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 A B S T R A C T

The British Geological Survey (BGS) World Magnetic Anomaly Model (WMAM) code calculates spherical 
harmonic models of the natural magnetisation of the rocks of Earth’s crust. These models allow us to estimate 
the value of the full magnetic field vector at any location, based on scattered pointwise marine or aero-magnetic 
measurements of only the scalar magnetic field. Modelling the magnetic field in this way serves many important 
purposes, such as geological research, navigation and safe resource extraction.

Global spherical harmonic models of degree and order 1440 (∼28 km spatial resolution) have been 
successfully computed on the HPC facilities local to BGS, but such runs require nearly the full compute capacity 
for multiple days. Further, the available resolution of the scalar field measurements is too high to be fully 
exploited by the WMAM code, limiting models of the crustal magnetic field to a resolution of 28 km.

To overcome these issues, we refactored the WMAM code such that models of spherical harmonic degree 
1440 and 2000 (∼20 km resolution) can be produced in hours rather than days. For example, a degree 2000 
model was calculated using 64 HPE Cray EX nodes (8 192 cores) in 3 h and 44 mins. The resulting model 
power spectra and magnetic field maps showed excellent agreement with the existing degree 1440 model and 
the original input data. The performance of the WMAM code was further improved via offloading to GPU. We 
show the improvements due to GPU acceleration in terms of energy consumption as well as runtime.

This fruitful collaboration between experts in the fields of Geoscience (BGS) and HPC (EPCC) has created 
the opportunity for the WMAM code to be used to gain new knowledge about crustal magnetic fields.
1. Introduction

The Earth’s magnetic field consists of three primary sources: the core 
(or main) field, the lithospheric (or crustal) field, and the ionospheric 
and magnetospheric (or external) fields. Any measurement made on 
or above the surface consists of contributions from these sources as 
well as a myriad of other weaker signals such as tidal or induced 
fields (Olsen and Stolle, 2012). The magnetic field varies in time and 
space, making it a complex system to accurately model as it requires 
extensive and repeated global measurements to capture the long and 
short term temporal variations as well as the spatial form.

The main field, representing around 95% of the total magnetic field 
strength, is driven by the flow of molten iron in the outer core. It 
changes on timescales ranging from years to billions of years, and 
varies over distances of thousands of km. The external field is driven 
by interaction between the Earth’s atmosphere and magnetic field on 
the one hand, and solar irradiance and the solar wind on the other. It 
varies on timescales ranging from a fraction of a second to decades, and 
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can reach 5%–10% of the total magnetic field strength during extreme 
solar storms. The lithospheric field remains effectively static in time, 
varying over millions of years, though it can locally vary more quickly 
in volcanic regions. The lithospheric field is relatively weak on average, 
it represents 0.1%–1% of the total field strength at the Earth’s surface, 
but can rise to 10% depending on location.

Spherical harmonic magnetic field inverse modelling has long fo-
cussed primarily on the large-scale core field (Gauss, 1839; Glassmeier 
and Tsurutani, 2014). The International Geomagnetic Reference Field 
(IGRF) is a long-running representation of the core field up to degree 
and order 13 (Alken et al., 2021). The IGRF series of models have 
been used for navigation, mineral exploration and scientific research 
standards since the 1960s, as they require a relatively small number of 
data and computing power to create. In theory, as there are 𝐿(𝐿 + 2)
parameters for a given point in time, where 𝐿 is the spherical harmonic 
(SH) degree, only 195 data points are needed for 𝐿 = 13. In practice, 
hundreds of thousands of data points are used to capture and separate 
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out the core from the other sources in a joint inversion for all three 
primary sources and to capture time variations (e.g. Finlay et al., 2020).

Spherical harmonic inverse modelling of the crustal field presents a 
greater challenge: an (𝐿2) increase in computing resources is needed 
to accommodate the larger volume of model parameters to represent 
smaller spatial scales. However, despite its relatively low strength, the 
static nature of the lithospheric field provides an advantage in that 
repeated measurements over the same area can provide an improved 
signal-to-noise ratio by averaging out the time-varying external field 
component (e.g. Thébault et al., 2021).

The first magnetic anomaly grids of the crustal field were created 
as regional maps in the 1950s and 1960s using aeromagnetic sur-
veys (Beamish and White, 2011, and references therein). The external 
noise was controlled using ground-based stations for reference and 
removing the main field with IGRF or similar models. The first global 
lithospheric field maps to SH degree and order 30 were developed from 
the satellite data collected by the NASA MAGSAT mission, which oper-
ated in low-Earth orbit during 1979–80 (Langel and Hinze, 1998). As 
new polar orbiting satellite missions launched from the early 2000s on-
wards, improvements to degree and order 133 became possible (Maus 
et al., 2008), and later degree 180 (Olsen et al., 2017). In parallel, there 
was a global effort to amalgamate decades worth of measurements of 
the lithospheric field from marine, aero-magnetic, and regional ground 
surveys (Maus et al., 2009).

The release of version 2 of the World Digital Magnetic Anomaly 
Map (WDMAM) in 2016 provided a regular approximately 5 km spatial 
grid of values (or 0.05 ◦ in latitude and longitude) (Lesur et al., 2016). 
The most recent version, 2.2, was updated in early 2025. However, the 
WDMAM grid is composed of magnetic anomaly scalar values only at a 
fixed altitude. In order to derive the vector direction from these maps, 
they must be converted to a spherical harmonic representation. This 
allows the field to be evaluated at any location and altitude.

