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Abstract 

Demersal fish are a critical component of Antarctic marine ecosystems and may consume large quantities of Antarctic krill ( Euphausia 
superba ), placing them at risk from competition with commercial krill fishing. However, estimating relative overlap between krill fish- 
ing and consumption by demersal fish is beset by uncertainty regarding fish distribution and diet. In this study, we develop models 
of mackerel icefish ( Champsocephalus gunnari ) distribution and diet around the subantarctic island of South Georgia to predict the 
distribution of krill consumption attributable to mackerel icefish to aid in krill fishery spatial management. We use trawl survey data 
(1986–2023) to construct distribution models for mackerel icefish biomass across the South Georgia and Shag Rocks shelf. Using gut 
content data, we also developed spatial models for the proportion of krill in mackerel icefish diets, allowing for a novel evaluation of 
spatial variation in potential krill availability. Models indicated that mackerel icefish are distributed across the South Georgia and Shag 

Rocks shelves to 400 m depth, with high density areas towards the shelf edge associated with seafloor topography. Spatial variation in 

diet was evident between South Georgia, where krill predominated, and Shag Rocks, where diets were more piscivorous. Higher krill 
diets along the South Georgia shelf edge were also coincident with elevated icefish density, suggesting that icefish distribution and diet 
may be associated with krill availability. Spatial variation in krill consumption by mackerel icefish suggests that overlap with the krill 
fishery is currently low despite mackerel icefish being a major krill consumer. However, estimates of mackerel icefish biomass and total 
krill consumption were uncertain due to uncertainties surrounding icefish catch and feeding rates, and were likely negatively biased 

due to the inability to account for the unknown proportion of fish in the water column that are unavailable to trawl sampling. Despite 
those concerns, our results provide the foundation for including demersal fish information in spatial management of the krill fishery. 
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Introduction 

Given rising human demand for marine food resources (Nay- 
lor et al. 2021 ), there is an increasing need to balance fisheries 
extraction against the potential ecosystem impacts that may 
arise due to increased fishing (Pauly et al. 2005 , Petza and Kat- 
sanevakis 2024 ). Setting regional quotas based on ecosystem 

requirements is one important aspect (Hill et al. 2020 ); how- 
ever, many studies have demonstrated that management is of- 
ten applied at spatial scales that are inappropriate both with 

regards to ecosystem processes (Watters et al. 2020 , Berger et 
al. 2021 ) and the realized spatio-temporal distribution of fish- 
ing effort (Warwick-Evans et al. 2022a , Bertrand et al. 2012 ).
Understanding the spatial arrangement of fishing and the va- 
riety of ecosystem processes that may be impacted by fishing 
is therefore a requirement for effective ecosystem-based man- 
agement (Falco et al. 2022 ). 

One such consideration is understanding the relative over- 
lap between consumption by predators and projected or re- 
alized fishing effort (Warwick-Evans et al. 2022b , Bertrand 

et al. 2012 ). This is particularly important for forage species 
(e.g. small pelagic fish and krill) as they frequently support 
multiple upper-trophic species (Griffiths et al. 2013 ) but are 
often patchily distributed (Santora et al. 2014 ), such that ag- 
© The Author(s) 2026. Published by Oxford University Press on behalf of Interna
article distributed under the terms of the Creative Commons Attribution License
reuse, distribution, and reproduction in any medium, provided the original work
regations may be targeted on multiple fronts. Minimizing the 
otential for competition with predators and/or localized de- 
letion of resources by fisheries (Bertrand et al. 2012 ) there-
ore requires that management actions are informed by an un-
erstanding of the distribution of consumption by predators 
Santora et al. 2014 ). Not only does this require information
n the spatial distribution of predators (Warwick-Evans et al.
022b , Ratcliffe et al. 2021 ), but also how predator diets vary
mong locations depending on prey availability (Wells et al.
024 ). 
Antarctic krill ( Euphausia superba , hereafter krill) are an

mportant link in the Southern Ocean food web, providing 
 vital prey resource for many predator species (Murphy et
l. 2007 ). They are also the target species for the largest fish-
ry, measured by catch, in the Southern Ocean, which is pri-
arily concentrated in the southwest Atlantic (Nicol and Fos- 

er 2016 , Trathan et al. 2025 ). The Commission for the Con-
ervation of Antarctic Marine Living Resources (CCAMLR),
ho are responsible for managing the krill fishery, had pre-
iously set catch limits within large-scale subareas (shown 

n Fig. 1 ) in the southwest Atlantic (CCAMLR area 48). How-
ver, over recent years, krill fishing has become increasingly 
oncentrated in space and time within those subareas, poten- 
tional Council for the Exploration of the Sea. This is an Open Access
(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted
is properly cited.
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Figure 1. Map of the study region ( A ) in the southwest Atlantic Ocean in relation to South America and Antarctica and proximity to oceanographic 
features (SAF = Subantarctic Front, PF = Polar Front, SACCf = Southern Antarctic Circumpolar Current Front, SB = southern boundary of the Antarctic 
Circumpolar Current). Boundaries of CCAMLR Subarea management units (48.1, 48.2, 48.3, 48.4) are also shown. Map showing the South Georgia and 
Shag Rocks shelf ( B ) indicating trawl locations from groundfish surveys (1986–2023) used throughout analyses in relation to bathymetry, with polygons 
indicating sectors used in sampling stratification. Contour lines represent the 500 m and 2000 m isobaths. 
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ially increasing the risk to krill-dependent predators (Watters
nd Hinke 2022 ). Recognising this, in 2019 CCAMLR be-
an developing a management approach to apportion catch
mong smaller-scale management units within those subar-
as (CCAMLR 2019 , paragraphs 5.17 to 5.19). A key re-
uirement of this approach is understanding krill distribu-
ion and consumption by predators at a relatively fine spatial
cale (Constable et al. 2023 ). Despite plans to implement this
pproach, the CCAMLR conservation measure that divided
he catch limit of 620 000 tonnes among those four subareas
CM 51–07) expired at the end of 2024, leading to the ab-
ence of subarea-level spatial management during the 2024/25
shing season (Trathan et al. 2025 ). Given that, identification
f foraging patterns of krill-dependent predators may be a
ecessary component informing future negotiations surround-

ng the krill fishery as a prerequisite for establishing a data-
nformed approach to spatial management. 

Although the krill fishery tends to focus around the
ntarctic Peninsula and South Orkney Islands, it frequently
oves to South Georgia ( Fig. 1 ) during winter (Trathan et

l. 2021 ). Krill abundance varies significantly within- and
mong-seasons at South Georgia linked to transport and re-
ention from Antarctica (Murphy et al. 2004 , Reid et al. 2010 ,
ielding et al. 2014 ). South Georgia is also a haven for wildlife,
roviding important breeding and feeding grounds for numer-
us marine predators (Boyd 2002 , Trathan et al. 2021 ). As
uch, understanding the spatial distribution of krill predators
t South Georgia is fundamental if we are to manage the krill
shery in a precautionary manner. 
While multiple studies have investigated the fine-scale spa-

ial distribution of krill consumption by penguins, seals, and
etaceans (Warwick-Evans et al. 2018 , 2022a , 2022b ), fewer
tudies have taken a similar approach to demersal fish (al-
hough see Canseco et al. 2024 ). Demersal fish are an im-
ortant part of the krill-based ecosystem in the Southern
cean, potentially accounting for > 70% of krill consump-

ion in some areas (Hill et al. 2007 ). Mackerel icefish ( Champ-
ocephalus gunnari , henceforth referred to as icefish) are the
ominant demersal fish species at South Georgia and are
ighly dependent on krill (Reid et al. 2005 , Main et al. 2009 ).
 member of the Antarctic icefish family (Channicthyidae),
ackerel icefish are distributed around Subantarctic islands

o depths of ∼ 700 m and are bentho-pelagic, being highly
dapted to feed on krill in the water column (Kock and Ev-
rson 1997 , Kock 2005 ). Given their high abundance and re-
iance on krill, ecosystem models suggest they are potentially
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Table 1. Summary of bottom-trawl surveys used in analyses of mackerel icefish (Champsocephalus gunnari) distribution and diet. 

