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Abstract

Demersal fish are a critical component of Antarctic marine ecosystems and may consume large quantities of Antarctic krill (Euphausia
superba), placing them at risk from competition with commercial krill fishing. However, estimating relative overlap between krill fish-
ing and consumption by demersal fish is beset by uncertainty regarding fish distribution and diet. In this study, we develop models
of mackerel icefish (Champsocephalus gunnari) distribution and diet around the subantarctic island of South Georgia to predict the
distribution of krill consumption attributable to mackerel icefish to aid in krill fishery spatial management. We use trawl survey data
(1986-2023) to construct distribution models for mackerel icefish biomass across the South Georgia and Shag Rocks shelf. Using gut
content data, we also developed spatial models for the proportion of krill in mackerel icefish diets, allowing for a novel evaluation of
spatial variation in potential krill availability. Models indicated that mackerel icefish are distributed across the South Georgia and Shag
Rocks shelves to 400 m depth, with high density areas towards the shelf edge associated with seafloor topography. Spatial variation in
diet was evident between South Georgia, where krill predominated, and Shag Rocks, where diets were more piscivorous. Higher krill
diets along the South Georgia shelf edge were also coincident with elevated icefish density, suggesting that icefish distribution and diet
may be associated with krill availability. Spatial variation in krill consumption by mackerel icefish suggests that overlap with the krill
fishery is currently low despite mackerel icefish being a major krill consumer. However, estimates of mackerel icefish biomass and total
krill consumption were uncertain due to uncertainties surrounding icefish catch and feeding rates, and were likely negatively biased
due to the inability to account for the unknown proportion of fish in the water column that are unavailable to trawl sampling. Despite
those concerns, our results provide the foundation for including demersal fish information in spatial management of the krill fishery.
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Introduction

Given rising human demand for marine food resources (Nay-
lor et al. 2021), there is an increasing need to balance fisheries
extraction against the potential ecosystem impacts that may
arise due to increased fishing (Pauly et al. 2005, Petza and Kat-
sanevakis 2024). Setting regional quotas based on ecosystem
requirements is one important aspect (Hill et al. 2020); how-
ever, many studies have demonstrated that management is of-
ten applied at spatial scales that are inappropriate both with
regards to ecosystem processes (Watters et al. 2020, Berger et
al. 2021) and the realized spatio-temporal distribution of fish-
ing effort (Warwick-Evans et al. 2022a, Bertrand et al. 2012).
Understanding the spatial arrangement of fishing and the va-
riety of ecosystem processes that may be impacted by fishing
is therefore a requirement for effective ecosystem-based man-
agement (Falco et al. 2022).

One such consideration is understanding the relative over-
lap between consumption by predators and projected or re-
alized fishing effort (Warwick-Evans et al. 2022b, Bertrand
et al. 2012). This is particularly important for forage species
(e.g. small pelagic fish and krill) as they frequently support
multiple upper-trophic species (Griffiths et al. 2013) but are
often patchily distributed (Santora et al. 2014), such that ag-

gregations may be targeted on multiple fronts. Minimizing the
potential for competition with predators and/or localized de-
pletion of resources by fisheries (Bertrand et al. 2012) there-
fore requires that management actions are informed by an un-
derstanding of the distribution of consumption by predators
(Santora et al. 2014). Not only does this require information
on the spatial distribution of predators (Warwick-Evans et al.
2022b, Ratcliffe et al. 2021), but also how predator diets vary
among locations depending on prey availability (Wells et al.
2024).

Antarctic krill (Euphausia superba, hereafter krill) are an
important link in the Southern Ocean food web, providing
a vital prey resource for many predator species (Murphy et
al. 2007). They are also the target species for the largest fish-
ery, measured by catch, in the Southern Ocean, which is pri-
marily concentrated in the southwest Atlantic (Nicol and Fos-
ter 2016, Trathan et al. 2025). The Commission for the Con-
servation of Antarctic Marine Living Resources (CCAMLR),
who are responsible for managing the krill fishery, had pre-
viously set catch limits within large-scale subareas (shown
in Fig. 1) in the southwest Atlantic (CCAMLR area 48). How-
ever, over recent years, krill fishing has become increasingly
concentrated in space and time within those subareas, poten-
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Figure 1. Map of the study region (A) in the southwest Atlantic Ocean in relation to South America and Antarctica and proximity to oceanographic
features (SAF = Subantarctic Front, PF = Polar Front, SACCf = Southern Antarctic Circumpolar Current Front, SB = southern boundary of the Antarctic
Circumpolar Current). Boundaries of CCAMLR Subarea management units (48.1, 48.2, 48.3, 48.4) are also shown. Map showing the South Georgia and
Shag Rocks shelf (B) indicating trawl locations from groundfish surveys (1986-2023) used throughout analyses in relation to bathymetry, with polygons
indicating sectors used in sampling stratification. Contour lines represent the 500 m and 2000 m isobaths.

tially increasing the risk to krill-dependent predators (Watters
and Hinke 2022). Recognising this, in 2019 CCAMLR be-
gan developing a management approach to apportion catch
among smaller-scale management units within those subar-
eas (CCAMLR 2019, paragraphs 5.17 to 5.19). A key re-
quirement of this approach is understanding krill distribu-
tion and consumption by predators at a relatively fine spatial
scale (Constable et al. 2023). Despite plans to implement this
approach, the CCAMLR conservation measure that divided
the catch limit of 620 000 tonnes among those four subareas
(CM 51-07) expired at the end of 2024, leading to the ab-
sence of subarea-level spatial management during the 2024/25
fishing season (Trathan et al. 2025). Given that, identification
of foraging patterns of krill-dependent predators may be a
necessary component informing future negotiations surround-
ing the krill fishery as a prerequisite for establishing a data-
informed approach to spatial management.

Although the krill fishery tends to focus around the
Antarctic Peninsula and South Orkney Islands, it frequently
moves to South Georgia (Fig. 1) during winter (Trathan et
al. 2021). Krill abundance varies significantly within- and
among-seasons at South Georgia linked to transport and re-
tention from Antarctica (Murphy et al. 2004, Reid et al. 2010,

Fielding et al. 2014). South Georgia is also a haven for wildlife,
providing important breeding and feeding grounds for numer-
ous marine predators (Boyd 2002, Trathan et al. 2021). As
such, understanding the spatial distribution of krill predators
at South Georgia is fundamental if we are to manage the krill
fishery in a precautionary manner.

While multiple studies have investigated the fine-scale spa-
tial distribution of krill consumption by penguins, seals, and
cetaceans (Warwick-Evans et al. 2018, 2022a, 2022b), fewer
studies have taken a similar approach to demersal fish (al-
though see Canseco et al. 2024). Demersal fish are an im-
portant part of the krill-based ecosystem in the Southern
Ocean, potentially accounting for > 70% of krill consump-
tion in some areas (Hill et al. 2007). Mackerel icefish (Champ-
socephalus gunnari, henceforth referred to as icefish) are the
dominant demersal fish species at South Georgia and are
highly dependent on krill (Reid et al. 2005, Main et al. 2009).
A member of the Antarctic icefish family (Channicthyidae),
mackerel icefish are distributed around Subantarctic islands
to depths of ~ 700 m and are bentho-pelagic, being highly
adapted to feed on krill in the water column (Kock and Ev-
erson 1997, Kock 2005). Given their high abundance and re-
liance on krill, ecosystem models suggest they are potentially
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Table 1. Summary of bottom-trawl surveys used in analyses of mackerel icefish (Champsocephalus gunnari) distribution and diet.
Diet samples

