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SUMMARY

Elastic rock physics models are widely used to estimate the saturation of hydrate in isotropic
sediments. However, for isotropic media, the influence of heterogeneously distributed hydrate
on the P- and S-wave velocities remains unclear, leading to uncertainties in hydrate satura-
tion estimates. To address this issue, in this work we proposed a double-solid-matrix model
for predicting the velocities of sediments hosting heterogeneously distributed hydrates. A
comparison of simulated velocities of our model and two rock physics schemes designed for
homogeneous distributed hydrate (i.e. matrix-supporting and pore-floating models) show that,
our model predicts higher S-wave velocity than matrix-supporting and pore-floating models,
but yields similar P-wave velocity estimates as matrix-supporting model. We apply our model
to two marine hydrate sites in the Cascadia margin: Site 1245 from Ocean Drilling Program
Leg 204 and Site U1328 from International Ocean Drilling Program Expedition 311. Two
locations yield similar results: velocity estimates from our model are much closer to down-
hole measurements than matrix-supporting and pore-floating models. Moreover, we estimate
in situ hydrate saturation and clay concentration using our model, matrix-supporting model,
and pore-floating model independently, and find that (i) hydrate saturations predicted by our
model conform better with the saturations from chloride concentration and (ii) clay contents
calculated by our model fit the best with results from smear slide analysis. This study demon-
strates that our double-solid-matrix model can be an effective tool to understand the effect of
heterogeneously distributed hydrates on velocities, as well as obtain accurate hydrate content
in marine isotropic sediments.

Key words: Microstructure; Numerical modelling; Downhole methods; Gas and hydrate
systems.

contribute to the hydrate dissociation (e.g. Ruppel & Kessler 2017),

1. INTRODUCTION releasing methane, a greenhouse gas with significantly higher global

Gas hydrates are naturally occurring ice-like solids with widespread
distribution in permafrost regions and offshore continental margins.
Controversies exist regarding the global total mass estimations of
methane locked inside its cage-like structure, but global hydrate is
rather considerable even by conservative estimates (e.g. Boswell &
Collett 2011; Ruppel 2018). Gas hydrate has been widely investi-
gated due to its significance in relation to geohazards and its role
in historical and potential future climate change. Human activities
(e.g. petroleum and natural gas exploitation) or natural tempera-
ture variations in sea level or the earth’s interior can potentially

warming potential than carbon dioxide, into the atmosphere (Rup-
pel & Waite 2020; Sahoo & Best 2021). On the other hand, gas
hydrate provides valuable insights for the techniques related to car-
bon capture and storage (Yu et al. 2021), one promising solution to
the carbon emission reduction. These factors have been attracting
interest in understanding and quantifying gas hydrates.

Field evidence indicates that the microscopic shapes and arrange-
ment of gas hydrate (i.e. morphology) in the host sediments are
highly variable (Sloan & Koh 2008). Holland (2008) categorizes
the hydrate morphologies into (i) hardly visible fluid-displacing
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Figure 1. Conceptual diagrams (not to scale) showing the microstructure of isotropic sediment with the occurrence of (a) heterogeneously distributed hydrates,
(b) matrix-supporting and (c) pore-floating hydrates. Matrix-supporting and pore-floating hydrates are two typical types of homogeneous distributed hydrates.

morphology (i.e. pore-filling) in coarse-grained sediments and (ii)
visible grain-displacing type in fine-grained sediments, according to
whether the hydrates displace the pore fluids or mineral grains dur-
ing forming process. Further observations (e.g. Collett et al. 2009;
Dai et al. 2012) show grain-displacing hydrate can exist as either
(1) lenses or veins filling in the fractures or (ii) nodule and chunk-
like hydrate in clay-rich sediments. Moreover, the fluid-displacing
hydrate can be subdivided into cementing, matrix-supporting and
pore-floating, depending on whether solid hydrate cements the sed-
iment grains, bridges the minerals, or floats in the fluid without
contact with solid components (Sahoo et al. 2018a; Pan et al.
2023).

Several rock physics models that consider homogeneous hydrate
distributions in isotropic media have proven effective for permafrost
or marine sediments. For example, the validity of contact-cementing
theory (Dvorkin ef al. 1994; Ecker et al. 1998), which assumes hy-
drate evenly coats on the sediment grain, has been demonstrated by
Guerin ef al. (1999) and Waite ef al. (2004). Widely used matrix-
supporting scheme (Dvorkin & Nur 1996) that considers fluid-
displacing hydrate as part of the solid matrix has been validated
by velocity measurements from various unconsolidated hydrate-
bearing sediments (e.g. Wang ef al. 2011; Kim et al. 2013; Pan ez al.
2019). The pore-floating model, which assumes the fluid-displacing
hydrate forms in the pore space away from grain contacts, has been
verified by seismic data from Blake Ridge (Ecker ef al. 1998) and
experiments of Best ef al. (2013). However, little attention has been
paid to the influence of heterogeneously distributed hydrate on the
P- and S-wave velocities, leading to uncertainties in hydrate satura-
tion estimates. In this study we aim to address this gap by proposing
a rock physics model for sediment with a heterogeneous hydrate
distribution.

Elastic velocities of sediment hosting heterogeneously distributed
hydrates depends on the corresponding hydrate formation mecha-
nism. As shown by microstructure in Fig. 1(a), hydrate presents
in the shapes ranging from spherical to oblate, as a result of the
displacement of surrounding mineral grains in all directions during
the formation process (Cook et al. 2008; Daigle & Dugan 2010).
These heterogeneously distributed hydrates are (i) larger than sed-
iment grains in scale and (ii) not perfectly uniformly mixed with
the mineral grains. Consequently, rock is elastically isotropic, but
its solid matrix is not as homogeneous as those in sediment host-
ing matrix-supporting and pore-floating hydrates (e.g. Figs 1b and
c). In this case, the Voigt—Reuss—Hill average, a strictly heuristic
theory used in matrix-supporting and pore-floating hydrate models

(Helgerud et al. 1999), may not be applicable for modelling of het-
erogeneously distributed hydrates (Brown & Korringa 1975; Mavko
et al. 1998; Dvorkin et al. 2007).

