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Plant water uptake is commonly rationalized as a daytime,
root-driven process, mediated by stomatal responses to min-
imize water loss, optimize photosynthesis, and promote
growth. This has led to a certain experimental bias in favor
of studying daytime mechanisms and their role in survival
under climate change (Gaston, 2019). However, critical,
physiological processes also occur nocturnally and respond
to changing climates. Despite advances into hydraulics, noc-
turnal foliar mechanisms facilitating crop survival under ris-
ing nighttime temperatures and water scarcity remain
understudied. Here we highlight sources of nocturnal foliar
water and discuss the leaf-level processes which could
underpin crop resilience to warmer nights (Caird et al.,
2007; Schoppach et al., 2014).

Nocturnal water availability plays a vital role
in plant-environment interactions

Nocturnal water flux through the plant contributes substantial-
ly to total daily water budget and supports primary productivity
and terrestrial ecosystems, but until recently, was not ac-
counted for in crop models (Schoppach et al, 2014).
Typified by transitions between high daytime to low nighttime
temperatures, windspeeds, and vapor pressure deficits (VPD),
nighttime environmental conditions play a distinct, integral
role in plant survival. As climate change and anthropogenic ac-
tivities continue, plant responses to changing nocturnal envi-
ronments are becoming more important. Nights are warming
more rapidly than days (Cox et al., 2020), leading to changes
in primary processes such as increased plant respiration that

not only reduces growth and yield (Posch et al, 2022;
McAusland et al., 2023), but also decreases available water
and leaf wetting events.

Dew and fog represent a nocturnal water
source for foliar water uptake in
above-ground tissues

Nocturnal leaf wetting events including precipitation (e.g.
rainfall, sleet, and snow), mist, fog, and dewfall are estimated
to occur up to 100-200 days per year across ecosystems world-
wide (Dawson and Goldsmith, 2018), therefore representing a
significant source of available water for plants, particularly
those growing in dry seasons or semi-arid/arid regions
(Fig. 1). Indeed, dew was shown to be vital for plant growth
in some functional types (Feng ef al., 2021). While precipita-
tion describes droplets heavy enough to fall by gravity, mist
(~100 pm in diameter) and fog (~10-50 um in diameter) are
suspended in the atmosphere. In contrast, dew occurs when a
surface temperature is lower or equal to the dewpoint, causing
water to condense on that surface in droplets. Typical dew
yields range between 0.01-0.3 mL m™> night_1, but have
been observed as high as 0.6 L m™ night™" (Beysens, 2022).
Nocturnal cloud cover, distance to the coast, windspeed and
ambient temperature, all play a role in the severity and duration
of the dew yield.

Dew that forms on the plant canopy can potentially enter the
leaves through three pathways: uptake through the cuticle, up-
take from specialized structures on the epidermis (e.g. special-
ized epidermal structures such as hydrophilic trichomes,
papillae, or hydathodes), or entering via the stomata. While
water deposition on plant aerial surfaces can promote onset
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Fig. 1. Visualizing the interaction of a crop plant with nocturnal environment. In contrast to high daytime temperatures, low nocturnal temperatures, low
vapor pressure deficits and windspeeds support the formation of dew on leaf surfaces. Dew, fog and precipitation contribute to the available water for the
plant via two pathways: (i) water absorbed by the soil and taken up by the roots either locally or by hydraulic redistribution; or (i) via contact with above-ground
organs such as leaves. Surface water cools leaves but also provides a water source for foliar water uptake. Structures on the leaf, including stomata, epi-
dermal morphology and trichomes may support uptake of water at night. Warm, dry environmental conditions exacerbated by climate change promote
canopy water loss in the form of whole canopy evaporation, reducing surface water available for localized rehydration. Created in BioRender. McAusland,

L. (2025) https:/BioRender.com/4a0sbpb.

of biotic stresses (e.g. establishment of fungal diseases) and po-
tential deposition of pollutants, it also represents an important
source of water availability in the form of foliar water uptake
(FWU) (Dawson and Goldsmith, 2018).

What leaf characteristics facilitate foliar
water uptake in crops?

