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Plant water uptake is commonly rationalized as a daytime, 
root-driven process, mediated by stomatal responses to min
imize water loss, optimize photosynthesis, and promote 
growth. This has led to a certain experimental bias in favor 
of studying daytime mechanisms and their role in survival 
under climate change (Gaston, 2019). However, critical, 
physiological processes also occur nocturnally and respond 
to changing climates. Despite advances into hydraulics, noc
turnal foliar mechanisms facilitating crop survival under ris
ing nighttime temperatures and water scarcity remain 
understudied. Here we highlight sources of nocturnal foliar 
water and discuss the leaf-level processes which could 
underpin crop resilience to warmer nights (Caird et al., 
2007; Schoppach et al., 2014).

Nocturnal water availability plays a vital role 
in plant–environment interactions

Nocturnal water flux through the plant contributes substantial
ly to total daily water budget and supports primary productivity 
and terrestrial ecosystems, but until recently, was not ac
counted for in crop models (Schoppach et al., 2014). 
Typified by transitions between high daytime to low nighttime 
temperatures, windspeeds, and vapor pressure deficits (VPD), 
nighttime environmental conditions play a distinct, integral 
role in plant survival. As climate change and anthropogenic ac
tivities continue, plant responses to changing nocturnal envi
ronments are becoming more important. Nights are warming 
more rapidly than days (Cox et al., 2020), leading to changes 
in primary processes such as increased plant respiration that 

not only reduces growth and yield (Posch et al., 2022; 
McAusland et al., 2023), but also decreases available water 
and leaf wetting events.

Dew and fog represent a nocturnal water 
source for foliar water uptake in 
above-ground tissues

Nocturnal leaf wetting events including precipitation (e.g. 
rainfall, sleet, and snow), mist, fog, and dewfall are estimated 
to occur up to 100–200 days per year across ecosystems world
wide (Dawson and Goldsmith, 2018), therefore representing a 
significant source of available water for plants, particularly 
those growing in dry seasons or semi-arid/arid regions 
(Fig. 1). Indeed, dew was shown to be vital for plant growth 
in some functional types (Feng et al., 2021). While precipita
tion describes droplets heavy enough to fall by gravity, mist 
(∼100 μm in diameter) and fog (∼10–50 μm in diameter) are 
suspended in the atmosphere. In contrast, dew occurs when a 
surface temperature is lower or equal to the dewpoint, causing 
water to condense on that surface in droplets. Typical dew 
yields range between 0.01–0.3 mL m-2 night−1, but have 
been observed as high as 0.6 L m−2 night−1 (Beysens, 2022). 
Nocturnal cloud cover, distance to the coast, windspeed and 
ambient temperature, all play a role in the severity and duration 
of the dew yield.

Dew that forms on the plant canopy can potentially enter the 
leaves through three pathways: uptake through the cuticle, up
take from specialized structures on the epidermis (e.g. special
ized epidermal structures such as hydrophilic trichomes, 
papillae, or hydathodes), or entering via the stomata. While 
water deposition on plant aerial surfaces can promote onset 
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of biotic stresses (e.g. establishment of fungal diseases) and po
tential deposition of pollutants, it also represents an important 
source of water availability in the form of foliar water uptake 
(FWU) (Dawson and Goldsmith, 2018).

What leaf characteristics facilitate foliar 
water uptake in crops?

FWU has been shown to occur in trees, succulent or desert spe
cies, and shrubs (Schreel and Steppe, 2020), with water enter
ing via the stomata, cuticle (Guzmán-Delgado et al., 2021), 
hydrophilic trichomes (Fernández and Eichert, 2009), and 
hydathode pores (Martin and von Willert, 2000). Within the 
leaf, the presence of aquaporins—specialized channels within 
cell membranes regulating water movement—have also been 
linked to FWU (Yan et al., 2015).