The inverse modelling problem to fit a spherical harmonic model 
to scalar magnetic field observations stems from the following basic 
equations. The internal magnetic potential 𝑉 int can be represented as 
the sum of two scalar potential fields; the time varying main field 
𝑉 core and static crustal field 𝑉 crust, expanded in spherical harmonics 
in spherical polar coordinates as 
𝑉 int (𝜃, 𝜙, 𝑟, 𝑡) = 𝑉 core (𝜃, 𝜙, 𝑟, 𝑡) + 𝑉 crust (𝜃, 𝜙, 𝑟)

= 𝑎
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with position in colatitude 𝜃, longitude 𝜙, radius 𝑟 and time 𝑡. The Gauss 
coefficients of spherical harmonic degree 𝑙 and order 𝑚 (spatial basis 
wavelengths, where larger integer values of 𝑙 or 𝑚 indicates smaller 
spatial features, to a maximum degree 𝐿), 𝑔𝑚𝑙 , are our desired model 
parameters at a reference radius 𝑎 which weight the spherical harmonic 
basis functions of a given degree and order 𝑌 𝑚

𝑙 . The magnetic field 
vector is the gradient of the scalar potential, 𝐵⃗ = −∇𝑉 , with the 
vector components in the spherical coordinate directions given by 𝐵𝑟 =
− 𝜕𝑉

𝜕𝑟 , 𝐵𝜃 = − 1
𝑟
𝜕𝑉
𝜕𝜃  and 𝐵𝜙 = − 1

𝑟 sin 𝜃
𝜕𝑉
𝜕𝜙 . This gives the sought Gauss 

coefficients of the scalar potential a linear relationship to observations 
of the field vector. However, for high resolution anomaly mapping we 
have only scalar observations 𝐹 =

√

𝐵2
𝑟 + 𝐵2

𝜃 + 𝐵2
𝜙, and thus must solve 

a non-linear problem relating Gauss coefficients representing the scalar 
potential of the crustal anomaly field, with a known main field model, 
to these observations. The relationship between magnetic scalar and 
vector of the main (𝐵core) and crustal anomaly (𝛿𝐵crust) fields can be 
linearised (see e.g. Langel, 1987) as 

𝛿𝐹 crust ≈
𝐵core𝑟 𝛿𝐵crust +

𝐵core𝜃 𝛿𝐵crust +
𝐵core𝜙 𝛿𝐵crust. (2)
𝐹 core 𝑟 𝐹 core 𝜃 𝐹 core 𝜙

2 
The normal equations of our inverse problem are constructed from the 
partial derivatives of the above equations with respect to the model 
parameters.

With such a high global resolution grid as the WDMAM, we could 
compute a degree and order 8000 model, but in practice this would be 
unwieldy and time-consuming for computing spot values. For this rea-
son, lower-degree models are preferred. Hence, a degree-2000 model 
offers an attractive trade-off between computational resources and 
usability.

The existing BGS global (or world) lithospheric magnetic field 
anomaly inverse modelling code, hereafter referred to as WMAM, is 
used to produce high spatial resolution spherical harmonic models of 
the natural magnetisation of the Earth’s lithosphere. In essence, such 
models allow for a physically meaningful manner to interpolate the var-
ious scattered measurements of the scalar magnetic field. By assuming 
the magnetisation typically lies along the direction of the main field, 
the full magnetic field vector of the Earth’s crust can also be computed. 
The resulting derived maps of the magnetic field have a wide array 
of academic and industrial uses; for geological research, navigating 
steerable drills, and for certain engineering problems associated with 
mineral deposit prospecting.

In this study, we focus on how the original spherical harmonic 
inverse modelling code, developed in the 2010s to convert from scalar 
to vector representation, was updated and improved. This paper is 
structured as follows. We first describe the WMAM code and the origi-
nal goals of the refactoring work. In Section 3, we outline how the code 
development proceeded, from initial profiling to performance bench-
marking on the HPE Cray EX CPU nodes (Sections 4 to 6), through 
to a second round of code development involving three generations 
of NVIDIA GPUs (Sections 7 to 8). The science enabled by this work 
(specifically the results of the degree 2000 model run) are given in 
Section 6.2. Lastly, the conclusions are presented in Section 9.

2. WMAM code

The WMAM code uses a pre-conditioned non-linear conjugate gra-
dient algorithm, with a quasi-Newton estimate of a diagonal Hessian, 
to iteratively solve a large non-linear inverse problem. WMAM fits a 
spherical harmonic representation of a scalar potential field, featuring 
millions of parameters, to input data consisting of magnetic scalar 
field anomaly magnitudes, i.e. tens of millions of observations made 
at or near to the Earth’s surface. The problem is thus over-determined 
in theory, though in practice the magnetic measurements are not 
uniformly distributed (e.g. fewer data samples over the oceans com-
pared to land regions) and hence the solution requires a mathematical 
damping parameter to reduce the effects of incomplete sampling and 
general noise in the data. The problem is non-linear as the spherical 
harmonic coefficients (the model parameters) are not linearly related 
to the observations of scalar field (the data), as would be the case for 
vector field observations.

The spatial resolution of a spherical harmonic model is approx-
imated by 2𝜋𝑎∕

√

𝐿(𝐿 + 1), where 𝐿 is the maximum degree of the 
model, and 𝑎 is the Earth’s average radius (6 371.2 km); the higher 
the spherical degree, the greater the spatial resolution of the magnetic 
field model. The fact that the problem is naively of (𝐿2) is the 
reason why WMAM performance becomes intractable when computing 
higher degree models. In addition, the memory requirements of the 
WMAM code are likely to exceed the available resources if run on HPC 
platforms that offer greater parallelism but lower memory per CPU. 
Thirdly, as noted previously, the resolution of the available scalar field 
measurements (of order 5 km) is too high to be fully exploited by the 
WMAM code.

The aims of this work were to improve the WMAM code such that 
it can:

1. Produce models of spherical harmonic degree higher than 1440;
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2. Exploit the parallelism offered by a Tier 1 HPC resource such as 
ARCHER2 (EPCC, 2025a);

3. Take advantage of GPU accelerators so as to minimise computa-
tional energy consumption.

The WMAM Fortran source code and supporting libraries are held 
in a public GitHub repository (BGS, 2025a). Various versions of WMAM 
are tagged in this repo, WMAM v1.2 references the original unrefactored 
source code and WMAM v4.2 is the version for CPU that incorporates 
the software redesign described in this paper.

