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A B S T R A C T

The land-sharing versus land-sparing debate represents a critical juncture in agricultural policy development. 
However, applying either of these approaches uniformly at a national scale has been challenged suggesting that 
more effective strategies may require a context-dependent mix of methods. This study evaluates plausible 
strategies of land sparing and land sharing at regional scale in Great Britain using the Long-Term Large Scale 
integrated modelling framework. We consider these strategies in various combinations to get national scale 
outcomes for nutrient losses to freshwater and agricultural productivity. By simulating various land-use con
figurations across 11 International Territorial Level regions, we generated over 1.79 trillion scenarios with 
differing regional distributions of arable and semi-natural land. We used multiple objective optimization to find 
an optimal solution set. Our analysis identified 24,412 Pareto-optimal solutions that also improved on business- 
as-usual. The Pareto-optimal solutions all favoured combining land-sparing and land-sharing approaches. These 
optimized scenarios achieved increases of up to 9.7 % in livestock calories and 5.2 % in crop calories, while 
reducing phosphorus losses by 6.9 % and nitrate losses by 11.9 % in comparison to a business-as-usual scenario. 
Our findings demonstrate that spatially differentiated land-use strategies tailored to regional characteristics 
outperform uniform national sharing or sparing approaches. However, these modest improvements suggest that 
transformative change will require complementary innovations beyond land allocation strategies alone. This 
approach advances landscape planning from binary sharing-sparing debates towards a multidimensional opti
mization of food production and environmental quality that acknowledges the inherent complexity of dynamic 
landscapes while supporting evidence-based agricultural policy development.

1. Introduction

The debate surrounding land-sharing versus land-sparing strategies 
has long been central to agricultural and environmental policy discus
sions. Land sharing (arable expansion with reduced inputs) refers to 
integrating biodiversity conservation and agricultural production on the 
same land, typically through lower-intensity farming practices that 
maintain some wildlife-friendly features, while land sparing (semi-nat
ural expansion) involves separating intensive, high-yield agriculture 

from land specifically set aside for conservation (Phalan et al., 2011). 
Initially conceived as a theoretical framework to balance agricultural 
productivity with biodiversity conservation, this concept has since 
evolved to address broader sustainability challenges, including nutrient 
runoff (Dunn et al., 2022), greenhouse gas emissions (Jovarauskas et al., 
2021), and freshwater contamination (Balmford et al., 2012). While 
numerous studies have demonstrated the benefits of both land-sharing 
and land-sparing approaches, most of these analyses focus on localised 
case studies or specific taxa or ecosystem functions. This limitation 
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makes it difficult to assess the broader implications of these strategies at 
national or regional scales.

Over the next 25 years, global agriculture faces unprecedented 
challenges as the world's population is projected to exceed 10 billion by 
2050 (Godfray et al., 2010). This growth will necessitate increased food 
production while simultaneously reducing greenhouse gas emissions, 
minimising nutrient losses, and enhancing ecosystem resilience 
(Springmann et al., 2018). Great Britain, with its temperate climate and 
high-level of agricultural investment, has the potential to lead sustain
able intensification efforts and reduce reliance on food imports (Pretty, 
2018). However, a lack of coherent agricultural policy, coupled with 
restrictive regulatory frameworks, has hindered the translation of sci
entific advancements into practical farming innovations (Firbank et al., 
2013). Recent policies have taken varied approaches, with some 
incentivising agricultural extensification through land set-aside and 
low-intensity farming, while others focus on protecting and restoring 
natural habitats (Coe and Finlay, 2020; Coe, 2024). However, these 
policies have often lacked integrated spatial targeting that considers 
regional variations in landscape characteristics and agricultural poten
tial. While beneficial for biodiversity in specific contexts, a more stra
tegic approach may be needed that optimally combines intensive and 
extensive practices across different regions to maximize both food se
curity and environmental sustainability at a national scale.

Agricultural intensification is a major driver of nitrogen (N) and 
phosphorus (P) losses to freshwater systems, contributing to biodiversity 
loss, and declining water quality (Withers et al., 2014). Both 
land-sharing and land-sparing approaches have been proposed as po
tential solutions, yet recent landscape-scale studies have challenged the 
binary nature of the sharing-sparing framework, suggesting that neither 
approach applied uniformly is optimal. There is a lack of robust, 
spatially explicit assessments that quantify how these approaches 
impact nutrient losses and food production. Finch et al. (2021) evalu
ated spatially explicit sharing-sparing scenarios across contrasting re
gions of lowland England, examining multiple environmental outcomes 
including nutrient pollution, bird populations, and global warming po
tential. Their analysis revealed that environmental outcomes depended 
critically on the spatial arrangement of spared land, the types of habitats 
promoted, and whether strategies combined elements of both sharing 
and sparing approaches. They found that “mixed scenarios which 
combine elements of both sharing and sparing" often outperformed pure 
approaches, and that optimal strategies varied between regions with 
different landscape characteristics. This work, alongside similar studies 
(Law and Wilson, 2015; Verhagen et al., 2018), has established that 
blanket application of either sharing or sparing approaches across 
diverse landscapes is suboptimal, and that the most effective strategies 
require spatially differentiated mosaics of land-use approaches. This 
body of evidence points to a critical gap in our understanding: whilst we 
know that spatially optimized combinations of sharing and sparing 
strategies are likely superior to uniform approaches, we lack compre
hensive assessments of how such strategies might be implemented to 
simultaneously optimise multiple objectives.

The British government has set ambitious targets to enhance do
mestic food self-sufficiency, aiming to increase production by 30 % 
while halving the environmental impact of farming by 2050 (DEFRA, 
2020). The land-sharing versus land-sparing debate is particularly 
relevant in this context. Recent assessments indicate that land-sparing 
approaches, which concentrate production on a smaller footprint, can 
improve food output per unit of land while potentially reducing green
house gas emissions and nutrient runoff, provided that intensification is 
coupled with improved fertilizer management and mitigation strategies. 
However, empirical data are lacking to support or reject this hypothesis, 
particularly for large spatial scale, highlighting the need for compre
hensive modelling approaches to address this knowledge gap (Balmford 
et al., 2018). Land-sparing strategies have been shown to be generally 
better for beneficial insects, with Redhead et al. (2020). However, the 
benefit of these ecosystem services providers to crop production will, 

again, be dependent on the spatial integration of seminatural habitat in 
agricultural landscapes.