Diet samples 

Survey Date start Date end Gear Design Trawls Prev. (%) CPUE (kg/km2 ) Trawls Fish 

SG87 29-Nov-86 17-Dec-86 B-454 OT SRS 104 98 1370 
SG88 19-Dec-87 12-Jan-88 P32/36 OT SRS 112 98 429 
SG89 1-Feb-89 14-Feb-89 P32/36 OT SRS 55 91 928 
SG90 6-Jan-90 26-Jan-90 HC120 OT SRS 68 85 19 570 
SG91 22-Jan-91 11-Feb-91 FP120 SRS 77 91 773 
SG92 3-Jan-92 26-Jan-92 FP120 SRS 81 94 1047 
SG94 4-Jan-94 8-Feb-94 FP120 SRS 81 95 541 
SG97 2-Sep-97 29-Sep-97 FP120 SRS 55 96 2057 
SG00 16-Jan-00 30-Jan-00 FP120 SRS 41 95 1185 
SG02 12-Jan-02 1-Feb-02 FP120 SRS 63 97 1095 
SG03 7-Jan-03 31-Jan-03 FP120 RAD 38 37 909 
SG04 7-Jan-04 5-Feb-04 FP120 SRS 64 75 2309 46 584 
SG05 7-Jan-05 25-Jan-05 FP120 SRS 42 76 248 30 433 
SG06 3-Jan-06 1-Feb-06 FP120 SRS 66 83 3810 52 1176 
SG07 27-Aug-07 21-Sep-07 FP120 SRS 49 88 2787 38 441 
SG08 16-Apr-08 30-Apr-08 FP120 SRS 70 87 2417 51 733 
SG09 15-Jan-09 23-Jan-09 FP120 SRS 73 93 1551 57 828 
SG10 15-Jan-10 24-Jan-10 FP120 SRS 75 95 2298 66 1162 
DW10 29-Jan-10 31-Jan-10 FP120 DW 6 0 0 
SG11 26-Jan-11 6-Feb-11 FP120 SRS 87 95 1629 
SG12 26-Jan-12 29-Jan-12 FP120 SRS a 22 91 11 627 18 367 
SG13 22-Jan-13 29-Jan-13 FP120 SRS 68 98 11 312 56 805 
SG15 13-Jan-15 23-Jan-15 FP120 SRS 77 91 1672 67 1094 
SG17 30-Jan-17 7-Feb-17 FP120 SRS 72 99 3967 69 1380 
DW19 5-Feb-19 5-Feb-19 FP120 DW 3 0 0 
SG19 27-Jan-19 5-Feb-19 FP120 SRS 73 97 1489 68 1190 
SG21 8-May-21 28-May-21 FP120 SRS 76 92 334 61 713 
SG23 1-Feb-23 10-Feb-23 FP120 SRS 75 95 1866 63 876 

Totals 1773 91 2750 742 11 782 

a : incomplete survey; only Shag Rocks and the NW South Georgia shelf were sampled. 
Trawl sample size (n), prevalence (% of trawls with catch > 0) and gross mean catch per unit effort (CPUE = catch/trawl area swept) are given along with 
sample sizes for fish sampled for diet analyses. All values presented are after data-cleaning and represent sample sizes entering analyses. Design abbreviations: 
SRS = stratified random sample, RAD = radial, DW = deepwater trawl surveys. See Supplementary materials for information on gear configuration. 
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responsible for 8%–27% of all krill consumption on the South 

Georgia shelf, exceeding consumption by any other ground- 
fish species there (Hill et al. 2012 ). In addition, mackerel ice- 
fish were historically overexploited at South Georgia (Kock 

2005 ), and evidence suggests that populations have not fully 
recovered to pre-exploitation levels (Reid et al. 2005 ). Man- 
agement of the krill fishery at South Georgia should there- 
fore aim to avoid any potential adverse impacts to mackerel 
icefish and to allow the population to develop according to 

their ecological potential given current availability of prey 
resources. 

Here, we use a series of models fitted to catch and diet data 
from trawl surveys to estimate the long-term average spatial 
distribution of icefish and their consumption of krill around 

South Georgia ( Fig. 1 ). We had three main objectives. We first 
aimed to predict the average distribution of icefish within this 
region. This was achieved using hurdle models fitted to de- 
mersal trawl catch data and informed by environmental co- 
variates to identify factors related to patterns of occurrence 
and biomass. Secondly, we aimed to identify spatial varia- 
tion in diet composition, which we investigated using stom- 
ach content data from trawl surveys (2004 onwards), to bet- 
ter understand spatial variation in the availability of alternate 
prey resources and to inform krill consumption estimates. Fi- 
nally, we aimed to combine results from distribution model 
and diet analyses to estimate consumption of krill by icefish 

within this region, and to identify the relative overlap with 

the krill fishery. The resulting estimates of icefish distribution 
nd krill consumption will help facilitate the development of 
n evidence-based management strategy for the krill fishery at 
outh Georgia. 

ethods 

roundfish survey data 

rawl surveys 
ata on icefish distribution at South Georgia ( Fig. 1 ) were col-

ected during 28 demersal trawl surveys from 1986 to 2023
 Table 1 ). Sampling consisted of 30-minute trawls carried
ut predominantly during daylight (94% between nautical 
wilight at dawn/dusk, n = 1773) at a speed of 3–4 knots,
sing similar gear throughout (trawl dimensions: 16-22 m 

ingspread, 3-6 m headline height; detailed in Supplementary 
aterials: Section 1 ). Surveys were usually during the aus-

ral summer (November-February), except for 1997 and 2007 

August-September), and 2008 and 2021 (April-May; Table 
 ). Trawl locations were chosen according to a stratified
andom-design across sectors and depth zones (100–200 m,
01–350 m, > 350 m; Fig. 1 ), except for during deepwater
urveys in 2003, 2010 and 2019 where a limited number of
rawls were performed ( Fig. S1 , where S denotes figures in
upplementary materials ). All trawls were retained for analy- 
is, except for trawls hauled early (duration < 15 minutes) due
o unsuitable ground or gear failure. Total icefish weight (kg)
as recorded for each trawl in addition to depth, distance, and

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf225#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf225#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf225#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf225#supplementary-data
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Table 2. Trawl-specific and habitat covariates, along with data sources, for variables (units in parentheses) considered in mackerel icefish (Champsocephalus 
gunnari) distribution models. 

Variable Source 

survey: Survey categorical variable survey 
date: Survey mid-point date survey 
sun: Sun altitude above the horizon (radians) trawl 
east: Easting of trawl mid-point (m) a trawl 
north: Northing of trawl mid-point (m) a trawl 
depth: Bathymetric depth (m) b ETOPO 2022 | Res: 0.0167◦

slope: Seafloor slope (unitless) 
curve: Planform curvature of seafloor (unitless) 
SST.mean: Mean sea surface temperature (◦C) [Surf.] Global Ocean OSTIA SST (product: 

sst_glo_sst_l4_rep_observations_010_011) 
Time: 1981–2023 (daily) | Res: 0.05◦

SST.sd: Std. dev. of sea surface temperature (◦C) [Surf.] 
SSal.mean: Mean sea surface salinity (PSU) [Prod.] 

