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ARTICLE INFO ABSTRACT

Keywords: The land-sharing versus land-sparing debate represents a critical juncture in agricultural policy development.
Agricultural and seminatural land use However, applying either of these approaches uniformly at a national scale has been challenged suggesting that
Macronutrients

more effective strategies may require a context-dependent mix of methods. This study evaluates plausible
strategies of land sparing and land sharing at regional scale in Great Britain using the Long-Term Large Scale
integrated modelling framework. We consider these strategies in various combinations to get national scale
outcomes for nutrient losses to freshwater and agricultural productivity. By simulating various land-use con-
figurations across 11 International Territorial Level regions, we generated over 1.79 trillion scenarios with
differing regional distributions of arable and semi-natural land. We used multiple objective optimization to find
an optimal solution set. Our analysis identified 24,412 Pareto-optimal solutions that also improved on business-
as-usual. The Pareto-optimal solutions all favoured combining land-sparing and land-sharing approaches. These
optimized scenarios achieved increases of up to 9.7 % in livestock calories and 5.2 % in crop calories, while
reducing phosphorus losses by 6.9 % and nitrate losses by 11.9 % in comparison to a business-as-usual scenario.
Our findings demonstrate that spatially differentiated land-use strategies tailored to regional characteristics
outperform uniform national sharing or sparing approaches. However, these modest improvements suggest that
transformative change will require complementary innovations beyond land allocation strategies alone. This
approach advances landscape planning from binary sharing-sparing debates towards a multidimensional opti-
mization of food production and environmental quality that acknowledges the inherent complexity of dynamic
landscapes while supporting evidence-based agricultural policy development.

water quality
Hydrological modelling
Land management change
Pareto-optimal

1. Introduction from land specifically set aside for conservation (Phalan et al., 2011).

Initially conceived as a theoretical framework to balance agricultural

The debate surrounding land-sharing versus land-sparing strategies
has long been central to agricultural and environmental policy discus-
sions. Land sharing (arable expansion with reduced inputs) refers to
integrating biodiversity conservation and agricultural production on the
same land, typically through lower-intensity farming practices that
maintain some wildlife-friendly features, while land sparing (semi-nat-
ural expansion) involves separating intensive, high-yield agriculture

productivity with biodiversity conservation, this concept has since
evolved to address broader sustainability challenges, including nutrient
runoff (Dunn et al., 2022), greenhouse gas emissions (Jovarauskas et al.,
2021), and freshwater contamination (Balmford et al., 2012). While
numerous studies have demonstrated the benefits of both land-sharing
and land-sparing approaches, most of these analyses focus on localised
case studies or specific taxa or ecosystem functions. This limitation
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makes it difficult to assess the broader implications of these strategies at
national or regional scales.

Over the next 25 years, global agriculture faces unprecedented
challenges as the world's population is projected to exceed 10 billion by
2050 (Godfray et al., 2010). This growth will necessitate increased food
production while simultaneously reducing greenhouse gas emissions,
minimising nutrient losses, and enhancing ecosystem resilience
(Springmann et al., 2018). Great Britain, with its temperate climate and
high-level of agricultural investment, has the potential to lead sustain-
able intensification efforts and reduce reliance on food imports (Pretty,
2018). However, a lack of coherent agricultural policy, coupled with
restrictive regulatory frameworks, has hindered the translation of sci-
entific advancements into practical farming innovations (Firbank et al.,
2013). Recent policies have taken varied approaches, with some
incentivising agricultural extensification through land set-aside and
low-intensity farming, while others focus on protecting and restoring
natural habitats (Coe and Finlay, 2020; Coe, 2024). However, these
policies have often lacked integrated spatial targeting that considers
regional variations in landscape characteristics and agricultural poten-
tial. While beneficial for biodiversity in specific contexts, a more stra-
tegic approach may be needed that optimally combines intensive and
extensive practices across different regions to maximize both food se-
curity and environmental sustainability at a national scale.

Agricultural intensification is a major driver of nitrogen (N) and
phosphorus (P) losses to freshwater systems, contributing to biodiversity
loss, and declining water quality (Withers et al., 2014). Both
land-sharing and land-sparing approaches have been proposed as po-
tential solutions, yet recent landscape-scale studies have challenged the
binary nature of the sharing-sparing framework, suggesting that neither
approach applied uniformly is optimal. There is a lack of robust,
spatially explicit assessments that quantify how these approaches
impact nutrient losses and food production. Finch et al. (2021) evalu-
ated spatially explicit sharing-sparing scenarios across contrasting re-
gions of lowland England, examining multiple environmental outcomes
including nutrient pollution, bird populations, and global warming po-
tential. Their analysis revealed that environmental outcomes depended
critically on the spatial arrangement of spared land, the types of habitats
promoted, and whether strategies combined elements of both sharing
and sparing approaches. They found that “mixed scenarios which
combine elements of both sharing and sparing" often outperformed pure
approaches, and that optimal strategies varied between regions with
different landscape characteristics. This work, alongside similar studies
(Law and Wilson, 2015; Verhagen et al., 2018), has established that
blanket application of either sharing or sparing approaches across
diverse landscapes is suboptimal, and that the most effective strategies
require spatially differentiated mosaics of land-use approaches. This
body of evidence points to a critical gap in our understanding: whilst we
know that spatially optimized combinations of sharing and sparing
strategies are likely superior to uniform approaches, we lack compre-
hensive assessments of how such strategies might be implemented to
simultaneously optimise multiple objectives.

The British government has set ambitious targets to enhance do-
mestic food self-sufficiency, aiming to increase production by 30 %
while halving the environmental impact of farming by 2050 (DEFRA,
2020). The land-sharing versus land-sparing debate is particularly
relevant in this context. Recent assessments indicate that land-sparing
approaches, which concentrate production on a smaller footprint, can
improve food output per unit of land while potentially reducing green-
house gas emissions and nutrient runoff, provided that intensification is
coupled with improved fertilizer management and mitigation strategies.
However, empirical data are lacking to support or reject this hypothesis,
particularly for large spatial scale, highlighting the need for compre-
hensive modelling approaches to address this knowledge gap (Balmford
et al., 2018). Land-sparing strategies have been shown to be generally
better for beneficial insects, with Redhead et al. (2020). However, the
benefit of these ecosystem services providers to crop production will,
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again, be dependent on the spatial integration of seminatural habitat in
agricultural landscapes.