Land-sharing strategies, which distribute lower-intensity farming 
across larger areas, may limit the efficiency of nutrient use, potentially 
leading to cumulative environmental trade-offs (Koning et al., 2017). 
However, proponents of land-sharing argue that these approaches can 
deliver important benefits through ecological intensification, where 
biodiversity-supporting practices enhance ecosystem services such as 
pollination, pest control, and soil health, potentially maintaining or 
even increasing yields (Garibaldi et al., 2019; Tamburini et al., 2020). 
Land-sharing strategies may also provide greater landscape connectivity 
for wildlife and more resilient agricultural systems that are less 
vulnerable to environmental shocks (Kremen and Merenlender, 2018). 
The key question remains: how can land-sharing and land-sparing ap
proaches be optimally combined and spatially targeted across Great 
Britain to simultaneously improve agricultural productivity while 
reducing nutrient pollution at a national scale? Given the variation in 
landscape and environment, evidence from Finch et al. (2021) support 
the expectation that the optimal combination of land-use strategies will 
vary spatially, requiring place-based approaches rather than uniform 
national policies. While Finch et al. (2021) provided insights using 
statistical analysis and the InVEST framework at landscape scale, their 
approach treated spatial units as largely independent and relied on 
simplified nutrient delivery ratios. To advance our understanding of 
these complex trade-offs, we need process-based modelling approaches 
that can capture the dynamic interactions between land-use changes and 
local management practices, account for hydrological connectivity be
tween regions, and simulate how outcomes in one area depend on the 
characteristics and changes occurring in surrounding regions.

The Long-Term Large Scale (LTLS) integrated modelling framework 
provides such a tool (Bell et al., 2021). The model dynamically couples 
terrestrial (semi-natural and agricultural), hydrological and 
hydro-chemical process-based models to predict agricultural production 
and nutrient losses to water across Great Britain. The model is spatially 
explicit with outcomes from the various land use types aggregated to 5 
km × 5 km scale. Importantly, this means that larger scale implications 
of regional land use change are predicted as opposed to trade-offs being 
studied in spatially isolated study regions. The model has been previ
ously used to predict historic nutrient cycling of two centuries (Long-
Term) across the whole of Great Britain (Large-Scale) and more recently 
has been used to predict the impact of climate change (Missault et al., 
2025).

In this study, we use the LTLS framework to evaluate the impacts of 
land-sharing and land-sparing scenarios in terms of nutrient pollution 
outcomes and agricultural productivity across Great Britain. Our sce
narios are built from the national land cover strategies developed by 
Redhead et al. (2020), which define a series of 12 plausible changes to 
land use (broadly equating to increases in arable land cover 8 %–59 % 
compared with current land use or increases in 4 %–29 % in seminatural 
landscapes compared with current land use). To align these strategies 
with concepts of land-sharing and land-sparing we simulate more 
intensive management of arable in scenarios where arable land is 
diminished and less intensive management where arable land is 
increased. An important consideration in our analysis is whether such 
strategies should be applied uniformly across Great Britain or differen
tially. We therefore considered scenarios with combinations of different 
strategies applied to each of the 11 regions in Great Britain, in total 
resulting in over 1.79 × 1012 different scenarios.

We present an approach which can be used to compare various land 
use and management strategies to identify a set of plausible options that 
reduce environmental nutrient losses whilst also improving farming 
productivity.
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2. Methods

2.1. Study area

This study focuses on the International Territorial Level (ITL) regions 
C through M of Great Britain as spatial units of analysis, representing a 
gradient of agricultural systems, soil types, and climatic conditions 
across England, Scotland, and Wales (Fig. 1). In so doing we captured the 
regional scale variation in existing land use and environmental condi
tions that determine the response to alternative scenarios and the opti
mization of land sparing/sharing combinations. These regions include 
the predominantly arable landscapes of Eastern England (ITL E, F and 
H), characterized by intensive farming practices, with intensive cereal, 
oilseed, and root crop production on the fertile soils of East Anglia and 
Lincolnshire (Hurford et al., 2021). Northeast England (ITL C) exhibits a 
diverse agricultural landscape that integrates both arable farming and 
livestock systems (Hey, 2014; Williams et al., 2010). Northwest England 
(ITL D) is characterized by its focus on pastoral agriculture with sig
nificant dairy production in Cheshire and Lancashire's lowlands, 
alongside extensive sheep grazing in the Lake District and Cumbrian 
uplands (Ryschawy et al., 2017). The West midlands (ITL G) and East of 
England (H) represent a transition zone between the arable dominated 
east and the more pastoral west, with mixed farming systems increas
ingly common (Ilbery and Watts, 2004). Southwest (ITL K) and South
east (ITL J) are characterized by diverse agricultural patterns, ranging 
from intensive agriculture, improved grasslands, and protected areas 
(Broomfield et al., 2025). Wales (region L) and parts of Scotland (region 
M) are characterized by extensive livestock farming, particularly sheep 
and cattle grazing on permanent pasture and rough grazing land (Clark 
and Thompson, 2018; Ross et al., 2016).

2.2. Overview of LTLS modelling framework

We used the Long-Term Large Scale (LTLS) integrated modelling 
framework (Bell et al., 2021) to model terrestrial and freshwater 
macronutrient loads, and production across GB. The LTLS framework 
includes terrestrial soil-vegetation sub-models for semi-natural ecosys
tems (N14CP (Davies et al., 2016):) and agricultural landscapes (Roth
amsted Landscape Model, (RLM) (Coleman et al., 2017):). These 
sub-models provide spatially distributed estimates of soil macronutrient 
storage and runoff, and in the case of RLM, crop production and yield.

The framework includes a dynamic freshwater hydrological model 
(LTLS-FM (Bell et al., 2021):), which receives water and nutrient outputs 
from the terrestrial sub-models as inputs. It then routes water and nu
trients through the simulated river network to the sea (Fig. 2).

