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The Amazon forest has recently experienced substantial human-induced loss of forest
cover. However, the extent to which such historical deforestation has altered regional
observed precipitation through inter-regional atmospheric moisture transport remains
unclear. Here, we combine satellite observations and an atmospheric moisture tracking
model to quantify these feedbacks over the past four decades (1980-2019). We identify a
contrasting northern increase and southern decrease dipole trend in observed
precipitation across the Amazon basin. The pronounced reduction in precipitation for
the southern Amazon basin reaches up to 3.9-5.4 mm yr! per year, resulting in an 8-11%
decline in annual precipitation across the observation period. We discover that this
reduction in precipitation is primarily (52-72%) related to widespread deforestation in
the southern basin and upwind regions over South America. Deforestation substantially
suppresses forest-sourced moisture, increases atmospheric stability and moisture
outflow, leading to precipitation reduction. We also find that climate models
substantially underestimate the sensitivity of precipitation to deforestation, implying

that the Amazon forest is at risk of major loss much sooner than previously projected.

The Amazon forest is Earth’s most biodiverse terrestrial ecosystem (e.g., ref. ') and is
essential in regulating much of the global climate system>>. However, an increasing number
of studies suggest that the Amazon forest is approaching a critical threshold beyond which
much of it could be irreversibly lost, potentially due to climate change, but may also be
initiated by substantial deforestation®. Multiple satellite observations show that the Amazon
forest has experienced extensive loss of forest cover, particularly in the southern part of the
Amazon basin>S. Since the year 1985, natural forest cover has declined by 16%, mainly due
to direct human-induced deforestation’. The Amazon forest plays a vital role in sustaining
regional precipitation by recycling substantial amounts of forest-sourced moisture®!!. Hence,
a deeper understanding on how historical deforestation has altered vegetation-climate
moisture feedbacks and related availability of such precipitation recycling is of great
importance. Refined knowledge will then underpin more accurate projections of the future

trajectory of the remaining Amazon forest in response to any further deforestation.

Observation-based approaches have already verified that deforestation considerably affects
precipitation at small scales in the Amazon basin'>!*. However, an increasing number of
studies suggest that changes in inter-regional atmospheric moisture transport, attributed to

large-scale deforestation, likely play a critical role in redistributing forest-sourced moisture



and reshaping regional precipitation patterns®!*16. It is relatively straightforward for
sophisticated fully coupled land-atmosphere models to simulate how Amazon deforestation
alters land-surface evapotranspiration and subsequently moisture transport through
atmospheric circulation'*!7!8, Such models allow factorial simulations to isolate individual
effects, but the question still remains whether they are accurately simulated. Extracting the
parameterisation of individual processes from data can be more challenging, as these must be
derived from the full-complexity actual system. To quantify the effects of Amazon moisture
recycling, algorithms must account for the complex spatial connections between forest-
derived moisture sources and precipitation sinks across the region. Fortunately, recent
advances in atmospheric moisture-tracking techniques make it possible to trace the
trajectories or transport pathways of atmospheric moisture. The use of these algorithms,
alongside known changes in rainfall patterns, supports discovering changes in inter-regional
moisture transport, which may result from major land use changes®!>1>%, Since the
substantial and quantified levels of Amazon basin deforestation in recent decades coincide
with a period of available rainfall observations, this presents an opportunity to use such
atmospheric moisture tracking to more accurately constrain estimates of how forest cover loss

is altering the strength of regional vegetation-climate feedbacks.

The objectives of our study are to explain features of precipitation changes over the Amazon
basin and to investigate whether some of the observed changes are linked to direct forest
cover change, i.e. deforestation. We first calculate precipitation trends at all locations across
the entire Amazon basin for the past four decades (1980-2019) using two observation-based
precipitation datasets. We then employ an atmospheric moisture-tracking model?* that allows
us to disentangle the evolving contributions of oceanic versus terrestrial-sourced moisture
changes, which together account for the overall observed precipitation trends. Such
knowledge of changing driving water fluxes, combined with diagnostics from our
atmospheric transport model, can be compared with trends in land cover data®. This
comparison enables a more rigorous assessment of how both local and upwind forest cover
loss, including any over a large geographical range outside the Amazon basin over South
America, impacts local precipitation. Our approach enables the creation of a metric, weighted
forest cover, which quantifies these effects (Methods). The aim of introducing this metric is to
capture all the impacts of any deforestation within and outside the Amazon basin across South
America, rather than isolating the impact on rainfall from deforestation within the Amazon

basin alone. We mainly focus on the Amazon basin because most deforestation to date has



been within the basin.

Unlike most previous studies, we use satellite-based estimates of precipitation and,
furthermore, develop a water balance-based estimate of historical evapotranspiration as
required as an input to the tracking framework. Creating the latter dataset involves refining
satellite-based estimates of evapotranspiration, and hence is also strongly informed by
multiple sets of measurements. Both datasets more accurately constrain the driving inputs to
our atmospheric tracking framework (Methods), reducing uncertainties in trends that may be
present in other reanalysis precipitation and evapotranspiration datasets?2. More importantly,
the water balance-based evapotranspiration more accurately captures the signals of
deforestation (Methods), thereby making it possible to track deforestation-induced change in

moisture transport and subsequent to attribute precipitation change.

Results

Contrasting north-south precipitation trend and related moisture sources

We first investigate the observed geographical patterns of precipitation trends across the entire
Amazon basin for the period 1980-2019, based on two key rainfall datasets (Fig. 1a-b).
Although there is no overall precipitation trend over the entire basin (Fig. 1c), both datasets
are consistent in showing pronounced yet contrasting precipitation trends between the
northern and southern parts of the Amazon basin (Fig. 1a, b; a horizontal black line at latitude
7.5°S delineates the divide between the two areas). In the northern basin, precipitation has
generally increased over the past four decades (albeit with some very localised decreases). In
contrast, most of the southern basin (77-80%) has experienced a major decrease in
precipitation. Some areas have demonstrated decreasing precipitation trends that are
substantial enough to be statistically significant (p < 0.05) and sometimes exceed a lowering
of 10 mm yr! per year. In general, the two precipitation datasets compare well with each other
(Fig. 1a versus Fig. 1b), while the remaining local differences in trends are likely related to
their differing spatial resolutions and data sources'*!*?3. Furthermore, both the magnitude and
the contrasting north-south pattern of these two precipitation trends generally agree well with
other analyses using gauge-based observations®*. The north-south divergent precipitation
trend is more clearly presented when averaged regionally (Fig. 1¢). While areal-mean
precipitation shows a non-significant increase in the northern basin, it decreases at a
statistically significant (p < 0.05) rate of 3.9 or 5.4 mm yr™! per year in the southern basin,

depending on the two precipitation datasets (Fig. 1¢). Notable is that over the past four



decades, this statistic corresponds to a very substantial annual reduction in precipitation of 8-

11% in the southern portion of the Amazon basin.