In this study, we propose a double-solid-matrix model based on
the theory of Berryman and Milton (Berryman & Milton 1991) to
predict the velocities of isotropic sediment hosting heterogeneously
distributed hydrates. Using the proposed model we investigate the
effect of important petrophysical properties on the velocities of
heterogeneous-hydrate-bearing sediments. Then we compare the
velocities simulated by the proposed scheme and two existing rock
physics models designed for homogeneous distributed hydrates.
Downhole measurements (e.g. resistivity, gamma ray, chloride con-
centration and smear slide of core samples) at Site 1245 from Ocean
Drilling Programme (ODP) Leg 204 and Site U1328 from Interna-
tional Ocean Drilling Programme (IODP) Expedition 311 are used
to evaluate the model capability.

2. DOUBLE-SOLID-MATRIX MODEL

Two schemes can provide insights for elastic modelling of isotropic
sediment hosting heterogeneously distributed hydrates: (i) the com-
posite Gassmann model (Gurevich & Carcione 2000), which pro-
vides the moduli of saturated composite rock by applying a par-
ticular mixing law on moduli of individual saturated solid phase
and (ii) the model of Brown & Korringa (1975), which rigorously
extend Gassmann’s equations to allow for an isotropic medium
with non-uniform-mixed solid components. Based on Brown and
Korringa’s equations, Berryman & Milton (1991) further derived
exact formulas for the composite media with two homogeneous
porous phases (e.g. sediment shown in Fig. la). Furthermore,
theoretical simulations by Gurevich & Carcione (2000) indicated
that Berryman and Milton’s model is more applicable than the
composite Gassmann model in the case where fluid flows be-
tween two homogeneous solid phases. Because fluid may flow
between the pore space of sediment grains and possible microp-
ores inside the hydrate (Marin-Moreno et al. 2017; Sahoo et al.
2018a), in this work we employ Berryman and Milton’s the-
ory for modelling of sediment hosting heterogeneously distributed
hydrates.

For rocks with microscopically heterogeneous solid components,
Brown & Korringa (1975) proposed to compute the elastic prop-
erties by a rigorous scheme involving four important bulk moduli:

(i) dry composite solid matrix modulus, K§, (ii) composite solid
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grain modulus, K¢, (iii) pore space modulus, K § and (iv) fluid mod-
ulus, K;. Of these four moduli, K; can be computed using Reuss
bound (Reuss 1929) and K§ can be obtained using K and K¢
(Brown & Korringa 1975). In a composite porous medium with
two solid matrices, either K} or Kg‘ry can be calculated from the
other according to Berryman & Milton (1991). K§ can be cal-
culated using the bulk moduli of two solid matrices when the two
phases are the same in shear modulus (e.g. Hill 1963). However,
for sediment hosting heterogeneously distributed hydrates, hydrate
and mineral phases are distinct in shear modulus. As a result, either
K., or K¢ is required to be known to calculate elastic properties
using Brown & Korringa (1975) and Berryman & Milton (1991)
models.

‘We propose following steps to obtain the elastic properties of sed-
iment hosting heterogeneously distributed gas hydrates. We assume
the solid matrix is composed of two parts (Fig. 1a), hydrate matrix
(i.e. the matrix composed of gas hydrates) and mineral matrix (i.e.
the matrix composed of mineral grains), and the region occupied
by each matrix is big enough to have well-defined moduli. Then the
bulk and shear moduli of the composite of these two matrices K3,
and G}, can be obtained by a mixing law, Hashin—Shtrikman lower
bound. Using this determined K, we can derive K according to
Berryman & Milton (1991). Finally, the velocities of saturated com-
posite material can be computed using the generalized Gassmann
equation (Brown & Korringa 1975).

2.1. Dry mineral matrix

Porosities within hydrate and mineral phases are usually variable
during the hydrate formation process, which is vital for the rock
physics modelling. Growing hydrate in the fine-grain medium al-
ways compacts the surrounding unconsolidated sediment due to
the nature of hydrate formation (Spangenberg 2001; Jain & Juanes
2009). We do not consider the porous structure within pure hydrate,
as the porosity within hydrate is not well-understood (see details in
Discussion). In this case, the accumulation of hydrate would lower
the porosity of the mineral matrix @uineral (the ratio of the volume of
mineral grains to the saturated mineral matrix) from initial porosity
Pinitial (sediment porosity prior to the hydrate presence, which is
usually estimated from density log) to

¢initial(l - Sgh)

, )
1— ¢initial Sgh

¢mineral =
where Sy, is the hydrate saturation (the ratio of the hydrate volume
to the total pore space).