Global Ocean Physics Reanalysis (product: 
global_multiyear_phy_001_030) 
Time: 1993–2023 (daily) | Res: 0.083◦

SSal.sd: Std. dev. of sea surface salinity (PSU) [Surf.] 
FTemp.mean: Mean temperature near seafloor (◦C) [Floor] 
FSal.mean: Mean salinity near seafloor (PSU) [Floor] 
FSal.sd: Std. dev. of seafloor salinity (PSU) [Floor] 
FVel.mean: Mean current speed near seafloor (ms-1 ) [Curr.] c 

SVel.mean: Mean surface current speed (ms-1 ) [Curr.] c 

EKE.mean: Mean eddy kinetic energy (m2 s-2 ) [Curr.] c 

MLT.mean: Mean mixed layer thickness (m) [Prod.] 
CHL.mean: Mean surface chlorophyll-a concentration (mg m-3 ) [Prod.] Global Ocean Colour (product: 

oceancolour_glo_bgc_l4_my_009_104) 
Time: 1997–2023 (daily) | Res: 4km 

FDO2.mean: Mean dissolved oxygen near seafloor (mmol m-3 ) Global Ocean Biogeochem. Hindcast 
(product: global_multiyear_bgc_001_029) 
Time: 1993–2023 (daily) | Res: 0.25◦

a : Trawl mid-points were converted from latitude-longitude (decimal degrees) to easting-northing (m) according to the Lambert azimuthal equal-area projection 
centered on South Georgia. 
b : In-situ depth measurements were used in model fitting, whereas depth from bathymetry data was used to predict icefish distribution. 
c : Derived from zonal and meridional components of current velocity. 
Covariate categories (Surf. = surface temperature and salinity; Floor = seafloor temperature and salinity; Prod. = surface productivity; Curr. = current velocity) 
assigned based on collinearity (0.55 < | r | < 0.8) are given in [], and only one variable per group permitted to appear in any given model. Dataset sources, 
including Copernicus Marine Data Store product ID, temporal coverage and spatial resolution are also given. All environmental datasets were obtained for 
the area within the 2000 m isobath around South Georgia and Shag Rocks (33–44◦W, 52.5–56◦S), to encompass trawl locations. 
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orizontal opening (wingspread). Weights were converted to
atch per unit effort (CPUE) with effort equal to area swept
trawl distance × wingspread; km2 ). 

iet data 
ince 2004, whole stomach samples were retained from a
andom sample (typically ≤ 30) of icefish per haul ( Table
 ). Stomach contents were identified to the lowest possi-
le taxonomic resolution, then counted and weighed for
ach prey taxon for each icefish sampled. Composition by
ass was used throughout as a measure of proportional

onsumption. 

istribution models for mackerel icefish density 

athymetric and environmental covariates 
cefish distribution models were constructed based on trawl
PUE (kg/km2 ) in relation to spatial and environmental co-
ariates ( Table 2 ). Bathymetric data were obtained from the
TOPO 2022 dataset (NOAA 2022 ). These data were also
sed to calculate slope (terrain function in the raster pack-
ge; Hijmans 2025 ), and planform curvature (curvature func-
ion in the spatialEco package; Evans and Murphy 2023 ),
hich quantifies curvature perpendicular to the prevailing

lope as an indicator of seafloor grooves (negative curvature)
nd ridges (positive curvature). Slope and planform curvature
ere calculated at a spatial scale of 10 km. 
Environmental data were obtained from the Copernicus
arine Data Store, and included temperature, salinity, current
agnitude, and dissolved O2 concentration at the surface and
ear the seabed, and eddy kinetic energy (EKE), mixed layer
hickness and surface chlorophyll-a concentration ( Table 2 ).
hese variables were chosen as they may effect icefish distri-
ution directly (i.e. via temperature limitation; Kock 2005 )
r indirectly via their effects on icefish prey. Environmental
atasets were processed into maps representing the average
limatological mean and variability (standard deviation cal-
ulated across layers each year then averaged across years,
hereby representing average intra-annual variation) across
ata from 1993 (1997 for chlorophyll-a) to 2023. We ini-
ially considered predictors based on season-specific clima-
ologies (i.e. December-February) given differences in survey-
iming. However, we chose to use year-round averages as they
ere highly correlated with seasonal averages, and to avoid

purious relationships arising from the inclusion of covari-
te values derived only from winter surveys that had lim-
ted representation (four surveys). Values for each covariate
ere then extracted according to trawl mid-point location.
abitat covariates that were highly skewed were transformed,

nd all were scaled prior to analysis. The covariate set was
hen reduced by excluding variability covariates that were
ighly collinear (correlation coefficient; r = 0.8–0.98; Dor-
ann et al. 2013 ) with the mean of the same variable ( Fig. S2 )

o avoid multicollinearity. Furthermore, covariate combina-
ions that were moderately collinear (0.55 < | r | < 0.8) were
rouped ( Table 2 ) and trialed against each other, rather than
ncluded together, to identify the best model while minimizing
ulticollinearity. 

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf225#supplementary-data
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Hurdle model framework 

Distribution models were constructed following a two-stage 
hurdle modelling approach. This approach was chosen to 

firstly identify factors related to icefish occurrence (presence- 
absence component), and to separately identify factors asso- 
ciated with the spatial distribution of biomass within their 
range (non-zero CPUE component). Presence-absence mod- 
els were fitted to a binary response (CPUE > 0 set to 1; bi- 
nomial distribution, logit link), and CPUE models were fit- 
ted to log-transformed CPUE, excluding absence records (nor- 
mal distribution). Analyses were performed using generalized 

additive models (GAMs) fitted using gam in the mgcv pack- 
age in R (Wood 2011 ). Unless stated, all smooths were thin- 
plate regression splines with a shrinkage penalty (smooth type 
= “ts”), such that non-informative terms shrink to 0, ef- 
fectively removing them from the model (Marra and Wood 

2011 ). 
Several terms were included in each model to account for 

sampling differences among trawls. A smooth for date and sur- 
vey random effects were included to model long-term trends 
and interannual variability, respectively. Time of day was also 

included via a smooth based on sun altitude (x = 0 at dawn, x 

= π /2 at zenith) to account for differences in CPUE through- 
out the day that may occur as a result of diel vertical move- 
ment (Kock 2005 ). 

Spatial variability in icefish distribution was modelled via 
smooth terms for environmental and bathymetric covariates 
(henceforth, habitat covariates; Table 2 ), and a spatial field 

dependent on location (easting, northing) to account for un- 
explained spatial variation. Spatial effects were specified as a 
Gaussian-process (basis = “gp”) smooth which are parame- 
terized by a range parameter that controls the extent of spa- 
tial continuity (Kammann and Wand 2003 ). We investigated 

range parameters from 5 km to 60 km in 5 km increments,
and only permitted stationary fields (i.e. no continuous trend) 
to favour the explanation of large-scale gradients via habitat 
covariates. 

Fitted models consisted of smooth terms for bathymet- 
ric covariates (depth, slope, planform curvature), along with 

smooths for one variable from each habitat covariate set 
( Table 2 ), plus a spatial field. Selection among alternate models 
(habitat covariates, range parameter) was achieved by fitting 
all possible models and ranking them based on AIC and cross- 
validated predictive accuracy (see Supplementary materials: 
Section 2 ). For presence-absence, predictive accuracy was cal- 
culated as sensitivity (% presences correct), specificity (% ab- 
sences correct), and area under the receiver operating charac- 
teristic curve (AUC; Heagerty and Zheng 2005 ), whilst nor- 
malized (relative to standard deviation of observed values) 
root-mean-squared error (nRMSE; ranges from 0 for a per- 
fect fit, to 1 for no better than an intercept-only model) was 
used for log-CPUE. 

Following fitting, models were validated according to stan- 
dard GAM diagnostics (residual distribution, homoscedastic- 
ity), and those with maximum concurvity greater than 0.8 

omitted from further consideration (Wood 2008 ). Results are 
presented for the model with lowest predictive error and AIC 

( �AIC < 4). 