The framework operates on a 5 km × 5 km grid, resulting in 244 x 
144 grid cells that cover the GB landmass. Each grid cell is comprised of 
one or more land use categories (Arable, Bog Broadleaf, Conifer, Fen/ 
Marsh/Swamp, Freshwater, Heath, Improved grass, Rock, Rough graz
ing, and/or Urban) defined by the UKCEH Land Cover Map 2015; 
Rowland et al. (2017). Depending on the defined land uses the 
semi-natural (N14CP) and/or agriculture (RLM) components are run 
and the outputs combined and transferred to the freshwater model. The 
model driven by grid-specific weather variables including temperature, 
precipitation and potential evapotranspiration (PET). Atmospheric ni
trogen deposition input is directly integrated into the terrestrial models. 
Agricultural management data for the RLM are derived from national 
estimates (see Section 2.2.2). Population-based nutrients estimates, 
derived from sewage works and septic tanks (Naden et al., 2016), are 
input to river grid cells. Missault et al. (2025) validated the LTLS 
framework estimates of yield against national statistics, and river flow 
and macronutrient concentrations and loads against measured values 
from monitoring sites.

2.2.1. The N14CP terrestrial sub-model
The N14CP sub-model is used to estimate macronutrient dynamics in 

semi-natural landscapes (Davies et al., 2016). The model differentiates 
heath, rough grazing, coniferous woodland, deciduous woodland, 
fen/marsh/swamp, and bog. For each land cover class, N14CP has a 
single conceptual soil layer with three organic pools, with each pool 
having a different mineralisation rate. Decaying plant material is 
incorporated into each pool. The key processes influencing the fate of 
soil nutrients are representations of plant growth; atmospheric deposi
tion; nitrogen fixation; weathering, soil sorption and desorption of 
phosphorus; decomposition of decaying plant material and incorpora
tion of nutrients into soil organic matter; and mineralisation of soil 
organic matter with the release of nitrogen and phosphorus. Rate co
efficients for these processes are from Bell et al. (2021). Any unbound 
nutrient in soil water may be released to surface runoff and drainage 
according to hydrological conditions. The model does not explicitly 
include soil hydrology but generates amounts of nutrients available for 
removal by water. Water volumes of surface runoff and drainage are 
estimated using the (separate) probability distributed model (PDM 
(Moore, 2007);). N14CP runs at a 3-monthly time step starting Januar
y–March with outputs disaggregated to a daily timestep to generate 
inputs to the river component of LTLS (Section 2.1.4). The 3-monthly 
nutrient outputs are disaggregated to a daily timestep for association 
with daily runoff and drainage generated by the PDM.

2.2.2. Rothamsted Landscape Model (RLM) terrestrial sub-model
The RLM simulates soil processes (including soil organic matter, soil 

nutrients and water dynamics), livestock production, crop growth and 
crop yields (wheat, barley, oats, oilseed rape, field beans, sugar beet, 
forage maize, potato, and peas), and improved grass on a daily timestep. 
The assumes the soil is comprised of three layers. The soil properties 
including texture (percent clay, silt and sand), soil carbon (%), bulk 
density (g cm− 3), soil water (%) and nutrient status (P, kg ha− 1, NO3-N, 

Fig. 1. International Territorial Level Regions C to M of Great Britain. The 
regions are C=Northeast; D = North West; E = Yorkshire and The Humber; F =
East Midlands; G = West Midlands; H = East; I = London; J = South East; 
K=South West; L = Wales; M = Scotland.
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kg ha− 1 and NH4-N, kg ha− 1) are initialised at the start of the simulation, 
with dynamic properties (e.g. soil water and nutrient status) updated 
each day. The crop model component uses daily weather variables (min/ 
max temperature oC, precipitation mm, radiation kj m− 2, vapour pres
sure kPa, wind m s− 1) to predict canopy development and resource 
accumulation. As well as crop yields, nutrient losses through drainage, 
runoff and emissions are quantified. The model components are based 
on well-established existing models as described in (Coleman et al., 
2017) and previously validated by (Coleman et al., 2017; Hassall et al., 
2022; Missault et al., 2025).

Management inputs for areas designated as arable comprise typical 
crop sequences, sowing dates, and fertilizer application (see supple
mentary methods). We used the method by Sharp et al. (2021) to 
generate typical sequences of arable cropping according to ITL and soil 
texture, and associated these with fertilizer programmes based on the 
British Survey of Fertilizer Practice. For more details see SI.

No comprehensive data on sowing dates are available and so we 
consulted with expert agronomists and elicited the earliest, most likely, 
and latest sowing dates for the range of crops modelled. We fitted simple 
triangle distributions to these data. Then having determined the crop 
with the sequence generator, the model samples from these distributions 
to assign a realistic sowing date to each crop.

For fields designated as permanent grassland management inputs 
comprise fertilizer applied (N kg ha− 1 and P kg ha− 1), animal type and 
stocking rates (number ha− 1). The typical values for each of these var
iables change across the UK. We considered dairy, beef, and sheep 
livestock systems. The spatial variation in stocking rates was taken from 
Redhead et al. (2020) and rescaled to update the numbers so that they 
aligned with the numbers in the 2020 June survey (DEFRA, 2020).

2.3. Scenarios

We used a scenario-based approach to investigate the impacts of 
various combinations of land sparing and land sharing across GB. We 
based our scenarios on a subset of the national land cover strategies 
developed by Redhead et al. (2020). These 13 plausible land cover 

strategies (including business as usual, BAU) describe the potential 
changes in the area and distribution of farmed land. The BAU strategy is 
the baseline of current land use patterns. Complex changes in the areas 
of arable, improved grazing, and semi-natural rough grazing land are 
incorporated to produce six strategies which broadly equate to increases 
in arable land of 8, 17, 26, 36, 47, and 59 % compared with BAU (we 
align these with concepts of land sharing), and six strategies which 
broadly equate to increases of 4, 8, 13, 18, 23, and 29 % in semi-natural 
land (we align these with concepts of land sparing) (Fig. 3). From here 
on, we refer to these land use change strategies are denoted as either AR 
or SN (for arable or semi-natural land expansion respectively), followed 
by the % change. Changes in other land use categories (e.g. "Broadleaf", 
“Conifer", “Fen marsh", “Freshwater", and “Urban") are negligible except 
for “Heath" which is slightly changed across scenarios in Scotland (ILT 
M) to allow for the desired changes to arable and semi-natural land (see 
Fig. 3).

