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morphological divergence between 
genetically distinct populations of 
limpets
Jack D. Hollister1,2, David A. Paz-García3,4, Rodrigo Beas-Luna4,5, Tammy Horton6, 
Xiaohao Cai7 & Phillip B. Fenberg1,2

Many species are composed of two or more genetically distinct clades, indicating ongoing or past 
evolutionary divergence. Often however, there are no obvious morphological differences between 
clades, making it difficult to accurately assess specific aspects of biodiversity or to enact targeted 
conservation efforts. New advancements in artificial intelligence tools can be used to categorise 
individuals into their respective genetic clades and to highlight their distinguishing morphological 
characters that would otherwise be hidden from human observers. Here, we applied computer vision 
and explainable artificial intelligence techniques to four limpet species that display well-defined 
phylogeographic breaks along the Baja California and California coasts. A fine-tuned convolutional 
network, trained and evaluated over 100 resampling iterations, classified individuals into their genetic 
clades with median F1-scores of up to 0.96. F1-score performance was markedly higher for true clade 
groups than the controlled mixed-groups, confirming the presence of features specific to the clades. 
Saliency maps consistently emphasised structures such as the keyhole in Fissurella volcano and 
the ridge tips in Lottia conus as distinguishing features, and subsequent shape analyses confirmed 
significant divergence between clades. These results demonstrate the power of computer vision and 
explainable artificial intelligence to expose otherwise cryptic morphological diversity and provide a 
scalable, reproducible workflow that can broaden the biodiversity toolkit and refine eco-evolutionary 
research across taxa.

Understanding the processes that generate and maintain biodiversity between and within species is a central aim 
of ecology and evolutionary biology1. Although genetics, morphology, or a combination of the two are routinely 
used to delimit taxa and populations, a substantial fraction of diversity remains hidden because genetically 
distinct lineages may be morphologically indistinguishable, known as cryptic divergence. In such cases, the 
human eye cannot easily discriminate external traits, and molecular markers are often relied on to provide a 
diagnostic tool for classifying groups2.

The prevalence of cryptic divergence across the animal kingdom has become increasingly apparent with 
advances in molecular techniques. A comprehensive meta-analysis of 2,207 cryptic species across major 
metazoan taxa and biogeographical regions3, revealed that cryptic species are homogeneously distributed 
among taxonomic groups rather than concentrated in particular lineages or environments. This finding suggests 
that morphological stasis upon speciation is seemingly common, independent of phylogenetic relationships or 
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ecological circumstances, and indicates that cryptic diversity predictably affects biodiversity estimates across all 
animal groups.

There are also high levels of cryptic divergence within species, where there are no obvious morphological 
differences between genetically distinct populations4. If there are any morphological differences between 
cryptically divergent populations within species, it is likely harder to notice them compared to differences 
between completely separate species, because the genetic differences are not as significant5. Given the 
accelerating loss of species and populations under human impacts, accurate and reproducible methods are 
urgently needed for detecting morphological differences between cryptically divergent populations or species 
to inform conservation efforts and provide eco-evolutionary biologists with better tools for understanding 
genotype-phenotype interactions.

Explainable artificial intelligence (XAI) are techniques that allow for AI model outputs to be reviewed and 
understood by humans6. XAI have been particularly advanced within the subfield of computer vision (CV), 
which now offer a tractable solution to the challenges faced in identifying differences in morphology between 
cryptic groups7. Heatmaps, a form of CV XAI, provide a visual representation of the regions within an image that 
most strongly influence model prediction8. They generate an overlay in which the individual pixels, or spatial 
areas of pixels, that contribute most to classification decisions are highlighted. One such technique, known as 
saliency mapping, assigns a score to each pixel according to its importance in the final output decision9–11. The 
scored pixels are then rendered in a colour scale, where ‘hotter’ colours indicate higher importance. These maps 
therefore serve as a crucial link between model prediction and human interpretation, enhancing the transparency 
and reliability of automated morphological assessments.