Land-sharing strategies, which distribute lower-intensity farming
across larger areas, may limit the efficiency of nutrient use, potentially
leading to cumulative environmental trade-offs (Koning et al., 2017).
However, proponents of land-sharing argue that these approaches can
deliver important benefits through ecological intensification, where
biodiversity-supporting practices enhance ecosystem services such as
pollination, pest control, and soil health, potentially maintaining or
even increasing yields (Garibaldi et al., 2019; Tamburini et al., 2020).
Land-sharing strategies may also provide greater landscape connectivity
for wildlife and more resilient agricultural systems that are less
vulnerable to environmental shocks (Kremen and Merenlender, 2018).
The key question remains: how can land-sharing and land-sparing ap-
proaches be optimally combined and spatially targeted across Great
Britain to simultaneously improve agricultural productivity while
reducing nutrient pollution at a national scale? Given the variation in
landscape and environment, evidence from Finch et al. (2021) support
the expectation that the optimal combination of land-use strategies will
vary spatially, requiring place-based approaches rather than uniform
national policies. While Finch et al. (2021) provided insights using
statistical analysis and the InVEST framework at landscape scale, their
approach treated spatial units as largely independent and relied on
simplified nutrient delivery ratios. To advance our understanding of
these complex trade-offs, we need process-based modelling approaches
that can capture the dynamic interactions between land-use changes and
local management practices, account for hydrological connectivity be-
tween regions, and simulate how outcomes in one area depend on the
characteristics and changes occurring in surrounding regions.

The Long-Term Large Scale (LTLS) integrated modelling framework
provides such a tool (Bell et al., 2021). The model dynamically couples
terrestrial  (semi-natural and agricultural), hydrological and
hydro-chemical process-based models to predict agricultural production
and nutrient losses to water across Great Britain. The model is spatially
explicit with outcomes from the various land use types aggregated to 5
km x 5 km scale. Importantly, this means that larger scale implications
of regional land use change are predicted as opposed to trade-offs being
studied in spatially isolated study regions. The model has been previ-
ously used to predict historic nutrient cycling of two centuries (Long--
Term) across the whole of Great Britain (Large-Scale) and more recently
has been used to predict the impact of climate change (Missault et al.,
2025).

In this study, we use the LTLS framework to evaluate the impacts of
land-sharing and land-sparing scenarios in terms of nutrient pollution
outcomes and agricultural productivity across Great Britain. Our sce-
narios are built from the national land cover strategies developed by
Redhead et al. (2020), which define a series of 12 plausible changes to
land use (broadly equating to increases in arable land cover 8 %-59 %
compared with current land use or increases in 4 %29 % in seminatural
landscapes compared with current land use). To align these strategies
with concepts of land-sharing and land-sparing we simulate more
intensive management of arable in scenarios where arable land is
diminished and less intensive management where arable land is
increased. An important consideration in our analysis is whether such
strategies should be applied uniformly across Great Britain or differen-
tially. We therefore considered scenarios with combinations of different
strategies applied to each of the 11 regions in Great Britain, in total
resulting in over 1.79 x 102 different scenarios.

We present an approach which can be used to compare various land
use and management strategies to identify a set of plausible options that
reduce environmental nutrient losses whilst also improving farming
productivity.
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2. Methods
2.1. Study area

This study focuses on the International Territorial Level (ITL) regions
C through M of Great Britain as spatial units of analysis, representing a
gradient of agricultural systems, soil types, and climatic conditions
across England, Scotland, and Wales (Fig. 1). In so doing we captured the
regional scale variation in existing land use and environmental condi-
tions that determine the response to alternative scenarios and the opti-
mization of land sparing/sharing combinations. These regions include
the predominantly arable landscapes of Eastern England (ITL E, F and
H), characterized by intensive farming practices, with intensive cereal,
oilseed, and root crop production on the fertile soils of East Anglia and
Lincolnshire (Hurford et al., 2021). Northeast England (ITL C) exhibits a
diverse agricultural landscape that integrates both arable farming and
livestock systems (Hey, 2014; Williams et al., 2010). Northwest England
(ITL D) is characterized by its focus on pastoral agriculture with sig-
nificant dairy production in Cheshire and Lancashire's lowlands,
alongside extensive sheep grazing in the Lake District and Cumbrian
uplands (Ryschawy et al., 2017). The West midlands (ITL G) and East of
England (H) represent a transition zone between the arable dominated
east and the more pastoral west, with mixed farming systems increas-
ingly common (Ilbery and Watts, 2004). Southwest (ITL K) and South-
east (ITL J) are characterized by diverse agricultural patterns, ranging
from intensive agriculture, improved grasslands, and protected areas
(Broomfield et al., 2025). Wales (region L) and parts of Scotland (region
M) are characterized by extensive livestock farming, particularly sheep
and cattle grazing on permanent pasture and rough grazing land (Clark
and Thompson, 2018; Ross et al., 2016).
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4°W  2°W 0¢

Fig. 1. International Territorial Level Regions C to M of Great Britain. The
regions are C=Northeast; D = North West; E = Yorkshire and The Humber; F =
East Midlands; G = West Midlands; H = East; I = London; J = South East;
K=South West; L. = Wales; M = Scotland.
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2.2. Overview of LTLS modelling framework

We used the Long-Term Large Scale (LTLS) integrated modelling
framework (Bell et al., 2021) to model terrestrial and freshwater
macronutrient loads, and production across GB. The LTLS framework
includes terrestrial soil-vegetation sub-models for semi-natural ecosys-
tems (N14CP (Davies et al., 2016):) and agricultural landscapes (Roth-
amsted Landscape Model, (RLM) (Coleman et al., 2017):). These
sub-models provide spatially distributed estimates of soil macronutrient
storage and runoff, and in the case of RLM, crop production and yield.