Survey Date start Date end Gear Design Trawls Prev. (%) CPUE (kg/km?) Trawls Fish
SG87 29-Nov-86 17-Dec-86 B-454 OT SRS 104 98 1370
SG88 19-Dec-87 12-Jan-88 P32/36 OT SRS 112 98 429
SG89 1-Feb-89 14-Feb-89 P32/36 OT SRS 55 91 928
SG90 6-Jan-90 26-Jan-90 HC120 OT SRS 68 85 19570
SGI1 22-Jan-91 11-Feb-91 FP120 SRS 77 91 773
SG92 3-Jan-92 26-Jan-92 FP120 SRS 81 94 1047
SG94 4-Jan-94 8-Feb-94 FP120 SRS 81 95 541
SG97 2-Sep-97 29-Sep-97 FP120 SRS 55 96 2057
SG00 16-Jan-00 30-Jan-00 FP120 SRS 41 95 1185
SG02 12-Jan-02 1-Feb-02 FP120 SRS 63 97 1095
SG03 7-Jan-03 31-Jan-03 FP120 RAD 38 37 909
SG04 7-Jan-04 5-Feb-04 FP120 SRS 64 75 2309 46 584
SGOS 7-Jan-05 25-Jan-05 FP120 SRS 42 76 248 30 433
SG06 3-Jan-06 1-Feb-06 FP120 SRS 66 83 3810 52 1176
SGO07 27-Aug-07 21-Sep-07 FP120 SRS 49 88 2787 38 441
SG08 16-Apr-08 30-Apr-08 FP120 SRS 70 87 2417 51 733
SGO09 15-Jan-09 23-Jan-09 FP120 SRS 73 93 1551 57 828
SG10 15-Jan-10 24-Jan-10 FP120 SRS 75 95 2298 66 1162
DW10 29-Jan-10 31-Jan-10 FP120 DW 6 0 0
SG11 26-Jan-11 6-Feb-11 FP120 SRS 87 95 1629
SG12 26-Jan-12 29-Jan-12 FP120 SRS? 22 91 11627 18 367
SG13 22-Jan-13 29-Jan-13 FP120 SRS 68 98 11312 56 805
SG15 13-Jan-15 23-Jan-15 FP120 SRS 77 91 1672 67 1094
SG17 30-Jan-17 7-Feb-17 FP120 SRS 72 99 3967 69 1380
DW19 5-Feb-19 5-Feb-19 FP120 DW 3 0 0
SG19 27-Jan-19 5-Feb-19 FP120 SRS 73 97 1489 68 1190
SG21 8-May-21 28-May-21 FP120 SRS 76 92 334 61 713
SG23 1-Feb-23 10-Feb-23 FP120 SRS 75 95 1866 63 876

Totals 1773 91 2750 742 11782

2: incomplete survey; only Shag Rocks and the NW South Georgia shelf were sampled.

Trawl sample size (n), prevalence (% of trawls with catch > 0) and gross mean catch per unit effort (CPUE = catch/trawl area swept) are given along with
sample sizes for fish sampled for diet analyses. All values presented are after data-cleaning and represent sample sizes entering analyses. Design abbreviations:
SRS = stratified random sample, RAD = radial, DW = deepwater trawl surveys. See Supplementary materials for information on gear configuration.

responsible for 8 %—27% of all krill consumption on the South
Georgia shelf, exceeding consumption by any other ground-
fish species there (Hill et al. 2012). In addition, mackerel ice-
fish were historically overexploited at South Georgia (Kock
20035), and evidence suggests that populations have not fully
recovered to pre-exploitation levels (Reid et al. 2005). Man-
agement of the krill fishery at South Georgia should there-
fore aim to avoid any potential adverse impacts to mackerel
icefish and to allow the population to develop according to
their ecological potential given current availability of prey
resources.

Here, we use a series of models fitted to catch and diet data
from trawl surveys to estimate the long-term average spatial
distribution of icefish and their consumption of krill around
South Georgia (Fig. 1). We had three main objectives. We first
aimed to predict the average distribution of icefish within this
region. This was achieved using hurdle models fitted to de-
mersal trawl catch data and informed by environmental co-
variates to identify factors related to patterns of occurrence
and biomass. Secondly, we aimed to identify spatial varia-
tion in diet composition, which we investigated using stom-
ach content data from trawl surveys (2004 onwards), to bet-
ter understand spatial variation in the availability of alternate
prey resources and to inform krill consumption estimates. Fi-
nally, we aimed to combine results from distribution model
and diet analyses to estimate consumption of krill by icefish
within this region, and to identify the relative overlap with
the krill fishery. The resulting estimates of icefish distribution

and krill consumption will help facilitate the development of
an evidence-based management strategy for the krill fishery at
South Georgia.

Methods

Groundfish survey data

Trawl surveys

Data on icefish distribution at South Georgia (Fig. 1) were col-
lected during 28 demersal trawl surveys from 1986 to 2023
(Table 1). Sampling consisted of 30-minute trawls carried
out predominantly during daylight (94% between nautical
twilight at dawn/dusk, n = 1773) at a speed of 3-4 knots,
using similar gear throughout (trawl dimensions: 16-22 m
wingspread, 3-6 m headline height; detailed in Supplementary
materials: Section 1). Surveys were usually during the aus-
tral summer (November-February), except for 1997 and 2007
(August-September), and 2008 and 2021 (April-May; Table
1). Trawl locations were chosen according to a stratified
random-design across sectors and depth zones (100-200 m,
201-350 m, > 350 m; Fig. 1), except for during deepwater
surveys in 2003, 2010 and 2019 where a limited number of
trawls were performed (Fig. S1, where S denotes figures in
Supplementary materials). All trawls were retained for analy-
sis, except for trawls hauled early (duration < 15 minutes) due
to unsuitable ground or gear failure. Total icefish weight (kg)
was recorded for each trawl in addition to depth, distance, and
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Table 2. Trawl-specific and habitat covariates, along with data sources, for variables (units in parentheses) considered in mackerel icefish (Champsocephalus

gunnari) distribution models.

Variable Source
survey: Survey categorical variable survey
date: Survey mid-point date survey
sun: Sun altitude above the horizon (radians) trawl
east: Easting of trawl mid-point (m)? trawl
north: Northing of trawl mid-point (m)? trawl

depth: Bathymetric depth (m)®

slope: Seafloor slope (unitless)

curve: Planform curvature of seafloor (unitless)

SST.mean: Mean sea surface temperature (°C) [Surf.]
SST.sd: Std. dev. of sea surface temperature (°C) [Surf.]
SSal.mean: Mean sea surface salinity (PSU) [Prod.]

SSal.sd: Std. dev. of sea surface salinity (PSU) [Surf.]
FTemp.mean: Mean temperature near seafloor (°C) [Floor]
FSal.mean: Mean salinity near seafloor (PSU) [Floor]
FSal.sd: Std. dev. of seafloor salinity (PSU) [Floor]
FVel.mean: Mean current speed near seafloor (ms™) [Curr.]¢
SVel.mean: Mean surface current speed (ms™) [Curr.]¢
EKE.mean: Mean eddy kinetic energy (m?s?) [Curr.]®
MLT.mean: Mean mixed layer thickness (m) [Prod.]
CHL.mean: Mean surface chlorophyll-a concentration (mg m™3) [Prod.]

FDO2.mean: Mean dissolved oxygen near seafloor (mmol m3)

ETOPO 2022 | Res: 0.0167°

Global Ocean OSTIA SST (product:
sst_glo_sst_l4_rep_observations_010_011)
Time: 1981-2023 (daily) | Res: 0.05°
Global Ocean Physics Reanalysis (product:
global_multiyear_phy_001_030)

Time: 1993-2023 (daily) | Res: 0.083°

Global Ocean Colour (product:
oceancolour_glo_bgc_14_my_009_104)
Time: 1997-2023 (daily) | Res: 4km
Global Ocean Biogeochem. Hindcast
(product: global_multiyear_bgc_001_029)
Time: 1993-2023 (daily) | Res: 0.25°

: Trawl mid-points were converted from latitude-longitude (decimal degrees) to easting-northing (m) according to the Lambert azimuthal equal-area projection

centered on South Georgia.

b: In-situ depth measurements were used in model fitting, whereas depth from bathymetry data was used to predict icefish distribution.

¢: Derived from zonal and meridional components of current velocity.

Covariate categories (Surf. = surface temperature and salinity; Floor = seafloor temperature and salinity; Prod. = surface productivity; Curr. = current velocity)
assigned based on collinearity (0.55 < |r| < 0.8) are given in [], and only one variable per group permitted to appear in any given model. Dataset sources,
including Copernicus Marine Data Store product ID, temporal coverage and spatial resolution are also given. All environmental datasets were obtained for
the area within the 2000 m isobath around South Georgia and Shag Rocks (33-44°W, 52.5-56°S), to encompass trawl locations.

horizontal opening (wingspread). Weights were converted to
catch per unit effort (CPUE) with effort equal to area swept
(trawl distance x wingspread; km?).