In this study we are not concerned with the application of each 
strategy as a blanket approach across GB, but instead apply them at the 
ITL regional scale, systematically combining the strategies within each 
region to generate 1.79 trillion scenarios (i.e., all combinations of 13 
land use strategies and 11 ITL regions). However, that set of scenarios 
includes combinations where a single strategy is applied uniformly 
across all ITLs, and these provide an important reference point to 
determine whether spatially targeted combinations can outperform 
blanket approaches.

In addition to land use change, land sparing/sharing also encom
passes changes in agricultural management. To simulate the more 
intensive management associated with land-sparing scenarios (the SN 
scenarios in Fig. 3), we constrained the distribution of crop sowing dates 
to be earlier and fertilizer rates were constrained to more closely follow 
recommendations for best practice (AHDB, 2023). Management for land 
sharing scenarios conversely were associated with a distribution where 
rates were reduced by 5 %. Livestock stocking rates (number of head/ha) 
were maintained across all scenarios meaning that absolute numbers of 
livestock vary with varying grassland area.

Fig. 2. Schematic of the LTLS framework.
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2.4. Multiple objective optimization

We considered four key metrics: (1) calorie production from live
stock, (2) calorie production from crops, (3) terrestrial losses of nitrate 
nitrogen (NO3-N) to fresh water, and (4) terrestrial losses of total dis
solved phosphorus (TDP) to fresh water. We calculated the average 
annual value for each metric at GB scale for all scenarios. We compared 
each scenario to BAU and filtered to select only those scenarios that 
outperform the BAU scenario for all four objectives (higher calorie 
production from both crops and livestock and lower N and P losses to 
fresh water). This set of viable solutions was further reduced using mul
tiple objective optimizations to determine Pareto optimal fronts be
tween multiple objectives (our four key metrics). A scenario is defined as 
Pareto optimal solution if no other scenario exists that improves on all 
four metrics. The optimized Pareto-optimal solutions describe the syn
ergies and trade-offs between production and pollution metrics. In our 
case the control variables were the land use strategies applied in each of 
the 11 ITL regions. Therefore, we have 11 control variables each of 
which can (potentially) take one of the 13 states (i.e. the 13 land use 
strategies described in Section 2.3 and Fig. 3) giving a total of 1311 

possible scenarios. We used a non-dominated sorting algorithm to 
identify the optimal solutions. A point is said to be dominated by another 
if it is worse for every single objective (Todman et al., 2019). We refer to 
the subset of scenarios selected by the non-dominated sorting algorithm 
as the optimal solution set.

2.5. Canonical correlation analysis

To identify which of the control variables (the strategy applied in 
each of the 11 ITL regions) were most strongly correlated with the 
variation in the optimal solution set we undertook a Canonical Corre
lation Analysis (CCA) using the MATLAB Software version 9.12.0 (The 
MathWorks Inc, 2022). The dataset consisted of the 11 regional vari
ables (X1–X11) as predictor variables (X), and the four key agricultural 
metrics (Y12–Y15) as response variables (Y). The predictor variables 
were ranked such that the land sharing strategies have low values and 
land sparing strategies have high values, with AR59 ranked as number 1, 
and SN29 ranked as 13. Prior to analysis, all response variables were 
standardized using z-score normalization to address scale differences.

Canonical Correlation Analysis identifies linear combinations 

(canonical variates) of variables within each set that maximize corre
lation between the two sets. The canonical correlations (r) were derived, 
representing the strength of association between the canonical variates.

Canonical loadings were obtained by computing the correlation be
tween the original variables (X and Y) and the corresponding canonical 
variates (U, V). Canonical loadings were derived to interpret the 
contribution of each original variable to the canonical variates: 

Rx = corr(Xstd,U)

Ry = corr(Ystd,V)

where Rx and Ry represent the correlations between the original vari
ables and their respective canonical variates. The statistical significance 
of the canonical correlations was assessed using Wilks' Lambda 
(Krzanowski, 2000).

2.6. Clustering

To identify common combinations of management strategies in our 
optimal solution set, the control variables were further analysed using a 
cluster analysis. The cluster analysis used a minimum variance, hierar
chical clustering approach following the Ward (1963) method, with the 
number of clusters informed from the Dendrogram. This was imple
mented in MATLAB version: 9.12.0 using the standardized Euclidean 
distance (The MathWorks Inc, 2022). Hierarchical clustering was 
selected over alternative approaches such as k-means because it does not 
require a priori specification of the number of clusters. Instead, the 
dendrogram allows us to explore the natural grouping structure within 
our data and make an informed decision about the optimal number of 
clusters post-hoc. This is particularly valuable for our analysis, where 
the Pareto-optimal solutions represent a continuum of trade-offs be
tween objectives, and hierarchical clustering preserves the nested 
structure of these relationships, providing insight into how solutions 
relate at multiple scales of similarity.

3. Results

3.1. Impacts of adopting the Ar59 and SN29 across GB scale

Figs. 4 and 5 show the spatial distribution of changes in agricultural 

Fig. 3. Land use (LU) changes across International Territorial Level regions under the 13 different strategies. The bars represent the percentage distribution of LU 
types for each scenario.
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and environmental metrics when transitioning at the national scale from 
Business-As-Usual (BAU) to either extreme of land sparing (Ar59) or 
land sharing (SN29) across all ITL regions.

In the Ar59 national land sharing scenario, livestock calorie pro
duction decreases, particularly in Southwest England (region K), the 
West Midlands (region G), Northwest England (region D), and parts of 
Wales (region L). These regions traditionally support intensive livestock 
farming. Converting improved grassland to arable land substantially 
reduces livestock carrying capacity. TDP increases throughout these 

same regions, reflecting the increase in phosphorus fertilizer use. 
Overall, this national Ar59 scenario shifts production towards arable 
systems, improving crop output locally but at the cost of higher nutrient 
losses and reduced livestock capacity. Changes in crop calories are 
spatially heterogeneous with some localised coherent increases in crop 
production where extensive improved grassland is converted to arable 
(Fig. 4a and b). More spatially variable responses arise where land 
conversion is patchy or influenced by stochastic variation in cropping 
between scenarios.