We next disentangle the terrestrial recycled from the oceanic contributions to the observed
trends in precipitation (Fig. 1d, f) using our simulation structure of atmospheric moisture
tracking forced by satellite-based precipitation estimates and water balance-based
evapotranspiration calculations (Methods). We find that the trends in oceanic-derived
precipitation (Fig. 1d) display a similar contrasting north-south pattern of trends in the
Amazon basin as the overall measured precipitation trends (Fig. 1a, b). However, importantly,
the observed precipitation trends (Fig. 1a, b) cannot be fully explained by the oceanic
precipitation trends alone (Fig. 1d). Specifically, the observed decline in precipitation in the
southern basin is substantially underestimated when considering only the oceanic-driven
precipitation trend. Instead, we observe that the rainfall trends in the southern basin are much
better explained when additionally accounting for contributions from terrestrial recycled
precipitation (i.e. land-sourced precipitation) trends (Fig le). Indeed, the contribution to the
observed precipitation decline in the southern basin is larger from the trends in recycled land
precipitation than the trends in the oceanic contribution (Fig. le versus Fig. 1d; also Fig. 1f).
This finding is also expressed by the statistic of terrestrial recycled precipitation fraction,
which takes a high value but has reduced through the observed period (Supplementary Fig. 1).
Critically, when averaged across the southern basin, terrestrial recycled precipitation declines
by 3.6 or 4.1 mm yr! per year (dependent on precipitation dataset used), dominating (76% or
92%) the observed overall negative precipitation trend in the southern basin (Fig. 1f and
Supplementary Fig. 2). Overall, our results using atmospheric moisture tracking reveal that
the strength of land-climate feedbacks of moisture has substantially weakened in the southern
Amazon basin over the past four decades. We now investigate our hypothesis that such
reductions are linked to direct human influence on the land surface, and particularly

deforestation.

Drivers of precipitation reductions in the southern Amazon basin

To determine the potential underlying land surface drivers responsible for the weakened land-
climate moisture feedbacks, we now investigate the trends in key related variables. We
include satellite-based forest cover, which represents deforestation (Fig. 2a). We also present
the satellite-supported, water balance-derived evapotranspiration used to force the moisture-

tracking model (Fig. 2b) (as validated against site and basin-scale measurements from ten



sub-basins of the Amazon; Methods). Additionally, we consider solar radiation changes (i.e.
downward surface shortwave radiation; Fig. 2c) as a potential forcing. Fig. 2a illustrates the
widespread loss of forest cover observed in the southern and eastern Amazon basin. In some
hotspots, the rate of loss is especially large, exceeding one percentage point per year. Overall,
82% of the southern basin exhibits a negative trend in forest cover. When averaged regionally,
the accumulated forest cover loss in the southern basin amounts to 7.7 percentage points over
the past 35 years (1982-2016). This substantial decline in forest cover, along with its spatial
pattern, aligns closely with negative trends in water balanced-derived evapotranspiration in
the southern basin (Fig. 2a versus Fig. 2b, below the horizontal line). These similar patterns
strongly suggest, therefore, an important role of forest cover loss in causing the observed
decreasing recycled precipitation trend (Fig. 1e) through lower evapotranspiration (Fig. 2b).
However, the pronounced reduction of evapotranspiration in the northern basin cannot be
attributed to changes in forest cover, as deforestation is markedly less in those locations (Fig.
2a, north of the horizontal line). Instead, the observed decline in solar radiation (Fig. 2¢) may
explain the reduction in evapotranspiration within the northern basin. Radiation decline
exacerbates any inherent energy limitations in these moist northern basin areas, thereby
reducing the available energy for evapotranspiration. Other potential drivers, such as rising
atmospheric CO2, may also contribute by suppressing vegetation stomatal conductance and

2526 and future analyses may allow their quantification. However, it is the

thus transpiration
strongly linked observed spatial patterns in Fig. 2, and in particular comparing Fig. 2a against

both Fig. le and Fig. 2b, that encourage us to investigate the impacts of deforestation further.

In general, deforestation is expected to reshape the spatial pattern of regional precipitation by
modulating the properties of both the land surface and the atmosphere. In locations with less

human disturbance, forests interact intensively with the atmosphere, enhancing and sustaining
the occurrence of precipitation (schematic, Fig. 3a). While small-scale deforestation (less than

12.1423.27 'if large-scale

tens of kilometers) may actually increase local precipitation
deforestation (of the order a hundred kilometers or greater) occurs (Fig. 3b), such reduced
forest cover directly affects precipitation by suppressing the rates of land-atmosphere energy
and water exchanges. Specifically, major deforestation is expected to lower levels of available
evapotranspiration that drive precipitation. Large-scale deforestation also acts indirectly,
increasing atmospheric stability®® by drying the atmosphere® and lengthening the distance of
moisture transport, which results in higher moisture outflow and thereby reduces regional

precipitation. Additionally, deforestation can also substantially reduce surface roughness,



which increases wind speed’®>!, further extending the distance of moisture transport, and

causing some moisture to leave the Amazon basin instead.

Our methods, which combine atmospheric transport model with known forcings, open the
opportunity to provide a more rigorous and comprehensive understanding of how major
deforestation impacts precipitation recycling. However, to test our hypothesis that
deforestation suppresses rainfall, we need to advance how we analyse the relationship
between changes in forest cover and terrestrial recycled precipitation. Specifically, we need to
additionally account for remote upwind deforestation on precipitation (i.e. deforestation in
upwind regions that influences local rainfall levels). Therefore, we employ a metric of
weighted forest cover, FC_w, which is a statistic (Methods) derived from the methodology
first proposed by Cui, et al. '°>. The FC_w variable integrates the satellite-derived forest cover
within the combined local and upwind land region of moisture sources (including areas
outside the Amazon basin over South America). This integration is weighted by the proportion
of land moisture contribution at each upwind location to terrestrial recycled precipitation that
falls at each local grid point (Methods). Hence, changes in FC_w value capture the full impact

of forest cover change, including both locally and upwind, on local precipitation changes.