Diet data

Since 2004, whole stomach samples were retained from a
random sample (typically < 30) of icefish per haul (Table
1). Stomach contents were identified to the lowest possi-
ble taxonomic resolution, then counted and weighed for
each prey taxon for each icefish sampled. Composition by
mass was used throughout as a measure of proportional
consumption.

Distribution models for mackerel icefish density
Bathymetric and environmental covariates

Icefish distribution models were constructed based on trawl
CPUE (kg/km?) in relation to spatial and environmental co-
variates (Table 2). Bathymetric data were obtained from the
ETOPO 2022 dataset (NOAA 2022). These data were also
used to calculate slope (terrain function in the raster pack-
age; Hijmans 2025), and planform curvature (curvature func-
tion in the spatialEco package; Evans and Murphy 2023),
which quantifies curvature perpendicular to the prevailing
slope as an indicator of seafloor grooves (negative curvature)
and ridges (positive curvature). Slope and planform curvature
were calculated at a spatial scale of 10 km.

Environmental data were obtained from the Copernicus
Marine Data Store, and included temperature, salinity, current

magnitude, and dissolved O, concentration at the surface and
near the seabed, and eddy kinetic energy (EKE), mixed layer
thickness and surface chlorophyll-a concentration (Table 2).
These variables were chosen as they may effect icefish distri-
bution directly (i.e. via temperature limitation; Kock 2005)
or indirectly via their effects on icefish prey. Environmental
datasets were processed into maps representing the average
climatological mean and variability (standard deviation cal-
culated across layers each year then averaged across years,
thereby representing average intra-annual variation) across
data from 1993 (1997 for chlorophyll-a) to 2023. We ini-
tially considered predictors based on season-specific clima-
tologies (i.e. December-February) given differences in survey-
timing. However, we chose to use year-round averages as they
were highly correlated with seasonal averages, and to avoid
spurious relationships arising from the inclusion of covari-
ate values derived only from winter surveys that had lim-
ited representation (four surveys). Values for each covariate
were then extracted according to trawl mid-point location.
Habitat covariates that were highly skewed were transformed,
and all were scaled prior to analysis. The covariate set was
then reduced by excluding variability covariates that were
highly collinear (correlation coefficient; r = 0.8-0.98; Dor-
mann et al. 2013) with the mean of the same variable (Fig. S2)
to avoid multicollinearity. Furthermore, covariate combina-
tions that were moderately collinear (0.55 < |r| < 0.8) were
grouped (Table 2) and trialed against each other, rather than
included together, to identify the best model while minimizing
multicollinearity.
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Hurdle model framework

Distribution models were constructed following a two-stage
hurdle modelling approach. This approach was chosen to
firstly identify factors related to icefish occurrence (presence-
absence component), and to separately identify factors asso-
ciated with the spatial distribution of biomass within their
range (non-zero CPUE component). Presence-absence mod-
els were fitted to a binary response (CPUE > 0 set to 1; bi-
nomial distribution, logit link), and CPUE models were fit-
ted to log-transformed CPUE, excluding absence records (nor-
mal distribution). Analyses were performed using generalized
additive models (GAMs) fitted using gam in the mgcv pack-
age in R (Wood 2011). Unless stated, all smooths were thin-
plate regression splines with a shrinkage penalty (smooth type
= “ts”), such that non-informative terms shrink to 0, ef-
fectively removing them from the model (Marra and Wood
2011).

Several terms were included in each model to account for
sampling differences among trawls. A smooth for date and sur-
vey random effects were included to model long-term trends
and interannual variability, respectively. Time of day was also
included via a smooth based on sun altitude (x = 0 at dawn, x
= /2 at zenith) to account for differences in CPUE through-
out the day that may occur as a result of diel vertical move-
ment (Kock 2005).

Spatial variability in icefish distribution was modelled via
smooth terms for environmental and bathymetric covariates
(henceforth, habitat covariates; Table 2), and a spatial field
dependent on location (easting, northing) to account for un-
explained spatial variation. Spatial effects were specified as a
Gaussian-process (basis = “gp”) smooth which are parame-
terized by a range parameter that controls the extent of spa-
tial continuity (Kammann and Wand 2003). We investigated
range parameters from 5 km to 60 km in 5 km increments,
and only permitted stationary fields (i.e. no continuous trend)
to favour the explanation of large-scale gradients via habitat
covariates.

Fitted models consisted of smooth terms for bathymet-
ric covariates (depth, slope, planform curvature), along with
smooths for one variable from each habitat covariate set
(Table 2), plus a spatial field. Selection among alternate models
(habitat covariates, range parameter) was achieved by fitting
all possible models and ranking them based on AIC and cross-
validated predictive accuracy (see Supplementary materials:
Section 2). For presence-absence, predictive accuracy was cal-
culated as sensitivity (% presences correct), specificity (% ab-
sences correct), and area under the receiver operating charac-
teristic curve (AUC; Heagerty and Zheng 2005), whilst nor-
malized (relative to standard deviation of observed values)
root-mean-squared error (nRMSE; ranges from 0 for a per-
fect fit, to 1 for no better than an intercept-only model) was
used for log-CPUE.

Following fitting, models were validated according to stan-
dard GAM diagnostics (residual distribution, homoscedastic-
ity), and those with maximum concurvity greater than 0.8
omitted from further consideration (Wood 2008). Results are
presented for the model with lowest predictive error and AIC
(AAIC < 4).

Density maps
Predicted distribution maps were constructed based on prob-
ability of occurrence (presence-absence) and CPUE predicted

to a 2 x 2 km grid populated with habitat covariates. Date
and sun angle were held constant at their maximum values
(date = Jan-2023; sun = 1) so that predictions represent the
most recent survey, and are standardized to the same time-of-
day.

For CPUE, predictions were calculated as the mean
of a log-normal distribution;

— 62
CPUE = exp (,&+7) (1)
where 2 is expected log-CPUE, and 62 is residual vari-
ance. Multiplying by the probability of occurrence from
the presence-absence model, p, gives an estimate of density

(kg/km?):
D = p x CPUE (2)

Overall and sector-specific (i.e. Fig. 1B) biomass estimates
were also calculated by summing D over areas and multiplying
by grid-cell area (4 km?). Uncertainty in spatial density (pre-
sented via coefficient of variation; CV) and biomass (95 % CI)
estimates were quantified using posterior simulation, allow-
ing for uncertainty to be propagated across presence-absence
and CPUE model components (see Supplementary materials:
Section 2). We also investigated whether patterns of icefish
density have shifted over time by repeating the analyses to
data restricted by time (1987-1997,2000-2010,2011-2023).
However, given our main aim was to create a long-term av-
erage representation of icefish distribution, we present these
results in the Supplementary materials as validation only.

Given that models were informed by trawl-based CPUE,
predictions of density and biomass are likely underestimates
due to individuals present throughout the water column (Kock
and Everson 1997) above the headline height (3-6 m) of the
trawl gear. As such, values for “density” and “biomass” should
be interpreted as the catchable density and biomass given
the sampling methodology. However, despite this limitation,
CPUE is a valid measure of relative abundance among-trawls,
and therefore variation among locations.

Proportion of krill in icefish diets

Diet sample processing

Diet sample data were initially processed to account for
records of unknown euphausiids (0%—-32% of gross mass per
year) that may otherwise bias analyses (see Supplementary
materials: Section 3). Prior to this, the proportion of Eu-
phausia superba and unknown euphausiids in stomach con-
tent samples was examined in relation to fish size to iden-
tify whether reassignment of unknown euphausiids may suffer
from bias due to diet size-dependence. However, little varia-
tion among sizes were evident in our stomach content data
(Fig. S3). Data were then aggregated to trawls given our focus
on spatial patterns in diet composition and to avoid pseudo-
replication. Trawl-averaged krill proportion was calculated as
the summed krill mass divided by the total stomach content
mass for all fish sampled per trawl. We also calculated the
number and mean length of fish sampled each trawl.