Fig. 4. Average annual change in each 5 km × 5 km cell for (a) Livestock Calories, kcal x 109 (b) Crop Calories, kcal x 109 from Business-As-Usual to land sharing 
strategy AR59 and land sparing strategy SN29.The grey blocking shows where no changes have been observed.
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Nitrate losses to fresh water increase most strongly in the Midlands 
(region G) and Northwest England (region D), corresponding to 
grassland-to-arable conversion (Fig. 5b). In contrast, reductions in ni
trate losses occur in areas already dominated by arable due to the 
reduced i fertilizer intensity. Together, these patterns indicate that 
under national-scale land sparing, environmental pressures become 
spatially concentrated in arable expansion zones.

In the SN29 national land sharing scenario, reductions in livestock 
calorie production are more pronounced and spatially concentrated in 
Wales (region L), Northwest England (region D), the West Midlands 
(region G) and Southwest England (region K). Decreases in phosphorus 

losses align with reductions in arable and livestock output, reflecting 
reduced fertilizer use as arable land and improved grassland transition 
to improved grassland or rough grazing. Crop calorie production de
clines across England and parts of Scotland and Wales due to land use 
change, with only localised increases where arable land is more inten
sively managed or due to stochastic cropping variation between sce
narios. Overall, the comprehensive land sharing scenario promotes 
environmental benefits at the expense of national food production, with 
particularly strong impacts in livestock-dominated regions.

Fig. 5. Average annual change in each 5 km × 5 km cell for terrestrial losses of (a) Total Dissolved Phosphorus (TDP) t to fresh water and (b) nitrate (NO3-N) t to 
fresh water from Business-As-Usual to land sharing strategy AR59 and land sparing strategy SN29.The grey blocking shows where no changes have been observed.
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3.2. Pareto-optimal solutions

Out of the 1311 scenarios tested, 24,412 scenarios improved on all 
metrics compared with business as usual (BAU) at the scale of Great 
Britain and formed part of the Pareto-optimal solution set.

Fig. 6 shows how frequently each land use strategy occurs in the 
Pareto-optimal solutions for each of the ITL regions (Fig. 1). The skew 
towards the extremes of the horizontal axis reflects the overall weighting 
towards land sparing (right) or land sharing (left) strategies. In regions 
C, D and E, the land sharing SN23 strategy is most often selected as the 
Pareto-optimal solution. In those regions, this strategy entails an in
crease in seminatural land, primarily rough grazing, by +5.71 % to 
+9.08 %, at the expense of improved grassland (− 4.14 % to − 7.56 %) 
and arable (− 1.56 % to − 7.56 %)(Fig. 3). These regions therefore favour 
moderate extensification that enhances seminatural cover while 
reducing intensive land uses.

For regions F and G, the most prevalent solution is SN4, requiring 
only marginal increases in seminatural land (+0.11 and + 0.36 %). 
Conversely, for region H, the most prevalent solution is AR8 repre
senting a small shift towards extensification of arable. Together, these 
regions tend towards modest adjustments rather than strong directional 
change.

Regions I and J exhibit a more balanced distribution of Pareto- 
optimal solutions, with region I showing an even mix across scenarios, 
suggesting flexibility in how production and environmental goals can be 
met. In region K, dominant solutions SN8 and SN18 lead to increases in 
both improved grassland (+1.91 % and +2.02 %) and rough grazing 
lands (+1.82 % and +3.91 %). This indicates that moderate land sharing 
can achieve multi-metric improvements without major land 
reallocation.

Region L is characterized by arable expansion, with Ar26 the most 

predominant solution, followed by Ar17, leading to increases in arable 
land (+7.22 %, and +3.33 %)at the expense of grassland(-7.65 and 
− 3.29). Similarly, in region M, arable expansion dominates, with Ar17 
increasing by +4.25 % and replacing improved grassland (− 1.24 %), 
rough grazing (− 1.48 %) and Heathland (− 1.1 %). These regions 
therefore favour land-sparing trajectories focused on arable expansion.

Overall, the Pareto-optimal set reveals clear regional differentiation: 
regions in northern England lean towards land sharing and increased 
seminatural cover, whereas Scotland and Wales favour land sparing and 
arable intensification. This spatial contrast underscores the influence of 
existing land use and biophysical conditions on optimal trade-offs be
tween production and environmental outcomes.

3.3. Canonical correlation analysis

Canonical correlation analysis identified four significant canonical 
dimensions (p < 0.001), with the first two dimensions explaining 62.5 % 
of the variance in the response variables given the predictors (Fig. 7, see 
also Fig. S2).

The first canonical dimension showed a strong correlation (r = 0.98). 
This dimension was characterized by strong negative loadings of pre
dictor variables ITL D (− 0.87), ITL E (− 0.75), ITL F (− 0.75), and ITL G 
(− 0.64), contrasted against strong positive loadings across all response 
variables (ranging from 0.65 to 0.75). The observed negative correla
tions stem from the scenario ranking, where land sharing scenarios are 
assigned lower numbers (e.g., Ar59 is scenario 1) and land sparing 
scenarios are assigned higher numbers (e.g., SN29 is scenario 13). The 
negative loadings indicate that solutions associated with land sharing 
(lower-numbered scenarios) are linked to higher crop calorie production 
and increased nutrient losses.

The second canonical dimension (r = 0.91) revealed a more nuanced 

Fig. 6. The frequency of Pareto-optimal solutions for different land-use scenarios across multiple ITL regions. See Fig. S1 information for this plot on the log scale.
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relationship structure, primarily influenced by predictors ITL K (0.73) 
and ITL J (0.53). This dimension, showed positive associations with 
livestock calories (0.35) and arable calories (0.41) but negative associ
ations with phosphate leaching (− 0.29). This pattern suggests that, in 
these regions, moderate increases in production can coincide with 
reduced phosphorus losses, indicating scope for synergistic outcomes 
rather than strict trade-offs.

Together, the first two canonical dimensions highlight distinct 
spatial patterns in the relationships between regional land use strategies 
and system outcomes. The first reflects a production–environment trade- 
off under land sharing, and the second reveals the potential for pro
duction gains to be compatible with environmental improvements.

Redundancy analysis confirmed that response variables are better 
explained by the predictors than vice versa, with the model capturing 
substantial shared variance between the two sets. This indicates that 
regional land-use strategies account for a substantial proportion of the 
variation in system outcomes.

3.4. Cluster analysis

We identified three clusters of scenarios within the Pareto-optimal 
solution set (Fig. S3). Each cluster represents a collection of scenarios 
with similar distribution of land use change strategies across the ITL 
regions.