Various Hertz-theory-based effective medium models for
hydrate-bearing unconsolidated sediment are incomplete as the
solid grains are assumed to be infinitely rough only (e.g. Dvorkin &
Nur 1996 model; Helgerud et al. 1999 model). Recently, a unified
effective medium theory by Terry & Knapp (2018) has extended
those traditional one-side models to the situation where rough and
smooth spheres coexist, and has proven effective for unconsoli-
dated sediments (e.g. Zhu et al. 2023). Here we employ this model
to compute the bulk and shear moduli of dry mineral matrix, K.,
and G,,;. The moduli at critical porosity are given by

Gdryl = Guu =

[2—v+ 305(1 —v)] 3G512n2(1 - ¢c)2 P %
52 —v) 272(1 — vy’ ’

@
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1
Ga'n*(1—¢) |
Kgyi=Kqy = | ——— =P , 3
dryl HM |: 1872(1 — U)z 3)
O'S(Ksl - gGsl)
v=——— 2, 4)
(Ksi +3Gq1)

where Ky and Gy are moduli in the ‘extended’ Hertz—Mindlin
effective medium model. ¢., n, v are the critical porosity, coor-
dination number and poisson ratio, respectively. « represents the
friction coefficient describing the strength of the transverse stiff-
ness for particle contact (Jenkins et al. 2005). Two end states, the
infinitely smooth and perfect stick grains (i.e. no-slip), occur when
a equals 0 and 1, respectively. Voigt—Reuss—Hill average (Mavko
etal. 1998) is usually used to compute solid moduli K; and G;. Pis
effective pressure accounting for the difference between lithostatic
and hydrostatic pressure (Helgerud et al. 1999)

P = (p, — pw)ed, 5

where p, and p,, are sediment bulk density and water density, re-
spectively; g is the gravitational acceleration; and d is the depth
(meters below sea floor) of sediment. K¢y, and Gy for sediment
with mineral matrix porosity @minera below or above ¢, are extended
by Dvorkin et al. (1999).

2.2. Dry composite matrix

For a solid matrix composed of two isotropic granular porous mate-
rials but with unknown geometries of grains and pores, its effective
moduli would fall between the two narrowest ranges, the lower and
upper Hashin—Shtrikman bounds (Hashin & Shtrikman 1963). The
two bounds are computed by simply arranging the two solid matrices
as double homocentric spheres; the lower bound can be physically
interpreted as the case where the inner sphere is the stiffer material,
while the upper bound is realized when the stiffer sphere is the
shell. In the case of sediment hosting heterogeneously distributed
hydrates, given that hydrate is embedded in surrounding mineral
grains (Fig. 1a), we simplify the structure of solid grains as two ho-
mocentric spheres, in which the hydrate matrix and softer mineral
matrix constitute the inner and outer sphere packs, respectively (Liu
et al. 2022). Therefore, the lower Hashin—Shtrikman bound can be
used to obtain the moduli of a dry composite matrix, Kj, and G,

dry
S
(Kdryz - ]{(iryl)_l + fl(Kdryl + 4Gdryl/3)7

1 f2 2/1(Kary1 +2Gary1) 7 (7)
_ - FiKary ry
(Garyz = Gany)™ + 5Gary1 (Kdry1 +4G ary1/3)

K;ryderyl + (6)

Gzryz Gdryl +

where f; and f, represent the mineral and hydrate proportions in the
composite solid matrix, respectively. K., and G, are bulk and
shear moduli of the hydrate matrix. Since we assumed a non-porous
hydrate in Section 2.1, the moduli of the hydrate matrix are the same
as the moduli of hydrate (K> = Kg2, Gary2 = G2).

2.3. Saturated rock

For sediment hosting heterogeneously distributed hydrates, the orig-
inal fluid substitution theory (Gassmann 1951) can be no longer
applicable as it assumes either only one solid constituent or a com-
posite matrix with uniformly mixed solid components. Brown &
Korringa (1975) extended Gassmann’s theory to the case of the
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Table 1. Fixed parameters involved in the elastic rock physics modelling.

Constituent K(Gpa) G(Gpa) p(gem™ 3) Source

Quartz 38.4 44.1 2.66 Pabst & Gregorova (2013)
Clay 20.9 6.85 2.58 Helgerud et al. (1999)
Hydrate 8.3 3.54 0.924 Helgerud et al. (2009)
Water 2.3 0 1.02 Cook & Waite (2018)

Table 2. Case-dependent parameters used in the elastic rock physics modelling.

Parameter Symbol Unit Value
Bulk moduli
Composite solid grains K; Pa Given in eq. (8)
Dry composite matrix K;‘ry Given in eq. (6)
Dry mineral matrix Kary1 Given in eq. (3)
Dry hydrate matrix Kary2 Hydrate bulk modulus (in Table 1)
Mineral grain K Calculated using Voigt—Reuss—Hill average (Mavko et al. 1998)
Hydrate Ky Hydrate bulk modulus (in Table 1)
Pore space K (; Given in eq. (12)
Fluid content K¢ Calculated using Reuss bound (Mavko ef al. 1998)
Shear moduli
Dry composite matrix Gjry Pa Given in eq. (7)
Dry mineral matrix Garyl Given in eq. (2)
Dry hydrate matrix Gary2 Hydrate shear modulus (in Table 1)
Mineral grain G Calculated using Voigt—Reuss—Hill average (Mavko et al. 1998)
Hydrate Gy Hydrate shear modulus (in Table 1)
Porosities
Mineral matrix Bmin eral Unitless Given in eq. (1)
Initial porosity Pinitial Estimated from density logs
Critical porosity dc 0.37 (Guerin et al. 2006)
Friction coefficient o Unitless 0.1 (Site U1328)
0.25 (Site 1245)
Coordination number n Unitless 9 (Guerin et al. 2006)
Effective pressure P Pa Given in eq. (5)

heterogeneous solid matrix, but their result contains two new com-
pressibilities (i.e. K and Kj,) that need to be known. Here we
determine the K7 and Kj by adopting the idea of Berryman &
Milton (1991): assuming a uniform swelling or shrinking in the
composite rock (i.e. shapes and relative positions of hydrate matrix
and mineral matrix remain unchanged with the variation of over-
all rock size), then the K and K3 can be calculated from Kgfry
(given in eq. 6), K., (obtained from eq. 3) and K, (shown in
Table 1, 2).

The composite grain modulus K can be calculated by:

K*

_ dry
K= ®)
K§, — Karyt
=0+ (o — o). ©)
KdryZ - Kdryl

where o, and o, are two parameters defined as:

Kdrl
=1- —y, 10
(o5} Kq (10)
Kary2
=1 - - 11
7 KsZ ( )

0, equals 0 in this study since we assume the heterogeneously dis-

tributed hydrate is a non-porous inclusion within the host sediment.