The framework includes a dynamic freshwater hydrological model
(LTLS-FM (Bell et al., 2021):), which receives water and nutrient outputs
from the terrestrial sub-models as inputs. It then routes water and nu-
trients through the simulated river network to the sea (Fig. 2).

The framework operates on a 5 km x 5 km grid, resulting in 244 x
144 grid cells that cover the GB landmass. Each grid cell is comprised of
one or more land use categories (Arable, Bog Broadleaf, Conifer, Fen/
Marsh/Swamp, Freshwater, Heath, Improved grass, Rock, Rough graz-
ing, and/or Urban) defined by the UKCEH Land Cover Map 2015;
Rowland et al. (2017). Depending on the defined land uses the
semi-natural (N14CP) and/or agriculture (RLM) components are run
and the outputs combined and transferred to the freshwater model. The
model driven by grid-specific weather variables including temperature,
precipitation and potential evapotranspiration (PET). Atmospheric ni-
trogen deposition input is directly integrated into the terrestrial models.
Agricultural management data for the RLM are derived from national
estimates (see Section 2.2.2). Population-based nutrients estimates,
derived from sewage works and septic tanks (Naden et al., 2016), are
input to river grid cells. Missault et al. (2025) validated the LTLS
framework estimates of yield against national statistics, and river flow
and macronutrient concentrations and loads against measured values
from monitoring sites.

2.2.1. The N14CP terrestrial sub-model

The N14CP sub-model is used to estimate macronutrient dynamics in
semi-natural landscapes (Davies et al., 2016). The model differentiates
heath, rough grazing, coniferous woodland, deciduous woodland,
fen/marsh/swamp, and bog. For each land cover class, N14CP has a
single conceptual soil layer with three organic pools, with each pool
having a different mineralisation rate. Decaying plant material is
incorporated into each pool. The key processes influencing the fate of
soil nutrients are representations of plant growth; atmospheric deposi-
tion; nitrogen fixation; weathering, soil sorption and desorption of
phosphorus; decomposition of decaying plant material and incorpora-
tion of nutrients into soil organic matter; and mineralisation of soil
organic matter with the release of nitrogen and phosphorus. Rate co-
efficients for these processes are from Bell et al. (2021). Any unbound
nutrient in soil water may be released to surface runoff and drainage
according to hydrological conditions. The model does not explicitly
include soil hydrology but generates amounts of nutrients available for
removal by water. Water volumes of surface runoff and drainage are
estimated using the (separate) probability distributed model (PDM
(Moore, 2007);). N14CP runs at a 3-monthly time step starting Januar-
y-March with outputs disaggregated to a daily timestep to generate
inputs to the river component of LTLS (Section 2.1.4). The 3-monthly
nutrient outputs are disaggregated to a daily timestep for association
with daily runoff and drainage generated by the PDM.

2.2.2. Rothamsted Landscape Model (RLM) terrestrial sub-model

The RLM simulates soil processes (including soil organic matter, soil
nutrients and water dynamics), livestock production, crop growth and
crop yields (wheat, barley, oats, oilseed rape, field beans, sugar beet,
forage maize, potato, and peas), and improved grass on a daily timestep.
The assumes the soil is comprised of three layers. The soil properties
including texture (percent clay, silt and sand), soil carbon (%), bulk
density (g cm’3), soil water (%) and nutrient status (P, kg ha’l, N03-N,
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Fig. 2. Schematic of the LTLS framework.

kg ha~! and NH4-N, kg ha™?) are initialised at the start of the simulation,
with dynamic properties (e.g. soil water and nutrient status) updated
each day. The crop model component uses daily weather variables (min/
max temperature °C, precipitation mm, radiation kj m_z, vapour pres-
sure kPa, wind m s™!) to predict canopy development and resource
accumulation. As well as crop yields, nutrient losses through drainage,
runoff and emissions are quantified. The model components are based
on well-established existing models as described in (Coleman et al.,
2017) and previously validated by (Coleman et al., 2017; Hassall et al.,
2022; Missault et al., 2025).

Management inputs for areas designated as arable comprise typical
crop sequences, sowing dates, and fertilizer application (see supple-
mentary methods). We used the method by Sharp et al. (2021) to
generate typical sequences of arable cropping according to ITL and soil
texture, and associated these with fertilizer programmes based on the
British Survey of Fertilizer Practice. For more details see SI.

No comprehensive data on sowing dates are available and so we
consulted with expert agronomists and elicited the earliest, most likely,
and latest sowing dates for the range of crops modelled. We fitted simple
triangle distributions to these data. Then having determined the crop
with the sequence generator, the model samples from these distributions
to assign a realistic sowing date to each crop.

For fields designated as permanent grassland management inputs
comprise fertilizer applied (N kg ha ! and P kg ha™!), animal type and
stocking rates (number ha™'). The typical values for each of these var-
iables change across the UK. We considered dairy, beef, and sheep
livestock systems. The spatial variation in stocking rates was taken from
Redhead et al. (2020) and rescaled to update the numbers so that they
aligned with the numbers in the 2020 June survey (DEFRA, 2020).