WMAM v1.2 and v4.2 are statically linked to two libraries, the BGS 
in-house Iterative Global Model Fitting Library (BGS, 2025b) hereafter 
referred to as GlobLibI, and the SLATEC Common Mathematical Library 
v4.1 (BGS, 2025f). Both WMAM and GlobLibI call SLATEC functions. A 
slight modification1 was made to the SLATEC code which was otherwise 
unchanged during the redesign of WMAM and GlobLibI. The SLATEC 
library is freely distributable under a public domain licence (Fong 
et al., 1993). Hence, our modified SLATEC library is accessible via the 
aforementioned public repository (BGS, 2025a).

WMAM v4.2 was then used as a starting point for porting WMAM 
to GPU. As that work required further substantial changes to the source 
code (e.g. the GlobLibI library was merged with the WMAM code), it 
was decided to store the GPU version (WMAM v5.0) within a separate 
branch of the repository, namely, gpu-openmp. WMAM v5.0 uses pre-
processor constants to control code compilation such that the iterations 
of two frequently called loops are either (a) distributed across OpenMP 
threads running on CPU or (b) offloaded to GPU.

3. Methodology

We first profiled WMAM v1.2 to understand how best to improve 
code performance. After a discussion of the profiling results, we de-
scribe the changes made for WMAM v4.2, focusing on those improve-
ments that had the most impact. We then present results showing the 
speedups achieved for increasing spherical harmonic degree (𝐿). The 
performance gains realised by WMAM v4.2 make it possible to further 
resolve the Earth’s crustal magnetic field, increasing the resolution from 
28 km (𝐿 = 1440) to 20 km (𝐿 = 2000). We show for the first time the 
higher-resolution maps alongside a comparison of the power spectra for 
different model degrees.

Returning to the WMAM code, we profile v4.2, so as to confirm 
which parts should be offloaded to GPU for further performance gains. 
We offload to GPU two loops within the WMAM code that iterate over 
the data points assigned to each MPI rank. The offloading is achieved 
using OpenMP directives. This technique guarantees some level of 
portability between different GPU devices and also minimises changes 
to the code. The GPU-enabled WMAM v5.0 performance is given in 
terms of runtime and energy consumption.

The development work involving WMAM v4.2 was done on the 
ARCHER2 (EPCC, 2025a) machine, an HPE Cray EX system, providing 
the UK National Supercomputing Service. WMAM v5.0 was developed 
on Cirrus (EPCC, 2025f), a UK National Tier-2 HPC service that in a 
previous incarnation featured NVIDIA Volta 100 GPUs (EPCC, 2025e). 
Following this, WMAM was benchmarked on NVIDIA Ampere 100 GPUs 
and on a single GraceHopper GH200 Superchip.

Throughout this paper, monospaced font is reserved for (Fortran) 
code-specific terms such as source files, subroutines and variables. All 
source filenames are enclosed in double quotes with a ‘‘.f’’ suffix. 
Subroutine names have a ‘‘()’’ suffix and variable names are denoted 
by single quotes. For brevity, the term degree will denote the maxi-
mum spherical harmonic degree of the resulting field model; parameter
refers to the parameter(s) of said model, and resolution is the spatial 

1 The array bounds of the arguments to the SLATEC DS2Y() subroutine 
were resized for compatibility with the WMAM code.
3 
resolution of the input data. The spatial resolution of the input data 
is reduced by resampling the original WDMAM data set of Lesur et al. 
(2016) using the blockmedian function of the Generic Mapping Tools 
library (Wessel et al., 2019), to apply a grid block averaging function 
by median estimation. The term point refers to a geographic location 
identified by co-latitude, longitude, radius, and date and time. Lastly, 
in the following sections, references will be made to real and integer 
data types; these are 8-byte reals and 4-byte integers.

4. Initial profiling

We profiled WMAM v1.2 running over 32 fully-populated ARCHER2 
compute nodes (4096 MPI ranks). The spherical harmonic degree was 
set to 1440 and a value of 0.1 ◦ was used for the spatial resolution of 
the input data on a grid of equal latitude and longitude.

The code instrumentation used the VI-HPS Score-P v7.1 profiler (VI-
HPS, Forschungszentrum Jülich GmbH, Germany, 2025). The instru-
mented executable ran for approximately 27700 s (7 h and 41 mins) 
and produced a ‘‘profile.cubex’’ file, which can be viewed using 
the CubeGUI v4.7.0 client (VI-HPS, 2025).

Fig.  4.1 (produced by CubeGUI) shows percentage splits of an 
aggregate runtime, that is to say a runtime summed over all parallel 
processes — 4096 in this case. The left panel of Fig.  4.1 reveals where 
within the source code the processes spend their time. Over 80% of 
which is accounted for by the sub_sph_wmam_l() subroutine. This 
part of the WMAM code performs linearised forward modelling of the 
scalar crustal magnetic field anomaly combined with the main field, for 
a given set of model parameters at a given datum.

The aggregate runtime due to the sub_sph_wmam_l() subroutine
alone is presented in the right panel (Fig.  4.1), as a percentage split 
across the 32 compute nodes. There is evident load imbalance: on the 
last 14 nodes assigned to the job (nid005402-13 and nid005436-
42), the percentage split is 3.39%, higher than the 2.92% attributed to 
the first 17 nodes.

The heart of the WMAM code is an inversion algorithm, which 
converges towards an optimal parameter set for the spherical harmonic 
model, one that minimises the differences between the field derived 
from the model and the measured magnetic field magnitudes. Each 
parameter set needs to be evaluated. This is done by having the 
MPI ranks iterate through their assigned coordinate points for which 
there exist measurements, calculating the magnetic field produced by 
the current model parameter set and comparing it with the observed 
values. This looping over the coordinate points is done within the
cpt_dat_vals() subroutine, which in turn makes heavy use of
sub_sph_wmam_l(). The cpt_dat_vals() subroutine repeatedly 
calculates individual vector magnetic field component values, or the 
scalar field (which depends on the three vector field components) for 
a given set of model parameters at a given datum. Hence, a call to this 
routine to compute a modelled scalar field value (as our input data are), 
will result in three calls to compute each vector field component value.