Our key forest cover dataset spans from the years 1982 to 2016°. To align with the years of
this coverage, we make these years a common observational period of forest cover and
precipitation in the subsequent analysis, noting that precipitation trends show only minor
differences during the two periods used (1980-2019 versus 1982-2016; Fig. 1 versus
Supplementary Fig. 3). In detail, we utilise measurements and tracking from these 35 years
(i.e. 1982-2016) to establish a relationship, incorporating data from locations across the
southern Amazon basin, between changes in data-derived terrestrial recycled precipitation and
FC_w values (blue dots in Fig. 4a, with the regression line shown in black). The
evapotranspiration used to drive the atmospheric moisture tracking are adjusted to eliminate
variation across the northern basin, thereby preventing the influence of non-deforestation
effects transported from the northern basin on the findings presented in Fig. 4a (see Methods
for details and rationale). We find a robust correlation between recycled precipitation and
changes in FC_w (R? = 0.36, p < 0.001; Fig. 4a). A one percentage point decrease in FC_w
reduces local recycled precipitation by 11.6 mm yr'!. Overall, the areal mean change in forest
cover represented by FC_w, has a decrease of 5.0% during the historical period 1982-2016,

corresponding to a reduction in terrestrial recycled precipitation by 96.7 mm yr!' (2.8 mm yr!



per year; solid blue lines in Fig. 4a). This reduction has 95% confidence intervals ranging
from -115.6 mm yr™! to -79.0 mm yr™'. Such lowering of rainfall (i.e. averaging 2.8 mm yr’!
per year) provides our headline statistic that 52-72% of the observed precipitation decline in
the southern Amazon basin (3.9-5.4 mm yr! per year in Fig. 1c) is attributable to
deforestation. Therefore, our more sophisticated description of land rainfall recycling, which
encapsulates deforestation both locally and upstream via the statistic FC _w, further supports
the conclusion that direct land use is directly contributing to the rainfall reductions shown in

Fig. le.

To validate the causality of the link between recycled precipitation and FC_w presented in
Fig. 4a, we conduct additional process-based experiments using our moisture-tracking model.
We first estimate deforestation-induced evapotranspiration changes based on a forest cover-
evapotranspiration scaling approach?’. We then use these estimates, alongside estimates of
evapotranspiration with or without deforestation, to directly drive the moisture-tracking
model. The difference between these two simulations represents the causal impact of
deforestation on recycled precipitation, now calculated directly by evapotranspiration, which
represents moisture recycling. The results also show a strong declining (i.e., negative)
relationship between recycled precipitation and FC_w (Fig. 4b), supporting our more
observational-based results (Fig. 4a). The weaker impact of deforestation on recycled
precipitation in Fig. 4b, illustrated by the lower gradient of the fitted regression line of Fig 4b,
may be related to the inclusion of only the direct impact of deforestation on
evapotranspiration, thus ignoring feedbacks where atmospheric processes further suppress
evapotranspiration and hence precipitation. The differences may also stem from an
underestimate of deforestation impacts on evapotranspiration. Understanding these
differences in sensitivity may guide future insights or measurement campaigns to better

constrain evapotranspiration changes following deforestation.

We extend our analyses further to examine changes in atmospheric dynamics and whether
they are potentially linked to alterations in forest cover. We find evidence of decreased
Convective Available Potential Energy (CAPE), an increased distance of evapotranspiration
moisture transport away from the source, and a reduced evapotranspiration fraction remaining
within the local numerical grids in the southern basin (Fig. 5a, ¢, e; Methods). Compared to
their climatological mean values (Supplementary Fig. 4), these three variables changed by -

21%, 4% and -19%, respectively, during our study period of 1982-2016, and when averaged



over the southern basin. Importantly, all these changes in atmospheric processes are
significantly correlated with changes in metrics of forest cover (Fig. 5b, d, f). Additional
indirect evidence of raised moisture outflow is found to the south of the Amazon basin (i.e. at
latitudes further south than the southern basin), which is characterized by high forest cover
loss (Fig. 2a), yet the decline in recycled precipitation (Fig. 1e) remains moderate (p > 0.05).
This finding indicates an increase in extra moisture transport from the southern Amazon basin
to these locations on the edge of the Amazon, offsetting precipitation reduction that might be
expected in these areas due to substantial local deforestation. These analyses all support our
hypothesis that deforestation substantially reduces regional precipitation by lowering
evapotranspiration and increasing atmospheric stability and moisture outflow, as illustrated

schematically in Fig. 3.

Our overarching statistic shows that a one percentage point decline in southern basin forest
cover (for comparability with other studies only focusing on local deforestation, deforestation
outside the southern basin is also added to the local value) results in a 6.0 mm yr™' reduction
in observed annual precipitation, which equates to a fractional 0.32% reduction per year in the
same quantity. However, this observation-based value reveals that climate models generally
underestimate the magnitude of the precipitation response to forest cover loss, which is
reported to instead have a mean value of 0.16% reduction per year, according to a meta-
analysis study'’. This underestimation may arise from the inaccurate representation within
climate models of the ratio of plant transpiration to total terrestrial evapotranspiration®>33,
affecting calculations where simulated forests are replaced due to deforestation. The
underestimation by climate models might also be due to errors in the nonlinear relationship
between vegetation-sourced atmospheric moisture and precipitation variations**, and

atmospheric processes'*>°

which likely understate the sensitivities of land-surface and
atmospheric changes to forest cover that we find represented in our Fig. 3. A further study,
which is observationally-based, analyzes the local impacts of forest loss'?, by comparing the
precipitation differences between neighbouring grids with very different forest cover change.
That approach estimates the precipitation response to forest cover loss as 0.25% per
percentage point, which is 22% lower than our estimate of 0.32% that includes the full
impacts of forest cover loss in both local and upwind regions. This difference reaffirms the

importance of accounting for both local and upwind deforestation when assessing impacts on

precipitation, and as enabled via our bulk variable FC_w.