FWU has been shown to occur in trees, succulent or desert spe-
cies, and shrubs (Schreel and Steppe, 2020), with water enter-
ing via the stomata, cuticle (Guzman-Delgado et al., 2021),
hydrophilic trichomes (Fernindez and Eichert, 2009), and
hydathode pores (Martin and von Willert, 2000). Within the
leaf, the presence of aquaporins—specialized channels within
cell membranes regulating water movement—have also been
linked to FWU (Yan et al., 2015).

Many of these species also display nocturnal stomatal open-
ing (¢g,n; Caird et al., 2007) which provides access into the plant
under conditions of high humidity (e.g. fog) or dewtfall.
However, FWU has not been shown to occur in crop species
such as wheat (Triticum aestivum). Wheat is our most widely
grown crop, covering 218 million hectares world-wide and in-
habiting many different growing environments: from cool and
wet, to warm and arid (Gbegbelegbe et al., 2017). Hot, clear
days and cool nights lead to heavy nocturnal dewfall on the
crop canopy (Fig. 1).

Our recent work has shown that, like trees and succulents,
Mexican wheat cultivars open their stomata at night
(McAusland et al., 2021, 2023). Traditionally, g, has been
thought of as water-wasteful in agriculture; however it has
not been possible to test trade-offs empirically. In wheat, g, ac-
counts for up to 18% of daytime rates of water loss from stomata
(McAusland et al., 2023). It remains conceivable that g, could
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Fig. 2. The complexity of leaf surface structures. (A)The adaxial surface of a tillering wheat leaf at 1000x and (B) 250x magnification and seedling rice leaf at
(C) 1000x (adaxial surface) and (D) 500x magnification (abaxial surface). For the wheat leaf, the stomata (S) are clearly arranged in rows running parallel to
rows of epidermal cells, interspersed with trichomes (T). The furrows formed by the epidermis could influence the movement of condensed water from
dewfall. For the rice leaf, stomata are similarly arranged in rows alongside bulliform cells (Bc) with the trichomes interspersed with numerous epidermal

papillae (P). Size of scale bars is shown.

be utilized by wheat cultivars to retain canopy surface water in
semi-arid or arid conditions via FWU. Despite wheat having a
wide agroecological range and hence exposure to varied noc-
turnal conditions, data documenting the duration and intensity
of dew on wheat canopies is scarce. Methods such as dew har-
vesting and leaf wetness sensors could be more readily em-
ployed to quantify the variability in fog and dew events
(Tashtoush and Alshoubaki, 2023).

Although stomatal pores provide an obvious opening facili-
tating FWU (Guzman-Delgado et al., 2021), it is not the only
possible route. Cuticle conductance, trichomes, and water en-
tering via hydathodes also provide potential pathways for foliar
water uptake in wheat, albeit on a smaller scale. Hydathodes are
specialized pores on leaf margins and usually thought of as the
route for extrusion of liquid water during guttation. However,
they are also used by some species to absorb dew at night, aided
by parenchyma tissue with direct connection to vascular tissue
(Jauneau et al., 2020), and are present in wheat (Maeda and
Maeda, 1987). There is evidence that trichomes can drive
FWU in epiphytes and tree species (Schreel et al., 2020).
However, there is significant room for discovery here, because
many leaf surfaces possess diverse structures, such as rice

papillae that have been shown to influence disease resistance
and water use efficiency (Pitaloka er al., 2021), and may influ-
ence physical surface properties (Fig. 2).

Often also referred to interchangeably as minimum con-
ductance (cuticular conductance plus incomplete stomatal
closure), cuticular conductance is an order of magnitude small-
er than g, ranging between 2-10 mmol m™> 5!, and levels
have been shown to be genotype- and organ-specific (Araus
et al., 1991; Duursma et al., 2019; McAusland et al., 2021).