There is a second critical subroutine called ssqgh_d() that is used 
to determine the next set of model parameters based on how well the 
previous set matched observations. The routine calculates the gradient 
of the weighted sum of squared differences between predicted data for 
the current model iteration and the observed data values. Thus the code 
can score how close it is to a good model. In addition, the routine 
calculates the diagonal of the Hessian matrix of the inverse problem, to 
inform us of a suitable step size towards the local optimum. This routine 
also iterates over the coordinate points, calling sub_sph_wmam_l()
each time.

These two subroutines, cpt_dat_vals() and ssqgh_d(), ac-
count for 80% of the runtime (split 70% to 10%), and both feature 
independent loops over geographic coordinates. cpt_dat_vals()
performs the forward modelling calculation and, to compute the scalar 
magnetic field, must first compute the three vector field components, 
hence the significant computation time required. We therefore con-
cluded that optimising those two parts of the WMAM code should have 
most impact on performance.
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Fig. 4.1. Left, the aggregate runtime attributable to certain WMAM/GlobLibI subroutines when running WMAM v1.2 with degree 1440 and resolution 0.1 ◦. 
WMAM was run over 32 fully-populated ARCHER2 nodes (4096 MPI tasks). The sub_sph_wmam_l() subroutine accounts for more than 80% of the runtime.
Right, the aggregate runtime percentage due to the sub_sph_wmam_l() subroutine split across the 32 compute nodes.
Table 5.1
The key top-level arrays used within WMAM v1.2 – M denotes one million. The array sizes are unnecessarily large for small 
degree values (e.g., 200) and insufficient for degree values higher than 1440.
 Name Type Shape Purpose  
 ppos real [8, 6M] input data  
 bc real [4M] model parameters  
 cov real [18M] covariance matrix  
 ijcov integer [18M, 2] covariance index matrix  
 dw real [6M] difference between the measured magnetic field magnitudes and those predicted from the model 
5. Code development for CPU

This section describes the changes made to WMAM and GlobLibI 
that did the most to achieve the first two objectives (Section 2).

5.1. Sizing arrays dynamically

The top-level arrays used throughout WMAM and GlobLibI
(Table  5.1) were originally of fixed size.

The input data array, ‘ppos’, holds eight attributes for each data 
point, which are, in index order, co-latitude, longitude, radius, year, the 
X (southward), Y (eastward) and Z (downward) magnetic components 
of a reference magnetic field model, and finally the magnetic field 
anomaly magnitude. The reference model comprises the main and litho-
spheric components of the Comprehensive Model v4 (CM4) (Sabaka 
et al., 2004), truncated at degree and order 15. The main field values 
for the year 1990 are used, as this is approximately the midpoint of the 
era of the input aeromagnetic and marine magnetic dataset.

The arrays in Table  5.1 can in fact be sized according to the degree 
(𝐿) and resolution (𝑅). The size of the ‘bc’ array is based on the number 
of model parameters, 𝑁𝑚𝑝 = 𝐿 (𝐿 + 2) . The other arrays are all sized 
according to the number of data points, 𝑁𝑑𝑝, the expression for which 
is a little more complicated: 

𝑁𝑑𝑝 =

(

⌊

1
𝑅
⌉180 − 1

)(

⌊

1
𝑅
⌉360

)

+ (𝐿 + 1) (2𝐿 + 1) . (3)
4 
The brackets surrounding the ⌊1∕𝑅⌉ terms indicate rounding to 
the nearest integer. Note that the expression for 𝑁𝑑𝑝 has two parts, 
one involving the resolution and the other the degree. The resolution 
part gives the number of input points used after the blockmedian
resampling. To reduce the Backus effect (Backus, 1970) of propagation 
of noise in the direction perpendicular to the main magnetic field 
when modelling only scalar observations of a vector field, a set of 
(𝐿+1)(2𝐿+1) sampled points are also used. These points are distributed 
across 2𝐿+1 evenly spaced longitudes, at latitudes corresponding to the 
inverse sine of the roots of the Legendre polynomial of degree 𝐿 + 1. 
The sampled points have their magnetic field anomaly set to zero, but 
have the reference field set up in the same way as the input points, 
and have a weighting applied, known as the damping, or regularisation, 
parameter. This damping acts to minimise the integral over the sphere 
of the magnetic crustal anomaly perpendicular to the main field vector 
direction (Lesur et al., 2016). The percentage of points that are sampled
points is between 40% and 55% for the degree-200 to degree-1440 
model runs, but is below 25% for the degree-2000 model. Fig.  5.1 
shows how the total number of data points (input and sampled) and 
model parameters grow with the degree given the choices of resolution 
used when resampling the input data. These two counts represent the 
workload. It can be seen that the number of points outstrips the number 
of parameters as the degree is increased.

As the WMAM conjugate gradient algorithm proceeds, the magnetic 
field needs to be determined at each (coordinate) point for the current 
parameter set. The computational expense of this task is greater for the 
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Fig. 5.1. The WMAM point and parameter counts for degrees 200, 300, 720, 1440 and 2000. The resolutions used for resampling the input data points were 
1.0 ◦, 0.5 ◦, 0.25 ◦, 0.1 ◦, and 0.05 ◦ respectively. The plot on the right scales the counts according to the number of points (𝑁𝑑𝑝 = 145 041) and parameters 
(𝑁𝑚𝑝 = 40 400) for a degree 200 model.
Table 5.2
The key top-level arrays used within WMAM v4.2 are sized according to the values of 𝑁𝑚𝑝 and 𝑁𝑝𝑝𝑟 (≈ 𝑁𝑑𝑝 ∕𝑁𝑟) is the number 
of points per rank.
 Name Type Shape Purpose  
 ppos real [8, 𝑁𝑝𝑝𝑟] input data  
 bc real [𝑁𝑚𝑝] mode parameters  
 cov real [𝑁𝑝𝑝𝑟] covariance matrix  
 ijcov integer [𝑁𝑝𝑝𝑟 + 2, 2] covariance index matrix  
 dw real [𝑁𝑝𝑝𝑟] difference between the measured magnetic field magnitudes and those predicted from the model 
sampled points than it is for the input points2 – this has implications 
for how the workload should be partitioned across MPI tasks.