Impacts of future deforestation and mitigation on precipitation

Across the globe, human-driven land cover change is likely to continue into the future,
including in the Amazon basin®. Hence, we investigate the impact of projected additional
forest cover change on precipitation using our established observationally-based linear
relationship between changes in recycled precipitation and the FC_w statistic (Fig. 4a;
Methods). This serves as a reasonable approximation because in the main scenario we
consider, SSP2-4.5, climate models project that atmospheric circulation remains roughly
unchanged compared to the historical period (see Methods and Supplementary Fig. 5). We
find that forest cover loss by the end of the 21 century could lead to reductions in annual
precipitation of up to 202.4 mm yr! in a relatively high-deforestation scenario of primary
forest and with no regrowth and mitigation strategies (the SSP2-4.5 “primf” scenario; red
lines in Fig. 4a). This rate of deforestation would cause a substantial reduction of about 10.6%
of current annual precipitation in the southern Amazon basin (Fig. 4a). A business-as-usual
deforestation scenario®’, with faster rates of deforestation that remain similar to those
observed in recent decades, would result in a reduction in annual precipitation of up to 15% (-
288.1 mm yr''; Supplementary Fig. 6). It is particularly noteworthy that these reductions
match or even exceed the expected changes to rainfall caused by direct climate change over
the same period. Such climate change is due to projected rises in atmospheric greenhouse
gases associated with each scenario®. As such, a future scenario that instead deliberately
includes forest regrowth, and thereby the implementation of climate mitigation strategies such
as afforestation and reforestation (SSP2-4.5 primf+secdf; green lines in Fig. 4a), leads to a
reduction in rainfall of only -22.3 mm yr!. Critically, therefore, forest conservation and
afforestation have a major potential to slow down or even reverse any future precipitation
reductions caused by higher atmospheric greenhouse gases. Reforestation will strengthen the
resilience of the remaining Amazon forest against large-scale dieback risks caused by rainfall

reduction due to climate change.

Discussion

We find a robust correlation between forest cover observations and predictions of rainfall
changes using an atmospheric moisture-tracking technique. This suggests that deforestation
over the widespread South America, the majority of which has occurred so far in the Amazon
basin, substantially reduces observed precipitation across the southern Amazon basin. This
reduction in rainfall is caused by decreases in evapotranspiration, which contributes to rainfall

and is connected to land use changes. It is also influenced by deforestation-related alterations



to inter-regional moisture transport and atmospheric stability, both of which diminish the
initiation of rainfall. As our data-driven analysis, using multiple measurement strands,
attributes the pronounced recent decline in observed precipitation to large-scale forest cover
loss, we therefore strongly corroborate previous modelling studies on deforestation-induced
Amazon forest dieback®>*’. A particularly feature of our analysis is the inclusion of the impact
of upwind deforestation levels on rainfall feedbacks, via our bulk parameter FC_w. However,
we find that climate models, which routinely simulate direct land use changes, tend to
underestimate by up to 50% the impact of reduced precipitation caused by large-scale forest
cover loss. This finding indicates that current climate model projections of hydroclimatic
impacts from deforestation are considerably underestimated in the Amazon basin. Such a
lower sensitivity suggests that previous estimates of Amazon tipping points for major forest
“dieback” could be reached much sooner than expected, as climate models underestimate the

decrease in precipitation caused by deforestation. We note that future changes in global

40,41 43,44 25,45

warming***! | wildfires*?, drough and rising atmospheric CO2 concentrations= ", could all

have further harmful impacts on the Amazon forest*

. These may interact strongly with further
changes in land use, either directly or through the process of rainfall recycling that we have
identified. However, despite these other potential factors, our findings imply that a detailed
monitoring of deforestation rates, along with the translation into summary metrics such as
FC_w, might be a key component of early warning systems that signal whether the Amazon
forest is approaching a tipping point. Alternatively, our research demonstrates that slowing
deforestation combined with extensive reforestation could offset the risk of major Amazon

dieback caused by climate change, or at least raise the threshold of global warming that could

trigger irreversible damage to the forest.

Although we reveal that historical deforestation accounts for much of the observed
precipitation reduction in the southern Amazon basin, the availability of more robust long-

4748 surface

term observations, such as evapotranspiration*’, vegetation greenness indices
roughness'®, aerosol, and fire smoke?*, will all help refine our findings. Such data will allow
an even more accurate evaluation of the impacts of land-surface changes on land-atmosphere
water and energy exchanges, as well as atmospheric processes. Hence, more intensive in-situ
measurements of vegetation, surface water fluxes and the atmosphere in the Amazon basin
will support more tightly constrained assessments of deforestation impact on regional
precipitation. Furthermore, it is also essential to develop well-validated coupled land-

atmosphere models capable of accurately attributing features of precipitation change to



alterations in the land surface or atmosphere!’, and better data will support such an endeavour.
This approach may be applicable to models of the Amazon basin only, or to full Earth System
Models (ESMs), which remain the primary tool for predicting future large-scale
environmental responses to any future increases in atmospheric greenhouse gases. Although
we establish a linear regression, Fig. 4a (with additional process modelling support; Fig. 4b)
between precipitation reduction and forest cover loss at a spatial scale based on data from the
past 35 years (Fig. 4a), the relationship could become nonlinear at much higher amounts of
forest cover loss'??>?734% At much higher deforestation scenarios, the decline in
precipitation may be amplified due to either a stronger local self-reinforcing feedback
mechanism that accelerates the suppression of recycled rainfall. Additionally, key rainfall
thresholds may be crossed, triggering a nonlinear physiological response such that the
remaining forest approaches dieback more rapidly. In this context, projected precipitation
reductions at the end of the 21 century may be underestimated, and especially scenarios
involving very substantial continued Amazonian deforestation. We note that our quantification
of projected precipitation reduction is solely based on changes in terrestrial recycled
precipitation and its connection to deforestation over the past decades. Although the changes
in the contribution of ocean-sourced moisture to observed precipitation alterations are minor
in the historical period and for the southern basin (Fig. 1d, f), there may be more considerable
change in the future. In a world much warmer than the present, increasing ocean-sourced

3051 which may also affect the

moisture could also reshape the patterns of overall precipitation
fate and timing of the remaining Amazon forest. The projection of future precipitation change
can only be considered as a first approximation. Although the relationship between recycled
precipitation and FC_w is statistically significant (Fig. 4a) (further supported by process
modelling; Fig. 4b), it does still have sizeable noise, and therefore remaining uncertainty may
be amplified with extrapolation. A further caveat is that projected deforestation could induce
feedbacks that adjust atmospheric circulations, although this is expected to be relatively small

at the larger basin scale'* (Methods).