Analyses

Trawl-aggregated krill proportions were analyzed us-
ing GAMS fitted using the gamlss package (Rigby and
Stasinopoulos 2005) assuming a 0/1 inflated beta distribution
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as the response consisted of a mix of continuous proportions,
0’s (no krill) and 1% (all krill). Models were constructed
by first identifying the best sub-models for variance and
0/1 inflation parameters, which were then fixed throughout
subsequent analyses (see Supplementary materials: Section 4).
For the mean proportion, we considered survey random ef-
fects and smooth terms (penalized smooths; basis = “ts”) for
depth and trawl-averaged fish length, to model interannual
variability as well as depth-related and ontogenetic changes
in diet, respectively. We chose to model spatial variation
using three different approaches, plus a model with no spatial
effects, to investigate how resolution of diet information
effects consumption estimates. These consisted of spatial
variation being modelled either by sector or strata (sector by
depth-zone) random effects, which represent relatively coarse
resolution of diet composition, or using a gaussian-process
smooth to model continuous variation. As with icefish den-
sity, alternate spatial smooths (range parameter: 10-60 km in
5 km increments; stationary and non-stationary fields) were
trialed. All possible combinations of survey, depth, time, fish
length, and spatial effects were evaluated and ranked based
on AIC.

Spatial variation in the proportion of krill in icefish diets

Maps representing the long-term mean proportion of krill in
icefish diet were created by using models to predict values onto
a 2 x 2 km resolution grid as described for icefish distribu-
tion. Uncertainty of predicted proportions was quantified us-
ing bootstrap resampling (n = 1000) and are presented via
95% CI (area-based means) or CV (spatial predictions).

We also provide gross diet composition (proportion by
mass per survey) for South Georgia and Shag Rocks, grouped
into: Euphausiids, with sub-categories for E. superba, other
Euphausia spp., and Thysanoessa sp., Other Crustaceans,
with sub-categories for Themisto gaudichaudii, and Antarc-
tomysis sp., and Fish, split into Nototheniidae, Channichthyi-
dae, and Myctophidae.

Krill consumption estimates

Daily consumption rate

Daily consumption rates, expressed as a percentage of body
mass, were taken from Kock et al. (2012). Given the range of
published values for South Georgia (0.3-2.2% body mass per
day; Kock et al. 2012), we present estimates assuming rates of
0.5%, 1% and 2% body mass per day.

Spatial distribution and gross estimates of krill consumption

Maps of krill consumption were created by combining density
(kg/km?) and krill dietary proportion layers with relative daily
consumption rates (% body mass consumed per day). Given
the bias in biomass estimates noted previously, these estimates
should be interpreted as consumption attributable to catch-
able biomass. Furthermore, our analyses do not account for
spatial or temporal variation in icefish size. However, we ex-
pect any bias associated with this to be relatively small as the
proportion of krill in icefish diets seems to vary little among
fish sizes (Fig. S3).

Several consumption scenarios were investigated by varying
daily consumption rate and spatial representation of icefish
diet (static, sector-specific, or continuous). Consumption esti-
mate uncertainty was calculated via bootstrap, by repeatedly
drawing alternate density (generated by posterior simulation)
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and krill proportion (generated by bootstrap) maps to create
different realizations (n = 10 000) of krill consumption. These
were processed to represent uncertainty in spatial distribution
(CV) and area-based estimates (95% CI).

Krill fishery and spatial statistics

Catch data for the krill fishery around South Georgia (2004—
2023) were obtained from CCAMLR (Data Request 683),
consisting of location and total wet weight of krill per haul.
These data were processed into a map representing cumula-
tive catch within 2 x 2 km grid cells using the same grid as
used for density. Spatial overlap between the fishery and krill
consumption by icefish was calculated using the index of col-
location (IoC) that measures the relative (0-1) co-occurrence
of two populations (Carroll et al. 2019):

X7 (p_catch; x p_eaten;)
\/ Y p_catchi? Y ! p_eaten;?

where p_catch is fishery catch, and p_eaten is consumption
by icefish in grid-cell i relative to their respective totals. Spa-
tial overlap was assessed for each diet scenario (static, sector-
specific, continuous spatial variation) to examine sensitivity
to alternate representations of diet. This approach identifies
the overlap between two average distributions (mackerel ice-
fish, krill fishery), and therefore does not account for interan-
nual variability in distributions. To address potential changes
in fishery distribution, we also created equivalent maps of cu-
mulative krill catch in 5-year blocks from 2004 to 2023 and
compared the resultant distributions.

All analyses were performed in R v4.3.3 (R Core Team
2024).

IoC (3)

Results

Presence-absence model results

Overall, mackerel icefish were caught in 91% of all trawls
(n = 1773), varying from 75%-99% among regular surveys
(Table 1). The best-fitting model for icefish presence-absence
contained depth, seafloor slope and planform curvature, and
seafloor dissolved oxygen (DO) concentration, along with a
25 km range spatial field (Table 3). Effects of other covari-
ates were all shrunk to zero (EDF ~ 0) indicating no effect
(Table S4). Predictive accuracy calculated via cross-validation
was high for sensitivity (99%) and AUC (0.94), but specificity
was relatively lower (54 %; Table 3).

Fitted probabilities displayed a non-linear relationship with
depth, reaching values above 0.9 from 90-300 m, and declined
to less than 0.1 for depths greater than 510 m (Fig. 2). Nega-
tive relationships were estimated for seabed slope and curva-
ture (Fig. 2), indicating higher probability of occurrence in ar-
eas with low slope and negative curvature, such as submarine
canyons. Seafloor DO was positively correlated with occur-
rence, although fitted effects were weak and highly uncertain.
Spatial effects indicated higher probability across the South
Georgia shelf compared to Shag Rocks, except for the cen-
tral portion of the northern South Georgia shelf (lower) and
towards the centre of Shag Rocks (higher; Fig. 2).

Catch per unit effort—model results

Survey-averaged CPUE varied considerably among sur-
veys, ranging from 248 kg/km? (2005), to more than
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Table 3. Performance of models used to estimate mackerel icefish (Champsocephalus gunnari) distribution.
Presence-absence
Model AIC D? Sens. Spec. AUC
depth [2.7] + slope [1.1] + curve [1.0] + FDO2.mean [0.7] + space(25 km) 498.3 62.3 98.5 54.3 0.940
[18.2]
Log-CPUE
Model AIC D? nRMSE
depth [3.5] + slope [0.6] 4+ SST.sd [3.3] + space(15 km) [36.4] + sun [1.0] 6475.8 30.2 0.877
depth [3.5] + slope [0.6] + SST.sd [3.3] + SSal.mean [0.2] + space(15 km) 6478.4 30.2 0.878
[36.2] + sun [1.0]
depth [3.5] + slope [0.3] + FTemp.mean [2.2] + SST.sd [3.1] + space(15 km) 6479.2 30.4 0.878
[35.4] + sun [1.0]
depth [3.5] + slope [0.6] + FTemp.mean [2.4] + space(15 km) [38.8] + sun [1.0] 6479.6 30.2 0.877
depth [3.5] + slope [0.7] + SST.sd [3.3] + MLT.mean [0.3] + space(15 km) 6480.2 30.2 0.879
[36.0] + sun [1.0]
depth [3.5] + slope [0.5] + SST.sd [3.3] + EKE.mean [0.2] + space(15 km) 6480.3 30.3 0.878
[36.4] + sun [1.0]
depth [3.5] + slope [0.5] + SST.sd [3.3] + EKE.mean [0.6] + MLT.mean [0.7] + 6480.4 30.2 0.880
space(15 km) [35.2] + sun [1.0]
depth [3.5] + slope [0.5] + FTemp.mean [2.3] + SST.sd [3.1] + MLT.mean [0.7] 6480.5 30.3 0.879

+ space(15 km) [34.0] 4 sun [1.0]

Model statistics include Akaike’s Information Criterion (AIC), deviance explained (D?), and predictive statistics assessed via 10-fold cross-validation of
sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) for the presence-absence component, and normalized root-mean-
squared error (nRMSE) for the CPUE component. Results are given for the optimal (lowest AIC) spatial range (given in parentheses) for each of the presence-
absence and CPUE components and for each model with AAIC < 5. Estimated degrees of freedom (EDF) of model smooths are given in []. Covariate smooths
included in models but had EDF < 0.1 are not included in model formula, and alternate models (different covariates) that functionally resulted in the same
model due to shrinkage are only represented once. All models contained survey random effects in addition to those indicated.