Table  5.2 gives the new top-level array sizes used in WMAM v4.2, 
ensuring that the memory required is appropriate to the model degree 
and resolution.

5.2. Workload partitioning

The points represent the workload that is distributed across the 
MPI ranks (or tasks). For WMAM v1.2, each MPI rank held an array 
containing all the points with the sampled points following the input 
points. This array would then be partitioned many times during the 
inversion, even though the point data did not change. Another issue 
was that the sampled points existed as a contiguous sequence at the 
end of the point array, which meant that some MPI ranks would be 
assigned input points only, while other ranks would get just sampled 
points (with one rank being assigned a mixture of the two). As men-
tioned in Section 5.1, determining the magnetic field for the sampled 
points is more expensive than for the input points, creating a workload 
imbalance (Fig.  4.1, right).

In WMAM v4.2, the point workload is partitioned just once dur-
ing the initialisation stage defined in the main WMAM source file, 
‘‘mod_wmam_020.f’’. Furthermore, the point arrays for each MPI task 
are constructed such that they contain roughly equal numbers of input 
and sampled points, balancing the workload more effectively.

5.3. Eliminating large arrays

As mentioned previously, most of the runtime is spent within 
sub_sph_wmam_l() and the most expensive part of that subrou-
tine is the call to XYZsph_bi0(),3 which populates three double 

2 The sampled points are dependent on the model parameters such that 
they need to be recalculated for each new parameter set.

3 XYZsph_bi0() accounts for around 62% of the time spent in 
sub_sph_wmam_l().
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precision model parameter arrays. Each array is of size 𝐿(𝐿 + 2), 
where 𝐿 is the maximum degree. Three such arrays overflow the 
ARCHER2 L3 cache for 𝐿 ≥ 1440, thereby hampering performance. It 
turns out, however, that for two of the three scenarios under which 
XYZsph_bi0() is called, the arrays are merely reduced to dot prod-
ucts. Listing (BGS, 2025e) shows this for the scenario that involves 
sampled points. We can therefore improve performance by imple-
menting variants of XYZsph_bi0() for each scenario and simply 
accumulate dot products within the appropriate variant subroutines, 
circumventing the need to handle three large arrays, see Listing (BGS, 
2025g).

6. CPU results

We now review the performance gains achieved by WMAM v4.2 
before confirming the successful calculation of a degree-2000 model. 
The WMAM code and libraries (GlobLibI and Slatec) were compiled 
using the HPE Cray compiler CCE 15.0.0 that is provided by the 22.12 
Cray Programming Environment (CPE) available on ARCHER2. All code 
was compiled at Optimisation level 3.

6.1. Performance

We profiled WMAM v4.2, visualising the results (Fig.  6.1) accord-
ing to the scheme described in Section 4. This time the run com-
pleted within 1 h and 40 min, a speed-up of 4.7. Load imbalance 
also improved, dropping to around 6% of what it was previously, a 
consequence of the code changes discussed in Section 5.2.

Table  6.1 shows the performance of the WMAM code on ARCHER2, 
which features AMD EPYC 7742 64-core 2.0 GHz4 processors, arranged 
as 5860 nodes of two processors (and so each node has 128 cores) 
– the memory per node is 256 GB. The WMAM v1.2 runtimes rise 
significantly, from 3 min to 30 h, as the maximum model degree is 
increased.

4 ARCHER2 CPU frequency can be set as high as 2.25 GHz, but its default 
setting as of 12 Dec 2022 is 2.0 GHz.
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Fig. 6.1. Left, the aggregate runtime attributable to certain WMAM/GlobLibI subroutines when running WMAM v4.2 with degree 1440 and resolution 0.1 ◦. 
WMAM was run over 32 fully-populated ARCHER2 nodes (4096 MPI tasks). The sub_sph_wmam_l() subroutine accounts for nearly 70% of the runtime. Right, 
the aggregate runtime percentage due to the sub_sph_wmam_l() subroutine split across the 32 compute nodes.
Table 6.1
WMAM performance on ARCHER2 for versions v1.2 and v4.2. The degree 200 
and 300 runs had the 64 MPI tasks assigned to the first 64 cores on the node, 
whereas the degree 720 and 1440 runs had fully-populated nodes. Runtimes 
are an average of three runs (all standard deviations were within 2% of the 
mean). Speedup is simply the runtime listed for WMAM v1.2 divided by the 
v4.2 result.
 Degree Resolution [◦] Nodes Tasks Runtime [s] Speedup 
 v1.2 v4.2  
 200 1.00 1 64 184 70 2.63  
 300 0.50 1 64 1504 426 3.53  
 720 0.25 2 256 22772 3989 5.71  
 1440 0.10 8 1024 107850 19332 5.58  

On the other hand, the runtimes for WMAM v4.2, the version 
developed by EPCC, rise much less dramatically. Compared to WMAM 
v1.2, a significant speedup is maintained for all degree values.

6.2. Scientific output

There are several types of scientific studies that become feasible 
or are improved with global spherical harmonic models, particularly 
the ability to vertically continue the field, as compared to the input 
gridded map of the scalar field (e.g. Hemant and Maus, 2005; Williams 
et al., 2025). One of the science outputs of the research is the ability 
to robustly extrapolate the field to other altitudes and to extract the 
directional components locally from scalar observations. The extensive 
code alterations described above make it feasible to run at 𝐿 = 2000, 
thereby achieving the first objective.

We can analyse the output spherical harmonic parameters in spec-
tral terms as power per degree. The mean square value of the vector 
6 
geomagnetic field over a sphere of radius 𝑟 due to all harmonics of SH 
degree 𝑙 for a given model is defined as 

𝑅𝑙 = (𝑙 + 1)
(𝑎
𝑟

)2𝑙+4 𝑙
∑

𝑚=0

[

(𝑔𝑚𝑙 )
2 + (ℎ𝑚𝑙 )

2] . (4)

This is known as the Lowes-Mauersberger power spectrum (Lowes, 
1974). Typically 𝑟 = 𝑎, where 𝑎 is the Earth’s average geophysical 
radius (6 371.2 km). Gauss coefficients 𝑔𝑚𝑙  and ℎ𝑚𝑙  are the weightings 
given to each spatial basis function of a given spherical harmonic 
degree and order, and are therefore our model parameters that we 
solve for with the WMAM code. From the spectra, we can determine 
the overall energy of the model along with the effect of changing the 
damping parameter. The power spectra of the degree 1440 (28 km) and 
prospective degree 2000 (20 km) model are shown in Fig.  6.2, along 
with the spectral difference between the models and the correlation per 
SH degree.