Fig. 8 shows the trade-off frontiers between food production (crop 
and livestock calories) and nutrient losses (TDP and NO3-N) across the 
three clusters. We refer to these as Cluster 1, Cluster 2 and Cluster 3. 
Cluster 1 maximized food production achieving the highest crop and 
livestock calorie production, but at the cost of increased nutrient losses 
relative to other solutions. Cluster 3, in contrast, showed lower TDP and 
NO3-N values, indicating the best environmental performance (note axis 

for these variables are presented reversed so that more beneficial out
comes are further from the origin). However, this came at the cost of 
lower calorie production. Cluster 2 occupied intermediate positions 
balancing environmental protection and agricultural productivity. 
Together, these three clusters delineate clear trade-offs between pro
duction and nutrient losses.

Fig. 9 displays the frequency of Pareto-optimal solutions across six 
ITL regions (D, E, F, G, J, and K) within the three hierarchical clusters. 
We focus on these six regions as the CCA identified them as important in 
explaining variation in the outcomes.

The high production cluster (Cluster 1) strongly favours the SN23 
strategy in region D. Regions D and F have a bimodal distribution with 
high frequencies of AR8, BAU and SN23 solutions. Notably AR59 
dominates in region J within this cluster evidencing a more extreme shift 
towards arable expansion in this region (Fig. 2). Overall, Cluster 1 re
flects a high-intensity land-use pattern prioritizing production gains, 
particularly in south-east England.

The moderate-production cluster (Cluster 2) favours a mild arable 
expansion strategy (Ar8) in regions D–F. This suggests small shifts to
wards land sharing can achieve higher caloric output while still 
improving environmental metrics. Cluster 2 configurations appear to 
strike a balance enhancing both food production and environmental 
performance, though with greater emphasis on productivity (Fig. 8). 
This cluster therefore represents a transitional, moderate-intensity 
pathway with relatively efficient trade-offs.

Cluster 3 shows a dominance of SN23 across regions D, E and F, with 
SN4, SN8 and SN18 also appearing prominently in G and K. Land- 
sharing approaches are almost absent in this cluster for the ITL re
gions shown. These patterns indicate a strong preference for land- 
sparing strategies under environmentally focused solutions.

Overall, the cluster analysis highlights three distinct solution 

Fig. 7. Canonical Correlation Analysis Biplot of Predictors and Responses. The biplot displays the relationships between predictor variables (yellow) and response 
variables (green) along the first and second canonical dimensions. Black arrows represent ITL regions (C: North East, D: North West; E: Yorkshire and the Humber; F: 
East Midlands; G: West Midlands; H: East of England; I: London; J: South East; K: South West; L: Wales; M: Scotland), and red arrows denote key response variables, 
which are Livestock Calories, Crop Calories, Nitrate losses, and Phosphate losses.
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spaces—high-production, moderate-production, and high- environmental-performance—each associated with specific regional 

Fig. 8. Trade-off frontiers between average annual measures of food production (crop and livestock calories) and nutrient losses (TDP and NO3-N) for Great Britain 
across the three Pareto-optimal clusters identified in the hierarchical clustering analysis. All solutions retained improve on BAU across all metrics.

Fig. 9. Frequency of Pareto-optimal solutions across six ITL regions (D, E, F, G, J, K) within the three hierarchical clusters. The Pareto-optimal solutions represent 
land-use scenarios that outperform business-as-usual, achieving higher calorie production from crops and livestock while reducing total dissolved phosphorus (TDP) 
and nitrate-nitrogen (NO3-N) losses to fresh water.
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tendencies and land-use strategies. These clusters demonstrate that 
regional configuration strongly shapes the balance between agricultural 
output and environmental quality within the Pareto-optimal space.

4. Discussion

Our analysis offers a novel, spatially explicit assessment of changes 
in land use and the intensity of crop production, and the associated 
trade-offs between food production and nutrient losses to freshwater at a 
national scale.

The predominance of land-sparing scenarios (SN) in our Pareto- 
optimal solutions, particularly in the environmentally optimal Cluster 
3, suggests that strategic semi-natural habitat expansion has an impor
tant role to play in reducing the environmental footprint of agriculture 
whilst still maintaining or increasing food production. This finding 
aligns with Balmford et al. (2012) and Lamb et al. (2016) who demon
strated that optimizing agricultural intensity within appropriate land
scapes while dedicating others entirely to ecological restoration can 
advance both conservation and production objectives. However, criti
cally none of our optimal solutions comprised SN strategies alone, all 
had some component of agricultural extensification (i.e. at least one ITL 
was allocated an AR strategy in all optimal solutions). This finding aligns 
with the recent global synthesis by Augustiny et al. (2025), who found 
that 52 % of cases supported context-specific combinations of both 
strategies rather than pure approaches, with only 41 % favouring pure 
land sparing and 7 % favouring pure land sharing exclusively. Recent 
UK-specific evidence aligns with this. Collas et al. (2022) found that land 
sparing achieved identical biodiversity and climate outcomes at just 48 
% of the cost of land sharing approaches. This stark cost-effectiveness 
differential reveals a critical policy misalignment, as most of current 
UK conservation funds are allocated to land sharing strategies. Our re
sults, showing that optimal solutions require spatially targeted combi
nations of both approaches, suggest that policy reform toward more 
flexible, regionally differentiated strategies could deliver both greater 
environmental benefits and better value for public investment.

Our regional analysis reveals distinct optimization patterns across 
ITL regions that reflect underlying agricultural systems. The dominance 
of SN23 in Northern England (regions C, D, E) aligns with these regions' 
mixed farming systems and available marginal land for conversion. In 
contrast, the prevalence of AR8 in Eastern England (region H) reflects 
the highly productive arable landscapes where intensification offers 
greater returns. Wales (region L) showing predominantly arable 
expansion (Ar26, Ar17) may seem counterintuitive given its traditional 
pastoral focus, but this reflects optimization opportunities where limited 
arable land can be highly productive. These regional patterns support 
Berry et al. (2022)'s quantitative demonstration that between-county 
variation significantly exceeds within-county variation in English and 
Welsh agriculture, providing statistical evidence against uniform policy 
approaches.