A trained convolutional neural network (CNN) can detect minute shape or colour variations between closely 
related species, differences which can often elude human observers12. Furthermore, heatmap systems reveal the 
pixels most responsible for each classification13. By coupling automated classification with feature visualization 
tools, researchers can examine and objectively measure morphological differences, enhancing our understanding 
of cryptic patterns of biodiversity.

In this study, we developed a CV pipeline to examine four species of limpets with significant population 
genetic differences along the coasts of Baja California and California14,15. Despite clear genetic distinctions 
between clades, there are no outward morphological differences that have been noted, either in the literature 
or from field observations of the co-authors, suggesting cryptic divergence. Our primary goal was to train a 
CNN to accurately classify shells to their respective genetic clades. Next, we aimed to uncover specific features 
that contribute to this accuracy using saliency maps, which helped guide our analyses and interpretation of 
shell shape differences between clades. These results can then be used to hypothesise on the potential eco-
evolutionary reasons for the morphological differences between clades. Using our explainable AI pipeline, 
researchers will be in a better position to explore phenotypic differences between cryptic groups and their 
ecological and evolutionary significance.

Methods
Species selection and genetic clade classification
The following four limpet species were analysed: Fissurella volcano16Lottia conus17Lottia gigantea18 and Lottia 
strigatella19. The Lottia species are members of the Patellogastropoda (true limpets) whereas F. volcano belongs 
to the Fissurellidae (keyhole limpets). Despite their superficial morphological similarities, keyhole limpets and 
true limpets are not closely related phylogenetically. Fissurellidae can be easily distinguished from the true 
limpets by the presence of their keyhole. Between Lottia species, L. gigantea can be easily distinguished from the 
others due to its large size difference. While there can be some confusion between L. conus and L. strigatella13 
author PBF is an expert in Lottia species from the Baja California Peninsula and is able to visually differentiate 
all species in this study. Within species however, there is high morphological variability13.

Specimens were classified into their predefined genetic groups based on previous molecular studies which 
defined distinct genetic clades separated by clear phylogeographic breaks. In F. volcano, L. conus, and L. 
strigatella, major phylogeographic breaks along the western Baja California Peninsula was identified using the 
mitochondrial marker CO115. By contrast, L. gigantea shows no breaks with CO1 or microsatellites20 but does 
exhibit two breaks identified by genome-wide SNP analysis14.

Throughout this study, populations north of their respective breaks are termed the Northern clade and 
populations south of the breaks, the Southern clade. For L. gigantea we restricted sampling to specimens spanning 
the Californian break because material from the more southerly clade is scarce. These clade designations 
provided the framework for all subsequent morphological and CV analyses.

Specimen collection
Specimens were obtained from two primary sources: field sampling and natural history collections. This dual 
approach provided a comprehensive sample across phylogeographic breaks while accommodating logistical 
constraints that limited field sampling at every location. Field collections yielded representatives of the Northern 
and Southern clades of F. volcano, L. conus and L. strigatella. Additional specimens were sourced from the Natural 
History Museum of Los Angeles County (LACM), comprising both clades of F. volcano, L. conus and L. gigantea. 
All museum material had been morphologically identified by museum taxonomic experts. Specimen counts 
were: F. volcano = 552 (181 Northern and 371 Southern); L. conus = 974 (345 Northern and 629 Southern); L. 
gigantea = 352 (162 Northern and 190 Southern); L. strigatella = 789 (215 Northern and 574 Southern). Location 
counts are provided in the supplementary Data (Sup. Table 1).

Each specimen was photographed in dorsal and ventral orientations using a Panasonic Lumix DC-G9 with 
an OM SYSTEM 90 mm macro lens on a black background under standardised lighting and magnification. 
Between three and twenty-one photographs (depending on specimen size) were captured per specimen and 
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focus-stacked using Helicon Focus software to produce a single high-resolution image with consistent depth of 
field for subsequent CV analyses. All shells, whether obtained from field collections or museum holdings, were 
dry and photographed under identical imaging conditions (camera, distance, angle, background, and lighting) 
to ensure consistency across sources. Dry shells are generally stable under standard museum storage conditions, 
and no published reports describe substantive morphological alteration of dry-stored limpet shells over time, 
although minor surface variation between sources cannot be excluded.