10,000 kg/km? (1990, 2013), but typically (13 of 25 stan-
dard surveys) ranged from 1000 to 2500 kg/km? (Table 1).
The model with lowest AIC for log-CPUE contained depth
and seabed slope, variation in SST, and a spatial smooth
with 15 km range (Table 3). Predictive error varied little
among models with range parameters between 10-20 km
(nRMSE = 0.877-0.880; Table S5) and was relatively high,
indicating much unexplained variation.

Catch-per-unit effort displayed a unimodal relationship
with respect to depth, with highest CPUE (above 90% of the
peak value) predicted at 160-210 m depth and falling below
10% of the maximum for depths greater than 350 m (Fig. 2).
The third and fourth ranked models (AAIC = 3.4-3.7) also
contained a non-linear effect of mean seafloor temperature
(Table 3). Both temperature covariates displayed unimodal re-
lationships, with highest CPUE predicted for locations with
near regional average seafloor temperatures (~1.5°C) and at
locations with moderate variation in SST (Fig. 2). Inclusion of
seafloor slope suggested abundance decreases with increasing
slope, although uncertainty for this effect was high (Fig. 2).
Mixed layer thickness (MLT), surface salinity, and eddy ki-
netic energy (EKE) were also variously included across high-
ranking models (Table 3). However, these terms only had mi-
nor effects (EKE and MLT: negative; surface salinity: very
weakly positive) with confidence intervals that overlapped
with zero throughout the covariate range.

Fitted spatial smooths were indicative of higher density to-
wards the shelf edge around South Georgia, and at the cen-
ter of Shag Rocks (Fig. 2). Models also estimated a positive
relationship between CPUE and sun angle, equivalent to av-
erage CPUE being 51% (95% CI: 16%-98%) higher at mid-
day compared to dawn. To investigate daily patterns further,
we also created an equivalent model to the best-fitting model
for CPUE, but replacing sun altitude with time-of-day ex-
pressed as minutes since midnight. The alternate model indi-

cated higher CPUE at midday, with lower values either side of
this being approximately symmetric (Fig. S9), consistent with
results from the model containing sun altitude. Both models
had equivalent deviance explained, but the model containing
sun altitude had lower AIC (AAIC = -1.86).

Subsequent analyses are based on the best-predicting model
for each of presence-absence and CPUE (Table 3).

Spatial variation in mackerel icefish density

Predicted icefish occurrence was high (> 0.95) and varied lit-
tle among on-shelf locations but declined rapidly beyond the
shelf edge (depth > 300 m; Fig. 3). Due to the uniformity
of predicted probabilities on the shelf (Fig. 3A), CPUE and
density (CPUE scaled by probability of occurrence) had al-
most identical patterns, differing only in absolute value (2%
lower), and with regards to depth gradient (steeper for den-
sity; Fig. 3). An average density of 1.6 tonnes/km? (95% CI:
1.2-2.0; Table 4) was predicted across locations where ice-
fish were predicted to occur, with generally higher densities
toward shelf edge locations (Fig. 3). Notable high-density ar-
eas (density > 10 tonnes/km?) were predicted on Shag Rocks,
and at several locations (northwest, southwest, northeast) on
the South Georgia shelf (Fig. 3). Lowest densities were pre-
dicted in the southeast sector (0.86 tonnes/km?; Table 4).

Comparatively, model predictions closely resembled ob-
served CPUE (mean, all-surveys) (Fig. 3). However, high pre-
dicted values in the southwest sector were less apparent in
observed CPUE, potentially linked to lower coverage in that
area (Fig. 3). Uncertainty in predicted density, expressed via
coefficient of variation (CV), averaged (median) 0.41, and was
highest (> 2) past the 500 m contour due to lower predicted
values (Fig. 3). On the shelf (depth < 300 m), uncertainty was
highest at locations south of South Georgia, coincident with
areas of least coverage (Fig. 3).
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Figure 2. Hurdle model results fitted to mackerel icefish (Champsocephalus gunnari) trawl data collected around South Georgia. Presence-absence
(A-E) and log-transformed catch-per-unit effort (CPUE; F-J) model components are shown for the best fitting model. Presence-absence model results
show the fitted relationship for depth, shown on the link/transformed scale (A) and when back-transformed to natural units (B), seabed slope (C), seabed
planform curvature (D) and spatial effects (E). CPUE model results are shown for depth on the model (log-CPUE, transformed depth; F) and
backtransformed (G) scales, seabed slope (H), variation in sea surface temperature (SST_sd; 1), and spatial effects (J). Fitted smooths indicate the mean
fitted function with shading representing & 1 standard error. Smooths included in the best models for sun angle (CPUE: strong positive linear
relationship) and mean seafloor dissolved oxygen concentration (presence-absence: weak positive relationship) are omitted to save space. Contour lines

on map panels indicate the 500 and 2000 m isobaths.

Investigation of temporal variation in distribution revealed
that high CPUE of icefish on the western side of the South
Georgia and Shag Rocks shelves were consistent through time
(1987-1997, 2000-2010, 2011-2023; Fig. S10). However,
CPUE on the northeast South Georgia shelf were more vari-
able, with lower values from 2000-2010, but otherwise high
in the earlier and later periods. Taken together, this suggests
that the western South Georgia and Shag Rocks shelves con-
stitutes their core area, and that icefish concentrations on the
northeast South Georgia shelf are more ephemeral.

Summing model predictions across areas resulted in a long-
term average biomass of 63.4 x 103 tonnes (95% CI: 49.3—
81.7 x 103 tonnes), primarily distributed in western sectors
around South Georgia (54% of the total) and on Shag Rocks
(15% of the total; Table 4).

Proportion of krill in icefish diets

Models of mean krill proportions in icefish stomach contents
indicated high interannual variability with smaller effects at-
tributable to spatial variation and fish size (Table 5). The ad-
dition of depth and date relationships resulted in either less

parsimonious models (depth; higher AIC) or had no effect
(date: Table 5). Interannual variability accounted for the ma-
jority of variance explained (R? = 34.1 for survey effects
alone; Table 5), with lowest krill proportions (< 20%) es-
timated for 2009 and 2021 (Fig. 4). A non-linear relation-
ship was estimated in relation to fish length, suggesting rel-
ative krill consumption increases with fish size up to 33 cm
before declining for larger sizes (Fig. S7). However, the mag-
nitude of this effect was relatively small, with the proportion
of krill only changing by + 4%-5% across the sampled size
range.

From the model containing no spatial components, ice-
fish diets were estimated to contain an average of 60.1%
krill by mass (bootstrapped 95% CI: 57.1-63.5%; Table
5). Incorporating spatial variation resulted in reduced AIC
and explained an additional 4% (sector) to 7% (spatial
field) of variation (Table 5). Sector spatial models indicated
higher krill proportions in the northwest sector (67.2%, 95%
CI = 63.3-70.6%) than elsewhere on the South Georgia
shelf. However, all sectors on the South Georgia shelf had
higher proportions than Shag Rocks (48.6%,95% CI =42.5-
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Figure 3. Predicted mackerel icefish (Champsocephalus gunnari) distribution around South Georgia. Hurdle model results are shown for predicted catch
probability from the best-fitting model for presence absence (A) and predicted catch per unit effort (CPUE in kg/km?) from the best-fitting model for
log-transformed CPUE (B). Combined hurdle model predictions of mackerel icefish density (kg/km2; C) overlaid with polygons (thick black line) to indicate
locations constituting 50% of the total biomass. Observed average CPUE, binned to 5 km resolution (D) are also provided as a reference. Combined
spatial uncertainty is presented as coefficient of variation (CV; E) calculated for each grid cell. Model results in (A) and (B) are truncated at the 1000 m
isobath as no observations were collected from greater depths, but densities in (C) of 0 were assigned for depths > 1000 m given the mackerel icefish

depth range.