In summary, we find that a highly contrasting north-south trend in observed precipitation has
occurred in the Amazon basin over the past four decades. We determine that the pronounced
reductions in precipitation across much of the southern basin of the Amazon, including
regions still with substantial forest, are primarily driven by large-scale forest cover loss,
which overwhelms any other alterations to precipitation caused by climate change. We

quantify this land cover feedback in various ways, and with the merging of multiple strands of



data, thereby supporting the robustness of findings. A comprehensive and unified overall
representation of the process is provided by relating the FC_w metric, which weights and
integrates forest cover within the combined local and upwind land regions of moisture sources
over South America, to rainfall reductions. In general, previous observational and modelling
studies have underestimated reductions in precipitation due to an incorrectly low sensitivity of
rainfall to forest cover loss. We find that deforestation substantially weakens the strength of
land-climate feedbacks, particularly in the southern basin, mainly by suppressing
evapotranspiration but also by increasing atmospheric stability and moisture outflow from the
region. We suggest routinely placing the quantification of how forest loss induces rainfall
decreases alongside other warnings of Amazon dieback based on the more extensively studied
climate change forcings. Climate-induced increases in wildfires and droughts can greatly
exacerbate the likelihood of reaching an Amazon forest tipping point, necessitating an
understanding of how deforestation feedbacks may further heighten the risk of dieback in
remaining forested areas. Conversely, efforts to curb further deforestation and promote forest
conservation could enable our identified effect to operate in reverse, serving as a buffer
against climate change impacts and thereby reducing the likelihood that the Amazon forest

will surpass an irreversible tipping point and dieback.



Methods

Observation-based datasets

A summary overview of the various data used in this study is presented in Supplementary
Table 1. In more detail, the monthly precipitation data were obtained from the Global
Precipitation Climatology Project (GPCP) v.2.3%2. GPCP precipitation is a merged dataset,
incorporating measurements from rain-gauge stations, satellite and sounding observations.
The dataset is available at a spatial resolution of 2.5°%2.5° from 1979 to the present. It is
widely used and has been proven to be of high quality®. Of relevance to our research, a recent
study indicated that the dataset captured well the spatial precipitation pattern induced by
deforestation'?. Additionally, we also used the gauge-based Global Precipitation Climatology
Centre (GPCC) precipitation dataset (full data, v2022) as an extra precipitation dataset for
comparison. The second dataset has a spatial resolution of 1°x1°, with a temporal period
ranging from years 1891 to 2020. Because trends in precipitation averaged over the whole,
northern and southern Amazon basin during 1980-2020 were substantially
(under)overestimated (-17%~117%) compared to that during periods 1980-2019 or 1980-
2018, indicating abnormal high impact of year 2020 (EI Nifio year) on the long-term
precipitation trend (Supplementary Fig. 7), we limited our study period to 1980-2019.

Monthly evapotranspiration was obtained from the Global Land Evaporation Amsterdam
Model (GLEAM) v3.5a>*. This merged model-with-measurements dataset has a spatial
resolution of 0.25°%0.25° and a temporal coverage from 1980 to 2020. The GLEAM system
assimilates satellite microwave-based surface-soil moisture measurements, and vegetation
optical depth, and multi-source precipitation observations, which together enable a better
constraint on land-surface evapotranspiration®*. However, existing evapotranspiration
products, including the GLEAM, often require the model components to heavily depend on
the quality of satellite-derived vegetation indices, which may lead to a poor performance in
detecting long-term evapotranspiration trends in the Amazon basin*’->>*¢, To obtain a high-
quality evapotranspiration data, we first used a water balance-based method to calculate
basin-average evapotranspiration. Then, we obtained ratios between our water balance-based
evapotranspiration and basin-average GLEAM evapotranspiration estimates. We then used
these calculated ratios to recalibrate GLEAM evapotranspiration predictions across all grids
within the basin, so that they match the magnitude of water balance-derived
evapotranspiration. In this way, we combined the advantages of the more reliable

evapotranspiration trend calculations derived from the water balance method, with the



detailed spatial information available from GLEAM evapotranspiration estimates. The water

balance-based evapotranspiration was calculated as:

ds
BTy =P—0Q—— )

where P, O and dS/d¢ represent basin-averaged annual precipitation, outlet discharge, and
terrestrial water storage (S) change respectively, and all are varying in time, 7. Annual dS/d¢
was calculated as the changes in S between two consecutive Decembers. To account for the
large-scale spatial heterogeneity of evapotranspiration, we divided the entire Amazon basin
into 10 sub-basins according to the locations of hydrological station with long-term discharge
observations (Supplementary Fig. 8), and then calculated their water balance-based
evapotranspiration for each sub-basin. Monthly discharge data were obtained from the Global
Runoff Data Centre (GRDC; Koblenz, Germany). S were obtained from GRACE-REC>’,
covering the period from 1979 to 2019 inclusively and with a spatial resolution of 0.5°<0.5°.
Although the GRACE-REC does not include the long-term trend of $°7, its derived annual
change in S (dS/dr) has a high correlation (R? = 0.72) with that from original satellite-based
GRACE data’®. This good comparison suggests that the dS/d¢ calculation was not
substantially impacted by long-term trend of S. We also evaluated the performance of our
developed evapotranspiration dataset against commonly-used products (i.e., GLEAM>* and
FLUXCOM?) and against site-based flux observations®®. We found that the annual mean

ET wb values were consistent with GLEAM and FLUXCOM data at the regional scale.
However, the ET_wb values showed a more pronounced time-evolving reduction than the
latter two datasets (Supplementary Fig. 9). Such larger decreasing trends are consistent with
the observed precipitation changes (Fig. 1a, b) and supported by previous observation-based
estimates of evapotranspiration*’-*8, At the site level, we also confirmed that our ET_wb
estimates outperformed the GLEAM and FLUXCOM data products for most locations where
point data is available (Supplementary Fig. 10). These advancements in ET_wb provided a
more solid basis for tracking the dynamics of atmospheric moisture transport, by offering

more reliable surface boundary conditions to such models.

In addition to estimates of precipitation and evapotranspiration, we also utilised other
satellite-derived products. Forest cover was a fundamental dataset used in our analysis. Long-
term forest cover was adopted from the Global Land Change dataset®. The dataset was
produced by combining optical observations from multiple satellite sensors with a resolution

0f 0.05°%0.05° and for data covering a period of 35 years (1982-2016). Trees are defined as all



vegetation taller than five meters in height. For our analysis, forest cover is defined as the
fraction of a grid covered by the vertical projection of tree crowns>®. Surface solar radiation
was obtained from the National Tibetan Plateau Data Center (TPDC)®! with a spatial
resolution of 10 kmx10 km (1983-2018). All these observation-based datasets above were
resampled to a common spatial resolution of 1°x1° and at an annual timescale based on the

first-order conservative remapping method.