Fig.  6.2 shows similar spectral content and a strong spectral correla-
tion between the outputs of the WMAM code and the BGS benchmark, 
above 0.9 at all SH degrees for the equivalent 28 km models. When 
extended from maximum SH degree of 𝐿 = 1440 to 𝐿 = 2000, it was 
found that the damping parameter needed to be increased from 5 to 10, 
to get an approximate match in the peak of spectral power around SH 
degree 150 and a similar fall off of power with increasing SH degree. 
This spectral shape is expected, both from existing models (such as the 
BGS 28 km benchmark), and the statistical lithospheric magnetisation 
model of Thébault and Vervelidou (2015). We see a closer spectral 
match between the WMAM 𝐿 = 2000 model and the BGS 𝐿 = 1440
benchmark than between the two 𝐿 = 1440 models, for SH degrees 100 
to 700. At smaller spatial wavelengths we see the spectral correlation 
decrease (though the spectral difference is of a similar magnitude) as 



M. Bareford et al. Computers and Geosciences 208 (2026) 106092 
Fig. 6.2. Lowes-Mauersberger spectra (left) produced by WMAM v4.2 (28 km, green; 20 km, orange) and compared against the BGS 28 km benchmark model 
(blue). Spectral differences between the BGS 28 km benchmark and the WMAM models are also shown (28 km, purple; 20 km, red). Correlation per spherical 
harmonic degree (right) between BGS 28 km benchmark and WMAM (28 km, orange; 20 km, blue).
Fig. 6.3. Validating the new 20 km model around Iceland: a) modelled vertical magnetic field at 20 km resolution; b) difference between 20 km (𝐿 = 2000) and 
28 km (𝐿 = 1440) models; c) spatial correlation between 20 km and 28 km models; d) distribution of data sources in region.
more signal is accommodated by the additional small scale features in 
the WMAM 𝐿 = 2000 model.

We demonstrate the coherence of these additional smaller scale 
signals in Fig.  6.3, which shows four panels with contextual information 
of the crustal magnetic field in the North Atlantic Ocean around Iceland 
and Greenland. Fig.  6.3a shows the vertical field magnetic anomaly 
(i.e. the field remaining once the core and external fields have been 
subtracted). Fig.  6.3b shows the differences between the 20 km and 
28 km resolution models are small scale and do not appear to have 
an obvious correlation to geological structures seen in Fig.  6.3a. The 
differences between models have zero mean and a standard deviation 
of 14 nT, in the region depicted. A clearer view is given by the spatial 
correlation of the 20 km and 28 km maps in Fig.  6.3c. Here we see 
7 
that the spatial correlation is very high, with an overall structural 
similarity index value (SSIM, Wang et al., 2004) of 0.97. The majority 
of the region shows excellent correlation, indicating that the smaller 
spatial scale information in the 20 km model has mainly modified 
the amplitude of signals, i.e. there is no new or spurious structure 
introduced. Indeed, Fig.  6.3d confirms there is no correlation between 
the regions of varying quality data sources (see Lesur et al., 2016) 
and the differences between the two models. The areas of lowest 
correlation are small features aligned trending south-west to north-
east, and correspond to known geological features — the ocean bottom 
magnetic striping caused by the opening of the mid-Atlantic rift (Vine 
and Matthews, 1963), which is better captured by the additional small 
scales of the 20 km model.
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Table 7.1
The read-only arrays defined by WMAM v5.0 which are mapped to the GPU 
devices once only before the main application loop. 𝐿 is the model degree and 
𝑁𝑝𝑝𝑟 is the number of points per MPI rank.
 Name Type Shape Purpose  
 ppos real [8, 𝑁𝑝𝑝𝑟] input data  
 cov real [𝑁𝑝𝑝𝑟] covariance matrix  
 jcov integer [𝑁𝑝𝑝𝑟 + 2] one half of covariance index matrix, ‘ijcov’ (Table  5.2) 
 d2a real [𝐿 + 1] array for holding pre-computed values  

7. Code development for GPU

This section covers the changes made to WMAM required to meet 
the last of the three objectives listed in Section 2. We previously identi-
fied two loops where WMAM spends the majority of its execution, one 
is the main part of the cpt_dat_vals() subroutine and the other has 
a similar prominence within ssqgh_d(). It proved straightforward to 
assign the iterations of those loops to OpenMP threads. We now discuss 
how the loops were offloaded to GPU.

7.1. MPI

Each MPI task has exclusive access to one GPU. This means that 
for the Cirrus machine (EPCC, 2025e), the WMAM code runs four 
MPI tasks per node, as each Cirrus GPU node has four NVIDIA V100 
GPUs. Such an arrangement can be established at runtime via the 
omp_set_default_device() subroutine.

7.2. Data mapping

Several of the top-level arrays (Table  5.2) are only ever read once 
they have been populated from input file data, i.e. the arrays are 
constant after initialisation.

For that reason, those arrays, identified by Table  7.1 are mapped 
to the device just once using an OpenMP target data region that 
surrounds the main application loop of the inversion algorithm (see the 
opt_pr_p3() subroutine). In addition, it is also necessary to allocate 
two arrays on each device of size 𝐿 + 1, which will later be declared 
thread-private — this is done with an OpenMP target enter data
directive placed just inside the first data region. Those two arrays are 
used by the device code to store interim calculations.

7.3. Loop offloading

The loops within the cpt_dat_vals() and ssqgh_d() subrou-
tines — hereafter referred to as cpt and ssqgh – are both split in two: 
the first loop iterates over the input points whereas the second iterates 
over the sampled points. Using the OpenMP target directive, a loop’s 
iterations are executed on the GPU as a set of threads or kernel, see 
Listing (BGS, 2025c). It is important that the threads within the same 
kernel do the same number of computations as this minimises the time 
that threads are idle. Hence, as it is known that input and sampled 
points require different amounts of computation (Section 5.1), the two 
types of data point are handled by separate GPU kernels.