54.2; Table 5), where fish, predominantly nototheniids, were
more prominent (Fig. 4). The spatial model indicated a south
(low) to north (high) gradient in the proportion of krill in
icefish diets on the South Georgia shelf, and a southeast
(low) to northwest (high) gradient on Shag Rocks (Fig. 4).
Model uncertainty was relatively higher on the shelf south
of South Georgia (southeast sector: CV = 0.09-0.42, me-
dian = 0.17), coincident with lower sample coverage (Fig.
4). Given that stomach contents collected in 2009 and 2021
contained anomalously low proportions of krill, models were
re-fitted to data excluding those years. While these models
estimated a higher proportion of krill (63.7% compared to
60.1%), spatial patterns were comparable to those found
when all years were included (Fig. S8), suggesting that re-
sults were minimally influenced by observations from low krill
years.

Krill consumption estimates
Combining density estimates and dietary proportions of krill
with daily consumption rates (0.5%, 1% and 2% body mass
per day) resulted in estimates ranging from 68 x 103 (95%
CL: 51-88 x 10%) to 271 x 103 (95% CI: 203-352 x 103)
tonnes of krill consumed by mackerel icefish per year (Table
4).

Relative to the constant diet scenario, including spatial vari-
ability in average diet had only a marginal effect on overall

consumption, lowering estimates by 2.5% and 5% for sector-
based and continuous representations of icefish diets, respec-
tively (Table 4). However, this was largely due to a shift among
areas, with consumption estimates dropping by 12%-22% on
Shag Rocks when spatial variation was included, and increas-
ing on the South Georgia shelf, particularly in the northwest
sector where consumption estimates increased by 10%-11%
(Table 4). Based on the spatial diet model, annual consump-
tion estimates per unit area were highest along the shelf edge in
the northwest sector due to high density and high proportions
of krill in icefish diets, and on the Shag Rocks shelf primarily
driven by higher densities, albeit with lower proportional krill
consumption (Fig. 5).

Overlap between krill consumption and fishery
harvest

Krill fishing from 2004-2023 was concentrated inshore of the
500 m isobath throughout the northwest and northeast sec-
tors around South Georgia, with highest concentrations in
the northeast (Fig. 5). The krill fishery footprint (cells con-
tributing 90% of the total catch) overlapped with high rel-
ative consumption of krill by mackerel icefish, most notably
along the northwest shelf edge where icefish are most abun-
dant and in the northeast sector due to concentrated fishing
effort (Fig. 5). Spatial overlap, measured by indices of colloca-
tion between icefish consumption and commercial krill catch,
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Table 4. Mackerel icefish (Champsocephalus gunnari) estimated biomass and krill consumption on the South Georgia and Shag Rocks shelf.

Sector
Measure Diet scenario Shag Rocks Northwest Northeast Southeast Southwest Total
Area (km?)? 4157 5773 6592 11560 11904 39 986
Biomass
Biomass (103 1) 9.6 9.2 8.7 9.9 26.1 63.4
[6.9-13.2] [6.9-12.0] [6.4-11.3] [7.2-13.7] [18.7-36.1] [49.3-81.7]
Mean density 2.31 1.59 1.32 0.86 2.19 1.58
(t/km?) [1.66-3.18] [1.20-2.08] [0.97-1.71] [0.62-1.19] [1.57-3.03] [1.23-2.04]
Proportion (by mass) of krill in diet
Diet: % Krill Constant 60.1
[57.1-63.5]
Sector 48.6 67.2 60.7 57.0 60.0 58.8
[42.5-54.2] (63.3-70.6] [55.1-65.9] [49.9-63.6] [54.5-65.1] [55.1-62.5]
Smooth 50.0 64.5 60.0 52.6 55.2 55.9
[43.1-56.5] [60.0-68.9] [53.8-65.7] [44.2-62.1] [47.3-64.2] [51.2-61.0]
Krill consumption
Krill biomass Constant 20.3 20.0 18.5 22.0 57.4 138.3
(10° t/year) [14.3-27.5] [15.0-26.2] [14.0-24.2] [15.4-29.9] [40.4-78.6]  [107.9-176.2]
Sector 16.4 22.3 18.8 20.8 57.3 135.8
[11.6-23.1] [16.5-29.0] [14.1-24.8] [15.2-28.3] [41.0-78.3] [106.3-172.5]
Smooth 18.6 22.1 18.5 20.0 53.0 132.5
[12.6-26.4] [16.3-29.2] [13.6-24.5] [13.7-28.1] [36.3-76.3] [101.4-170.8]
Spatial overlap (Index of co-location) with commercial krill fishery (2004-2023)
Spatial overlap Constant 0 0.319 0.380 0.171 0.037 0.141
(0-1) [271-0.368]  [.297-0.469]  [.101-0.258]  [.019-0.066]  [0.104-0.186]
Sector 0 0.319 0.380 0.171 0.037 0.148
[271-0.368]  [.297-0.469]  [101-0.258]  [.019-0.066]  [0.108-0.192]
Smooth 0 0.322 0.372 0.177 0.035 0.146
[272-0.371]  [.286-0.464]  [.098-0.277]  [.017-0.064]  [0.106-0.193]

2 Summed area weighted by predicted probability of occurrence.

Consumption estimates correspond to a daily feeding rate of 1% fish body mass per day. Lower (0.5%) and higher (2%) daily feeding rate scenarios are
omitted to save space given they are linearly related (0.5 x, 2 x) to those presented for krill consumption. Measures of spatial overlap between icefish krill
consumption and the krill fishery are also presented in the form of indices of collocation for each consumption scenario.

Table 5. Statistics for models of proportional krill consumption by mackerel icefish (Champsocephalus gunnari).

Model df AIC R?

intercept only 7.3 317.7 14.6*
survey [12.3] 21.9 154.5 34.1
survey [12.4] 4+ depth [1.5] 23.3 154.7 34.4
survey [12.3] + time [0] 21.9 154.5 34.1
survey [12.4] + fish_length [2.4] 24.4 153.3 34.7
survey [12.4] + sector [3.6] 25.7 120.7 37.7
survey [12.4] + space (NS; 40 km) [16.4] 37.7 102.6 412
survey [12.5] + fish_length [2.7] + sector [3.6]" 28.5 118.7 38.3
survey [12.5] + fish_length [2.7] + depth [1.6] + sector [3.6]" 29.9 120.0 38.5
survey [12.4] + fish_length [2.3] + space (NS; 40 km) [15.8]¢ 39.5 102.0 41.5

2: Variance explained by the null model is attributable to that explained by sub-models for 0/1 inflation parameters.

b: Smooths for time were added to these models but were effectively removed due to shrinkage, resulting in identical models to those presented.
¢: Smooths for depth and time were added to this model but were effectively removed due to shrinkage resulting in identical models to those presented.

Results presented relate to alternate structures for the mean parameter (mu) in 0/1 inflated Beta generalized additive models applied to the proportion of
Antarctic krill (Euphausia superba) in mackerel icefish stomach contents. Terms trialled were survey random effects (basis = “re”), shrinkage penalized
smooths (basis = “ts”) for depth, time, and mean fish length, and sector-specific (basis = “re”) or gaussian process (basis = “gp”) spatial structures. Presented
statistics are the model degrees of freedom across mean (mu), variance (sigma), and 0/1 (nu, tau) inflation parameters, Akaike’s information criterion (AIC)
and the Cox-Snell pseudo R? value. For gaussian process models, values are only presented for models with range parameters that resulted in the lowest AIC
(range = 40 km; non-stationary). All models had the same structure for variance and 0/1 inflation parameters. Estimated degrees of freedom (EDF) are given

in [].

ranged between 0.141 and 0.148, with marginally higher val-
ues when accounting for spatial variation in icefish diet (Table
4). To address potential changes in fishing distribution we
compared the 2004-2023 map of cumulative krill catch to
equivalent maps created by summing krill catch in 5-year
blocks. Whilst this revealed a general shift and concentra-

tion of fishing effort to the northeast of South Georgia, areas
fished in most recent years (2020-2023) were largely coin-
cident with longer-term (2004-2023) patterns (Fig. S11). As
such, we believe our results to be broadly representative of
current patterns in the distribution of the krill fishery at South
Georgia.