Once K is determined, the effective modulus for pore space, K,

can be computed by:

o (¢) | 12
& = (25 — (o — o) (522

Kary1 —Kdry2

where (.) stands for the volume average of a material quantity,
for example, (g(x)) = MgV + f@g@ O denotes the volume
fraction of the ith constituent.

Then the moduli of the saturated medium can be computed using
the rearranged equation of Brown & Korringa (1975):

K = K&kry +0"C, (13)
Gea = GSry’ (14)
C= U (15)

o*/K:+ () (1/Ks — 1/K})

Velocities of compressional wave (Vp) and shear wave (Vs), and
bulk density (p,) can be obtained by:

Ksa + iGSE]
v, = ko (16)
Po

Gs

V,= | X (17)
Pb

Po = ¢initial(1 - Sgh)pf + ¢initianghpgh + (1 - ¢initial)pminerala (18)

where pf, pgh and Pmincral represent the density of fluid (brine water),
hydrate matrix and mineral matrix, respectively.

3. THEORETICAL VELOCITIES

Initial porosity, hydrate saturation and friction coefficient are sig-
nificant parameters in our heterogeneous model. Fig. 2 shows their
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Figure 2. (a) P-wave velocity and (b) S-wave velocity of isotropic sediment hosting heterogeneously distributed hydrates as a function of hydrate saturation.
Minerals constituting the sediment are 50 per cent clay and 50 per cent quartz. Water depth is 100 mbsf. Solid and dashed lines represent velocities estimated

with a friction coefficient of 1 and 0, respectively.

effect on the velocity predictions. As shown, the presence of het-
erogeneously distributed gas hydrate significantly increases both P-
and S-velocities, and the influence of hydrate accumulation on ve-
locities become more significant as hydrate saturation increases. On
the other hand, the increase in initial porosity lowers both P- and
S-velocities, and the effect of porosity variation on velocities is less
significant with the increase of hydrate saturation. Moreover, the in-
crease in friction coefficient enhances the sediment velocities, and
such velocity increase goes up when hydrate saturation is less than
70 per cent but decreases as hydrate saturation increases further.

Figs 3 and 4 compare the velocities simulated from our het-
erogeneous model and velocities predicted by matrix-supporting
(Dvorkin & Nur 1996) and pore-floating models (Ecker e al.
1998), two existing models designed for homogeneous distributed
hydrates. It should be noted that the widely used contact-cementing
model (Dvorkin & Nur 1996), another homogeneous distribution
mode, is not included in this velocity comparison. The reason is
that contact-cementing model assumes a sediment porosity much
lower than the critical porosity ranging from 36 to 40 per cent,
whereas heterogeneously distributed hydrates are commonly ob-
served in high-porosity (>50 per cent) sediments (e.g. Tréhu et al.
2003).

A clear dependence of sediment velocities on rock physics models
is illustrated in Figs 3 and 4. From Figs 3(d—f) and Figs 4(d—f), we
find that Vg estimates from Models I-III are distinct in values. Of
these three models, our heterogeneous model yields the highest
Vs, followed by the matrix-supporting and pore-floating models.
In the case of hydrate saturation lower than 70 per cent, Vs for our
heterogeneous hydrate model increases more rapidly than Vs for the
matrix-supporting model. However, as hydrate saturation increases
further, Vs for our heterogeneous hydrate model increases much
slower than the matrix-supporting model. From Figs 3 and 4 we also
observe that V5 for our heterogeneous hydrate model is quite close
to Vp for the matrix-supporting model. Apparent difference between
Vp predictions from these two models can only be observed when
host sediment is highly porous and hydrate-saturated (e.g. Figs 3¢
and 4c).
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Figure 3. Comparison of P- and S-wave velocities calculated from Models
I-11I. Friction coefficient « is set to 0. (a—c) P-wave velocity estimated with
a porosity of 40, 60 and 80 per cent, respectively. (d—f) S-wave velocity
estimated with an initial porosity of 40, 60 and 80 per cent, respectively.
Models I-III are our heterogeneous model, matrix-supporting model and
pore-floating model, respectively. Minerals constituting the sediment are 50
per cent clay and 50 per cent quartz. Water depth is 100 mbsf.
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Figure 4. Comparison of P- and S-wave velocities calculated from Models
I-11I. Friction coefficient « is set to 1. (a—c) P-wave velocity estimated with
a porosity of 40, 60 and 80 per cent, respectively. (d—f) S-wave velocity
estimated with a porosity of 40, 60 and 80 per cent, respectively. Models I-
1T are our heterogeneous model, matrix-supporting model and pore-floating
model, respectively. Minerals constituting the sediment are 50 per cent clay
and 50 per cent quartz. Water depth is 100 mbsf.

4. APPLICATION TO NORTHERN AND
SOUTHERN CASCADIA MARGIN

ODP Leg 204, the first drilling expedition dedicated to understand-
ing gas hydrate formation processes in accretionary complexes with
stratigraphically controlled gas conduits, has provided a testbed for
techniques to depict hydrate occurrence in southern Cascadia mar-
gin (Tréhu et al. 2003, 2004). Physical properties measured from
downhole logging devices during Leg 204 (Fig. 5) were employed
to identify the hydrate accumulation and acquire hydrate volume
within gas hydrate stability zone (GHSZ). Geochemical analyses
of interstitial waters provided additional information on the hydrate
distribution and concentration, the fluid migration within the GHSZ,
and the rates of gas hydrate formation (Tréhu et al. 2003). Infrared
(IR) imaging of core sample at Site 1245 has disclosed that hydrate,
with a scale of a few centimetres, widely clusters above the bottom
simulating reflector (BSR), especially within the interval 85-117
mbsf (meters below seafloor). At the same interval the measured
resistivity is less than 2 Qm, indicating sediments are isotropic and
hydrates occupy the pore space instead of the fractures. In this study,
the downhole measurements from this interval are used to assess
the effectiveness of our model.