Many of these species also display nocturnal stomatal open
ing (gsn; Caird et al., 2007) which provides access into the plant 
under conditions of high humidity (e.g. fog) or dewfall. 
However, FWU has not been shown to occur in crop species 
such as wheat (Triticum aestivum). Wheat is our most widely 
grown crop, covering 218 million hectares world-wide and in
habiting many different growing environments: from cool and 
wet, to warm and arid (Gbegbelegbe et al., 2017). Hot, clear 
days and cool nights lead to heavy nocturnal dewfall on the 
crop canopy (Fig. 1).

Our recent work has shown that, like trees and succulents, 
Mexican wheat cultivars open their stomata at night 
(McAusland et al., 2021, 2023). Traditionally, gsn has been 
thought of as water-wasteful in agriculture; however it has 
not been possible to test trade-offs empirically. In wheat, gsn ac
counts for up to 18% of daytime rates of water loss from stomata 
(McAusland et al., 2023). It remains conceivable that gsn could 

Fig. 1. Visualizing the interaction of a crop plant with nocturnal environment. In contrast to high daytime temperatures, low nocturnal temperatures, low 
vapor pressure deficits and windspeeds support the formation of dew on leaf surfaces. Dew, fog and precipitation contribute to the available water for the 
plant via two pathways: (i) water absorbed by the soil and taken up by the roots either locally or by hydraulic redistribution; or (ii) via contact with above-ground 
organs such as leaves. Surface water cools leaves but also provides a water source for foliar water uptake. Structures on the leaf, including stomata, epi
dermal morphology and trichomes may support uptake of water at night. Warm, dry environmental conditions exacerbated by climate change promote 
canopy water loss in the form of whole canopy evaporation, reducing surface water available for localized rehydration. Created in BioRender. McAusland, 
L. (2025) https://BioRender.com/4a0sbpb.

2 | McAusland et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/jxb/advance-article/doi/10.1093/jxb/eraf524/8362926 by N

atural Environm
ent R

esearch C
ouncil user on 14 January 2026

https://BioRender.com/4a0sbpb


be utilized by wheat cultivars to retain canopy surface water in 
semi-arid or arid conditions via FWU. Despite wheat having a 
wide agroecological range and hence exposure to varied noc
turnal conditions, data documenting the duration and intensity 
of dew on wheat canopies is scarce. Methods such as dew har
vesting and leaf wetness sensors could be more readily em
ployed to quantify the variability in fog and dew events 
(Tashtoush and Alshoubaki, 2023).

Although stomatal pores provide an obvious opening facili
tating FWU (Guzmán-Delgado et al., 2021), it is not the only 
possible route. Cuticle conductance, trichomes, and water en
tering via hydathodes also provide potential pathways for foliar 
water uptake in wheat, albeit on a smaller scale. Hydathodes are 
specialized pores on leaf margins and usually thought of as the 
route for extrusion of liquid water during guttation. However, 
they are also used by some species to absorb dew at night, aided 
by parenchyma tissue with direct connection to vascular tissue 
(Jauneau et al., 2020), and are present in wheat (Maeda and 
Maeda, 1987). There is evidence that trichomes can drive 
FWU in epiphytes and tree species (Schreel et al., 2020). 
However, there is significant room for discovery here, because 
many leaf surfaces possess diverse structures, such as rice 

papillae that have been shown to influence disease resistance 
and water use efficiency (Pitaloka et al., 2021), and may influ
ence physical surface properties (Fig. 2).

Often also referred to interchangeably as minimum con
ductance (cuticular conductance plus incomplete stomatal 
closure), cuticular conductance is an order of magnitude small
er than gsn, ranging between 2–10 mmol m−2 s−1, and levels 
have been shown to be genotype- and organ-specific (Araus 
et al., 1991; Duursma et al., 2019; McAusland et al., 2021).

Along with measuring change in water potential or leaf mass, 
a method for assessing whether dewfall enters the leaf is expos
ure to artificial dew enriched with a naturally occurring iso
tope, oxygen-18 (18O, Fig. 3). While care should be taken 
when inferring FWU using stable isotopes (Goldsmith et al, 
2017), exposing a well-watered leaf to vaporized 18O within 
a custom chamber enables addition of signal which can be iden
tified and analyzed using mass spectroscopy (Fig. 4). Enriching 
the dew by up to 263‰ (Fig. 4A), enabled detection of a 24% 
increase in 18O in treated plant material of a high gsn-containing 
spring wheat genotype (Fig. 4B, C). This demonstrates the po
tential for water to move into the wheat leaf at night under 
dew-forming conditions, and be distributed locally.