Adding to observation-based datasets, we also obtained surface wind speed estimates from 29
CMIP6 climate models to evaluate the magnitude of wind speed change in the SSP2-4.5
scenario. For this scenario, we compared the mean values for the period from 2081 to 2100
relative to the historical period from 1996 to 2015. The models include ACCESS-CM2,
ACCESS-ESM1-5, AWI-CM-1-1-MR, BCC-CSM2-MR, CAMS-CSM1-0, CAS-ESM2-0,
CESM2-WACCM, CMCC-CM2-SR5, CMCC-ESM2, CanESMS5, EC-Earth3-Veg-LR, EC-
Earth3-Veg, EC-Earth3, FGOALS-f3-L, FGOALS-g3, FIO-ESM-2-0, GFDL-ESM4, IITM-
ESM, INM-CM4-8, INM-CM5-0, IPSL-CM6A-LR, KACE-1-0-G, MIROC6, MPI-ESM1-2-
HR, MPI-ESM1-2-LR, MRI-ESM2-0, NorESM2-LM, NorESM2-MM and TaiESM1.

Future forest cover

To explore the impact of future forest cover change on precipitation, we also employed a key
scenario of forest cover from the Land-Use Harmonization 2 (LUH2) project, which was
designed for the Coupled Model Intercomparison Project Phase 6 (CMIP6)%¢. Forest cover
used here includes primary forested land (primf) and secondary forested land (secdf).
Quantity primf is defined as natural vegetation that has never been impacted by human
activities since the beginning of the LUH2 simulation. Quantity secdf is vegetated land that is
recovering from previous human disturbance, and which may include climate mitigation
strategies such as afforestation and reforestation. The forest cover change was calculated as
the difference between the mean forest cover in the last twenty years of 21% century (2081-
2100) and that in a historical baseline (defines as1996-2015) (Supplementary Fig. 11).
Additionally, we also used a regional business-as-usual deforestation scenario, which was
generated based on historical deforestation rates and included a realistic deforestation

pattern®® (Supplementary Fig. 6a).

Atmospheric moisture source and sink tracking

We used a well-established atmospheric moisture tracking model, the Water Accounting



Model-2layers (WAM-2layers)*!, to disentangle the oceanic versus terrestrial moisture
contributions to the observed precipitation trend across the Amazon basin (see Supplementary
Table 2 for an overview of the model). Here ocean-sourced precipitation (P_oceanic) is
defined as the land precipitation that is contributed by moisture from the ocean evaporation,
while land-sourced recycled precipitation (P_recycled) is defines as land precipitation that is
contributed by moisture from terrestrial evapotranspiration. So observed precipitation
(P_total) is the sum of land-sourced and ocean-sourced precipitation (i.e. P_total = P_oceanic
+ P_recycled). The WAM-2layers is an 2D offline moisture tracking model based on an
Eulerian framework, and it quantifies the moisture source-sink relation between precipitation
and evapotranspiration by tracking atmospheric moisture forward or backward in time!®. The
major model input includes reanalysis data from the updated ECMWF ERAS database at a
spatial resolution of 1°x1° for the period 1979-2020. All ERA5-based input variables are 6-
hour gridded data (vertical specific humidity, zonal and meridional wind speeds, and surface
pressure) except for precipitation and evapotranspiration which have a 1-hour temporal
resolution. In each 15-min timestep, WAM-2layers solves the water balance of “tagged”
moisture in an upper and lower layer in each atmospheric column, and the dynamic and
transport of moisture between grids. Because the precipitation inside the Amazon basin can
also be affected by forest cover changes outside the basin through cross-regional atmospheric
moisture, we tagged moisture from all terrestrial grids to account for moisture changes from
both the Amazon basin and outside. This model has proven to perform well against an online

fully-3D tracking method®,

The long-term trends in precipitation and evapotranspiration from ERAS5 are known to have
uncertainties in the tropics due to sparse gauged-based observations*’->*. Hence, we used
GPCP or GPCC precipitation in the moisture-tracking simulations to replace ERAS
precipitation. Similarly, for evapotranspiration, we employed our water-balance calibrated
GLEAM evapotranspiration to substitute ERAS5-based evapotranspiration from land, and used
OAFlux evapotranspiration to replace ERA5-based evapotranspiration from the ocean®. We
found that these replacements indeed affected the water balance in WAM-2layers. However,
the calculated water loss (imbalance) in our blend of data with these replacements (i.e. ERAS
with observational precipitation and evapotranspiration) was very close to that of the original
ERAS calculations (Supplementary Table 3). These small differences, indicating that the
water balance in our study was not overly impacted by the replacement, provide a valuable

robustness test. For the use of ERAS data (precipitation or evapotranspiration) we calculated,



for all locations, the ratio between their estimates and observation at the monthly timescale.
Then, 3-hourly or 6-hourly ERA data during a month were rescaled proportionally by dividing
the ratio??. As such, the ERA5 data were scaled by observations at the monthly timescale,
while remaining the diurnal cycle, which was necessary to drive the moisture-tracking model.
These constraints ensured that the moisture, as tracked from sources to sinks, were consistent
with observations over the period of simulations. All these factors together improved the

identification of terrestrial recycled precipitation, compared to ocean-sourced precipitation.

To quantify the changes in atmospheric dynamics related to deforestation, we also ran the
WAM-2layers model and tracked the eventual sink of evapotranspiration moisture released
for each grid individually within the Amazon basin. These calculations were with time-
evolving estimates of deforestation (Methods, above). Through this approach, we calculated
the distance of evapotranspiration moisture transport and the evapotranspiration fraction
remaining in each grid, along with their changes (Fig. 5). CAPE was obtained from the ERAS

t% to represent the atmospheric stability.

climate reanalysis datase
For the northern Amazon basin, evapotranspiration decline is not related to forest cover
change (Fig. 2a versus Fig. 2b) and may instead be caused by climate change. The inclusion
of such non-deforestation related evapotranspiration changes could disturb the regression
between changes in forest cover and recycled precipitation. Hence, we performed a factorial
simulation with our moisture tracking model to remove the confounding effect of
evapotranspiration changes in the northern basin. Over northern basin locations,
evapotranspiration was set to be invariant at its seasonal time-average value. This removed
the influence of regional climate change that was causing evapotranspiration to decline in the
northern basin. These changes were applied to northern basin grids with non-significant LAI
decrease (i.e. LAI increases or non-significant LAI decreases). This simulation substantially
reduced the uncertainty in the regression in Fig. 4a (R-square: 0.36) compared to the
simulation with evapotranspiration change everywhere (0.22 in Supplementary Fig. 12), while
did not largely alter the slope of regression (regression slope: 11.6 in Fig. 4a versus 9.3 in

Supplementary Fig. 12).