The comparison between the BAU scenario and the Pareto-optimal 
solutions reveals improvements in both agricultural productivity and 
environmental outcomes, with increases of up to 9.7 % in livestock 
calories and 5.2 % in crop calories, while simultaneously reducing losses 
of TDP by up to 6.9 % and NO3-N by 11.9 %. Although our simulations 
demonstrate measurable improvements in environmental and produc
tion outcomes, these gains represent only incremental progress toward 
the transformative changes envisioned in frameworks such as the 
Innovation Agenda for UK Agriculture (APPG, 2025).

Our simulation results align with and extend previous studies 
examining nutrient losses under different land management strategies. 
The 11.9 % reduction in nitrate losses we observed in Pareto-optimal 
scenarios is comparable to findings from other European studies. Wyn
ants et al. (2024), working with agricultural catchments in Europe, re
ported that combinations of management interventions including 
reduced fertilizer application (20 %) and cover crops could achieve 
16–26 % reductions in inorganic nitrogen loads under certain climate 

scenarios. Similarly, a basin-scale modelling of Baltic Sea catchments 
found that plausible stakeholder-approved measures could reduce ni
trogen loads by up to about 9 % (Capell et al., 2021). Notably, Karner 
et al. (2021) demonstrated through a multi-objective land-use optimi
zation in Austria that relatively small sacrifices in agricultural output 
can significantly curb nitrate leaching. In their stochastic optimization, a 
mere ~1 % reduction in net economic benefit led to an 18–19 % 
decrease in nitrate leaching. This illustrates the non-linear gains possible 
with more intensive optimization. Our 11.9 % reduction represents a 
conservative but achievable target that maintains agricultural produc
tivity gains, positioning our findings within the established range of 
nutrient reduction potential.

The 6.9 % reduction in TDP we report also corresponds well with 
regional studies examining phosphorus dynamics. For example, Collins 
et al. (2016) estimated that ambitious but realistic uptake of on-farm 
mitigation measures in England and Wales, could yield phosphorus 
load reductions of up to 15 %, depending on soil characteristics, legacy 
phosphorus, and management intensity. Our TDP reductions are 
particularly notable given the tendency of phosphorus to be fixed in soil 
(Mahdi et al., 2012), which makes phosphorus mobilization highly 
dependent on soil erosion and surface runoff patterns rather than simple 
leaching processes.

Regarding agricultural productivity, our findings of 5.2 % increase in 
crop calories and 9.7 % increase in livestock calories under optimal land 
allocation strategies compare favourably with meta-analyses of agri
cultural intensification effects. Wu and Ma (2015) found that integrated 
nutrient management strategies enhance crop yields by 8–150 % 
compared with conventional practices, though these figures include 
more extreme intensification scenarios than we modelled. Our results 
reflect the gains achievable within the limits of current technologies and 
management practices, rather than speculative future improvements.

Achieving the ambitious dual targets of expanding agricultural 
output by 30 % by 2050 whilst halving its environmental footprint will 
necessitate comprehensive systems-level approaches beyond land allo
cation strategies alone. Rockström et al. (2017) emphasize that agri
culture must integrate dual and interdependent goals of using 
sustainable practices to meet rising human needs while contributing to 
resilience and sustainability of landscapes, the biosphere, and the Earth 
system. Similarly, Pretty (2018) demonstrates that system redesign is 
essential to deliver optimum outcomes as ecological and economic 
conditions change, requiring the integration of multiple agricultural 
processes rather than singular interventions. Our findings echo this 
assessment, demonstrating that merely shuffling land-use allocations is 
insufficient to meet these ambitious goals. Instead, we must complement 
optimized land-use strategies with innovative agricultural solutions that 
can improve both productivity and environmental performance. Our 
analysis constrains intensified yields to what can be achieved with 
existing technologies and current crop varieties. Future advances in crop 
breeding could substantially raise this ceiling, with developments in 
nitrogen-use efficiency, drought tolerance, and photosynthetic capacity 
potentially amplifying the land-sparing benefits observed in our study 
(Long et al., 2015; Ray et al., 2013; Walsh et al., 2022). Recent advances 
demonstrate significant potential for improvements in nitrogen man
agement, with studies showing that nitrogen losses can be minimized by 
15–30 % through adopting improved agronomic approaches such as 
optimal nitrogen dosage, precision agriculture, intercropping of legume 
and non-legume crops, and improved plant populations (Anas et al., 
2020; Xu et al., 2012) Further changes to agricultural practices such as 
the use of non-leguminous cover crops (Macdonald et al., 2005) can also 
significantly impact nutrient dynamics enabling greater while requiring 
fewer external inputs. The integration of precision agriculture technol
ogies offers additional pathways for improvement, with studies 
demonstrating 20–30 % yield increases through optimized input use and 
resource efficiency (Chen, 2025). However, adoption of these technol
ogies faces significant barriers including high upfront costs, lack of 
technical literacy, and inadequate infrastructure, particularly for small 
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and medium-sized farms (Paustian and Theuvsen, 2017; Pierpaoli et al., 
2013). Overcoming these barriers requires coordinated policy support, 
including financial incentives, training programs, and improved rural 
infrastructure (Kernecker et al., 2020). The process-based modelling 
included in the LTLS framework means that it has the functionality to 
incorporate these innovations in future scenario testing to assess their 
potential contribution.

A critical insight from our analysis is that improving production 
while reducing pollution requires targeted interventions. Our canonical 
correlation analysis identified regions D, E, F, and G as having the 
strongest influence on national-scale outcomes, suggesting these regions 
should be priority targets for policy interventions. Similarly, ITL K and J 
showed differential associations with production versus pollution met
rics, indicating potential for specialized regional strategies. This 
regional heterogeneity in response to land use change aligns with find
ings from (Law and Wilson, 2015), who emphasized that the effective
ness of land-sparing versus land-sharing strategies is highly 
context-dependent and varies with landscape characteristics. This 
conclusion is also supported by Finch et al. (2021), who demonstrated 
that environmental outcomes depended on the spatial arrangement of 
spared land, the types of natural habitat promoted, and regional char
acteristics. The importance of regional targeting is further supported by 
Karner et al. (2021) who found climate conditions fundamentally alter 
trade-off structures, with dry regions prioritizing water-economy 
trade-offs while wet regions emphasize nutrient-economy relation
ships. Tscharntke et al. (2012) argue, landscape context strongly medi
ates the effectiveness of different land-use strategies, suggesting that 
policies should be tailored to regional conditions rather than applied 
uniformly. Our analysis provides empirical support for this perspective, 
demonstrating that strategic land-use changes in specific regions can 
yield benefits that significantly outweigh their proportional land area 
contribution.