920z Arenuer g uo Jasn Sy - OYIAN AQ 86ELLY8/SZZIES) L/E8/aI0NE/SWIS801/W00"dNO"0lWapeo.//:SdNy WOy papeojumoq


https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf225#supplementary-data

Mackerel icefish distribution: South Georgia

"

53.0°SqT,

(b)

53.5°54|

54.0°8+

% E. superba
54.5°S ]

% E superba o )
30-35|

0-5 35-40 \
65-70
70-75
75-80
80-85
85-90

5-10 40-45
10-15 | [45-50
15-20 | |50-55

- 55-60
60-65

90-95
95-100] “°

[]30-35
| |35-40
| 40-45 ’
55.0°S4 || 45-50 :
| 50-55 Southwest: 60.0%
[ |55-60
o] []60-65
55.5°S1 [ 5050 : \ ”
LA70-75  “45% 50% 60% 70% ’ - ’
43°W 42°W 41°W 40°W 39°W 38°W 37°W 36°W 35°W 34°W
100_9798912131512171916915_ 23 52 52
=

®
b

B Fish: Notothenid

[[] Crustacean: Other/unknown

] Crustacean: Antarctomysis spp.

[l Crustacean: Themisto gaudichaudii
Crustacean: Thysanoessa spp.

B Crustacean: Other Euphausia spp.
B Crustacean: Euphausia superba

48
[l Other/unknown
[ Fish: Other/unknown
] Fish: Myctophid
[ Fish: Channichthyid

.J;
J;
o
o
o
o

scos - I I .

SGO06 A

SG13-——

SG15+

sc21- I I

SG23

2_
0
o
Q
2]

sco7 | I (s
scos | N
sGoo - I I |

sc10- I

SG12+

Composition (% by mass)
N B [2]

Q 2 < 2
sco4 NN N
sco7 - I
sc10- I N
sc12-| I .
SGO6 | _l I*

sc17-| I

SG19+
SG04 A

® o
o O
[OBNO]
w 0

sc21 I

]
N
V]
2]

SG13+
SG15+
SG17 A
SG19+

Figure 4. Variation in the proportion of Antarctic krill (Euphausia superba) in mackerel icefish (Champsocephalus gunnari) diets around South Georgia.
Model results from a generalized additive model containing a spatial smooth (A) fitted to the proportion of krill in icefish stomach contents. Predictions
are constrained to depths less than 500 m given the depth range of trawls with diet samples (0-446 m). Estimated proportions from the sector spatial
model are also given for each sector (black polygons in A). A representation of the raw data aggregated to a 5 x 5 km grid (B) is also given for reference.
Uncertainty in spatial smooth model estimates is also presented as the coefficient of variation (CV; C) for each grid cell calculated via bootstrap
resampling. Temporal variability in gross mackerel icefish diet from 2004-2023 for Shag Rocks (D) and South Georgia (E). Plotted proportions in (D) and
(E) represent the proportions within each region and year after pooling all fish stomach contents. The number of trawls from which stomach contents

were sampled is given by grey text in panels (D) and (E).

Discussion

Mackerel icefish are the most abundant krill-eating demer-
sal fish on the South Georgia and Shag Rocks shelf and are
a priority species when assessing possible ecosystem impacts
of krill fishing in this region. Our results are consistent with
previous studies (e.g. Everson et al. 1999, Main et al. 2009)
that the distribution of mackerel icefish is governed primar-
ily by depth but provides more detailed information on their
distribution across the South Georgia shelf. Our diet analyses
also indicate spatial variation in relative krill consumption,
which may pertain to patterns of krill availability. While our
results indicate that overlap between icefish distribution and
krill fishing is currently low at South Georgia, our study pro-
vides the necessary information to aid future management of
the krill fishery to minimize impacts on mackerel icefish.

Mackerel icefish distribution

Excluding depth, habitat covariates explained a relatively
small amount of variation in icefish distribution. Among
those, seabed slope and planform curvature were both neg-
atively correlated with icefish density. Seabed morphology is
frequently associated with demersal fish distributions (Bor-

land et al. 2021), with the negative relationship found for
slope demonstrated in other studies on shelf-associated species
(Smith and Lindholm 2016, Smolifski and Radtke 2017). The
negative relationship found for planform curvature likely in-
dicates higher abundance in canyons on the shelf than would
be expected given their absolute depth. Association with ma-
rine canyons may be due to prey availability and retention,
as Antarctic krill, and euphausiids more broadly, aggregate in
marine canyons (Bernard et al. 2017, Santora et al. 2018). Ar-
eas of high icefish density were frequently adjacent to canyons
that cut into the South Georgia shelf, which may facilitate
transport and retention of krill to the shelf-based ecosystem
by wind and tidal forcing (Bernard et al. 2017).

Variation in SST was also included in models for CPUE,
indicating lower density in locations with low or high SST
variability. Whilst temperature may be a limiting factor for
icefish physiology, given their northern range limit occurs at
Shag Rocks (Morley et al. 2014), we suspect that the fitted re-
lationship is more likely due to location-specific effects, rather
than causally related to temperature variation. Extreme high
and low values for SST variation that seem to be driving this
relationship were highly localized (northwestern edge of the
Shag Rocks shelf, and adjacent to the northwest tip of South
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Georgia, respectively; Fig. S12), and constituted only a small
proportion of datapoints. As a result, the fitted SST relation-
ship may arise from limited sampling or may be a proxy for
other unknown factors that give rise to lower densities at those
locations.

The lack of other environmental factors in our models is
likely a consequence of the inclusion of a spatial smooth,
which was added to better capture icefish distribution, and
to account for spatial autocorrelation. However, habitat re-
lationships may be omitted as a result. Excluding spatial ef-
fects from model fitting either strengthened the relationships
already identified or selected for additional, mostly weak ef-
fects (Supplementary materials: Section 9). Therefore, whilst
our chosen model doesn’t include all environmental relation-
ships, it captures the main factors and performs better at de-
scribing patterns in icefish distribution than using habitat co-
variates alone.

Spatial variability in mackerel icefish diet

High densities of icefish on the northwest South Georgia shelf
were coincident with those where krill predominated in ice-
fish diets, suggesting that krill-availability may be a determin-
ing factor in structuring icefish distribution. Our models also
indicated high icefish abundance in the southwest sector, but
this wasn’t coincident with higher krill content in icefish diets,

but did coincide with higher proportions of Themisto gau-
dichaudii. Apart from Shag Rocks, where fish constitute a
larger proportion of icefish diet, T. gaudichaudii was the sec-
ond most important prey source. If T. gaudichaudii are consis-
tently available in the southwest, it may explain how relatively
high densities of icefish are able to persist there. An alterna-
tive interpretation is that krill abundance and/or availability
is lower in the southwest, such that T. gaudichaudii forms a
larger proportion as secondary prey.

Locations of higher krill consumption by icefish coincide
with locations frequented by other krill-dependent predators,
including Antarctic fur seals (Arctocephalus gazella; Stani-
land et al. 2011), macaroni penguins (Eudyptes chrysolo-
phus; Trathan et al. 2006), and gentoo penguins (Pygoscelis
papua; Ratcliffe et al. 2021) suggesting a preference for areas
where prey are consistently available by multiple taxa. Co-
occurrence of multiple krill predators likely increases inter-
specific competition and localized depletion of krill, which
may be exacerbated by krill fishing (Bertrand et al. 2012). Fur-
thermore, in years of low krill availability, prey switching by
fur seals towards greater consumption of mackerel icefish im-
pact icefish via bottom-up (loss of krill prey) and top-down
(increased predation by fur seals) effects (Everson et al. 1999,
Hill et al. 2012). Taken together, knowledge of the distribu-
tion of the suite of krill predators can inform precautionary
management of the fishery to avoid exacerbating the direct
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(i.e. prey resource limitation) and indirect (i.e. prey-switching)
consequences of natural variation in krill abundance.