Density maps 
Predicted distribution maps were constructed based on prob- 
ability of occurrence (presence-absence) and CPUE predicted 
o a 2 × 2 km grid populated with habitat covariates. Date
nd sun angle were held constant at their maximum values
date = Jan-2023; sun = 1) so that predictions represent the
ost recent survey, and are standardized to the same time-of-
ay. 

or CPUE, predictions were calculated as the mean 

f a log-normal distribution; 

̂ CPUE = exp 

(
ˆ μ + ˆ σ 2 

2 

)
(1) 

here ˆ μ is expected log-CPUE, and ˆ σ 2 is residual vari- 
nce. Multiplying by the probability of occurrence from 

he presence-absence model, ˆ p , gives an estimate of density 
kg/km2 ): 

ˆ D = ˆ p × ̂ CPUE (2) 

Overall and sector-specific (i.e. Fig. 1 B) biomass estimates 
ere also calculated by summing ˆ D over areas and multiplying 
y grid-cell area (4 km2 ). Uncertainty in spatial density (pre-
ented via coefficient of variation; CV) and biomass (95% CI)
stimates were quantified using posterior simulation, allow- 
ng for uncertainty to be propagated across presence-absence 
nd CPUE model components (see Supplementary materials: 
ection 2 ). We also investigated whether patterns of icefish
ensity have shifted over time by repeating the analyses to
ata restricted by time (1987–1997, 2000–2010, 2011–2023).
owever, given our main aim was to create a long-term av-

rage representation of icefish distribution, we present these 
esults in the Supplementary materials as validation only. 

Given that models were informed by trawl-based CPUE,
redictions of density and biomass are likely underestimates 
ue to individuals present throughout the water column (Kock 

nd Everson 1997 ) above the headline height (3-6 m) of the
rawl gear. As such, values for “density”and “biomass”should 

e interpreted as the catchable density and biomass given 

he sampling methodology. However, despite this limitation,
PUE is a valid measure of relative abundance among-trawls,
nd therefore variation among locations. 

roportion of krill in icefish diets 

iet sample processing 
iet sample data were initially processed to account for 

ecords of unknown euphausiids (0%–32% of gross mass per 
ear) that may otherwise bias analyses (see Supplementary 
aterials: Section 3 ). Prior to this, the proportion of Eu-
hausia superba and unknown euphausiids in stomach con- 
ent samples was examined in relation to fish size to iden-
ify whether reassignment of unknown euphausiids may suffer 
rom bias due to diet size-dependence. However, little varia-
ion among sizes were evident in our stomach content data
 Fig. S3 ). Data were then aggregated to trawls given our focus
n spatial patterns in diet composition and to avoid pseudo-
eplication. Trawl-averaged krill proportion was calculated as 
he summed krill mass divided by the total stomach content
ass for all fish sampled per trawl. We also calculated the
umber and mean length of fish sampled each trawl. 

nalyses 
rawl-aggregated krill proportions were analyzed us- 

ng GAMS fitted using the gamlss package (Rigby and 

tasinopoulos 2005 ) assuming a 0/1 inflated beta distribution 

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf225#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf225#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf225#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf225#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf225#supplementary-data
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s the response consisted of a mix of continuous proportions,
’s (no krill) and 1’s (all krill). Models were constructed
y first identifying the best sub-models for variance and
/1 inflation parameters, which were then fixed throughout
ubsequent analyses (see Supplementary materials: Section 4 ).
or the mean proportion, we considered survey random ef-
ects and smooth terms (penalized smooths; basis = “ts”) for
epth and trawl-averaged fish length, to model interannual
ariability as well as depth-related and ontogenetic changes
n diet, respectively. We chose to model spatial variation
sing three different approaches, plus a model with no spatial
ffects, to investigate how resolution of diet information
ffects consumption estimates. These consisted of spatial
ariation being modelled either by sector or strata (sector by
epth-zone) random effects, which represent relatively coarse
esolution of diet composition, or using a gaussian-process
mooth to model continuous variation. As with icefish den-
ity, alternate spatial smooths (range parameter: 10-60 km in
 km increments; stationary and non-stationary fields) were
rialed. All possible combinations of survey, depth, time, fish
ength, and spatial effects were evaluated and ranked based
n AIC. 

patial variation in the proportion of krill in icefish diets 
aps representing the long-term mean proportion of krill in

cefish diet were created by using models to predict values onto
 2 × 2 km resolution grid as described for icefish distribu-
ion. Uncertainty of predicted proportions was quantified us-
ng bootstrap resampling (n = 1000) and are presented via
5% CI (area-based means) or CV (spatial predictions). 
We also provide gross diet composition (proportion by
ass per survey) for South Georgia and Shag Rocks, grouped

nto: Euphausiids, with sub-categories for E. superba , other
uphausia spp., and Thysanoessa sp., Other Crustaceans,
ith sub-categories for Themisto gaudichaudii , and Antarc-

omysis sp., and Fish, split into Nototheniidae, Channichthyi-
ae, and Myctophidae. 

rill consumption estimates 

aily consumption rate 
aily consumption rates, expressed as a percentage of body
ass, were taken from Kock et al. (2012) . Given the range of
ublished values for South Georgia (0.3–2.2% body mass per
ay; Kock et al. 2012 ), we present estimates assuming rates of
.5%, 1% and 2% body mass per day. 

patial distribution and gross estimates of krill consumption 

aps of krill consumption were created by combining density
kg/km2 ) and krill dietary proportion layers with relative daily
onsumption rates (% body mass consumed per day). Given
he bias in biomass estimates noted previously, these estimates
hould be interpreted as consumption attributable to catch-
ble biomass. Furthermore, our analyses do not account for
patial or temporal variation in icefish size. However, we ex-
ect any bias associated with this to be relatively small as the
roportion of krill in icefish diets seems to vary little among
sh sizes ( Fig. S3 ). 
Several consumption scenarios were investigated by varying

aily consumption rate and spatial representation of icefish
iet (static, sector-specific, or continuous). Consumption esti-
ate uncertainty was calculated via bootstrap, by repeatedly
rawing alternate density (generated by posterior simulation)
nd krill proportion (generated by bootstrap) maps to create
ifferent realizations (n = 10 000) of krill consumption. These
ere processed to represent uncertainty in spatial distribution

CV) and area-based estimates (95% CI). 

rill fishery and spatial statistics 

atch data for the krill fishery around South Georgia (2004–
023) were obtained from CCAMLR (Data Request 683),
onsisting of location and total wet weight of krill per haul.
hese data were processed into a map representing cumula-

ive catch within 2 × 2 km grid cells using the same grid as
sed for density. Spatial overlap between the fishery and krill
onsumption by icefish was calculated using the index of col-
ocation (IoC) that measures the relative (0–1) co-occurrence
f two populations (Carroll et al. 2019 ): 

IoC =
∑ n 

i 

(
p_catchi ∗ p_eateni 

)
√ ∑ n 

i p_catchi 
2 ∑ n 

i p_eateni 
2 

(3)

here p_catch is fishery catch, and p_eaten is consumption
y icefish in grid-cell i relative to their respective totals. Spa-
ial overlap was assessed for each diet scenario (static, sector-
pecific, continuous spatial variation) to examine sensitivity
o alternate representations of diet. This approach identifies
he overlap between two average distributions (mackerel ice-
sh, krill fishery), and therefore does not account for interan-
ual variability in distributions. To address potential changes
n fishery distribution, we also created equivalent maps of cu-
ulative krill catch in 5-year blocks from 2004 to 2023 and

ompared the resultant distributions. 
All analyses were performed in R v4.3.3 (R Core Team

024 ). 

esults 

resence-absence model results 

verall, mackerel icefish were caught in 91% of all trawls
n = 1773), varying from 75%–99% among regular surveys
 Table 1 ). The best-fitting model for icefish presence-absence
ontained depth, seafloor slope and planform curvature, and
eafloor dissolved oxygen (DO) concentration, along with a
5 km range spatial field ( Table 3 ). Effects of other covari-
tes were all shrunk to zero (EDF ≈ 0) indicating no effect
 Table S4 ). Predictive accuracy calculated via cross-validation
as high for sensitivity (99%) and AUC (0.94), but specificity
as relatively lower (54%; Table 3 ). 
Fitted probabilities displayed a non-linear relationship with

epth, reaching values above 0.9 from 90–300 m, and declined
o less than 0.1 for depths greater than 510 m ( Fig. 2 ). Nega-
ive relationships were estimated for seabed slope and curva-
ure ( Fig. 2 ), indicating higher probability of occurrence in ar-
as with low slope and negative curvature, such as submarine
anyons. Seafloor DO was positively correlated with occur-
ence, although fitted effects were weak and highly uncertain.
patial effects indicated higher probability across the South
eorgia shelf compared to Shag Rocks, except for the cen-

ral portion of the northern South Georgia shelf (lower) and
owards the centre of Shag Rocks (higher; Fig. 2 ). 

atch per unit effort—model results 

urvey-averaged CPUE varied considerably among sur-
eys, ranging from 248 kg/km2 (2005), to more than

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf225#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf225#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf225#supplementary-data
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Table 3. Performance of models used to estimate mackerel icefish (Champsocephalus gunnari) distribution. 