Along with measuring change in water potential or leaf mass,
a method for assessing whether dewtfall enters the leat is expos-
ure to artificial dew enriched with a naturally occurring iso-
tope, oxygen-18 (*O, Fig. 3). While care should be taken
when inferring FWU using stable isotopes (Goldsmith et al,
2017), exposing a well-watered leaf to vaporized '"*O within
a custom chamber enables addition of'signal which can be iden-
tified and analyzed using mass spectroscopy (Fig. 4). Enriching
the dew by up to 263%o (Fig. 4A), enabled detection of a 24%
increase in '®O in treated plant material of a high g, -containing
spring wheat genotype (Fig. 4B, C). This demonstrates the po-
tential for water to move into the wheat leaf at night under
dew-forming conditions, and be distributed locally.
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Fig. 3. Testing the foliar uptake of water by leaves. (A) A schematic depiction of the setup for treatment of wheat leaves with vaporized oxygen-18 enriched
water. (B) The water is vaporized using high frequency vibration plate, located in a commercial terrarium fogger located within a controlled environment room.
(C) The misted water falls on the leaf sample, forming ‘dew droplets’—a process otherwise unavailable in controlled growth environments. For plant growth

conditions see McAusland et al. (2021).
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Fig. 4. Water is taken up by the leaf from the atmosphere. Oxygen-18 (180) enriched water was fogged into a custom leaf chamber to investigate foliar water
uptake in wheat leaves. (A) After ~25 min of treatment, the direct permille isotope value (5'80-H,0—%0) was stable within the treatment chamber for the
duration of the experiment. (B) Plant material was sampled for determination of 0 enrichment from leaves either fogged with the "80-enriched H,0 (dark
blue) or fogged ddH.,O (light blue). (C) Finally, to determine whether '80-enriched water was transported from the leaves to other areas of the plant, the
permille isotope value was separated into either leaf or stem material from the same tiller. An unpaired t-test was used to determine differences between
treated (dark blue) and untreated (light blue) samples. The red point (@) indicates the mean enrichment for each organ; n=4-5 biological replicates. The
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Box 1. Outstanding questions

e Can we improve our methodologies for determining
dewfall on crops—both to quantify and to monitor
the duration canopies are wet?

o What leaf surfaces promote dewfall capture?

o What is the main route for water uptake: stomata, cu-
ticle, or specialized cells?

o Does nocturnal stomatal conductance occur at signifi-
cant magnitudes in other crop species?

o Does foliar water uptake play a role in heat or drought
tolerance in crops?

o |f water is taken up at the leaf via g¢,, does it remain a
passive mechanism that maintains humidity in the
intracellular spaces, or does it contribute to localized
hydration through incorporation in key tissues or cell
types?

o Can we prove gs, is the sole facilitator of FWU, or is it
due to another leaf-level characteristic?

o Water as a carrier for foliar application of chemicals: is
it beneficial, such as fertilizers or detrimental, such as
pollutants?

While there was a significant increase in 'O enrichment
overall within the tiller (leaf+stem—Fig. 4C) confirming noc-
turnal water uptake, this experiment does not give insight into
the dynamics of distribution, due to the limited sampling points
and times.

Currently, the role of FWU in crops such as wheat is un-
clear. Any water taken up may simply be lost via transpiration
in the initial hours of daylight, with estimates suggesting that
10 h of fog absorption would only support limited periods of
transpiration (Guzman-Delgado, 2021). However, early
morning stomatal conductance drives an important yield-
forming component of photosynthesis (Pinto et al., 2024),
which may also provide local rehydration and enable mainten-
ance of cell turgidity under water-limiting conditions.

FWU can provide a novel, beneficial role for nocturnal sto-
matal behavior in crops such as wheat, and generates exciting
new breeding traits for a characteristic traditionally associated
with ecological studies into trees and extremophiles. As g, is
genotype-specific, it is plausible that FWU also has a genetic
component which could be targeted to improve resilience
for warmer nights and less nocturnal precipitation. This raises
an interesting question: by seeking higher yields under an un-
conscious daytime bias, have we inadvertently lost genetic vari-
ation in a critical nocturnal trait?

Perspectives

Dewfall represents a significant source of water that is inde-
pendent from soil reserves. While certain plant species have
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evolved to exploit foliar wetting, it has not been considered
for the improvement of crop water budgets. Plant and crop fo-
liar uptake therefore represents a severely under-studied area of
research (Box 1), which could uncover novel mechanisms for
nocturnal water-uptake when climate change threatens soil
water availability.
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