IODP Expedition 311 aimed to investigate the hydrate occur-
rences and their evolution along a transect located at the northern
Cascadia accretionary margin. During this expedition a site, U1328,

was established at a cold vent setting with active fluid and gas expul-
sion (Riedel ez al. 2010). Drilling and coring were performed at this
location to test the models for the cold vent structure and understand
the cause of blanking zones on seismic data. Visual observations of
gas hydrate during Expedition 311 were mostly from this cold vent-
ing site. Core samples from a hole, U1328C, indicated the presence
of gas hydrate (Riedel et al. 2006; Hester et al. 2008). In the same
hole pore water chlorinity and downhole resistivity measurements
indicated the occurrence of abundant hydrates between 190 and 219
mbsf, as shown in Fig. 6. Resistivity measurements between 190
and 219 mbsf at Site U1328 indicated no presence of hydrate-filled
fractures. Here we use downhole logs collected in this interval for
model validation.

For models designed for isotropic hydrate-bearing sediments
(models used in Fig. 4), coordination number #,, critical porosity ¢
and the friction coefficient « are the site-specific constants that need
to be determined for model applications. Given that n, and ¢, at
Sites U1328 and 1245 have been suggested by Guerin ez al. (2006),
here we just calibrate friction coefficient « at both sites. Friction
coefficient is usually calibrated using the measured well-log data
using the crossplots of P- and S-wave velocities versus hydrate sat-
uration (e.g. Pan et al. 2020). Here we perform the calibration with
the velocity measurements from hydrate-free intervals, to avoid the
effect of errors from hydrate saturation estimates. For Site U1328
we use the velocity measurements in the interval from 97 to 104
mbsf, as both velocity and resistivity measurements indicated little
or no hydrate. However, at Site 1245, hydrate-free intervals are hard
to determine within depths above the BSR (about 130 mbsf), since
IR scanning for core sections showed hydrates were widely present
above the BSR (Guerin et al. 2006). In contrast, sediments beneath
the BSR tend to be hydrate-free but are always linked with free
gas. Here we calibrate the friction coefficient « for Site 1245 using
the Vs measurements from 137 to 150 mbsf, given that resistivity
indicated little gas only, and also, the effect of gas accumulation on
Vs is negligible. Finally, o for Sites 1245 and U1328 are calibrated
to be 0.25 and 0.1, respectively (Fig. 7). Note that we employ a
‘background velocity " to describe the sediment velocity in the case
of hydrate-free.

The assessment for an elastic rock physics model is generally
performed by either (i) comparing the velocities from measurement
and model prediction (e.g. Terry & Knapp 2018) or (ii) comparing
the petrophysical properties from non-velocity measurement and
model-based velocity inversion (e.g. Helgerud et al. 1999). We use
both methods for this study and present the results in Sections 4.1
and 4.2.

4.1. Modelled velocities versus measured velocities

Non-velocity measurements can provide necessary petrophysical
properties (e.g. sediment composition, hydrate saturation and sed-
iment porosity) for rock physics models. Initial porosity, which
are nearly unaffected by hydrate presence due to the comparabil-
ity between hydrate and brine densities (Collett & Lee 2009), can
be calculated from density logs. For host sediment at both sites,
we assume it is a composite of sand and clay. In the case of clay
content, we use an average of clay proportions from the smear
slide within hydrate-bearing intervals (see Section 4.2.2). Addition-
ally, hydrate saturation can be estimated from resistivity based on
Archie’s equation (Archie 1942); these saturation estimates depend
on the saturation exponent # (Cook & Waite 2018), an empirical pa-
rameter highly related to hydrate distribution (Spangenberg 2001).

9z0z Atenuer g uo isenb Aq 9/01¥£8/0.14e66/2/712/0101e/B/woo dno-olwepese//:sdiy woly pepeojumoq


art/ggaf470_f4.eps

Rock physics model for heterogeneous hydrates 7

Gamma ray Vp Vs Porosity Resistivity
(gAPI) (m/s) (m/s) (%) (Q*m)

60 70 1500 1700 200 400 600 40 60 80 1 1.5
80 —T T T T T T

100

120 BSR

140

160

180

Depth
(mbsf)

200

220

240

260

300 R

_RD

Figure 5. Gamma, velocity, porosity and resistivity logs collected at Site 1245E, ODP Leg 204. Blue shaded zone indicates the depth interval with the presence
of hydrate. R represents the calculated brine-saturated resistivity (see Section 4.3 for calculations).
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(Guerin ef al. 2006).

However, to our knowledge, there is no available parameter »n for
the sediment hosting heterogeneously distributed hydrates.

Herein, we calibrate the saturation exponent # at both sites using

an electrical model designed for heterogeneously distributed hy-
drates. First, we obtain the porosity exponent m from brine-saturated
intervals according to Archie’s law:
F = = b (19)
where a is an empirical constant. R is resistivity for brine-saturated
sediment. Ry, is the pore water resistivity, which depends on temper-
ature and salinity and is usually calculated according to Arp (1953).
For Site U1328, we estimate the R,, using a pore water salinity
of 33 parts per thousand and a seafloor temperature of 3.5 °C. A
thermal gradient of 53.6 °C km™! is used to derive the temperature
at a specific depth below the seafloor (Riedel ez al. 2006). At Site
1245, R, versus depth is derived using a pore water salinity of 35
parts per thousand, a seafloor temperature of 4 °C, and a thermal
gradient of 54.6 °C km™! (Tréhu et al. 2003). Porosity exponents
m = 1.70 and m = 0.87 are determined for Sites 1245 and U1328,
respectively. We show the estimated R, for all depths in Figs 5 and
6. Assuming that the gas hydrate grows in the shape of a sphere
within a cubic host solid matrix, we can model the resistivity index
[ as a function of hydrate saturation (Spangenberg 2001)