Presence-absence 

Model AIC D2 Sens. Spec. AUC 

depth [2.7] + slope [1.1] + curve [1.0] + FDO2.mean [0.7] + space(25 km) 
[18.2] 

498.3 62.3 98.5 54.3 0.940 

Log-CPUE 

Model AIC D2 nRMSE 

depth [3.5] + slope [0.6] + SST.sd [3.3] + space(15 km) [36.4] + sun [1.0] 6475.8 30.2 0.877 
depth [3.5] + slope [0.6] + SST.sd [3.3] + SSal.mean [0.2] + space(15 km) 
[36.2] + sun [1.0] 

6478.4 30.2 0.878 

depth [3.5] + slope [0.3] + FTemp.mean [2.2] + SST.sd [3.1] + space(15 km) 
[35.4] + sun [1.0] 

6479.2 30.4 0.878 

depth [3.5] + slope [0.6] + FTemp.mean [2.4] + space(15 km) [38.8] + sun [1.0] 6479.6 30.2 0.877 
depth [3.5] + slope [0.7] + SST.sd [3.3] + MLT.mean [0.3] + space(15 km) 
[36.0] + sun [1.0] 

6480.2 30.2 0.879 

depth [3.5] + slope [0.5] + SST.sd [3.3] + EKE.mean [0.2] + space(15 km) 
[36.4] + sun [1.0] 

6480.3 30.3 0.878 

depth [3.5] + slope [0.5] + SST.sd [3.3] + EKE.mean [0.6] + MLT.mean [0.7] + 

space(15 km) [35.2] + sun [1.0] 
6480.4 30.2 0.880 

depth [3.5] + slope [0.5] + FTemp.mean [2.3] + SST.sd [3.1] + MLT.mean [0.7] 
+ space(15 km) [34.0] + sun [1.0] 

6480.5 30.3 0.879 

Model statistics include Akaike’s Information Criterion (AIC), deviance explained (D2 ), and predictive statistics assessed via 10-fold cross-validation of 
sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) for the presence-absence component, and normalized root-mean- 
squared error (nRMSE) for the CPUE component. Results are given for the optimal (lowest AIC) spatial range (given in parentheses) for each of the presence- 
absence and CPUE components and for each model with �AIC < 5. Estimated degrees of freedom (EDF) of model smooths are given in []. Covariate smooths 
included in models but had EDF < 0.1 are not included in model formula, and alternate models (different covariates) that functionally resulted in the same 
model due to shrinkage are only represented once. All models contained survey random effects in addition to those indicated. 
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10,000 kg/km2 (1990, 2013), but typically (13 of 25 stan- 
dard surveys) ranged from 1000 to 2500 kg/km2 ( Table 1 ).
The model with lowest AIC for log-CPUE contained depth 

and seabed slope, variation in SST, and a spatial smooth 

with 15 km range ( Table 3 ). Predictive error varied little 
among models with range parameters between 10-20 km 

(nRMSE = 0.877–0.880; Table S5 ) and was relatively high,
indicating much unexplained variation. 

Catch-per-unit effort displayed a unimodal relationship 

with respect to depth, with highest CPUE (above 90% of the 
peak value) predicted at 160-210 m depth and falling below 

10% of the maximum for depths greater than 350 m ( Fig. 2 ).
The third and fourth ranked models ( �AIC = 3.4–3.7) also 

contained a non-linear effect of mean seafloor temperature 
( Table 3 ). Both temperature covariates displayed unimodal re- 
lationships, with highest CPUE predicted for locations with 

near regional average seafloor temperatures ( ∼1.5◦C) and at 
locations with moderate variation in SST ( Fig. 2 ). Inclusion of 
seafloor slope suggested abundance decreases with increasing 
slope, although uncertainty for this effect was high ( Fig. 2 ).
Mixed layer thickness (MLT), surface salinity, and eddy ki- 
netic energy (EKE) were also variously included across high- 
ranking models ( Table 3 ). However, these terms only had mi- 
nor effects (EKE and MLT: negative; surface salinity: very 
weakly positive) with confidence intervals that overlapped 

with zero throughout the covariate range. 
Fitted spatial smooths were indicative of higher density to- 

wards the shelf edge around South Georgia, and at the cen- 
ter of Shag Rocks ( Fig. 2 ). Models also estimated a positive 
relationship between CPUE and sun angle, equivalent to av- 
erage CPUE being 51% (95% CI: 16%–98%) higher at mid- 
day compared to dawn. To investigate daily patterns further,
we also created an equivalent model to the best-fitting model 
for CPUE, but replacing sun altitude with time-of-day ex- 
pressed as minutes since midnight. The alternate model indi- 
ated higher CPUE at midday, with lower values either side of
his being approximately symmetric ( Fig. S9 ), consistent with
esults from the model containing sun altitude. Both models 
ad equivalent deviance explained, but the model containing 
un altitude had lower AIC ( �AIC = -1.86) . 

Subsequent analyses are based on the best-predicting model 
or each of presence-absence and CPUE ( Table 3 ). 

patial variation in mackerel icefish density 

redicted icefish occurrence was high ( > 0.95) and varied lit-
le among on-shelf locations but declined rapidly beyond the 
helf edge (depth > 300 m; Fig. 3 ). Due to the uniformity
f predicted probabilities on the shelf ( Fig. 3 A), CPUE and
ensity (CPUE scaled by probability of occurrence) had al-
ost identical patterns, differing only in absolute value (2% 

ower), and with regards to depth gradient (steeper for den-
ity; Fig. 3 ). An average density of 1.6 tonnes/km2 (95% CI:
.2–2.0; Table 4 ) was predicted across locations where ice-
sh were predicted to occur, with generally higher densities 
oward shelf edge locations ( Fig. 3 ). Notable high-density ar-
as (density > 10 tonnes/km2 ) were predicted on Shag Rocks,
nd at several locations (northwest, southwest, northeast) on 

he South Georgia shelf ( Fig. 3 ). Lowest densities were pre-
icted in the southeast sector (0.86 tonnes/km2 ; Table 4 ). 
Comparatively, model predictions closely resembled ob- 

erved CPUE (mean, all-surveys) ( Fig. 3 ). However, high pre-
icted values in the southwest sector were less apparent in
bserved CPUE, potentially linked to lower coverage in that 
rea ( Fig. 3 ). Uncertainty in predicted density, expressed via
oefficient of variation (CV), averaged (median) 0.41, and was
ighest ( > 2) past the 500 m contour due to lower predicted
alues ( Fig. 3 ). On the shelf (depth < 300 m), uncertainty was
ighest at locations south of South Georgia, coincident with 

reas of least coverage ( Fig. 3 ). 