Model selection and configuration
For image classification, we employed the VGG16 neural network architecture21, initially trained on the ImageNet 
dataset22. Custom top layers were added to adapt the model to the specific requirements of this study. Following 
preliminary testing, hyperparameters were tuned to optimise performance across all species and orientations. 
The optimised parameters were consistently applied throughout the pipeline. To ensure reproducibility, the 
pipeline was seeded with a fixed random state. To ensure the robustness of our findings and to verify that 
the results were not influenced by random chance, each classification configuration was repeated 100 times. 
In each iteration, the pipeline randomly sampled training (set to 120 images per class) and validation (set to 
30 images per class) images from the total pool of available images required for classifier construction from 
each respective class (Northern and Southern). The remaining images were reserved as test data for evaluation 
purposes, referred to as ‘Test-full’. To address potential class imbalance within the test dataset, a further subset 
was evenly sampled across all classes, referred to as ‘Even-test’ (set to 20 images per class). To address potential 
sub-class imbalance within the clades, where locations that had large numbers have the potential to create 
location-specific morphological features rather than the desired clade-specific morphological features, we set 
a limit of 100 maximum specimens per location. We randomly sampled 100 specimens from these locations 
and put the remainder into the test sets. Images assigned to training and validation batches were augmented to 
generate synthetic images. This augmentation process, which included operations such as rotation, flipping, and 
scaling, is well-documented to enhance the performance potential of image classifiers by increasing the diversity 
of the training dataset23,24.

Mixed-group validation
To provide a control group, we trained a parallel set of mixed-group models. All network settings were identical 
to the original clade-based models. For each species, its two respective clade labels were replaced by two synthetic 
classes created through random mixing: every mixed group contained equal numbers of Northern and Southern 
images. Each mixed class therefore represented a uniform distribution of the original categories, so any clade-
specific signal should be removed.

Performance on these control models serves as a benchmark for model behaviour for several critical 
reasons established in recent deep learning research. Systematic experiments demonstrated that convolutional 
networks can easily fit random labelling of training data, achieving near-perfect training accuracy even when no 
meaningful relationship exists between images and labels25. However, while these networks could memorize the 
random associations during training, they achieved test performance no better than random chance, producing 
an accuracy of ~10% on the 10-class CIFAR-10 dataset25. This demonstrates that networks learning from natural 
data with genuine structure behave qualitatively differently from those fitting arbitrary random associations. 
While deep networks are capable of memorising noisy data, they tend to prioritize learning simple patterns first, 
and that networks behave differently when learning from structured versus random data26. This preferential 
learning of meaningful patterns when genuine structure exists provides the theoretical foundation for using 
mixed-group controls to distinguish real clade specific signals from spurious correlations.

If our CNN truly exploits clade-specific morphological features, its accuracy could reach high levels on the 
original task but fall to chance levels (~50% for two-class problems) on the mixed-group task. If there are no real 
morphological differences between groups, both the original and mixed-group models will perform similarly, 
with moderate accuracy. This is because the classifier will pick up on false signals caused by factors like imaging 
differences, batch effects, or technical issues, rather than true clade differences. The mixed-group control 
effectively tests whether the model is identifying genuine clade-specific features rather than simply memorising 
arbitrary training examples27–30.