2.3. Scenarios

We used a scenario-based approach to investigate the impacts of
various combinations of land sparing and land sharing across GB. We
based our scenarios on a subset of the national land cover strategies
developed by Redhead et al. (2020). These 13 plausible land cover

strategies (including business as usual, BAU) describe the potential
changes in the area and distribution of farmed land. The BAU strategy is
the baseline of current land use patterns. Complex changes in the areas
of arable, improved grazing, and semi-natural rough grazing land are
incorporated to produce six strategies which broadly equate to increases
in arable land of 8, 17, 26, 36, 47, and 59 % compared with BAU (we
align these with concepts of land sharing), and six strategies which
broadly equate to increases of 4, 8, 13, 18, 23, and 29 % in semi-natural
land (we align these with concepts of land sparing) (Fig. 3). From here
on, we refer to these land use change strategies are denoted as either AR
or SN (for arable or semi-natural land expansion respectively), followed
by the % change. Changes in other land use categories (e.g. "Broadleaf",
“Conifer", “Fen marsh", “Freshwater", and “Urban") are negligible except
for “Heath" which is slightly changed across scenarios in Scotland (ILT
M) to allow for the desired changes to arable and semi-natural land (see
Fig. 3).

In this study we are not concerned with the application of each
strategy as a blanket approach across GB, but instead apply them at the
ITL regional scale, systematically combining the strategies within each
region to generate 1.79 trillion scenarios (i.e., all combinations of 13
land use strategies and 11 ITL regions). However, that set of scenarios
includes combinations where a single strategy is applied uniformly
across all ITLs, and these provide an important reference point to
determine whether spatially targeted combinations can outperform
blanket approaches.

In addition to land use change, land sparing/sharing also encom-
passes changes in agricultural management. To simulate the more
intensive management associated with land-sparing scenarios (the SN
scenarios in Fig. 3), we constrained the distribution of crop sowing dates
to be earlier and fertilizer rates were constrained to more closely follow
recommendations for best practice (AHDB, 2023). Management for land
sharing scenarios conversely were associated with a distribution where
rates were reduced by 5 %. Livestock stocking rates (number of head/ha)
were maintained across all scenarios meaning that absolute numbers of
livestock vary with varying grassland area.
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Fig. 3. Land use (LU) changes across International Territorial Level regions under the 13 different strategies. The bars represent the percentage distribution of LU

types for each scenario.
2.4. Multiple objective optimization

We considered four key metrics: (1) calorie production from live-
stock, (2) calorie production from crops, (3) terrestrial losses of nitrate
nitrogen (NO3-N) to fresh water, and (4) terrestrial losses of total dis-
solved phosphorus (TDP) to fresh water. We calculated the average
annual value for each metric at GB scale for all scenarios. We compared
each scenario to BAU and filtered to select only those scenarios that
outperform the BAU scenario for all four objectives (higher calorie
production from both crops and livestock and lower N and P losses to
fresh water). This set of viable solutions was further reduced using mul-
tiple objective optimizations to determine Pareto optimal fronts be-
tween multiple objectives (our four key metrics). A scenario is defined as
Pareto optimal solution if no other scenario exists that improves on all
four metrics. The optimized Pareto-optimal solutions describe the syn-
ergies and trade-offs between production and pollution metrics. In our
case the control variables were the land use strategies applied in each of
the 11 ITL regions. Therefore, we have 11 control variables each of
which can (potentially) take one of the 13 states (i.e. the 13 land use
strategies described in Section 2.3 and Fig. 3) giving a total of 13!
possible scenarios. We used a non-dominated sorting algorithm to
identify the optimal solutions. A point is said to be dominated by another
if it is worse for every single objective (Todman et al., 2019). We refer to
the subset of scenarios selected by the non-dominated sorting algorithm
as the optimal solution set.

2.5. Canonical correlation analysis

To identify which of the control variables (the strategy applied in
each of the 11 ITL regions) were most strongly correlated with the
variation in the optimal solution set we undertook a Canonical Corre-
lation Analysis (CCA) using the MATLAB Software version 9.12.0 (The
MathWorks Inc, 2022). The dataset consisted of the 11 regional vari-
ables (X1-X11) as predictor variables (X), and the four key agricultural
metrics (Y12-Y15) as response variables (Y). The predictor variables
were ranked such that the land sharing strategies have low values and
land sparing strategies have high values, with AR59 ranked as number 1,
and SN29 ranked as 13. Prior to analysis, all response variables were
standardized using z-score normalization to address scale differences.

Canonical Correlation Analysis identifies linear combinations

(canonical variates) of variables within each set that maximize corre-
lation between the two sets. The canonical correlations (r) were derived,
representing the strength of association between the canonical variates.
Canonical loadings were obtained by computing the correlation be-
tween the original variables (X and Y) and the corresponding canonical
variates (U, V). Canonical loadings were derived to interpret the
contribution of each original variable to the canonical variates:

R, =corr(Xq, U)
Ry =corr(Yyq, V)

where R, and R, represent the correlations between the original vari-
ables and their respective canonical variates. The statistical significance
of the canonical correlations was assessed using Wilks' Lambda
(Krzanowski, 2000).

2.6. Clustering

To identify common combinations of management strategies in our
optimal solution set, the control variables were further analysed using a
cluster analysis. The cluster analysis used a minimum variance, hierar-
chical clustering approach following the Ward (1963) method, with the
number of clusters informed from the Dendrogram. This was imple-
mented in MATLAB version: 9.12.0 using the standardized Euclidean
distance (The MathWorks Inc, 2022). Hierarchical clustering was
selected over alternative approaches such as k-means because it does not
require a priori specification of the number of clusters. Instead, the
dendrogram allows us to explore the natural grouping structure within
our data and make an informed decision about the optimal number of
clusters post-hoc. This is particularly valuable for our analysis, where
the Pareto-optimal solutions represent a continuum of trade-offs be-
tween objectives, and hierarchical clustering preserves the nested
structure of these relationships, providing insight into how solutions
relate at multiple scales of similarity.

3. Results
3.1. Impacts of adopting the Ar59 and SN29 across GB scale

Figs. 4 and 5 show the spatial distribution of changes in agricultural
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and environmental metrics when transitioning at the national scale from
Business-As-Usual (BAU) to either extreme of land sparing (Ar59) or
land sharing (SN29) across all ITL regions.