The cpt loops can now be offloaded straightforwardly. All kernel 
threads can share arrays stored in the global memory of the GPU. 
However, the parameter array (‘bc’) needs to be mapped to the GPU 
each time control passes to the cpt subroutine (the parameter set 
changes as the algorithm converges). As regards output, each thread 
writes to a unique element of an array, the size of which matches the 
number of data points (input + sampled).

The situation is more complex for the ssqgh loops, owing to the 
fact that each kernel thread calculates a pair of values for every model 
parameter, amounting to 16𝐿(𝐿+2) bytes. The NVIDIA V100 GPUs on 
Cirrus have 16 GB of global memory and 80 streaming multiprocessors 
8 
Table 8.1
The performance of WMAM v5.0 CPU on Cirrus for various model degrees. 
The runtimes and energies are averages of three runs (measured deviations 
were < 3% of mean). The speedup is relative to the WMAM v4.2 runtimes, see 
Table  6.1.
 Degree Nodes Tasks Runtime [s] Speedup Energy usage [kWh] 
 200 1 4 109 1.03 0.012  
 300 2 8 338 1.01 0.076  
 720 4 16 4380 1.46 2.047  
 1440 8 32 40818 1.52 39.073  

Table 8.2
The performance of WMAM v5.0 GPU on Cirrus. Runtimes and energies are 
averaged over three runs (measured deviations were < 3% of mean, except 
for degree 200 model, which exhibited variances of 4-6%). Total energy usage 
is that consumed by the CPU host(s) and the GPU devices. The speedup is 
relative to WMAM v5.0 CPU (Table  8.1).
 Degree Nodes Tasks Runtime [s] Speedup Energy usage [kWh]
 Host Device Total

 200 1 4 23 4.74 0.002 0.002 0.004 
 300 2 8 56 6.04 0.008 0.016 0.024 
 720 4 16 965 4.54 0.283 0.675 0.958 
 1440 8 32 11164 3.66 6.731 14.933 21.664 

(SM). Thus, for a model of degree 𝐿 = 1440, there would only be 
sufficient memory to have 2–3 threads per SM, severely under-utilising 
the GPU device cores. A single pair of parameter arrays is therefore 
held in GPU global memory with each GPU thread updating the array 
elements atomically via the OpenMP atomic update construct. In 
this way, each element of the two global arrays is a sum of contributions 
from all GPU threads.

8. GPU results

We ran CPU and GPU flavours of WMAM v5.0 on the Cirrus GPU 
nodes for a range of model degrees. WMAM v5.0 CPU was compiled 
using GCC 10.2.0 and OpenMPI 4.1.6, and WMAM v5.0 GPU was 
compiled using NVIDIA nvfortran 24.5 and a version of OpenMPI 4.1.6 
specially built for CUDA 12.4. As with WMAM v4.2, all code was 
compiled at optimisation level 3. The Cirrus GPU nodes contain 384 GB 
of memory and two 20-core Intel Xeon Gold 6148 (Cascade Lake) series 
processors. WMAM v5.0 CPU was run with four MPI tasks per node, 10 
OpenMP threads per task and one host CPU core per OpenMP thread; 
whereas WMAM v5.0 GPU was run with four MPI tasks per node and 
one NVIDIA V100 GPU per task.

For Table  8.1, the energies and runtimes were obtained following 
job completion via the Slurm (SchedMD, 2025) (v22.05.11) sacct
command5 with the energy data coming from the Intel Running Av-
erage Power Limit (RAPL) counters. Thus, the energy data presented 
in Table  8.1 covers host hardware only, i.e. the two Cascade Lake 
processors.

The same procedure is followed for Table  8.2, but with additional 
calls to the NVIDIA System Management Interface program, nvidia-
smi (Nvidia Corporation, 2025), so as to retrieve time-stamped power 
readings for the GPUs during the run. Instances of the nvidia-smi
command were run per GPU node such that power readings from all 
GPUs were made every second, see Listing (BGS, 2025d). The total 
energy consumption was calculated by passing the power readings from 
each GPU to a numerical integration method6 provided by the SciPy 
Python package and then adding the result to the energy reported by 
the Slurm sacct command. We tested whether the GPU power profiles 

5 sacct -j <jobid> --format=JobID%20,JobName%20,Parti
tion,Elapsed,ConsumedEnergyRaw.

6 SciPy v1.10.1 integrate.cumulative_trapezoid().
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Fig. 8.1. The WMAM v5.0 CPU/GPU runtime and energy usage for degrees 200, 300, 720 and 1440. Both the CPU and GPU runs used 4 MPI tasks per Cirrus 
GPU node. The CPU runs used 10 Intel Cascade Lake cores per task, whereas the GPU runs used one NVIDIA V100 GPU per task. Starting from 1, the Cirrus 
GPU node count doubles for successive degree values (the GPU count also doubles but starts from 4).
were being undersampled by lowering the read frequency to once per 
millisecond for all model sizes. This produced no significant deviation 
in GPU energy, confirming the accuracy of the energy values presented 
in Table  8.2.

To clarify, Table  8.1 records the energy due to the host CPU proces-
sors only as those runs did not use GPUs. The runs referenced by Table 
8.2 however do use the GPUs, which, of course, must be accessed via 
the CPU processors and so, the total energy given in Table  8.2 is the 
sum of the host and device energies.

In Fig.  8.1, we compare the CPU and GPU performance. At first 
glance, it appears that the gap between GPU and CPU narrows as we 
increase the model degree. This impression is due to the logarithmic 
scaling. The performance boost due to GPU is in fact more or less 
consistent for the different model sizes. The energy saving relative 
to WMAM v5.0 CPU ranges from 45% to 68%, and the reduction in 
runtime is between 73% and 83%. Essentially, this comparison pits one 
NVIDIA V100 GPU against ten Intel Cascade Lake CPUs.