Size differentiation
Because shell outline and erosion can vary with specimen size31,32, any systematic size difference between clades 
could bias the CV models. To test for such bias, we measured the major-axis length of every shell with digital 
calipers (mm) and compared size distributions between Northern and Southern clades within each species using 
the Mann–Whitney U test. Size ranges overlapped broadly in all cases and none of the pairwise comparisons 
were significant (P >0.05). Limpets are generally not known to exhibit external sexual dimorphism33 unless they 
have protandric hermaphrotidism34. Lottia gigantea shows size-related sexual dimorphism linked to protandrous 
sex change but there are no shell characteristics that distinguish the sexes35. However, we included a broad range 
of shell sizes within each clade but excluded the largest specimens and those with heavy erosion, aiming to 
minimise any potential influence of sex-related and erosion variation in this species. We therefore assume that 
size-related cues, including those arising from sexual dimorphism, are unlikely to confound the classifier.

Model attention interrogation & shape analysis
Previous work shows that CNNs trained on morphological datasets can reveal the image regions most diagnostic 
for classification via XAI heatmaps13. The SmoothGrad saliency algorithm was used for this study36. Preliminary 
runs confirmed that the saliency maps centred on the specimens rather than the background, validating their 
use for downstream analysis.
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Guided by these maps, we carried out a mask-based shape analysis. Object regions were first detected with 
YOLOv837 and then precisely segmented with the Segment Anything model38. All masks were rescaled to the 
same major-axis length (1.0) while preserving aspect ratio, ensuring that subsequent metrics captured shape 
rather than size. The metrics extracted were:

	1.	 Circularity - equals 1 for a perfect circle and declines as outlines become more irregular, defined as: 
Circularity = 4πxArea

(P erimeter2)  
	2.	 Eccentricity - distance between ellipse foci ÷ major-axis length; 0 for a circle, increasing with elongation.
	3.	 Solidity - Area ÷ Convex-hull area; values near 1 indicate a nearly convex outline, lower values indicate 

pronounced indentations.
	4.	 Extent - Area ÷ Bounding-box area; measures how fully the shape fills its minimal enclosing rectangle.
	5.	 Minor-axis length - width of the best-fitting ellipse, normalised to the same scale as the major axis (range 

0–1).

Visual representatives can be observed in the supplementary data (Sup. Fig. 1).

Data analysis
All code and models were run in Python, graphs were generated with the Matplotlib package and statistics were 
generated using the SciPy package. Model performance was evaluated using the F1-score, which is the harmonic 
mean of precision and recall and provides a balanced measure of classification performance, particularly useful 
for imbalanced datasets and is defined as:

	
F 1 = 2x

P recisionxRecall

P recision + Recall

Results
Model F1-score analysis
The Even-test results for clade-based models are significantly different from the mixed-group controls (Mann–
Whitney U, P < 0.001; Fig. 1). Among the clade-based models, the highest median F1-scores were obtained 
for L. strigatella (dorsal: 0.963; maximum 1.000) and F. volcano (ventral: 0.925; maximum 1.000). The lowest 
performance was recorded for L. gigantea (dorsal: median 0.575; maximum 0.775). Mixed-group controls 
consistently underperformed, all of which have median values of ~ 0.500; the largest drop occurred for F. volcano 
(ventral: median 0.500; maximum 0.700).

The Full-test evaluation showed the same pattern (Sup. Fig. 2). L. strigatella remained the top performer 
(dorsal median 0.964; ventral median 0.945), whereas L. gigantea (dorsal median 0.575; maximum 0.688) again 
ranked lowest. For example, the mixed-group control for L. conus (ventral) achieved only 0.500 (median) and 
0.576 (maximum), compared with 0.904 and 0.938 for its clade-based counterpart, confirming reliance on 
clade-specific features. Comparing the Even-test and Full-test scores yielded no significant difference (Kruskal–
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Fig. 1.  Box plots for model combination F1-scores across 100 runs for the Even-test datasets. Blue boxes are 
the clade-based models per species and orientation and the red boxes are the mixed-group controls. For each 
species and orientation, the F1-scores are significantly greater for the clade-based models compared to the 
mixed-group controls.
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Wallis test P >0.05), indicating that overall model performance is insensitive to test-set size or class balance. All 
performance-based subsequent analyses therefore report the Even-test metrics and a boot-strap analysis using 
these 100 iterations can be seen in the supplementary data (Sup. Table 2)