By incorporating atmospheric moisture transport, the development of the process-derived
FC_w parameter captured the overall impact of local and upwind deforestation on local

precipitation. Therefore, a combination of FC_w and a regression-based model enabled the



quantification of how deforestation cross-regionally affects precipitation. We are confident
that it is the land surface driving rainfall changes, rather than vice versa, because FC_w
accounts for upwind land cover changes and so act as the forcing component. The causality
implicit in the weighted parameter FC_w has also been validated in our previous study using

a coupled land-atmosphere model'.

In addition to the WAM-2layers simulations undertaken for our analysis, we obtained another
atmospheric moisture tracking dataset on the fate of land evapotranspiration and precipitation
sources developed by Link, et al. ®, which was also based on the WAM-2layers?!. This
dataset included the moisture sources for each 1.5°x1.5° land grid (Precipitationshed)®’ for the
period 2001-2018. Precipitationshed (equivalent to “atmospheric watershed’) defines the
regions where upwind land evapotranspiration or ocean evaporation has contributed to
downwind precipitation in the target location'>®’. The climatological annual precipitationshed

(2001-2018 multi-year mean) was used to calculate the weighted forest cover below.

Weighted forest cover (FC_w)

Precipitation in a specific region is impacted by both local forest cover change and upwind
forest cover change, the latter through alterations in moisture transported to the local region
via atmospheric transport. Following the methodology proposed by Cui, et al. 5, we
introduced an aggregated metric of weighted forest cover (FC_w) to account for
simultaneously both local and upwind changes. FC_w was calculated for each grid within the
Amazon basin by integrating satellite-derived forest cover values within the precipitationshed
(here only land surface). This calculation includes weighting by the contribution of each grid
in the precipitationshed (sum of the weights equals 1.0; generated by WAM-2layers) to local
annual recycled precipitation'®. Hence, changes to the FC_w statistic contain the full impacts
of evolving forest cover change including both local and upwind cover effects on local
precipitation. However, a caveat is that the forest cover dataset used in this study may not
capture very fine local-scale (e.g. 30 m) forest cover loss®® due to its coarse resolution (~5
km) and extensive cloud cover across the Amazon obscuring land cover changes®. In this
sense, deforestation may be underestimated to some extent. In the estimation of the regression
between historical weighted forest cover and terrestrial recycled precipitation, the grids
located on the border of the northwest South Amazon basin are ignored. This exclusion is
because the precipitation there is likely less impacted by forest cover loss in the Amazon

basin that instead mainly occurred in the more remote east. In calculating FC_w



corresponding to future high-deforestation scenarios and estimated precipitation change, we
assumed that future large-scale wind patterns were not substantially altered as previously
assumed in earlier studies®**. This caveat is reasonable because surface wind speed showed
relatively small change (basin average: 2.5%) compared to the historical period at the end of
this century in the SSP2-4.5 scenario, as based on 29 different CMIP6 climate models
(Supplementary Fig. 5). Furthermore, when considering the impact of forest cover change on
wind speed, analysis with a land-atmosphere coupled model indicated that the impact of
deforestation-triggered mesoscale atmospheric circulation on precipitation was limited to only
60 km away from the deforested area'®. This scale is less than the spatial resolution (~100 km
% 100 km) of the observation-based datasets and model output used in this study. Bringing
these factors together, the FC w statistic is expected to be reliable to first-order when
calculated as the product of future forest cover and the known historical precipitationshed. To
estimate the relationship between the distance of evapotranspiration transport and forest cover
(Fig. 5d), we also developed another metric of downwind FC_w (FC_dw). Because the
moisture transport of evapotranspiration from a specific location was affected by downwind
forest cover rather than in the upwind regions, the calculation of FC_dw was the same as

FC_w but instead along the downwind direction.

Evaluation of autocorrelation impact

FC_w values were derived from forest cover with terrestrial recycled precipitation, weighted
by varying amounts depending on the locations within the precipitationshed. Hence, FC_w
quantifies the signal of forest cover and its variations, calculated at different locations.
However, in our summary Fig. 4a, it is implicitly assumed that the correlation between FC_w
and recycled precipitation is not overly affected by the autocorrelation of recycled
precipitation. To evaluate the impact of autocorrelation on our results, we introduced a test in
three steps (Supplementary Fig. 13). First, we randomly shuffled the grids in the tropics
(25°S-15°N) since the forest cover is similar to grids within the Amazon basin, creating a
randomized forest cover (rFC). In this way, the spatial information of forest cover pattern was
removed. Second, similar to FC_w, we calculated rFC_w based on rFC with recycled
precipitation as the weight. As our randomized forest cover (rFC) had no spatial information,
the trend in rFC_w was solely driven by the change in recycled precipitation signal. Third, we
correlated rFC_w changes with those of recycled precipitation and found the correlation (R-
square) to be very low (0.005). Hence, the impact of autocorrelation of recycled precipitation

on the correlation in Fig. 4a was limited. This implies that the high correlation in Fig. 4a



mainly due to the impact of deforestation on precipitation.

Data availability

GPCP v2.3 precipitation data are available at
https://psl.noaa.gov/data/gridded/data.gpcp.html. GPCC (full data, v2022) precipitation data
are available at

https://opendata.dwd.de/climate environment/GPCC/html/download gate.html. In-situ
discharge data are from Global Runoff Data Centre (GRDC; Koblenz, Germany:
https://www.bafg.de/GRDC/EN/Home/homepage node.html). GLEAM) v3.5a
evapotranspiration data are available at https://www.gleam.eu/. OAFlux ocean evaporation is
available at https://oaflux.whoi.edu. Flux tower observation can be accessed at
https://daac.ornl.gov/LBA/guides/CD32 Fluxes Brazil.html. ERAS atmospheric and land-
surface wind, humidity and fluxes datasets are available at
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5. Forest cover is available at
https://glad.umd.edu/dataset/long-term-global-land-change. TPDC solar radiation is freely
access at https://doi.org/10.11888/Meteoro.tpdc.270112. Future land use data are available at
https://luh.umd.edu/ and https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1153. The dataset on

the fate of land evapotranspiration and precipitation sources is available at
https://doi.org/10.1594/PANGAEA.908705. Projected precipitation recycling is obtained from
https://zenodo.org/records/10650579. Wind speed from CMIP6 can be accessed at

https://aims2.1Inl.gov/search/cmip6/. Source data are provided with this paper.