In the Ar59 national land sharing scenario, livestock calorie pro-
duction decreases, particularly in Southwest England (region K), the
West Midlands (region G), Northwest England (region D), and parts of
Wales (region L). These regions traditionally support intensive livestock
farming. Converting improved grassland to arable land substantially
reduces livestock carrying capacity. TDP increases throughout these

same regions, reflecting the increase in phosphorus fertilizer use.
Overall, this national Ar59 scenario shifts production towards arable
systems, improving crop output locally but at the cost of higher nutrient
losses and reduced livestock capacity. Changes in crop calories are
spatially heterogeneous with some localised coherent increases in crop
production where extensive improved grassland is converted to arable
(Fig. 4a and b). More spatially variable responses arise where land
conversion is patchy or influenced by stochastic variation in cropping
between scenarios.
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Nitrate losses to fresh water increase most strongly in the Midlands
(region G) and Northwest England (region D), corresponding to
grassland-to-arable conversion (Fig. 5b). In contrast, reductions in ni-
trate losses occur in areas already dominated by arable due to the
reduced i fertilizer intensity. Together, these patterns indicate that
under national-scale land sparing, environmental pressures become
spatially concentrated in arable expansion zones.

In the SN29 national land sharing scenario, reductions in livestock
calorie production are more pronounced and spatially concentrated in
Wales (region L), Northwest England (region D), the West Midlands
(region G) and Southwest England (region K). Decreases in phosphorus

losses align with reductions in arable and livestock output, reflecting
reduced fertilizer use as arable land and improved grassland transition
to improved grassland or rough grazing. Crop calorie production de-
clines across England and parts of Scotland and Wales due to land use
change, with only localised increases where arable land is more inten-
sively managed or due to stochastic cropping variation between sce-
narios. Overall, the comprehensive land sharing scenario promotes
environmental benefits at the expense of national food production, with
particularly strong impacts in livestock-dominated regions.
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3.2. Pareto-optimal solutions

Out of the 13'! scenarios tested, 24,412 scenarios improved on all
metrics compared with business as usual (BAU) at the scale of Great
Britain and formed part of the Pareto-optimal solution set.

Fig. 6 shows how frequently each land use strategy occurs in the
Pareto-optimal solutions for each of the ITL regions (Fig. 1). The skew
towards the extremes of the horizontal axis reflects the overall weighting
towards land sparing (right) or land sharing (left) strategies. In regions
C, D and E, the land sharing SN23 strategy is most often selected as the
Pareto-optimal solution. In those regions, this strategy entails an in-
crease in seminatural land, primarily rough grazing, by +5.71 % to
+9.08 %, at the expense of improved grassland (—4.14 % to —7.56 %)
and arable (—1.56 % to —7.56 %)(Fig. 3). These regions therefore favour
moderate extensification that enhances seminatural cover while
reducing intensive land uses.

For regions F and G, the most prevalent solution is SN4, requiring
only marginal increases in seminatural land (+0.11 and + 0.36 %).
Conversely, for region H, the most prevalent solution is AR8 repre-
senting a small shift towards extensification of arable. Together, these
regions tend towards modest adjustments rather than strong directional
change.

Regions I and J exhibit a more balanced distribution of Pareto-
optimal solutions, with region I showing an even mix across scenarios,
suggesting flexibility in how production and environmental goals can be
met. In region K, dominant solutions SN8 and SN18 lead to increases in
both improved grassland (+1.91 % and +2.02 %) and rough grazing
lands (+1.82 % and +3.91 %). This indicates that moderate land sharing
can achieve multi-metric improvements without major land
reallocation.

Region L is characterized by arable expansion, with Ar26 the most
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predominant solution, followed by Ar17, leading to increases in arable
land (+7.22 %, and +3.33 %)at the expense of grassland(-7.65 and
—3.29). Similarly, in region M, arable expansion dominates, with Ar17
increasing by +4.25 % and replacing improved grassland (—1.24 %),
rough grazing (—1.48 %) and Heathland (—1.1 %). These regions
therefore favour land-sparing trajectories focused on arable expansion.

Overall, the Pareto-optimal set reveals clear regional differentiation:
regions in northern England lean towards land sharing and increased
seminatural cover, whereas Scotland and Wales favour land sparing and
arable intensification. This spatial contrast underscores the influence of
existing land use and biophysical conditions on optimal trade-offs be-
tween production and environmental outcomes.

3.3. Canonical correlation analysis

Canonical correlation analysis identified four significant canonical
dimensions (p < 0.001), with the first two dimensions explaining 62.5 %
of the variance in the response variables given the predictors (Fig. 7, see
also Fig. S2).

The first canonical dimension showed a strong correlation (r = 0.98).
This dimension was characterized by strong negative loadings of pre-
dictor variables ITL D (—0.87), ITL E (—0.75), ITL F (-0.75), and ITL G
(—0.64), contrasted against strong positive loadings across all response
variables (ranging from 0.65 to 0.75). The observed negative correla-
tions stem from the scenario ranking, where land sharing scenarios are
assigned lower numbers (e.g., Ar59 is scenario 1) and land sparing
scenarios are assigned higher numbers (e.g., SN29 is scenario 13). The
negative loadings indicate that solutions associated with land sharing
(lower-numbered scenarios) are linked to higher crop calorie production
and increased nutrient losses.

The second canonical dimension (r = 0.91) revealed a more nuanced
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Fig. 6. The frequency of Pareto-optimal solutions for

ifferent land-use scenarios across multiple ITL regions. See Fig. S1 information for this plot on the log scale.
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relationship structure, primarily influenced by predictors ITL K (0.73)
and ITL J (0.53). This dimension, showed positive associations with
livestock calories (0.35) and arable calories (0.41) but negative associ-
ations with phosphate leaching (—0.29). This pattern suggests that, in
these regions, moderate increases in production can coincide with
reduced phosphorus losses, indicating scope for synergistic outcomes
rather than strict trade-offs.

Together, the first two canonical dimensions highlight distinct
spatial patterns in the relationships between regional land use strategies
and system outcomes. The first reflects a production—environment trade-
off under land sharing, and the second reveals the potential for pro-
duction gains to be compatible with environmental improvements.