Biomass and total krill consumption estimates

Distribution models for mackerel icefish at South Georgia
indicated a long-term average biomass of 63 x 103 tonnes
(henceforth, kt). However, our density estimates are almost
certainly an underestimate as they do not account for icefish
in the water column (Everson et al. 1996) above the trawl
headline height (3-6 m). Furthermore, catchability of mack-
erel icefish near the seabed (i.e. available to trawl gear) is likely
also less than one, introducing further bias that may vary
among years according to population size structure (Fraser
et al. 2007) given omission of small fish due to mesh size
(40 mm). Studies investigating mackerel icefish predator (gen-
too penguins and fur seals) diets at South Georgia are sugges-
tive of annual consumption of icefish exceeding 100kt per year
(Reid et al. 2005). Additionally, ecosystem models for South
Georgia suggest that mackerel icefish biomass up to ten-times
higher than bottom-trawl survey estimates is needed to satisfy
the requirements of the pelagic food web (Hill et al. 2012).
Our models were suggestive of diel vertical migration ac-
cording to time of day indicating higher biomass near the
seabed towards noon. These results are consistent with ice-
fish tracking diel-vertical migration of krill (Bahlburg et al.
2023). However, the magnitude of this effect (1.5 x differ-
ence between dawn and midday) is small relative to the dis-
crepancy between our estimated biomass and that indicated
by consumption rates of icefish predators. Taken further, this
suggests a potentially large proportion of the population are
dispersed throughout the water column at all times of day.
Krill consumption by mackerel icefish using our median es-
timate of consumption rate (1% body mass per day) was esti-
mated at 133kt per year, with some locations exceeding 20
tonnes per km? per year. Given that biomass is potentially
~2-10 times higher than our estimate, it is likely that mack-
erel icefish are a major consumer of krill both at local- and
regional-scales. Inclusion of spatial variability in diet had lit-
tle effect on gross consumption estimates but did place greater
emphasis on areas that the fishery operates in, notably to the
northwest of South Georgia. The northwest shelf is also a ma-
jor foraging area for other krill consuming taxa, notably fur
seals, and gentoo and macaroni penguins (Trathan et al. 2006,
Staniland et al. 2011, Ratcliffe et al. 2021). Boyd (2002) esti-
mated that macaroni penguin consume 8 million tonnes (Mt)
of krill per year at South Georgia, which when adjusted for
current population estimates (~ 1 million pairs compared to 3
million pairs) suggests consumption of ~2.7Mt per year. The
fur seal population at South Georgia may consume ~3.8Mt
per year (Boyd 2002), based on the 1991 population estimate
of 1.55 million animals that is comparable to current esti-
mates following population increases and subsequent declines
since 1991 (Forcada et al. 2023). Comparatively, gentoo pen-
guins, numbering ~100 000 breeding pairs on South Georgia
(Herman et al. 2020) are estimated to consume ~45kt per
year (Williams 1991). Average annual consumption of krill
by mackerel icefish likely exceeds that of gentoo penguins and
may be of the same order of magnitude as that of fur seals and
macaroni penguins dependent on the bias in our estimate of
icefish biomass. In addition, increased icefish biomass follow-
ing years of strong recruitment and survival may well increase
consumption to well above the long-term average in particu-
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lar years. Estimates of interannual variability, based on sur-
vey random effects from the CPUE model, suggest that icefish
densities vary from 0.3 x to 3.4 x the long-term mean (&% 2
standard deviations of survey random effects after conversion
from log- to natural-scale) among years. However, realized in-
terannual variation in biomass is likely lower, as survey differ-
ences incorporate natural variation in biomass in addition to
variation in sampling among surveys and may be affected by
singular trawls when they encounter large aggregations (i.e.
high CPUE in 1990 and 2013 were due to individual trawls
capturing 37 tonnes and 24 tonnes of icefish, respectively, each
accounting for more than 50% of the survey total). Despite
that, short-term variability in demersal fish populations, and
consequently krill requirements, ought to be a higher priority
for consideration in krill fishery management when compared
to other krill consumers, such as fur seals or penguins, whose
populations vary less among years.

Our consumption estimates are, however, based on uncer-
tain estimates of daily feeding rates. Whilst feeding rates of
up to 2% body mass per day have been recorded for mackerel
icefish (Kock et al. 2012), these may be under ideal conditions
of abundant prey and zero competition. Daily feeding rates
of 1% body mass per day when annualized (i.e. Q/B = 3.65)
exceeds those used in ecosystem models for mackerel icefish
at South Georgia (Q/B = 1.9; Hill et al. 2012) and for de-
mersal fish in the Ross Sea (Q/B = 1.89; Pinkerton et al.
2010) and the Western Antarctic Peninsula (Q/B = 2; Bal-
lerini et al. 2014). They also exceed those estimated for gad-
iform fish in northern hemisphere high-latitude ecosystems
(Q/B = 2-2.713; Whitehouse et al. 2014, Bentley et al. 2017).
Taken together, this suggests that estimates corresponding to
0.5% body mass per day are more likely. Therefore, we sug-
gest that krill consumption of 62kt per year represents an
absolute minimum, but that realized consumption is poten-
tially an order of magnitude higher given biased estimates of
biomass.

Given uncertainties in biomass and feeding rate, we advise
that our estimates of krill consumption are only applied along-
side some appreciation of the potential magnitude of those
biases. Addressing our major concern, that icefish biomass is
underestimated by demersal trawl sampling, will require ap-
proaches such as concurrent acoustic sampling (Gode and
Wespestad 1993, McQuinn et al. 2005, Kotwicki et al. 2018)
to identify the vertical distribution of icefish in the water col-
umn, as well as studies investigating net avoidance behaviour
(Doray et al. 2010). Acoustic sampling may also help to iden-
tify patches of high icefish density (i.e. Everson et al. 1996)
that could be used in sampling design to obtain more accurate
and precise estimates of biomass (McQuinn et al. 2005); how-
ever, this would also require studies to further refine the acous-
tic characteristics of icefish to distinguish them from krill and
other semi-pelagic species (Fallon et al. 2016). Refining feed-
ing rate estimates, by collecting additional data from South
Georgia across different seasons, or via alternate approaches
such as those based on metabolic rates (Johnston and Battram
1993), would help to ascertain whether feeding rates vary sea-
sonally, or in accordance with prey availability or composition
(Pedersen 2000). We also implicitly assume that icefish distri-
butions are similar year-round, as we have insufficient data
outside of the summer survey period (December-February).
Additional trawl surveys at other times of year may enable
the development of seasonal distribution models, as well as
to identify seasonal variation in diet if concurrent stomach
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content sampling were to be performed. However, in the near-
term, these data are unlikely to become available within the
timeframe needed to inform krill fishery management. As an
interim measure, we would propose that krill consumption
by mackerel icefish be included in the krill fishery manage-
ment evaluation via multiple scenarios, such as by scaling
predicted distributions in accordance with ecosystem model
(i.e. Hill et al. 2012) or predator diet (Reid et al. 2005) es-
timates of total biomass and evaluating the impact on spa-
tial management outcomes. This type of sensitivity analysis, if
also applied across other krill-dependent species considered in
the krill fishery management approach (Warwick-Evans et al.
2022a, b), would help to ensure that decisions are made given
the data currently available, while acknowledging key sources
of uncertainty.

Overlap with the krill fishery

Given that the krill fishery operates exclusively during winter
around South Georgia (Trathan et al. 2021), penguins and fur
seals that are highly mobile may be more able to adapt to lo-
calized depletions of krill, than less mobile demersal fish. Our
assessment of relative overlap between the fishery and icefish
consumption indicated relatively low overlap due to high ice-
fish abundance in areas where fishing does not currently oc-
cur (south of South Georgia) or is prohibited (within 22 km
of Shag Rocks), and the relative concentration of fishing ef-
fort. Despite current low overlap, our results provide the foun-
dation for including demersal fish in the future development
of krill fishery management at South Georgia. Furthermore,
our study illustrates the data and methods required to evalu-
ate overlap between demersal fish and the krill fishery, which
could be applied elsewhere, such as at the Western Antarctic
Peninsula and South Orkney Islands where the krill fishery is
more active (Trathan et al. 2021).

Conclusion

Our study represents one of the few to examine the fine-scale
distribution of a demersal fish species in the Southern Ocean.
Furthermore, our exploration of spatial variability in diet rep-
resents an important consideration for icefish ecology and the
potential availability of krill to predators on the South Geor-
gia shelf. Whilst our study demonstrates that spatial overlap
between icefish and krill fishing is currently low at South Geor-
gia, present management of the krill fishery allows for signif-
icant spatial and seasonal concentration of krill catch, rais-
ing the risk to krill-dependent predators at targeted locations.
Re-establishment of spatial management, incorporating spa-
tial information on krill consumption by both resident (dem-
ersal fish, gentoo penguins, fur seals) and seasonally abundant
(macaroni penguins, cetaceans) taxa, is therefore critical to
minimize the potential for adverse impacts to krill-dependent
predator populations.
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