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf225#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf225#supplementary-data
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Figure 2. Hurdle model results fitted to mackerel icefish ( Champsocephalus gunnari ) trawl data collected around South Georgia. Presence-absence 
( A–E ) and log-transformed catch-per-unit effort (CPUE; F–J ) model components are shown for the best fitting model. Presence-absence model results 
show the fitted relationship for depth, shown on the link/transformed scale ( A ) and when back-transformed to natural units ( B ), seabed slope ( C ), seabed 
planform curvature ( D ) and spatial effects ( E ). CPUE model results are shown for depth on the model (log-CPUE, transformed depth; F) and 
backtransformed ( G ) scales, seabed slope ( H ), variation in sea surface temperature (SST_sd; I ), and spatial effects ( J ). Fitted smooths indicate the mean 
fitted function with shading representing ± 1 standard error. Smooths included in the best models for sun angle (CPUE: strong positive linear 
relationship) and mean seafloor dissolved oxygen concentration (presence-absence: weak positive relationship) are omitted to save space. Contour lines 
on map panels indicate the 500 and 2000 m isobaths. 
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Investigation of temporal variation in distribution revealed
hat high CPUE of icefish on the western side of the South
eorgia and Shag Rocks shelves were consistent through time

1987–1997, 2000–2010, 2011–2023; Fig. S10 ). However,
PUE on the northeast South Georgia shelf were more vari-
ble, with lower values from 2000–2010, but otherwise high
n the earlier and later periods. Taken together, this suggests
hat the western South Georgia and Shag Rocks shelves con-
titutes their core area, and that icefish concentrations on the
ortheast South Georgia shelf are more ephemeral. 
Summing model predictions across areas resulted in a long-

erm average biomass of 63.4 × 103 tonnes (95% CI: 49.3–
1.7 × 103 tonnes), primarily distributed in western sectors
round South Georgia (54% of the total) and on Shag Rocks
15% of the total; Table 4 ). 

roportion of krill in icefish diets 

odels of mean krill proportions in icefish stomach contents
ndicated high interannual variability with smaller effects at-
ributable to spatial variation and fish size ( Table 5 ). The ad-
ition of depth and date relationships resulted in either less
arsimonious models (depth; higher AIC) or had no effect
date: Table 5 ). Interannual variability accounted for the ma-
ority of variance explained (R2 = 34.1 for survey effects
lone; Table 5 ), with lowest krill proportions ( < 20%) es-
imated for 2009 and 2021 ( Fig. 4 ). A non-linear relation-
hip was estimated in relation to fish length, suggesting rel-
tive krill consumption increases with fish size up to 33 cm
efore declining for larger sizes ( Fig. S7 ). However, the mag-
itude of this effect was relatively small, with the proportion
f krill only changing by ± 4%–5% across the sampled size
ange. 

From the model containing no spatial components, ice-
sh diets were estimated to contain an average of 60.1%
rill by mass (bootstrapped 95% CI: 57.1–63.5%; Table
 ). Incorporating spatial variation resulted in reduced AIC
nd explained an additional 4% (sector) to 7% (spatial
eld) of variation ( Table 5 ). Sector spatial models indicated
igher krill proportions in the northwest sector (67.2%, 95%
I = 63.3–70.6%) than elsewhere on the South Georgia

helf. However, all sectors on the South Georgia shelf had
igher proportions than Shag Rocks (48.6%, 95% CI = 42.5–

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf225#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf225#supplementary-data
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Figure 3. Predicted mackerel icefish ( Champsocephalus gunnari ) distribution around South Georgia. Hurdle model results are shown for predicted catch 
probability from the best-fitting model for presence absence ( A ) and predicted catch per unit effort (CPUE in kg/km2 ) from the best-fitting model for 
log-transformed CPUE ( B ). Combined hurdle model predictions of mackerel icefish density (kg/km2; C ) overlaid with polygons (thick black line) to indicate 
locations constituting 50% of the total biomass. Observed average CPUE, binned to 5 km resolution ( D ) are also provided as a reference. Combined 
spatial uncert aint y is presented as coefficient of variation (CV; E ) calculated for each grid cell. Model results in ( A ) and ( B ) are truncated at the 10 0 0 m 

isobath as no observations were collected from greater depths, but densities in ( C ) of 0 were assigned for depths > 10 0 0 m given the mackerel icefish 
depth range. 

 

c
b
t  

a
S
i  

s
(  

t  

t  

o  

d  

c

O
h

K
5
t
t  

t  

a
a  

d  

e  

t  

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/83/1/fsaf225/8417398 by N
ER

C
 - BAS user on 13 January 2026
54.2; Table 5 ), where fish, predominantly nototheniids, were 
more prominent ( Fig. 4 ). The spatial model indicated a south 

(low) to north (high) gradient in the proportion of krill in 

icefish diets on the South Georgia shelf, and a southeast 
(low) to northwest (high) gradient on Shag Rocks ( Fig. 4 ).
Model uncertainty was relatively higher on the shelf south 

of South Georgia (southeast sector: CV = 0.09–0.42, me- 
dian = 0.17), coincident with lower sample coverage ( Fig.
4 ). Given that stomach contents collected in 2009 and 2021 

contained anomalously low proportions of krill, models were 
re-fitted to data excluding those years. While these models 
estimated a higher proportion of krill (63.7% compared to 

60.1%), spatial patterns were comparable to those found 

when all years were included ( Fig. S8 ), suggesting that re- 
sults were minimally influenced by observations from low krill 
years. 

Krill consumption estimates 

Combining density estimates and dietary proportions of krill 
with daily consumption rates (0.5%, 1% and 2% body mass 
per day) resulted in estimates ranging from 68 × 103 (95% 

CI: 51–88 × 103 ) to 271 × 103 (95% CI: 203–352 × 103 ) 
tonnes of krill consumed by mackerel icefish per year ( Table 
4 ). 

Relative to the constant diet scenario, including spatial vari- 
ability in average diet had only a marginal effect on overall 
onsumption, lowering estimates by 2.5% and 5% for sector- 
ased and continuous representations of icefish diets, respec- 
ively ( Table 4 ). However, this was largely due to a shift among
reas, with consumption estimates dropping by 12%–22% on 

hag Rocks when spatial variation was included, and increas- 
ng on the South Georgia shelf, particularly in the northwest
ector where consumption estimates increased by 10%–11% 

 Table 4 ). Based on the spatial diet model, annual consump-
ion estimates per unit area were highest along the shelf edge in
he northwest sector due to high density and high proportions
f krill in icefish diets, and on the Shag Rocks shelf primarily
riven by higher densities, albeit with lower proportional krill
onsumption ( Fig. 5 ). 

verlap between krill consumption and fishery 

arvest 

rill fishing from 2004–2023 was concentrated inshore of the 
00 m isobath throughout the northwest and northeast sec- 
ors around South Georgia, with highest concentrations in 

he northeast ( Fig. 5 ). The krill fishery footprint (cells con-
ributing 90% of the total catch) overlapped with high rel-
tive consumption of krill by mackerel icefish, most notably 
long the northwest shelf edge where icefish are most abun-
ant and in the northeast sector due to concentrated fishing
ffort ( Fig. 5 ). Spatial overlap, measured by indices of colloca-
ion between icefish consumption and commercial krill catch,

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf225#supplementary-data
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Table 4. Mackerel icefish (Champsocephalus gunnari) estimated biomass and krill consumption on the South Georgia and Shag Rocks shelf. 

Sector 

Measure Diet scenario Shag Rocks Northwest Northeast Southeast Southwest Total 

Area (km2 ) a 4157 5773 6592 11 560 11 904 39 986 
Biomass 
Biomass (103 t) 9.6 

[6.9–13.2] 
9.2 

[6.9–12.0] 
8.7 

[6.4–11.3] 
9.9 

[7.2–13.7] 
26.1 

[18.7–36.1] 
63.4 

[49.3–81.7] 
Mean density 
(t/km2 ) 

2.31 
[1.66–3.18] 

1.59 
[1.20–2.08] 

1.32 
[0.97–1.71] 

0.86 
[0.62–1.19] 

2.19 
[1.57–3.03] 

1.58 
[1.23–2.04] 

Proportion (by mass) of krill in diet 
Diet: % Krill Constant 60.1 

[57.1–63.5] 
Sector 48.6 

[42.5–54.2] 
67.2 

[63.3–70.6] 
60.7 

[55.1–65.9] 
57.0 

[49.9–63.6] 
60.0 

[54.5–65.1] 
58.8 

[55.1–62.5] 
Smooth 50.0 

[43.1–56.5] 
64.5 

[60.0–68.9] 
60.0 

[53.8–65.7] 
52.6 

[44.2–62.1] 
55.2 

[47.3–64.2] 
55.9 

[51.2–61.0] 

Krill consumption 
Krill biomass 
(103 t/year) 

Constant 20.3 
[14.3–27.5] 

20.0 
[15.0–26.2] 