Code availability

The codes for WAM-2layers are available via the DOI:
https://doi.org/10.5281/zen0odo0.7010594 or at https://github.com/WAM2layers/WAM?2layers.
The data are processed with Matlab R2021b. The codes for the key methods and Matlab data
files related to this work are available at https://doi.org/10.6084/m9.figshare.29649002.v2.
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Figure captions

Fig. 1. Observed precipitation trend and its moisture sources for the Amazon. a,
Precipitation trend in the GPCP dataset. b, Precipitation trend in the GPCC dataset. The
horizontal black line, at the latitude of 7.5°S, indicates our division between the northern and
southern Amazon basins, while the outer black curve defines the full spatial extent of the
Amazon basin. Stippling is for locations where the trend is statistically significant (p <0.05).
¢, Precipitation trend averaged over the whole, northern and southern Amazon basins for the
two precipitation datasets. Error bars represent the standard errors of the trends. Asterisks
indicate that the trend is significant (p < 0.05). d, Direct oceanic contributions to precipitation
trend (P_oceanic). e, Terrestrial recycled contributions to precipitation trend (P_recycled). f,
Oceanic and terrestrial recycled contributions to precipitation trends averaged over the whole,
northern and southern Amazon basins. In all panels, all trends are calculated for the period
1980-2019 inclusively. In d-f, P_oceanic and P_recycled are derived from atmospheric
moisture tracking based on the GPCP dataset. GPCC-based moisture tracking results are
presented in Supplementary Fig. 2. Here P_total = P_recycled + P_oceanic. Source data are

provided with this paper.

Fig. 2. Drivers for the precipitation trend in the southern Amazon basin. a, Trend in
forest cover change. Stippling indicates locations where the trend is statistically significant (p
<0.05). b, Trend in evapotranspiration, ET wb, calibrated from water balance calculations. c,
Trend in downward surface solar radiation. d, Latitudinal averages for the trends in the three
drivers presented in panels a-c¢ and terrestrial recycled precipitation (Fig. 1e). The shaded area

indicate the 95% confidence intervals. Source data are provided with this paper.

Fig. 3. Schematic representation of land-surface and atmospheric processes responsible
for the weakening of land-climate feedbacks, due to large-scale deforestation in the
southern Amazon basin. a, Intact forest, or regions less disturbed by human activities. These
locations feature high and complex canopies which sustains intensive land-atmosphere
turbulent mixing and humid air. In these circumstances, regional and upwind
evapotranspiration possess strong moisture recycling and feedback mechanisms to maintain
regional precipitation. b, Large-scale deforestation has occurred. In these circumstances,
evapotranspiration substantially declines and thus reduces available moisture that feeds into

precipitation. Additionally, the drying atmosphere increases its stability, which further reduces



precipitation, lengthens the distance of moisture transport, and promotes moisture flow out of
the southern basin (Fig. 5). “Output” represents the atmospheric moisture transported out of a
specific region, which here is generally regarded as the Amazon basin. The width of the
arrows denotes the relative magnitude of moisture amount in atmospheric transport or land-
atmosphere flux exchange. The length of the horizontal part of the arrows represents the
relative distance of atmospheric moisture transport. For each process, the corresponding red
symbols ‘+’ and ‘-’ in brackets represent an increase or decrease, respectively, in response to

deforestation (i.e. the effects in panel b compared to those in a).

Fig. 4. The impacts of forest cover change on recycled precipitation. a, Correlation
between weighted forest cover and terrestrial recycled precipitation in the southern Amazon
basin. Recycled precipitation is derived from the moisture-trakcing model driven by water
balance-based evapotranspiration. Regression line (black line) is based on different spatial
points, with each point representing local changes in recycled precipitation and weighted
forest cover in the southern Amazon basin for the common period 1982-2016. Each point
represents a 1° x 1° gridbox within the southern basin. The blue, red and green lines mark the
changes in weighted forest cover in the past 35 years, SSP2-4.5 (primf) and SSP2-4.5 (primf
+ secdf) scenarios, respectively, and the corresponding reductions in terrestrial recycled
precipitaiton. “Primf” represents primary forested land, while “secdf” represents secondary
forested land including forest regowth and climate mitigation strategies such as afforestation
and reforestation (Methods). The shaded areas denote the 95% confidence intervals of
changes in the southern basin. For illustration purposes, the horizontal and vertical zero lines
are shown as grey dashed lines. b, The same as a, but instead, the level of changes in
precipitation caused by altered land moisture recycling is derived from the difference between
projections of the moisture-tracking model when driven directly by evapotranspiration
estimates with and without deforestation. The evapotranspiration post-deforestation was based
on a forest cover-evapotranspiration scaling approach. As panel b is direct process model
output, we do not present this as a statistical finding (e.g. with p value), but we do fit a linear

regression line (black line) to aid comparison with panel a. Source data are provided with this

paper.

Fig. 5. Changes in atmospheric processes and their relationship with forest cover change
in the southern Amazon basin. a, ¢, e, Spatial patterns of (a) changes in Convective

Available Potential Energy (CAPE), (¢) distance of evapotranspiration (ET) moisture



transport and (e) the fraction of moisture from ET remaining in the local grid, all calculated
for the period 1982-2016. Stippling indicates regions where the trend is statistically
significant (p <0.05). b, d, f, For individual spatial points, the relationships are shown
between changes in (b) CAPE against weighted forest cover (FC_w), (d) distance of ET
transport against weighted forest cover in the downwind direction (FC_dw; Methods), and (f)
the fraction of moisture from ET remaining in the local grid against forest cover. All points in
(b, d, f) are in the southern Amazon basin, with each point representing a 1° % 1° gridbox, and
calculations for the period 1982-2016. In b, d, f, the black lines are a fitted linear regression,
and the shaded red areas represent the 95% confidence intervals of the regressions. Source

data are provided with this paper.

Editorial Summary

The authors find that historical deforestation has substantially altered regional observed precipitation
over the southern Amazon basin through interregional atmospheric moisture transport, which is
underestimated in current climate models.

Peer review information: Nature Communications thanks Francina Dominguez, and the other,
anonymous, reviewer for their contribution to the peer review of this work. A peer review file is
available.
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