A
J = F ¢initial (20)

T
( Dnitiat (1 —Seh) )
m
1= ihitiar Seh

where 19 is the effective formation factor depending on the hydrate
saturation and growth pattern of hydrates. We then employ eq. (20)
to calculate the I for sediment with S,, ranging from 0 to 100

)), respectively. Clay content used in the baseline calculation is 60 per cent

- ® Site 1245E
a ®m Site UI328C
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Figure 8. Crossplot of water saturation versus theoretical resistivity index
for Sites 1245 and U1328.

per cent. Based on the Archie’s second law 7 = (1 — Sgn)™", we
determined theoretical saturation exponents n = 1.53 and n = 1.05
for Sites 1245 and U1328, respectively (see Fig. 8). Finally the
hydrate saturation within in situ hydrate-bearing sediment can be
estimated from measured resistivity R, with the rearranged Archie’s
second law:

1

Ro\"
Sp=1—1—1 . 21
. (R) @1

These resistivity-derived Sg, are used to compute the Vp and
Vs through rock physics models shown in Figs 3 and 4. Fig. 9
displays the P- and S-wave velocity estimates and downhole velocity
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measurements at Sites 1245 and U1328. In order to depict the
deviation between measured and modelled velocities, we introduce
a relative error of velocities (REV)

|VPcst _ VIIncas| |Vscst _ Vsmcas|
REV = J/meas /neas ’
P S

(22)

where subscripts est and meas represent the velocities from model
estimation and downhole measurement, respectively.

For Sites 1245 and U1328, Fig. 9 also shows that velocities
predicted by our heterogeneous model yield the lowest mean REV
among three models, indicating our model can characterize the elas-
tic properties of these hydrate-bearing sediments better than other
two models. Moreover, of the three models, the linear relationship
between Vp and Vs estimated by our model shows the best agreement
with the velocity correlations shown by measurements. In contrast,
both matrix-supporting and pore-floating models underestimate the
Vs.

4.2. Petrophysical properties from velocity and
non-velocity measurements

We also employ matrix-supporting model, pore-floating model and
our heterogeneous model to estimate two petrophysical properties,
hydrate saturation Sy, and clay proportion C,, from velocity data.
Initial porosity for inversion is derived from density logs (see Sec-
tion 4.1). For each depth point, we obtain the estimates of Sy, and C,
through minimizing the REV shown in eq. (22). These petrophysical
properties estimated from velocity and non-velocity measurements
are compared in following sections.

4.2.1. Hydrate saturation

A commonly used method to accurately estimate the hydrate satu-
ration in marine sediments is the measurement of chloride content
within the pore fluids (e.g. Froelich ez al. 1995; Hesse 2003). Ab-
normally low value on the chloride concentration profile is usually
used as an indicator of hydrate presence as the dissociation of gas
hydrate can freshen the pore fluids during core recovery. This geo-
chemical method was employed at Sites 1245, ODP 204 and U1328,
IODP 311 to provide reliable volume estimates of gas hydrate within
the GHSZ. Using the chloride concentration model of Yuan et al.
(1996), we obtain the in situ hydrate content for Sites 1245 and
U1328, which are up to 18 and 37 per cent, respectively (Fig. 10).

Fig. 11 illustrates the velocity-derived Sy, (Vel — Sgp) varies de-
pending on the rock physics models. For both sites, Vel — Sy, es-
timates from our heterogeneous model conform well with the Sg,
derived from chloride concentration (C/ — Sg), while Vel — S,
predicted by pore-floating model are much lower than CI — Sg,.
Matrix-supporting model appears to yield Vel — Sy, comparable
with Cl — Sy, but it underestimates the Sy, at several depths, e.g.
88 mbsf at Site 1245 and 192 mbsf at Site U1328. Overall, our het-
erogeneous model gives better hydrate saturation predictions than
other models.

4.2.2. Clay content

Smear slide sample emerges as a rapid, simple and cheap method
to study marine sediments, for example, identifying sediment types
and classifying sediments. This technique generally only requires a

9z0z Atenuer g uo isenb Aq 9/01¥£8/0.14e66/2/712/0101e/B/woo dno-olwepese//:sdiy woly pepeojumoq


art/ggaf470_f9.eps

10 X Zhu et al et al.

(a) ClI'(mM) (C) Hydrate saturation(%)
400 500 0 20 40
50 50
100 100
o [y
£ 150 £ 150
2200 2200
7] 7]
(a] ]
250 250
300 300

(b) Cl'(mM) (d) Hydrate saturation(%)
50 500 550 0 10 20
0

S

< 50 S 50

4 <

& I

2 100 A 100
150 150

® Measured chloride concentration
= Empirical baseline
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very small sample, making it possible to sample even archive cores
without causing damage (Rothwell 1989). In Fig. 12, we present
the clay proportions C, derived from the smear slide and measured
velocities at Sites 1245 and U1328. Moreover, in Fig. 12 we show
the original gamma ray, a good indicator of clay content of the
sediment, instead of the gamma-ray-derived C, estimates, given
that great uncertainties related to pure sand and shale baselines.

For Site 1245, Figs 12(a)—(c) show that clay contents predicted
by all models appears to fit well with C, from the smear slide. In
addition, at the depth of 104 mbsf our heterogeneous model gives a
better C, prediction than matrix-supporting and pore-floating mod-
els. Overall, all models give close predictions to the results from
gamma ray measurement in the interval from 90 to 110 mbsf. Clay
contents beyond this interval seem to deviate from the trend indi-
cated by gamma ray, which can be attributed to the presence of other
lithologies in addition to clay and sand.