Fig. 2. The complexity of leaf surface structures. (A)The adaxial surface of a tillering wheat leaf at 1000× and (B) 250× magnification and seedling rice leaf at 
(C) 1000× (adaxial surface) and (D) 500× magnification (abaxial surface). For the wheat leaf, the stomata (S) are clearly arranged in rows running parallel to 
rows of epidermal cells, interspersed with trichomes (T). The furrows formed by the epidermis could influence the movement of condensed water from 
dewfall. For the rice leaf, stomata are similarly arranged in rows alongside bulliform cells (Bc) with the trichomes interspersed with numerous epidermal 
papillae (P). Size of scale bars is shown.
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Fig. 3. Testing the foliar uptake of water by leaves. (A) A schematic depiction of the setup for treatment of wheat leaves with vaporized oxygen-18 enriched 
water. (B) The water is vaporized using high frequency vibration plate, located in a commercial terrarium fogger located within a controlled environment room. 
(C) The misted water falls on the leaf sample, forming ‘dew droplets’—a process otherwise unavailable in controlled growth environments. For plant growth 
conditions see McAusland et al. (2021).

Fig. 4. Water is taken up by the leaf from the atmosphere. Oxygen-18 (18O) enriched water was fogged into a custom leaf chamber to investigate foliar water 
uptake in wheat leaves. (A) After ∼25 min of treatment, the direct permille isotope value (δ18O-H2O—‰) was stable within the treatment chamber for the 
duration of the experiment. (B) Plant material was sampled for determination of 18O enrichment from leaves either fogged with the 18O-enriched H2O (dark 
blue) or fogged ddH2O (light blue). (C) Finally, to determine whether 18O-enriched water was transported from the leaves to other areas of the plant, the 
permille isotope value was separated into either leaf or stem material from the same tiller. An unpaired t-test was used to determine differences between 
treated (dark blue) and untreated (light blue) samples. The red point ( ) indicates the mean enrichment for each organ; n=4–5 biological replicates. The 
asterisk (*) denotes significant differences (P<0.05) according to a t-test.
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While there was a significant increase in 18O enrichment 
overall within the tiller (leaf+stem—Fig. 4C) confirming noc
turnal water uptake, this experiment does not give insight into 
the dynamics of distribution, due to the limited sampling points 
and times.

Currently, the role of FWU in crops such as wheat is un
clear. Any water taken up may simply be lost via transpiration 
in the initial hours of daylight, with estimates suggesting that 
10 h of fog absorption would only support limited periods of 
transpiration (Guzmán-Delgado, 2021). However, early 
morning stomatal conductance drives an important yield- 
forming component of photosynthesis (Pinto et al., 2024), 
which may also provide local rehydration and enable mainten
ance of cell turgidity under water-limiting conditions.

FWU can provide a novel, beneficial role for nocturnal sto
matal behavior in crops such as wheat, and generates exciting 
new breeding traits for a characteristic traditionally associated 
with ecological studies into trees and extremophiles. As gsn is 
genotype-specific, it is plausible that FWU also has a genetic 
component which could be targeted to improve resilience 
for warmer nights and less nocturnal precipitation. This raises 
an interesting question: by seeking higher yields under an un
conscious daytime bias, have we inadvertently lost genetic vari
ation in a critical nocturnal trait?

Perspectives

Dewfall represents a significant source of water that is inde
pendent from soil reserves. While certain plant species have 

evolved to exploit foliar wetting, it has not been considered 
for the improvement of crop water budgets. Plant and crop fo
liar uptake therefore represents a severely under-studied area of 
research (Box 1), which could uncover novel mechanisms for 
nocturnal water-uptake when climate change threatens soil 
water availability.
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