F. volcano morphological variation
Saliency mapping for both dorsal and ventral orientations consistently highlighted the keyhole (Fig. 2). We 
therefore selected this structure for detailed, mask-based shape analysis. All five metrics—circularity, eccentricity, 
solidity, extent and minor-axis length—differed significantly between the Northern and Southern clades (Mann–
Whitney U, P < 0.001; Fig. 3b). Northern keyholes were less circular, more elongated, more indented, filled a 
smaller proportion of their bounding box and had a shorter minor axis, whereas Southern keyholes showed the 
opposite pattern.

To further quantify these differences in keyhole shape, we compared the average outlines of the keyholes in 
each clade using the Karcher-mean. A Karcher-mean represents the average shape derived from all specimen 
examinations, providing a single outline that best captures the overall form while accounting for variation among 
individual shapes. A Karcher-mean shape comparison reinforced these differences (Fig. 4a). Six corresponding 
outline points were defined along the keyhole margin at the 25th, 50th, and 75th percentiles of maximum height 
on both left and right sides of the keyhole, ensuring consistent spatial correspondence across specimens for 
subsequent alignment and shape comparison. These showed that the Northern keyhole is 12.0% narrower along 
the minor axis, and the mean upper- and lower-quartile distances are 42.5% greater than the central distance, 
emphasising its more irregular outline. Location-specific Karcher-means display the same clade-level contrast 
(Sup. Fig. 3).

When the keyhole region (plus a small bounding margin) was cropped from every image and re-submitted 
to the classifier, the median F1-score fell to ~0.70. When looking at just the keyholes, salience maps were centred 
on the keyhole perimeter, particularly where inter-clade shape differences occur (Fig. 4b), indicating that the 
keyhole is the principal, but not sole, feature underpinning discrimination.

L. conus morphological variation
Saliency maps for L. conus converged on the distal ridge tips in both dorsal and ventral orientations (Fig. 2). 
Guided by this pattern we compared whole-shell outlines between clades. Masks were generated for every shell, 
rescaled to a common major-axis length, and the standard shape metrics extracted. Circularity, solidity and 
extent differed significantly between the Northern and Southern clades (Mann–Whitney U, P < 0.001), whereas 
eccentricity and minor-axis length showed no significant variation (Fig. 5b). Thus, Northern shells are on average 
more irregular, have deeper indentations and occupy a smaller proportion of their bounding box than Southern 
shells, while overall elongation remains comparable.
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Fig. 2.  Examples of saliency maps showing all species, groups and orientations. The highlighted parts of the 
shells are where the model focusses attention for distinguishing between clades. Lottia gigantea is larger than 
all other species, with an average size of 45mm in length for sampled individuals. The average sizes of the 
sampled individuals for the other species are L. conus (9.7mm), L. strigatella (9.9 mm) and F. volcano (18.3 
mm)
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L. gigantea and L. strigatella morphological variation
For L. gigantea and L. strigatella the saliency maps were diffuse, with attention often distributed along the shell 
perimeter rather than on a single, discrete structure (Fig. 2). Consequently, we applied the same whole-shell, 
mask-based shape analysis to these species to quantify any outline differences between clades (Fig. 6.

For L. gigantea, the Northern clade shells were less elongated (lower eccentricity) and displayed a larger 
normalised minor-axis length than those of the Southern clade, whereas circularity, solidity and extent did not 
differ significantly. For L. strigatella, the Northern clade shells were more regular in outline (higher circularity), 
had a larger minor-axis length and a lower extent (less compact) than Southern shells, while solidity was 
nonsignificant between clades.