The NVIDIA V100 range of GPUs was launched in 2017, and since 
then NVIDIA have released the A100 and H100/200 GPUs, as well 
as the Grace Hopper Superchip that features unified host and device 
memory. The main benefits of these later architectures are the greater 
memory size and improved memory performance. For example, the 
16 GB available on the V100 is too little to compute a degree-2000 
WMAM model. This memory restriction also means that the WMAM 
v5.0 CPU code benefits from an optimisation not available to the GPU 
version, specifically, the use of an additional thread-private array for 
caching powers of the radius.

The DiRAC Extreme Scaling Service known as Tursa (EPCC, 2025h), 
features NVIDIA A100 GPUs, which have sufficient memory (40 GB 
per GPU) for the WMAM GPU code to accommodate the extra thread-
private array. We ran the optimised WMAM v5.0 GPU code on thirty-
two A100 GPUs (across eight GPU nodes).7 For the degree-1440 model, 
the average runtime over three runs was 3 379 ± 8.9 s, about 56 mins. 
Compared to the Cirrus GPU result, the runtime has reduced by a factor 
of 3.3. Unfortunately, the Slurm installation on Tursa is not set up to 
measure the energy use due to the host hardware. We instead estimate 
this value by taking the host energy measured for Cirrus GPU nodes 
(6.731 kWh) and divide by 3.3 to give 2.04 kWh. This value can then be 
added to the energy measured (via nvidia-smi for the Tursa GPUs), 
7.180±0.025 kWh, which gives 9.22 kWh. Hence, relative to the WMAM 
v5.0 CPU performance, the speedup has increased from 3.66 to 12.08 
and the energy reduction has improved from 45% to 76%.

7 On Tursa, WMAM was compiled using nvfortran 23.5 and a version of 
OpenMPI 4.1.5 specially built for CUDA 12.1.
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We also ran the optimised WMAM v5.0 GPU code on a single Grace 
Hopper (GH200) Superchip, supported internally at EPCC, which has 
more than enough unified memory (480 GB on host and 96 GB on 
device) to run the 1440 model.8 The average runtime for this model 
(again over three runs) was 43 208 ± 3 s, just over 12 h, and the energy 
consumed by the GH200 Superchip was 6.683 ± 0.004 kWh. Compared 
to the Tursa A100 GPUs, this represents a further speedup (per GPU) of 
2.5 times, together with an additional 28% reduction in energy usage.

9. Conclusions

Inverse modelling of the lithosphere to a high spherical harmonic 
degree is a computationally intensive problem. The outputs can be 
used for scientific research as well as for applications in navigation. 
We substantially refactored the WMAM code such that it can take 
advantage of the parallelism offered by the ARCHER2 supercomputer. 
As a result it is possible to compute a degree-1440 model in less than 
an hour using 64 ARCHER2 nodes (8 192 CPU cores). The same number 
of ARCHER2 nodes is sufficient for WMAM to compute a degree-2000 
model in under 4 h. Profiling the WMAM code reveals that the vast 
majority of the runtime is spent within just two loops. This presents 
a clear starting point for achieving further performance gains via GPU 
offloading. We demonstrate and quantify these gains by benchmarking 
WMAM on three generations of NVIDIA GPU hardware. Using the host 
part of a Cirrus GPU node as our baseline (Table  8.1), we find that, on 
a per-GPU basis, successive iterations of NVIDIA hardware consistently 
reduce runtime and energy use. Examining all of the runtimes measured 
indicates that an NVIDIA GPU node is equivalent to multiple ARCHER2 
nodes. For Cirrus (V100×4) this multiple is two, for Tursa (A100×4) 
it is seven and for GH200 (×1) it is four.

This work represents a significant advancement for computation 
of high degree models in geomagnetism and the wider potential field 
community. We have made the code publicly available to allow further 
research into lithospheric modelling.
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Computer code availability

The WMAM code is stored within a publicly accessible GitHub 
repository (BGS, 2025a), which has been available since July 2025. 
This repository also contains the source code for two libraries that are 
statically linked to WMAM, namely, GlobLibI and SLATEC. All three 
software items are written in Fortran. Various utilities for preparing 
input data and for postprocessing WMAM output files are also stored 
in the repo. Some of these utilities are written in C, while others 
are written in Bash or Python 3.9 (or above). How the repository is 
organised is outlined on the landing page with links to lower-level 
README files.

Multiple versions of the WMAM code were used to produce the 
results presented in this paper. Versions 1.2 and 4.2 are stored on the 
main branch of the WMAM repo. These can be retrieved by running 
the git clone command and then ‘‘git checkout vX.Y’’ from the 
repo folder. WMAM 5.0 exists on a separate branch; this is accessed 
by specifying ‘‘-b gpu-openmp’’ when cloning the repo (an explicit 
checkout command is not required).

Versions 1.2 and 4.2 of WMAM were run on ARCHER2 and compiled 
using the HPE Cray Compiler CCE 15.0.0 with inter-process commu-
nications being handled by the Cray MPICH 8.1.23a library (EPCC, 
2025b). WMAM 5.0 was run on the now retired Cirrus SGI ICE XA 
system (EPCC, 2025e) where it was built for CPU (EPCC, 2025c) and 
GPU (EPCC, 2025d) depending on which preprocessor constants had 
been defined in the build script, see preceding citations. WMAM 5.0 
was built using GCC gfortran 10.2.0 when compiling for CPU and 
NVIDIA nvfortran 24.5 for GPU. For both hardware environments, MPI 
communications were handled by OpenMPI 4.1.6.

The hardware requirements for running WMAM should be met by 
any HPC system featuring CPU processors and GPU accelerators that 
has installed a Linux-based OS along with a job scheduling system such 
as Slurm (SchedMD, 2025), which allows the user to run the WMAM 
code in parallel across multiple hardware devices, be they CPU or a 
combination of CPU and GPU.

The code developers responsible for implementing and testing the 
changes to the WMAM software discussed here are Michael Bareford 
and Mark Bull of EPCC (EPCC, 2025g), University of Edinburgh.
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