Redundancy analysis confirmed that response variables are better
explained by the predictors than vice versa, with the model capturing
substantial shared variance between the two sets. This indicates that
regional land-use strategies account for a substantial proportion of the
variation in system outcomes.

3.4. Cluster analysis

We identified three clusters of scenarios within the Pareto-optimal
solution set (Fig. S3). Each cluster represents a collection of scenarios
with similar distribution of land use change strategies across the ITL
regions.

Fig. 8 shows the trade-off frontiers between food production (crop
and livestock calories) and nutrient losses (TDP and NO3-N) across the
three clusters. We refer to these as Cluster 1, Cluster 2 and Cluster 3.
Cluster 1 maximized food production achieving the highest crop and
livestock calorie production, but at the cost of increased nutrient losses
relative to other solutions. Cluster 3, in contrast, showed lower TDP and
NOs-N values, indicating the best environmental performance (note axis

for these variables are presented reversed so that more beneficial out-
comes are further from the origin). However, this came at the cost of
lower calorie production. Cluster 2 occupied intermediate positions
balancing environmental protection and agricultural productivity.
Together, these three clusters delineate clear trade-offs between pro-
duction and nutrient losses.

Fig. 9 displays the frequency of Pareto-optimal solutions across six
ITL regions (D, E, F, G, J, and K) within the three hierarchical clusters.
We focus on these six regions as the CCA identified them as important in
explaining variation in the outcomes.

The high production cluster (Cluster 1) strongly favours the SN23
strategy in region D. Regions D and F have a bimodal distribution with
high frequencies of AR8, BAU and SN23 solutions. Notably AR59
dominates in region J within this cluster evidencing a more extreme shift
towards arable expansion in this region (Fig. 2). Overall, Cluster 1 re-
flects a high-intensity land-use pattern prioritizing production gains,
particularly in south-east England.

The moderate-production cluster (Cluster 2) favours a mild arable
expansion strategy (Ar8) in regions D-F. This suggests small shifts to-
wards land sharing can achieve higher caloric output while still
improving environmental metrics. Cluster 2 configurations appear to
strike a balance enhancing both food production and environmental
performance, though with greater emphasis on productivity (Fig. 8).
This cluster therefore represents a transitional, moderate-intensity
pathway with relatively efficient trade-offs.

Cluster 3 shows a dominance of SN23 across regions D, E and F, with
SN4, SN8 and SN18 also appearing prominently in G and K. Land-
sharing approaches are almost absent in this cluster for the ITL re-
gions shown. These patterns indicate a strong preference for land-
sparing strategies under environmentally focused solutions.

Overall, the cluster analysis highlights three distinct solution
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spaces—high-production,

moderate-production,

and high-

environmental-performance—each associated with specific regional
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tendencies and land-use strategies. These clusters demonstrate that
regional configuration strongly shapes the balance between agricultural
output and environmental quality within the Pareto-optimal space.

4. Discussion

Our analysis offers a novel, spatially explicit assessment of changes
in land use and the intensity of crop production, and the associated
trade-offs between food production and nutrient losses to freshwater at a
national scale.

The predominance of land-sparing scenarios (SN) in our Pareto-
optimal solutions, particularly in the environmentally optimal Cluster
3, suggests that strategic semi-natural habitat expansion has an impor-
tant role to play in reducing the environmental footprint of agriculture
whilst still maintaining or increasing food production. This finding
aligns with Balmford et al. (2012) and Lamb et al. (2016) who demon-
strated that optimizing agricultural intensity within appropriate land-
scapes while dedicating others entirely to ecological restoration can
advance both conservation and production objectives. However, criti-
cally none of our optimal solutions comprised SN strategies alone, all
had some component of agricultural extensification (i.e. at least one ITL
was allocated an AR strategy in all optimal solutions). This finding aligns
with the recent global synthesis by Augustiny et al. (2025), who found
that 52 % of cases supported context-specific combinations of both
strategies rather than pure approaches, with only 41 % favouring pure
land sparing and 7 % favouring pure land sharing exclusively. Recent
UK-specific evidence aligns with this. Collas et al. (2022) found that land
sparing achieved identical biodiversity and climate outcomes at just 48
% of the cost of land sharing approaches. This stark cost-effectiveness
differential reveals a critical policy misalignment, as most of current
UK conservation funds are allocated to land sharing strategies. Our re-
sults, showing that optimal solutions require spatially targeted combi-
nations of both approaches, suggest that policy reform toward more
flexible, regionally differentiated strategies could deliver both greater
environmental benefits and better value for public investment.

Our regional analysis reveals distinct optimization patterns across
ITL regions that reflect underlying agricultural systems. The dominance
of SN23 in Northern England (regions C, D, E) aligns with these regions'
mixed farming systems and available marginal land for conversion. In
contrast, the prevalence of AR8 in Eastern England (region H) reflects
the highly productive arable landscapes where intensification offers
greater returns. Wales (region L) showing predominantly arable
expansion (Ar26, Arl7) may seem counterintuitive given its traditional
pastoral focus, but this reflects optimization opportunities where limited
arable land can be highly productive. These regional patterns support
Berry et al. (2022)'s quantitative demonstration that between-county
variation significantly exceeds within-county variation in English and
Welsh agriculture, providing statistical evidence against uniform policy
approaches.

The comparison between the BAU scenario and the Pareto-optimal
solutions reveals improvements in both agricultural productivity and
environmental outcomes, with increases of up to 9.7 % in livestock
calories and 5.2 % in crop calories, while simultaneously reducing losses
of TDP by up to 6.9 % and NO3-N by 11.9 %. Although our simulations
demonstrate measurable improvements in environmental and produc-
tion outcomes, these gains represent only incremental progress toward
the transformative changes envisioned in frameworks such as the
Innovation Agenda for UK Agriculture (APPG, 2025).