Discussion
CV as a powerful tool for biodiversity research
Understanding and preserving biodiversity requires advanced methods to detect and analyse cryptic 
morphological diversity among genetically distinct clades39. In this study, we explored the potential of explainable 
artificial intelligence, specifically CV, to reveal cryptic morphological divergence among genetically distinct 
clades of limpets. Our findings demonstrate that CV methods can not only accurately classify individuals from 
four limpet species into their respective genetic clades (Fig. 1) but also identify and quantify morphological 
features of clades that were yet to be recognised or reported by human observers. The successful application of 
CV in this context underscores its value as a powerful tool for biodiversity research, providing new insights into 
the eco-evolutionary processes shaping morphological traits within cryptically diverse species.

Although demonstrated here with limpet species, the workflow is transferable because it operates on 
two-dimensional images in which the relevant diagnostic information lies within a single plane. Numerous 
taxonomic groups satisfy this criterion, including, but not limited to, insect wings40 and other pinned or slide-
mounted materials41, herbarium sheets42, and thin-section microfossils43. Major natural history repositories, 
including the Natural History Museum, London, are now digitising such objects at scale, thereby supplying 
abundant datasets for further investigation12,44,45. Researchers wishing to adopt the pipeline therefore need 
only modest adjustments. For example, substitute an appropriate training image set, fine-tune the hyper-

B) Shape metric analysis of the keyholes for both F. volcano clades

A) Example images of both F. volcano clades
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Fig. 3.  Example images of whole shell specimens from each clade and both perspectives, with the keyholes 
clearly visible on the apex of each shell (A). Shape metric analysis of F. volcano keyholes (B). The saliency maps 
consistently highlighted the keyholes when distinguishing between clades (see Fig 2).
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parameters, and rerun the training–validation cycle on a pre-weighted convolutional network. When coupled 
with heatmap-guided feature visualisation and mask-based shape analysis, which are both easily automated 
with contemporary detection and segmentation models37,38, this approach enables the objective localisation and 
quantification of defining characters in any planar specimen. Although image augmentation introduced some 
positional variation, all images were captured under controlled and standardised conditions, with the camera 
positioned directly above each specimen at a fixed distance and lighting setup. Such consistency is critical for 
reliable feature detection, as differences in angle, illumination, or scale could alter the appearance of diagnostic 
features and reduce model reproducibility. Assessing how well the method performs under less standardised 
imaging conditions would therefore be a valuable future test.

Detecting clade-specific signals
Comparisons between the clade-based models and the mixed-group controls show that the pipeline is 
responding to genuine, clade-specific signals. Mixed-group controls have significantly lower F1-scores (F1 
= ~0.5). This means their performance is similar to random guessing for problems with two classes25. This 
confirms that F1-score performance in the original models is driven by clade-specific characters rather than 
generic image features46,47. These characters, though subtle, are evidently consistent enough to support reliable 
automated discrimination. Most original configurations achieved very high F1-scores, and several runs reached 
perfection (F1-score = 1.0) for both dorsal and ventral views of L. strigatella and F. volcano, while the L. strigatella 
dorsal perspective reached an average F1-score of 0.96 across its 100 iterations. The F1-score performance for 
L. gigantea was appreciably lower (Fig. 1). The smaller difference in F1-scores between clade-based and mixed-
group models potentially reflects a relatively recent population divergence in this species. Genome-wide SNP 
data indicate a population split, but COI data show no corresponding division, suggesting that perhaps this 
separation is evolutionarily young. Such discordance between nuclear and mitochondrial markers often occurs 
during early stages of population isolation, when genomic differentiation emerges before fixed morphological or 
mitochondrial differences accumulate48,49. The absence of pronounced morphological divergence in L. gigantea 
therefore implies that while this species may have some geographically structured genomic divergence, where 
selection or restricted gene flow has begun to structure genomic variation, phenotypic differentiation has yet to 
accumulate. This contrasts with the other species, where older, mitochondrial-level separations coincide with 
measurable morphological divergence, producing higher F1-scores for clade-based models. Note however, our 
clades for L. gigantea were only based on the Californian phylogeographic break which is less clear geographically 
(in the Los Angeles region) and with lower support than the more distinct break in the central Baja California 