In the case of Site U1328, our heterogencous model predicts
the most consistent C, estimates with those derived from smear
slide, as indicated in Figs 12(d)—(f), whereas the other two models
underestimate the clay content when compared to the smear slide re-
sults. Moreover, the clay content estimated using our heterogeneous
model show a more agreement with gamma ray measurements than
results from other two models. However, at depths between 210 and
215 mbsf, C, values from all three models are much lower than
the smear slide results; the variation of C, values from all three
models are not consistent with the clay content trend indicated by
gamma ray log. The possible coexistence of hydrate and free gas,

as illustrated by Riedel ef al. (2006), could be the reason for such
discrepancy.

5. DISCUSSION

5.1. Dependence of velocities on the hydrate morphologies

For velocity predictions from rock physics models (Fig. 3), the rea-
son that P- and S-wave velocity for heterogeneously distributed
hydrate-bearing sediments is higher than pore-filling hydrate-
bearing sediment is the difference on the contribution to the rock
rigidity: heterogeneously distributed hydrate within the pore space
can support the solid frame and significantly increase the rigidity of
the rock, whereas pore-filling hydrates floating within the pore fluid
increase the fluid bulk modulus but do not contribute to the moduli
of'the dry rock. In addition, the reason that velocities (especially the
S-wave velocity) for heterogeneously distributed hydrate-bearing
sediments is higher than matrix-supporting hydrate-bearing sedi-
ment can be the sediment compaction resulting from hydrate for-
mation. The growing heterogeneously distributed hydrates usually
displace the mineral grains, compacting the host sediment, while
matrix-supporting hydrates only occupy the pore space and hardly
affect the arrangement of the mineral grains.

5.2. Heterogeneously distributed hydrates and nodule-like
hydrates in isotropic sediments

Nodule-like hydrates in isotropic sediments (e.g. Fig. 13), tend to
be larger than sediment grains in scale, appear to have the same
microstructure with the heterogeneously distributed hydrates (see
Fig. 1a). Moreover, the depths with the presence of nodule hydrates
at Sites 1245 and U1328, as observed by naked eyes and core
scanning techniques (Tréhu e al. 2003; Riedel ef al. 2006), are
within the intervals where velocities predicted by our double-matrix-
model match well with the velocity measurements. In this case,
the natural nodule-like hydrates deposited in marine sediments are
likely the heterogeneously distributed hydrates discussed in this
work, and our double-matrix model may be used to predict the
elastic properties of in situ sediments containing such nodule-like
hydrates.

For nodule-like hydrate and non-nodule-like hydrate (i.e. vein-
like or pore-filling hydrate), their different appearances could be
primarily governed by the effective stress, often associated with
buried depth and sediment grain size (Dai et al. 2012; Terzariol
et al. 2020). We illustrate their formation mechanism in Fig. 14. For
coarse-grained sediment, the large grain size (e.g. Fig. 14a) results
in the ‘expanding’ capillary pressure (pressure difference between
hydrate and water surfaces) being lower than the ‘compacting’ ef-
fective stress. Moreover, coarse sediments are highly permeable,
allowing for the easy creation of gas flow (Collett 2001). Conse-
quently, hydrate could readily grow within the pore space of the
loosely packed sediment, which is known as pore-filling hydrate
(e.g. Fig. 14d). In contrast, in muddy fine-grained sediment (e.g.
Fig. 14b) capillarity force is much higher due to the smaller par-
ticle radius (Jain & Juanes 2009). Also creating gas flow paths in
these low-permeability sediments is challenging (Collett 2001). As
a result, hydrate can no longer invade through the pore throat but
instead pushes sediment grains apart, that is, grain-displacing hy-
drate. An analogy can be drawn to a fracture-opening mechanism
of gas invasion (Jain & Juanes 2009). Furthermore, when the lat-
eral and vertical stresses within sediment are comparable, the grain
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displacement would occur in every direction, leading to nodule and 5.3. Applicability of double-solid-matrix model
chunk-shaped gas hydrate (e.g. Fig. 14e). However, within finer
sediments (e.g. Fig. 14c), hydrates will present as veins shown in
Fig. 14(f) if they find a low one directional stress path like frac-
tures. Subvertical hydrate-filled veins observed in sediments with
high-effective pressure can be a good illustration (e.g. Cook et al.
2008).

Porous structure within the gas hydrate has been observed within
natural gas hydrate aggregates (e.g. Kuhs et al. 2004; Sultan et al.
2014). In that case, our double-solid-matrix model remains useful
as the elastic moduli are derived based on the model of Berryman
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Figure 13. Nodule-like hydrates in the core samples. Panels (a—c) are im-
ages of gas hydrate samples recovered at Site U1328 during IODP 311
(modified from Riedel et al. 2006). Panels (d) and (e) depict the infrared
images and hydrate samples extracted from the core liner during ODP Leg
204, respectively (modified from Tréhu ez al. 2003).

Pore-filling hydrate

Vein-like hydrate

Figure 14. Conceptual diagrams (not to scale) showing the formation of
hydrate in three morphologies. Panels (a) and (c) depict the sediment mi-
crostructure before and after invasion of pore-filling hydrate, respectively.
Panels (b) and (e) illustrate the sediment microstructure before and after
invasion of nodule-like hydrate, respectively. Panels (c) and (f) show the
sediment microstructure before and after invasion of vein-like hydrate, re-
spectively.