18.5 
[14.0–24.2] 

22.0 
[15.4–29.9] 

57.4 
[40.4–78.6] 

138.3 
[107.9–176.2] 

Sector 16.4 
[11.6–23.1] 

22.3 
[16.5–29.0] 

18.8 
[14.1–24.8] 

20.8 
[15.2–28.3] 

57.3 
[41.0–78.3] 

135.8 
[106.3–172.5] 

Smooth 18.6 
[12.6–26.4] 

22.1 
[16.3–29.2] 

18.5 
[13.6–24.5] 

20.0 
[13.7–28.1] 

53.0 
[36.3–76.3] 

132.5 
[101.4–170.8] 

Spatial overlap (Index of co-location) with commercial krill fishery (2004–2023) 
Spatial overlap 
(0–1) 

Constant 0 0.319 
[.271-0.368] 

0.380 
[.297-0.469] 

0.171 
[.101-0.258] 

0.037 
[.019-0.066] 

0.141 
[0.104–0.186] 

Sector 0 0.319 
[.271-0.368] 

0.380 
[.297-0.469] 

0.171 
[.101-0.258] 

0.037 
[.019-0.066] 

0.148 
[0.108–0.192] 

Smooth 0 0.322 
[.272-0.371] 

0.372 
[.286-0.464] 

0.177 
[.098-0.277] 

0.035 
[.017-0.064] 

0.146 
[0.106–0.193] 

a : Summed area weighted by predicted probability of occurrence. 
Consumption estimates correspond to a daily feeding rate of 1% fish body mass per day. Lower (0.5%) and higher (2%) daily feeding rate scenarios are 
omitted to save space given they are linearly related (0.5 ×, 2 ×) to those presented for krill consumption. Measures of spatial overlap between icefish krill 
consumption and the krill fishery are also presented in the form of indices of collocation for each consumption scenario. 

Table 5. Statistics for models of proportional krill consumption by mackerel icefish (Champsocephalus gunnari). 

Model df AIC R2 

intercept only 7.3 317.7 14.6 a 

survey [12.3] 21.9 154.5 34.1 
survey [12.4] + depth [1.5] 23.3 154.7 34.4 
survey [12.3] + time [0] 21.9 154.5 34.1 
survey [12.4] + fish_length [2.4] 24.4 153.3 34.7 
survey [12.4] + sector [3.6] 25.7 120.7 37.7 
survey [12.4] + space (NS; 40 km) [16.4] 37.7 102.6 41.2 
survey [12.5] + fish_length [2.7] + sector [3.6] b 28.5 118.7 38.3 
survey [12.5] + fish_length [2.7] + depth [1.6] + sector [3.6] b 29.9 120.0 38.5 
survey [12.4] + fish_length [2.3] + space (NS; 40 km) [15.8] c 39.5 102.0 41.5 

a : Variance explained by the null model is attributable to that explained by sub-models for 0/1 inflation parameters. 
b : Smooths for time were added to these models but were effectively removed due to shrinkage, resulting in identical models to those presented. 
c : Smooths for depth and time were added to this model but were effectively removed due to shrinkage resulting in identical models to those presented. 
Results presented relate to alternate structures for the mean parameter (mu) in 0/1 inflated Beta generalized additive models applied to the proportion of 
Antarctic krill (Euphausia superba) in mackerel icefish stomach contents. Terms trialled were survey random effects (basis = “re”), shrinkage penalized 
smooths (basis = “ts”) for depth, time, and mean fish length, and sector-specific (basis = “re”) or gaussian process (basis = “gp”) spatial structures. Presented 
statistics are the model degrees of freedom across mean (mu), variance (sigma), and 0/1 (nu, tau) inflation parameters, Akaike’s information criterion (AIC) 
and the Cox-Snell pseudo R2 value. For gaussian process models, values are only presented for models with range parameters that resulted in the lowest AIC 

(range = 40 km; non-stationary). All models had the same structure for variance and 0/1 inflation parameters. Estimated degrees of freedom (EDF) are given 
in []. 

r  

u  

4  

c  

e  

b  

t  

fi  

c  

s  

c  

G

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/83/1/fsaf225/8417398 by N
ER

C
 - BAS user on 13 January 2026
anged between 0.141 and 0.148, with marginally higher val-
es when accounting for spatial variation in icefish diet ( Table
 ). To address potential changes in fishing distribution we
ompared the 2004–2023 map of cumulative krill catch to
quivalent maps created by summing krill catch in 5-year
locks. Whilst this revealed a general shift and concentra-
ion of fishing effort to the northeast of South Georgia, areas
shed in most recent years (2020–2023) were largely coin-
ident with longer-term (2004–2023) patterns ( Fig. S11 ). As
uch, we believe our results to be broadly representative of
urrent patterns in the distribution of the krill fishery at South
eorgia. 

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf225#supplementary-data
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Figure 4. Variation in the proportion of Antarctic krill ( Euphausia superba ) in mackerel icefish ( Champsocephalus gunnari ) diets around South Georgia. 
Model results from a generalized additive model containing a spatial smooth ( A ) fitted to the proportion of krill in icefish stomach contents. Predictions 
are constrained to depths less than 500 m given the depth range of trawls with diet samples (0–446 m). Estimated proportions from the sector spatial 
model are also given for each sector (black polygons in A ). A representation of the raw data aggregated to a 5 × 5 km grid ( B ) is also given for reference. 
Uncert aint y in spatial smooth model estimates is also presented as the coefficient of variation (CV; C ) for each grid cell calculated via bootstrap 
resampling. Temporal variability in gross mackerel icefish diet from 2004–2023 for Shag Rocks ( D ) and South Georgia ( E ). Plotted proportions in ( D ) and 
( E ) represent the proportions within each region and year after pooling all fish stomach contents. The number of trawls from which stomach contents 
were sampled is given by grey text in panels ( D ) and ( E ). 
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Discussion 

Mackerel icefish are the most abundant krill-eating demer- 
sal fish on the South Georgia and Shag Rocks shelf and are 
a priority species when assessing possible ecosystem impacts 
of krill fishing in this region. Our results are consistent with 

previous studies (e.g. Everson et al. 1999 , Main et al. 2009 ) 
that the distribution of mackerel icefish is governed primar- 
ily by depth but provides more detailed information on their 
distribution across the South Georgia shelf. Our diet analyses 
also indicate spatial variation in relative krill consumption,
which may pertain to patterns of krill availability. While our 
results indicate that overlap between icefish distribution and 

krill fishing is currently low at South Georgia, our study pro- 
vides the necessary information to aid future management of 
the krill fishery to minimize impacts on mackerel icefish. 

Mackerel icefish distribution 

Excluding depth, habitat covariates explained a relatively 
small amount of variation in icefish distribution. Among 
those, seabed slope and planform curvature were both neg- 
atively correlated with icefish density. Seabed morphology is 
frequently associated with demersal fish distributions (Bor- 
and et al. 2021 ), with the negative relationship found for
lope demonstrated in other studies on shelf-associated species 
Smith and Lindholm 2016 , Smoliński and Radtke 2017 ). The
egative relationship found for planform curvature likely in- 
icates higher abundance in canyons on the shelf than would
e expected given their absolute depth. Association with ma- 
ine canyons may be due to prey availability and retention,
s Antarctic krill, and euphausiids more broadly, aggregate in 

arine canyons (Bernard et al. 2017 , Santora et al. 2018 ). Ar-
as of high icefish density were frequently adjacent to canyons
hat cut into the South Georgia shelf, which may facilitate
ransport and retention of krill to the shelf-based ecosystem 

y wind and tidal forcing (Bernard et al. 2017 ). 
Variation in SST was also included in models for CPUE,

ndicating lower density in locations with low or high SST
ariability. Whilst temperature may be a limiting factor for 
cefish physiology, given their northern range limit occurs at 
hag Rocks (Morley et al. 2014 ), we suspect that the fitted re-
ationship is more likely due to location-specific effects, rather 
han causally related to temperature variation. Extreme high 