Southern Clade

Northern Clade

A) Karcher-Means average keyhole shape for both F. volcano clades B) Example of salience
maps on close up
F. volcano keyholes

Fig. 4.  Karcher-mean depiction of the mean keyhole shape of the two F. volcano clades (A) and saliency map 
examples conducted on just the keyholes (B). The keyholes of specimens from the northern clade are more 
indented and less circular compared to the keyholes of specimens from southern clades.
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C) Shape Metric Analysis for both L. gigantea clades

A) Example images of both L. gigantea clades B) Example images of both L. strigatella clades

D) Shape Metric Analysis for both L. strigatella clades

Southern Clade Southern Clade

Fig. 6.  Example images of shells from both L. gigantea clades and perspectives (A) and L. strigatella (B). Shape 
metric analysis of L. gigantea (C) and L. strigatella (D) shells.
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Fig. 5.  Example images of shells from both L. conus clades and perspectives (A) and shape metric analysis of L. 
conus shells (B).
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Peninsula14. If more specimens were available for this southernmost clade, the models might have performed 
better. In addition, the average length of the L. gigantea shells analysed here was 44.6 mm, significantly larger 
than those of the other species: L. conus (9.7mm), L. strigatella (9.9 mm) and F. volcano (18.3 mm). Lottia 
gigantea individuals frequently exhibit pronounced shell erosion50,51, which may remove some details.

The absence of any significant difference between the Even-test and Full-test evaluations confirms that the 
morphological signal is independent of sample size or class imbalance. F1-scores nevertheless showed variable 
dispersion across their respective iterations: the broadest range (0.450) arose in the L. conus dorsal models, 
whereas the narrowest (0.225) was recorded for L. strigatella dorsal models, indicating a more stable response in 
the latter. Variation of this kind is often linked to dataset quality52,53. Consistent imaging protocols and balanced 
classes are critical to reliable performance54–56, yet limpet shells are inherently variable and may be eroded, 
damaged or obscured by surface deposits13. Although severely damaged specimens were removed, residual 
heterogeneity remained, so some random training–validation splits inevitably contained fewer informative 
features. Implementing 100 independent resampling iterations was therefore essential for exposing and averaging 
over this variance, and similar protocols are recommended when benchmarking image classification pipelines.

Relevant characters for cryptic morphological divergence
Saliency mapping highlighted the image regions that most influenced the classifier and thus pointed to 
characters of possible ecological or evolutionary relevance. In F. volcano, the maps converged on the keyhole; 
shape metrics confirmed significant clade differences in circularity, eccentricity, solidity, extent and minor-axis 
length, with Northern keyholes narrower and more indented than Southern ones. When images were cropped 
to the keyhole alone, saliency shifted to the aperture perimeter and the F1-score fell to ~0.70, indicating that the 
keyhole is the principal, but not exclusive, discriminant. Importantly, these clade-specific shapes can be observed 
at each location (i.e., specimens from each Northern location had keyholes that are narrower and indented 
and specimens from each Southern location are more oval shaped). This suggests that these morphological 
differences are clade-specific and therefore likely related to the genetic differences between clades15, but further 
research is required.

For L. conus, the maps consistently highlighted the ridge tips. Corresponding shape analyses showed that 
Northern shells were more irregular, had lower solidity and occupied a smaller proportion of their bounding box, 
signifying greater concavity relative to Southern shells. In L. gigantea and L. strigatella the saliency maps were less 
convergent, with attention dispersed across the shell surface and occasionally concentrated along the perimeter. 
Even so, quantitative metrics detected clear clade-level shell-based divergence. Lottia gigantea clades differed 
significantly in eccentricity and minor-axis length, whereas L. strigatella clades diverged in circularity, extent 
and minor-axis length. The diffuse saliency pattern implies that the discriminating information is spread across 
the shell or resides in attributes not captured by outline geometry, such as colour bands or surface patterning. 
This interpretation is supported by the exceptionally strong and stable performance of the L. strigatella models, 
whose high mean F1-score and narrow dispersion suggest additional, non-geometric cues underpin effective 
classification in that species. While many of the highlighted regions correspond to biologically interpretable 
shell features, not all saliency responses necessarily reflect genuine morphological signal. Saliency maps identify 
regions that most strongly influence model decisions rather than features of confirmed biological relevance, and 
activation can occasionally arise from background texture, residual reflections, or minor lighting differences. This 
limitation is inherent to most image-based explainability methods and should be considered when interpreting 
fine-scale patterns of activation. Furthermore, AI and CV models operate purely as mathematical systems that 
detect and process numerical patterns; they do not possess an intrinsic understanding of the biological meaning 
of these patterns. Nevertheless, the overall consistency of highlighted regions across models and orientations 
suggests that the major areas of importance are clade specific rather than stochastic or artefactual.