& Milton (1991), which is rigorously designed for the heteroge-
neous medium composed of two porous phases. The reasons why
we consider a zero porosity for pure hydrate in this study are (i)
the porous natural heterogeneously distributed hydrates were only
observed nearby the seafloor so far (e.g. Suess ef al. 2001; Sultan
et al. 2014) and (ii) hydrate porosity is hard to be determined as
it should be a variable depending on a number of factors such as
effective pressure and buried depth. Here we also investigate the ef-
fect of porous structure of hydrate on the P- and S-wave velocities.
Since pure gas hydrate is more likely to present as a consolidated
substance instead of a simply heaping (Stern et al. 2011; Liu et al.
2022), we employ a consolidated-material-based model provided
by Pride (2003) to calculate the moduli of dry hydrate matrix, K.,
and G,.,. The equations are shown below

1 _
Kayo = thTj;g“h, 23)
g
1 _
Gargs ] (24)

= G —_— =,
N1 ¥ 3chgn/2

where c is the consolidation parameter representing the consolida-
tion degree of hydrate grains. ¢y, is the porosity of hydrate matrix
and usually ranges from 25 to 40 per cent (e.g. Kuhs et al. 2000;
Stern et al. 2011).

Using the eqs (23) and (24) and double-solid-matrix model pro-
posed in Section 2, we obtain the velocities for sediment hosting
heterogeneously distributed hydrates under different hydrate ma-
trix porosity and consolidation parameter conditions. As shown in
Fig. 15, the increase of hydrate matrix porosity or the decrease of
consolidation parameter can elevate the P- and S-wave velocities,
as well as the velocities for the hydrate-saturated case (i.e. the maxi-
mum hydrate saturation). We speculate the reason for that can be the
increment of fluid flow between hydrate and mineral porous phases:
either the increase of hydrate matrix porosity or the decrease of
consolidation parameter can stimulate the fluid flow between two
porous solid phases.

Given that heterogeneously distributed hydrates are macroscopic
solids embedded in the sediment, we regard the hydrate to be a
solid matrix independent from the mineral grains. We assume that
heterogeneity within the mineral matrix (multimineral grains) is
negligible to that between the hydrate and mineral matrices, and
then model the elastic properties of this heterogeneous isotropic
medium based on Berryman and Milton’s theory. However, when
the mixture of mineral grains is uniform enough so that the regions
occupied by individual minerals are comparable with the size of
hydrate patches, mineral components should be seen as different
solid matrices. In this case, the model of Berryman & Milton (1991)
and our double-solid-matrix scheme are no longer suitable.

Although hydrates have been widely observed to be heteroge-
neously distributed during NGHPO1 (Stern & Lorenson 2014), ODP
Leg 204 (Tréhu et al. 2003), IODP 311 (Hester ez al. 2008), GMGS2
(Zhang et al. 2015) and shallow methane hydrate research by the
Ministry of Economy, Trade and Industry, Japan (Yoneda et al.
2019), researches also show that these heterogeneous hydrates can
coexist with other hydrate morphologies at the same depth, for ex-
ample, vein-like hydrates discovered by Lee & Collett (2009) and
Tréhu et al. (2003). In these cases, hydrate can be quantified using
a unified framework by integrating our double-solid-matrix model
and other morphology-dependent models (e.g. Pan et al. 2022a, b).
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5.4. Uncertainties of hydrate saturations from
non-velocity measurements

It should be noted that uncertainties may come from the use of
improper parameters in Archie’s equations. For instance, the deter-
mination of Archie parameters a and m can be somewhat subjective
(Janik et al. 2009). Moreover, in Section 4.1 we propose a new
scheme to calculate a proper saturation exponent n for sediment
hosting heterogeneous hydrates, but more laboratory measurements
are required to testify these n estimates. On the other hand, the effect
of clay on the electrical resistivity was ignored when obtaining the
hydrate saturation. As a result of the surface conduction by clay par-
ticles, in situ rock resistivity for shaley sandstone could be slightly
lower than the shale-free sandstone (Sahoo ef al. 2018b), which can
yield a slightly underestimated hydrate saturation in Section 4.1.
Reference hydrate concentrations from chloride concentration
measurements could be influenced by the uncertainty in estimating
the background salinity (i.e. in situ fluid salinity prior to gas hydrate
dissociation). Apart from gas hydrate formation, various geochem-
ical processes, including clay dehydration, can result in abnormally
low salinity on the chloride profile (Torres ef al. 2004). For exam-
ple, at Site U1328, a smooth decrease in chloride concentration at
hydrate-free intervals could be attributed to the potential release of
fresh water caused by dehydration reactions. To mitigate the impact
of non-hydrate factors, the chloride baseline used in this study is
defined as the envelope of measurements instead of a constant.

6. CONCLUSIONS

Hydrates can displace the surrounding fine sediment grains and
lead to the presence of shapes ranging from spherical to oblate.
Sediments hosting these heterogeneously distributed hydrates are
elastically isotropic, with a multicomponent solid matrix composed
of minerals and hydrates. In this study, we design a double-solid-
matrix model to describe the elastic properties of these isotropic
hydrate-bearing sediments. Based on a comparison of our model

with two existing models designed for homogeneous distributed
hydrate, we draw the following conclusions:

(1) Numerical simulations show our heterogeneous hydrate
model and existing matrix-supporting model are quite similar in
P-wave velocity predictions, and apparent difference can only be ob-
served when host sediment is highly porous and hydrate-saturated.
However, S-wave velocities calculated from our heterogeneous hy-
drate model are much higher than matrix-supporting and pore-
floating models.

(2) Applications indicate our heterogeneous hydrate model is
more effective than matrix-supporting and pore-floating models in
terms of characterizing the hydrate-bearing sediment at Site 1245,
ODP 204 and Site U1245, IODP311. At both sites, the velocities
predicted by our model show better agreement with the measured
velocities; hydrate saturations and clay contents derived from our
heterogeneous model also conform better with the estimates from
pore water chlorinity and smear slide analysis, indicating that het-
erogenous distributed hydrate in isotropic media is likely to behave
as a separate isotropic solid matrix at the scale of well logging.
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