While our study applies the land-sharing versus land-sparing 
framework as a foundation for analysis, our spatially targeted optimi
zation approach demonstrates the value of moving beyond binary 
thinking toward more nuanced, regionally differentiated solutions 
across the landscape. This evolution reflects broader trends in the 
literature, with Grass et al. (2019) proposing “connectivity landscapes" 
that combine both strategies within spatially connected mosaics. Feniuk 
et al. (2019) proposed a “three-compartment model", which is an 
advanced approach within the land sparing-sharing framework, that 
aims to balance agricultural production with biodiversity conservation. 
This model divides land into three distinct compartments: high-yield 
agriculture, low-yield agriculture, and natural habitats. Our findings 
can be interpreted within this framework, but we argue that neither the 
land-sharing or sparing framework nor the three-compartment model 
acknowledge the true spectrum of intensities under which our land
scapes are managed. Defining discrete compartments creates an artifi
cial landscape that fails to reflect the underlying complexity and 
continuity of real-world land management.

Our analysis focuses primarily on nutrient pollution and caloric 
production, without explicitly considering biodiversity outcomes. While 
land sparing may benefit certain species by preserving habitat patches, 
Tscharntke et al. (2012) argue that many species depend on heteroge
neous agricultural landscapes rather than completely separated natural 
and agricultural areas. Where agricultural production is dependent on 
ecosystem services provided by biodiversity (e.g. crop pollination) at 
least some level of spatial integration of natural and agricultural habitats 
is essential.

Model validation and accuracy are critical considerations for inter
preting our results. The LTLS framework builds on established soil- 
vegetation models (N14CP for semi-natural systems and RLM for agri
cultural landscapes), which have been extensively validated in previous 
studies (Bell et al., 2021; Missault et al., 2025; Coleman et al., 2017; 
Hassall et al., 2022). Coleman et al. (2017) demonstrated strong model 
performance for wheat and grass yields over a 44-year period, with 

RMSE of 22.98 % and 34.35 % for standard fertilizer treatments. Hassall 
et al. (2022) evaluated the yields of other key crops against regional 
(spring barley, winter barley and oilseed rape) and national averages 
(field beans and maize) and found that observed means fell within the 
modelled interannual variation. Similarly, Missault et al. (2025) used 
regional and national statistics to validate crops yields. For major crop 
yields, they reported median percentage errors ranging from 1 % (po
tato) to 34 % (oilseed rape) (overall average across crops 18 %). For 
nutrient losses, predicted and measured annual averages of nitrate and 
TDP over a 30-year period showed strong correspondence (R2 = 0.85 
and 0.76, respectively). It is noteworthy that oilseed rape yields tended 
to be overestimated, likely reflecting increased pest damage following 
neonicotinoid restrictions, which the model does not account for. 
Consequently, our predictions may be biased towards over-predicting 
yields in contexts where disease and pest pressures are high.

Our model does not capture how investing in natural capital through 
land-sharing approaches might support crop production and potentially 
allow for reductions in agrochemical inputs. Garibaldi et al. (2019) and 
Tamburini et al. (2020) show that ecological intensification can main
tain or increase yields while reducing environmental impacts, particu
larly in diverse and biodiversity-enhancing systems. This potential for 
ecological intensification is further supported by MacLaren et al. (2022), 
who provided long-term evidence that ecological intensification can 
serve as a viable pathway to sustainable agriculture, demonstrating that 
biodiversity-enhancing practices can maintain productivity while 
reducing environmental impacts over extended time periods. This lim
itation may account for the paucity of land sharing approaches in our 
Pareto optimal set.

A key contribution of our work is the identification of 24,412 alter
native land-use configurations across Great Britain. While our analysis 
focused on agricultural productivity and nutrient pollution, this exten
sive solution space provides a foundation for further multi-objective 
analyses. For instance, these configurations could be assessed at finer 
scales for goals such as enhancing habitat connectivity and supporting 
ecological networks—critical for biodiversity conservation in frag
mented landscapes (Rudnick et al., 2012). Importantly, this can be done 
without the computational cost of generating new solutions, allowing 
for efficient evaluation of additional priorities such as nature corridors.

The absence of any “blanket" solutions (where the same strategy, 
including BAU, is applied to all ITL regions) in our Pareto-optimal set 
underscores that one-size-fits-all approaches fail to capture the inherent 
heterogeneity of Britain's landscapes and their functional responses to 
land-use change. This aligns with findings from (Bateman et al., 2024; 
Verhagen et al., 2018), who demonstrated that spatial targeting of in
terventions yields substantially greater benefits than homogeneous 
implementation across diverse landscapes. The regional optimization 
approach we employed represents a departure from conventional 
land-use planning paradigms that often prescribe uniform policies 
across administrative boundaries regardless of landscape characteristics 
(Bateman et al., 2013). Instead, our work recognizes that the optimal 
balance between agricultural production and environmental protection 
varies according to local biophysical conditions, existing land-use con
figurations, and regional agricultural specializations. The marked 
improvement in both production and environmental metrics achieved 
through regional optimization reinforces (Brady et al., 2012) assertion 
that tailored regional policies can create win-win outcomes that uniform 
approaches cannot match. This principle of spatial differentiation in 
land-use policy represents a crucial shift in thinking about agricultural 
sustainability, moving beyond debates about whether land sparing or 
sharing is universally “better" toward recognizing that optimal ap
proaches are inherently context-dependent and spatially diverse.

5. Conclusion

Our study demonstrates that land-sparing/land-sharing approaches, 
applied differentially across regions, can deliver modest but meaningful 
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improvements in both agricultural productivity and environmental 
outcomes. However, realising transformative change will require mov
ing beyond the sharing-sparing debate to embrace more nuanced ap
proaches that recognize the value of landscape heterogeneity, capitalize 
on ecological intensification opportunities, and explicitly consider 
biodiversity alongside production and pollution metrics. The extensive 
solution space of 24,412 land-use alternatives generated in this study 
provides a valuable foundation for future research exploring additional 
objectives beyond agricultural productivity and nutrient pollution.
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