The adaptive drivers of the clade-level differences documented here remain unresolved. Furthermore, we 
do not currently know whether morphological differences between clades are a result of genetic differences 
or due to phenotypic plasticity (i.e., caused by differences in environmental or ecological conditions between 
clades). Morphological traits generally evolve under selective pressures arising from environmental conditions, 
resource acquisition or predation57–59. In Fissurellidae, the keyhole serves as an exhalant opening for waste or 
respiration60. A latitudinal survey across its congener (F. radiosa) shows that the keyhole narrows towards the 
cooler portion of its geographic range (albeit with limited spatial sampling) 65. While clade differences in keyhole 
shape detected in F. volcano generally matches this trend, the precise advantage of keyhole shape remains to be 
studied empirically. Nor is it known whether keyhole shape is a result of the genetic differences between clades, 
phenotypic plasticity (i.e., caused by water temperature or other environmental differences between locations/
regions) or a combination of both. For L. conus, comparable data are limited. Some studies suggest that limpet 
shell morphology is shaped by the need to maintain attachment to the substrate, influenced by factors such as 
wave exposure and the physical characteristics of the surface61,62. However, these studies note that limpet shells 
can become more or less conical under different environmental regimes but do not explain why the ridge tips 
themselves become more elongated and projecting, rather than remaining broadly rounded.

Future research could explore many extensions to the current framework. One practical direction would 
be to test the classifier on images captured under varying camera angles and lighting conditions to assess 
how robust the workflow remains under less standardised imaging. Beyond this, future developments in 
three-dimensional imaging could overcome such limitations by recording complete shell geometry, allowing 
morphological differences to be examined independently of viewing angle. For instance, three-dimensional 
imaging that records shell height and curvature would permit finer quantification of morphological divergence 
and would allow research into subjects that do not sit on a single plane. Morphology-based assessments that 
incorporate colour or surface-pattern information63, rather than geometry alone, could expose additional 
clade-specific characters. More precisely linking morphological differences identified by AI methods to genetic 
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differentiation through targeted genomic sampling could illuminate how genotype-phenotype interactions 
contribute to observed morphological variation64, potentially identifying specific genomic regions that underlie 
morphological divergence between clades. Together, these advances should deepen our understanding of the 
trait variation driving evolutionary differentiation and enhance conservation assessments of cryptic biodiversity.

Conclusion
This study highlights how computer vision, combined with user-friendly AI tools like saliency mapping, can 
uncover hidden patterns in shapes and forms between cryptic groups. This approach not only enhances our 
understanding of diversity in nature but also makes complex analysis easier and more precise. The pipeline 
reliably classified individuals into their genetically defined clades and pinpointed clade-specific shell characters, 
such as the keyhole in F. volcano and the ridge-tip geometry in L. conus, demonstrating that it is driven by 
clade-specific features rather than irrelevant image cues. Although this analysis does not pinpoint the exact 
reasons behind these differences, it provides a useful framework for exploring subtle variations in any group 
of organisms, especially when their key characteristics are primarily presented in two dimensions. As natural 
history collections continue to release large image datasets, the scope for applying explainable AI workflows 
across diverse organismal groups will grow correspondingly.
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