Our simulation results align with and extend previous studies
examining nutrient losses under different land management strategies.
The 11.9 % reduction in nitrate losses we observed in Pareto-optimal
scenarios is comparable to findings from other European studies. Wyn-
ants et al. (2024), working with agricultural catchments in Europe, re-
ported that combinations of management interventions including
reduced fertilizer application (20 %) and cover crops could achieve
16-26 % reductions in inorganic nitrogen loads under certain climate
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scenarios. Similarly, a basin-scale modelling of Baltic Sea catchments
found that plausible stakeholder-approved measures could reduce ni-
trogen loads by up to about 9 % (Capell et al., 2021). Notably, Karner
et al. (2021) demonstrated through a multi-objective land-use optimi-
zation in Austria that relatively small sacrifices in agricultural output
can significantly curb nitrate leaching. In their stochastic optimization, a
mere ~1 % reduction in net economic benefit led to an 18-19 %
decrease in nitrate leaching. This illustrates the non-linear gains possible
with more intensive optimization. Our 11.9 % reduction represents a
conservative but achievable target that maintains agricultural produc-
tivity gains, positioning our findings within the established range of
nutrient reduction potential.

The 6.9 % reduction in TDP we report also corresponds well with
regional studies examining phosphorus dynamics. For example, Collins
et al. (2016) estimated that ambitious but realistic uptake of on-farm
mitigation measures in England and Wales, could yield phosphorus
load reductions of up to 15 %, depending on soil characteristics, legacy
phosphorus, and management intensity. Our TDP reductions are
particularly notable given the tendency of phosphorus to be fixed in soil
(Mahdi et al., 2012), which makes phosphorus mobilization highly
dependent on soil erosion and surface runoff patterns rather than simple
leaching processes.

Regarding agricultural productivity, our findings of 5.2 % increase in
crop calories and 9.7 % increase in livestock calories under optimal land
allocation strategies compare favourably with meta-analyses of agri-
cultural intensification effects. Wu and Ma (2015) found that integrated
nutrient management strategies enhance crop yields by 8-150 %
compared with conventional practices, though these figures include
more extreme intensification scenarios than we modelled. Our results
reflect the gains achievable within the limits of current technologies and
management practices, rather than speculative future improvements.

Achieving the ambitious dual targets of expanding agricultural
output by 30 % by 2050 whilst halving its environmental footprint will
necessitate comprehensive systems-level approaches beyond land allo-
cation strategies alone. Rockstrom et al. (2017) emphasize that agri-
culture must integrate dual and interdependent goals of using
sustainable practices to meet rising human needs while contributing to
resilience and sustainability of landscapes, the biosphere, and the Earth
system. Similarly, Pretty (2018) demonstrates that system redesign is
essential to deliver optimum outcomes as ecological and economic
conditions change, requiring the integration of multiple agricultural
processes rather than singular interventions. Our findings echo this
assessment, demonstrating that merely shuffling land-use allocations is
insufficient to meet these ambitious goals. Instead, we must complement
optimized land-use strategies with innovative agricultural solutions that
can improve both productivity and environmental performance. Our
analysis constrains intensified yields to what can be achieved with
existing technologies and current crop varieties. Future advances in crop
breeding could substantially raise this ceiling, with developments in
nitrogen-use efficiency, drought tolerance, and photosynthetic capacity
potentially amplifying the land-sparing benefits observed in our study
(Long et al., 2015; Ray et al., 2013; Walsh et al., 2022). Recent advances
demonstrate significant potential for improvements in nitrogen man-
agement, with studies showing that nitrogen losses can be minimized by
15-30 % through adopting improved agronomic approaches such as
optimal nitrogen dosage, precision agriculture, intercropping of legume
and non-legume crops, and improved plant populations (Anas et al.,
2020; Xu et al., 2012) Further changes to agricultural practices such as
the use of non-leguminous cover crops (Macdonald et al., 2005) can also
significantly impact nutrient dynamics enabling greater while requiring
fewer external inputs. The integration of precision agriculture technol-
ogies offers additional pathways for improvement, with studies
demonstrating 20-30 % yield increases through optimized input use and
resource efficiency (Chen, 2025). However, adoption of these technol-
ogies faces significant barriers including high upfront costs, lack of
technical literacy, and inadequate infrastructure, particularly for small
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and medium-sized farms (Paustian and Theuvsen, 2017; Pierpaoli et al.,
2013). Overcoming these barriers requires coordinated policy support,
including financial incentives, training programs, and improved rural
infrastructure (Kernecker et al., 2020). The process-based modelling
included in the LTLS framework means that it has the functionality to
incorporate these innovations in future scenario testing to assess their
potential contribution.

A critical insight from our analysis is that improving production
while reducing pollution requires targeted interventions. Our canonical
correlation analysis identified regions D, E, F, and G as having the
strongest influence on national-scale outcomes, suggesting these regions
should be priority targets for policy interventions. Similarly, ITL K and J
showed differential associations with production versus pollution met-
rics, indicating potential for specialized regional strategies. This
regional heterogeneity in response to land use change aligns with find-
ings from (Law and Wilson, 2015), who emphasized that the effective-
ness of land-sparing versus land-sharing strategies is highly
context-dependent and varies with landscape characteristics. This
conclusion is also supported by Finch et al. (2021), who demonstrated
that environmental outcomes depended on the spatial arrangement of
spared land, the types of natural habitat promoted, and regional char-
acteristics. The importance of regional targeting is further supported by
Karner et al. (2021) who found climate conditions fundamentally alter
trade-off structures, with dry regions prioritizing water-economy
trade-offs while wet regions emphasize nutrient-economy relation-
ships. Tscharntke et al. (2012) argue, landscape context strongly medi-
ates the effectiveness of different land-use strategies, suggesting that
policies should be tailored to regional conditions rather than applied
uniformly. Our analysis provides empirical support for this perspective,
demonstrating that strategic land-use changes in specific regions can
yield benefits that significantly outweigh their proportional land area
contribution.

