Metrics of LSTM, DLinear, Transformer, ARIMA, and MLP models for
predicting Humidity In each time span considered.

Table 2 All time frame humidity prediction assessment metrics

;‘;;nrie Model MAE MSE RMSE ~ MAPE
LSTM 10.231 229.30466 15.14281 0.12874
MLP 11.809 270.81748 16.45653 0.14525
Daily Transformer 7.6413  86.29015  9.28925 0.0907
ARIMA 10.526 135.61186 11.64525 0.1375
Dlinear 3.3519 30.51998 5.52449 0.04647
LSTM 9.283 147.93053 12.16267 0.11746
MLP 14.163  285.1359 16.88597 0.17127
Weekly Transformer 5.4042  42.02862  6.48295 0.06846
ARIMA 10.105 133.7155 11.56354 0.13314
Dlinear 2.8859 16.26603 4.03312 0.03881
LSTM 5.7901 70.7804 8.4131 0.0725
MLP 10.715 181.5174  13.4728 0.1272
Monthly Transformer 5.3812 39.9948 6.3241 0.0636
ARIMA 12919 201.4062 14.1918 0.1663
Dlinear 2.1157 9.3793 3.0626 0.0274

As illustrated in Table 2, there is a comparison of the variable Humidity in relation to models and time frames.
DLinear outperformed its competitors in terms of statistics by recording the fewest errors; however only applied
in the daily time frame, where DLinear recorded an MAE of 3.3519, MSE of 30.51998, RMSE of 5.52449, and MAPE
of 0.04647. In the weekly time frame, DLinear again had the best performance. Monthly DLinear also shows the
best performance. It has been seen that the DLinear model’s predictions of humidity levels were superior to those
provided by the other models, no matter the time frame allowed for predictions.

DLinear was invariably better than any other model for predicting humidity over different timescales, i.e,, it
was a reliable model. It was shown that DLinear did much better than conventional models, such as LSTM,
Transformer, ARIMA, and MLP in the case of one-month humidity forecasts [74]. Nevertheless, among the others,
LSTM, Transformer, and ARIMA showed moderate to high prediction errors, while ARIMA and MLP were the most
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ineffective overall [75][76][77]. An overall assessment metric comparison was done for all models-LSTM, DLinear,
Transformer, ARIMA, and MLP-over different forecasting horizons as outlined in Table 3.

Table 3 All time frame intensity prediction assessment metrics

Time-

Frame Model MAE MSE RMSE MAPE
LSTM 988.86 3837594.488 1958.97792 1.49086
MLP 1836.6  5540786.365 2353.8875 1.54831
Daily Transformer 1438.8 5675527.706  2382.33661 1.58529
ARIMA 1284.1 6484794.619 2546.52599 1.67337
Dlinear 553.94 1517304.359 1231.78909 1.29886
LSTM 1070.7 5368080.715 2316.91189 1.42925
MLP 1924.6  7306372.606 2703.03026 1.46444
Weekly Transformer 1634.4 7682838.844 2771.79343 1.57237
ARIMA 1566  8754262.999 2958.76038 1.76226
Dlinear 733.18 2804285.754 1674.60018 1.25277
LSTM 984.83 5387880.776 2321.1809 1.4053
MLP 1903.1 7771004.96 2787.6522 1.462
Monthly Transformer 1575.1 7989741.438 2826.6131 1.5555
ARIMA 1499.3  8996606.455 2999.4344 1.7464
Dlinear 761.24 3062665.139 1750.0472 1.2779

Specifically, the analysis of the Intensity variable across all models and time scales is found in Table 3. Notably,
DLinear provided the best results achieved by the daily forecasting window with an MAE of 553.94, MSE of
1,517,304.359, RMSE of 1,231.78909, and MAPE of 1.29886. In the weekly loss, MDE DLinear has the smallest
errors. In the monthly time frame, DLinear is outperforming other models. The DLinear model has shown the best
performance in terms of error metrics across all the variables (temperature, humidity, intensity) and time frames
(days, weeks, and months). In opposition, ARIMA and MLP models, which could be considered appropriate
solutions, have higher errors in almost all metrics and within the variable’s scope.

The DLinear model's strong performance indicates that simpler models do best when trends in the data
become less complex. DLinear model's performance confirms empirical model selection theory from previous
literature which suggests simpler models are often superior [78]. The performance also indicates that modeling
the dynamics of the data temporally is an important consideration for microclimate forecasting, as LSTMs and
ARIMAs are used for time series predictions in agriculture [79] [80][81]. On the contrary, the performance of the
MLP and the Transformer may be due to overfitting, tuning, lack of training data, and the need for complex neural
networks to be used more ambitiously and judiciously in relation to the task and data at hand.

The application of the DLinear model is observed to be the most superior when predicting the microclimate
of Coffee-Pine Agroforestry. Based on the indicators considered, it would appear that the DLinear is the most
informative model to apply. However, this is not the only thing that has to be considered while advertising a
conclusion; the characteristics of the data in question, the computational resources available, and the intended
users’ expertise in relation to building and using the model should be factored in as well.

The superior performance of DLinear can be attributed to its decomposition of temporal patterns into
seasonal and trend components, which aligns with the quasi-linear structure of climate variables. Unlike deep
nonlinear models such as LSTM or Transformer, DLinear minimizes overfitting in datasets with strong periodicity
and low stochastic noise, which is typical of microclimate data.