While our study applies the land-sharing versus land-sparing
framework as a foundation for analysis, our spatially targeted optimi-
zation approach demonstrates the value of moving beyond binary
thinking toward more nuanced, regionally differentiated solutions
across the landscape. This evolution reflects broader trends in the
literature, with Grass et al. (2019) proposing “connectivity landscapes"
that combine both strategies within spatially connected mosaics. Feniuk
et al. (2019) proposed a “three-compartment model", which is an
advanced approach within the land sparing-sharing framework, that
aims to balance agricultural production with biodiversity conservation.
This model divides land into three distinct compartments: high-yield
agriculture, low-yield agriculture, and natural habitats. Our findings
can be interpreted within this framework, but we argue that neither the
land-sharing or sparing framework nor the three-compartment model
acknowledge the true spectrum of intensities under which our land-
scapes are managed. Defining discrete compartments creates an artifi-
cial landscape that fails to reflect the underlying complexity and
continuity of real-world land management.

Our analysis focuses primarily on nutrient pollution and caloric
production, without explicitly considering biodiversity outcomes. While
land sparing may benefit certain species by preserving habitat patches,
Tscharntke et al. (2012) argue that many species depend on heteroge-
neous agricultural landscapes rather than completely separated natural
and agricultural areas. Where agricultural production is dependent on
ecosystem services provided by biodiversity (e.g. crop pollination) at
least some level of spatial integration of natural and agricultural habitats
is essential.

Model validation and accuracy are critical considerations for inter-
preting our results. The LTLS framework builds on established soil-
vegetation models (N14CP for semi-natural systems and RLM for agri-
cultural landscapes), which have been extensively validated in previous
studies (Bell et al., 2021; Missault et al., 2025; Coleman et al., 2017;
Hassall et al., 2022). Coleman et al. (2017) demonstrated strong model
performance for wheat and grass yields over a 44-year period, with
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RMSE of 22.98 % and 34.35 % for standard fertilizer treatments. Hassall
et al. (2022) evaluated the yields of other key crops against regional
(spring barley, winter barley and oilseed rape) and national averages
(field beans and maize) and found that observed means fell within the
modelled interannual variation. Similarly, Missault et al. (2025) used
regional and national statistics to validate crops yields. For major crop
yields, they reported median percentage errors ranging from 1 % (po-
tato) to 34 % (oilseed rape) (overall average across crops 18 %). For
nutrient losses, predicted and measured annual averages of nitrate and
TDP over a 30-year period showed strong correspondence (R? = 0.85
and 0.76, respectively). It is noteworthy that oilseed rape yields tended
to be overestimated, likely reflecting increased pest damage following
neonicotinoid restrictions, which the model does not account for.
Consequently, our predictions may be biased towards over-predicting
yields in contexts where disease and pest pressures are high.

Our model does not capture how investing in natural capital through
land-sharing approaches might support crop production and potentially
allow for reductions in agrochemical inputs. Garibaldi et al. (2019) and
Tamburini et al. (2020) show that ecological intensification can main-
tain or increase yields while reducing environmental impacts, particu-
larly in diverse and biodiversity-enhancing systems. This potential for
ecological intensification is further supported by MacLaren et al. (2022),
who provided long-term evidence that ecological intensification can
serve as a viable pathway to sustainable agriculture, demonstrating that
biodiversity-enhancing practices can maintain productivity while
reducing environmental impacts over extended time periods. This lim-
itation may account for the paucity of land sharing approaches in our
Pareto optimal set.

A key contribution of our work is the identification of 24,412 alter-
native land-use configurations across Great Britain. While our analysis
focused on agricultural productivity and nutrient pollution, this exten-
sive solution space provides a foundation for further multi-objective
analyses. For instance, these configurations could be assessed at finer
scales for goals such as enhancing habitat connectivity and supporting
ecological networks—critical for biodiversity conservation in frag-
mented landscapes (Rudnick et al., 2012). Importantly, this can be done
without the computational cost of generating new solutions, allowing
for efficient evaluation of additional priorities such as nature corridors.

The absence of any “blanket" solutions (where the same strategy,
including BAU, is applied to all ITL regions) in our Pareto-optimal set
underscores that one-size-fits-all approaches fail to capture the inherent
heterogeneity of Britain's landscapes and their functional responses to
land-use change. This aligns with findings from (Bateman et al., 2024;
Verhagen et al., 2018), who demonstrated that spatial targeting of in-
terventions yields substantially greater benefits than homogeneous
implementation across diverse landscapes. The regional optimization
approach we employed represents a departure from conventional
land-use planning paradigms that often prescribe uniform policies
across administrative boundaries regardless of landscape characteristics
(Bateman et al., 2013). Instead, our work recognizes that the optimal
balance between agricultural production and environmental protection
varies according to local biophysical conditions, existing land-use con-
figurations, and regional agricultural specializations. The marked
improvement in both production and environmental metrics achieved
through regional optimization reinforces (Brady et al., 2012) assertion
that tailored regional policies can create win-win outcomes that uniform
approaches cannot match. This principle of spatial differentiation in
land-use policy represents a crucial shift in thinking about agricultural
sustainability, moving beyond debates about whether land sparing or
sharing is universally “better" toward recognizing that optimal ap-
proaches are inherently context-dependent and spatially diverse.

5. Conclusion

Our study demonstrates that land-sparing/land-sharing approaches,
applied differentially across regions, can deliver modest but meaningful
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improvements in both agricultural productivity and environmental
outcomes. However, realising transformative change will require mov-
ing beyond the sharing-sparing debate to embrace more nuanced ap-
proaches that recognize the value of landscape heterogeneity, capitalize
on ecological intensification opportunities, and explicitly consider
biodiversity alongside production and pollution metrics. The extensive
solution space of 24,412 land-use alternatives generated in this study
provides a valuable foundation for future research exploring additional
objectives beyond agricultural productivity and nutrient pollution.
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