The statistical analysis based on the ANOVA results, shown in Table 4, the comparison of MAE values across the
five predictive models (LSTM, MLP, Transformer, ARIMA, and DLinear) showed a statistically significant
difference in performance. With the data available, multiple machine learning techniques were analyzed and
constructed to predict the microclimatic conditions in the Coffee-Pine Agroforestry ecosystem. The models
analyzed include MLP, LSTM, DLinear, Transformer, and ARIMA, and all were trained on the same dataset
consisting of 111,097 records. The uniformity of the dataset volume allows for an equitable comparison of the
models. Rather than the previous tables, which evaluated on a daily, weekly, or monthly scale, Table 4 presents
an analysis of model performance and training speed comprehensively.
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Table 4 The statistical analysis ANOVA on MAE across models

Component Value
Number of groups (k) 5
Total observations (N) 15
Degrees of freedom (Between) 4
Degrees of freedom (Within) 10
Sum of Squares (Between) 2,674,109.13
Sum of Squares (Within) 97,728.30
Mean Square (Between) 668,527.28
Mean Square (Within) 9,772.83
F-value 68.41
p-value 3.17 x 1077

The current article, utilizing various ML techniques, estimates microclimate conditions of Coffee-Pine
Agroforestry using available data. The models include MLP, LSTM, DLinear, Transformer, and ARIMA. All models
are built on a single dataset containing 111,097 rows. This dataset facilitates balanced comparison of models.
Table 5, unlike previous ones that broke down results by day, week, and month, summarizes overall model results
and training efficiency.

Table 5. Results for Model Training Time.

Table 5 Results for model training time

Parameter MLP LSTM  DLinear Transformer ARIMA

Dataset 111097 111097 111097 111097 111097
Epoch 10 10 10 10 10
Training 903.97 5,522.57 91197 19,970.21 2,176.85
MAE (mean) 2.27 1.12 0.43 4.74 1.77

The shortest training duration were recorded for DLinear and MLP (912 s and 904 s, respectively), suggesting
high efficiency. On the contrary, the Transformer took significantly longer time for training (about 19,970 s),
suggesting high processing time. LSTM and ARIMA were in the middle range for training time of the measured
models.

Considering prediction accuracy in terms of MAE, DLinear was most accurate (MAE = 0.43), followed by LSTM
(1.12), ARIMA (1.77), MLP (2.27), and Transformer (4.74). Thus, DLinear predicted microclimate variables with
higher accuracy as well as higher efficiency than rest models. Predictive accuracy and computational efficiency
suggest DLinear is in range of possibilities for real time microclimate prediction in agroforestry.

Nonetheless, certain restrictions are still to be considered. The approach taken is limited to the information
available and the calibration of the historical information, as well as the measurements taken from the sensors. If
any historical data is of low quality or lack information, any estimates made from that data can be very incorrect
and/or misleading. This type of data quality is very vital for any future application. In addition, we understand
that after our best effort for this study, implementing DLinear, we may have to accept that DLinear can be at a
disadvantage compared to other methods such as LSTM or Transform in the identification of certain complex,
non-linear interrelationships. Therefore, in extremely detailed or advanced ecologies, it may become rather
unimportant. Finally, the actual conditions under which these results may be generalized and applied to other
agroforestry systems or ecosystems need more in-depth examination. Therefore, there is a need for more in-depth
examination under different conditions.

As it stands now, the implementation of DLinear forecasting in socketed sensor networks promotes climate-
smart agriculture through the seamless understanding and real-time monitoring of microclimate and its changes.
Real-time forecasting of microclimate (temperature and humidity) changes can facilitate adaptive changes in
irrigation and canopy management, enhancing water use efficiency, and increases resilience to heat stress in
coffee-pine systems.

The DLinear model's predictive capacity allows flexibility in how to approach agroforestry management.
Knowing how to forecast temperature, humidity, and light intensity accurately can result to adapted forecast
irrigation management and other agroforestry practices, such as canopy pruning and coffee plant spatial
arrangements, which create a more productive agroforestry system. These anticipatory forecasted conditions can
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also assist climate adaptive responses to season changes and help coffee-pine farmers schedule management
practices more effectively.

5. Conclusion and Future Work

The parameters such as Temperature, Humidity and Intensity were adopted in this study. The analysis found that
the DLinear model significantly surpassed the performance of other models such as LSTM, Transformer, ARIMA,
and MLP for all the time frames and parameters (Temperature, Humidity, Intensity) adopted in this study as it
scored the least Error metrics and the highest Accuracy levels. Achieving all this is the linear learning approach of
the model which is quite fast with training time lasting for only 912 seconds making it ideal in micro-climate
modeling of coffee-pine agroforestry systems. Other models such as MLP for a training time of 904 seconds and
ARIMA for a training time of 2177 seconds provided the optimal ranges in terms of the rate of convergence and
the accuracy levels of the models trained but fell short of DLinear in terms of performance. LSTM and Transformer
enabled handling of sequential data that is complex, however, the associated costs (5523 seconds for training
LSTM and 19970 seconds for Transformer) did not translate to significant gains in performance.

This research exemplified how DLinear model offered microclimate forecasting at the intersection of data
driven systems and agroforestry system management. This will help in the continual improvement of precision
agroforestry, as more Al driven forecasting tools are created and integrated into ecological systems decision
making.

Future work may look at trying to adjust more complex models such as LSTM and Transformer or their
combination with DLinear in more complicated environments. It would also help to test these models in farming
systems found in different locations. In future research, it would be important to add more environmental factors
such as soil types or even canopy cover to enhance predictions as well as study the research question on climate
change effects over time. These results enhance existing microclimate prediction systems and provide a new
perspective on maximizing agricultural output along with respective ecological concerns in different parts of the
world that involve agroforestry systems.
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