nd low values for SST variation that seem to be driving this
elationship were highly localized (northwestern edge of the 
hag Rocks shelf, and adjacent to the northwest tip of South
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Figure 5. Consumption estimates for mackerel icefish ( Champsocephalus gunnari ) feeding on Antarctic krill ( Euphausia superba ) and overlap with 
commercial krill fishing operations around South Georgia. The spatial distribution of mean estimated annual krill consumption by mackerel icefish 
(tonnes/km2 per year; A ), and spatial uncert aint y (coefficient of variation, CV; B ), is shown for the combination of the best-fitting hurdle model for density 
and the continuous spatial model of mackerel icefish diet (% of krill in diet) assuming a feeding rate of 1% body mass per day. Sector and total 
consumption estimates ( C ) are shown for the three different scenarios of diet variation investigated (constant, sector-specific, and continuous). Plotted 
values are the mean and 50% (thick line) and 95% (thin line) confidence intervals. The distribution of the krill fishery operating around South Georgia ( D ) 
is shown as the cumulative catch in tonnes per 2 × 2 km grid cell over the 2004–2023 period. Spatial overlap between mackerel icefish consumption 
and fisheries extraction of Antarctic krill ( E ) is shown via polygons representing areas that contribute 50% and 90% of the total extraction by icefish and 
commercial fishing, respectively. 
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eorgia, respectively; Fig. S12 ), and constituted only a small
roportion of datapoints. As a result, the fitted SST relation-
hip may arise from limited sampling or may be a proxy for
ther unknown factors that give rise to lower densities at those
ocations. 

The lack of other environmental factors in our models is
ikely a consequence of the inclusion of a spatial smooth,
hich was added to better capture icefish distribution, and

o account for spatial autocorrelation. However, habitat re-
ationships may be omitted as a result. Excluding spatial ef-
ects from model fitting either strengthened the relationships
lready identified or selected for additional, mostly weak ef-
ects ( Supplementary materials: Section 9 ). Therefore, whilst
ur chosen model doesn’t include all environmental relation-
hips, it captures the main factors and performs better at de-
cribing patterns in icefish distribution than using habitat co-
ariates alone. 

patial variability in mackerel icefish diet 

igh densities of icefish on the northwest South Georgia shelf
ere coincident with those where krill predominated in ice-
sh diets, suggesting that krill-availability may be a determin-
ng factor in structuring icefish distribution. Our models also
ndicated high icefish abundance in the southwest sector, but
his wasn’t coincident with higher krill content in icefish diets,
ut did coincide with higher proportions of Themisto gau-
ichaudii . Apart from Shag Rocks, where fish constitute a
arger proportion of icefish diet, T. gaudichaudii was the sec-
nd most important prey source. If T. gaudichaudii are consis-
ently available in the southwest, it may explain how relatively
igh densities of icefish are able to persist there. An alterna-
ive interpretation is that krill abundance and/or availability
s lower in the southwest, such that T. gaudichaudii forms a
arger proportion as secondary prey. 

Locations of higher krill consumption by icefish coincide
ith locations frequented by other krill-dependent predators,

ncluding Antarctic fur seals ( Arctocephalus gazella ; Stani-
and et al. 2011 ), macaroni penguins ( Eudyptes chrysolo-
hus ; Trathan et al. 2006 ), and gentoo penguins ( Pygoscelis
apua ; Ratcliffe et al. 2021 ) suggesting a preference for areas
here prey are consistently available by multiple taxa. Co-
ccurrence of multiple krill predators likely increases inter-
pecific competition and localized depletion of krill, which
ay be exacerbated by krill fishing (Bertrand et al. 2012 ). Fur-

hermore, in years of low krill availability, prey switching by
ur seals towards greater consumption of mackerel icefish im-
act icefish via bottom-up (loss of krill prey) and top-down
increased predation by fur seals) effects (Everson et al. 1999 ,
ill et al. 2012 ). Taken together, knowledge of the distribu-

ion of the suite of krill predators can inform precautionary
anagement of the fishery to avoid exacerbating the direct

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf225#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf225#supplementary-data
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(i.e. prey resource limitation) and indirect (i.e. prey-switching) 
consequences of natural variation in krill abundance. 

Biomass and total krill consumption estimates 

Distribution models for mackerel icefish at South Georgia 
indicated a long-term average biomass of 63 × 103 tonnes 
(henceforth, kt). However, our density estimates are almost 
certainly an underestimate as they do not account for icefish 

in the water column (Everson et al. 1996 ) above the trawl 
headline height (3-6 m). Furthermore, catchability of mack- 
erel icefish near the seabed (i.e. available to trawl gear) is likely 
also less than one, introducing further bias that may vary 
among years according to population size structure (Fraser 
et al. 2007 ) given omission of small fish due to mesh size 
(40 mm). Studies investigating mackerel icefish predator (gen- 
too penguins and fur seals) diets at South Georgia are sugges- 
tive of annual consumption of icefish exceeding 100kt per year 
(Reid et al. 2005 ). Additionally, ecosystem models for South 

Georgia suggest that mackerel icefish biomass up to ten-times 
higher than bottom-trawl survey estimates is needed to satisfy 
the requirements of the pelagic food web (Hill et al. 2012 ). 

Our models were suggestive of diel vertical migration ac- 
cording to time of day indicating higher biomass near the 
seabed towards noon. These results are consistent with ice- 
fish tracking diel-vertical migration of krill (Bahlburg et al.
2023 ). However, the magnitude of this effect (1.5 × differ- 
ence between dawn and midday) is small relative to the dis- 
crepancy between our estimated biomass and that indicated 

by consumption rates of icefish predators. Taken further, this 
suggests a potentially large proportion of the population are 
dispersed throughout the water column at all times of day. 

Krill consumption by mackerel icefish using our median es- 
timate of consumption rate (1% body mass per day) was esti- 
mated at 133kt per year, with some locations exceeding 20 

tonnes per km2 per year. Given that biomass is potentially 
∼2–10 times higher than our estimate, it is likely that mack- 
erel icefish are a major consumer of krill both at local- and 

regional-scales. Inclusion of spatial variability in diet had lit- 
tle effect on gross consumption estimates but did place greater 
emphasis on areas that the fishery operates in, notably to the 
northwest of South Georgia. The northwest shelf is also a ma- 
jor foraging area for other krill consuming taxa, notably fur 
seals, and gentoo and macaroni penguins (Trathan et al. 2006 ,
Staniland et al. 2011 , Ratcliffe et al. 2021 ). Boyd (2002) esti- 
mated that macaroni penguin consume 8 million tonnes (Mt) 
of krill per year at South Georgia, which when adjusted for 
current population estimates ( ∼ 1 million pairs compared to 3 

million pairs) suggests consumption of ∼2.7Mt per year. The 
fur seal population at South Georgia may consume ∼3.8Mt 
per year (Boyd 2002 ), based on the 1991 population estimate 
of 1.55 million animals that is comparable to current esti- 
mates following population increases and subsequent declines 
since 1991 (Forcada et al. 2023 ). Comparatively, gentoo pen- 
guins, numbering ∼100 000 breeding pairs on South Georgia 
(Herman et al. 2020 ) are estimated to consume ∼45kt per 
year (Williams 1991 ). Average annual consumption of krill 
by mackerel icefish likely exceeds that of gentoo penguins and 

may be of the same order of magnitude as that of fur seals and 

macaroni penguins dependent on the bias in our estimate of 
icefish biomass. In addition, increased icefish biomass follow- 
ing years of strong recruitment and survival may well increase 
consumption to well above the long-term average in particu- 
ar years. Estimates of interannual variability, based on sur- 
ey random effects from the CPUE model, suggest that icefish
ensities vary from 0.3 × to 3.4 × the long-term mean ( ± 2
tandard deviations of survey random effects after conversion 

rom log- to natural-scale) among years. However, realized in- 
erannual variation in biomass is likely lower, as survey differ-
nces incorporate natural variation in biomass in addition to 

ariation in sampling among surveys and may be affected by
ingular trawls when they encounter large aggregations (i.e.
igh CPUE in 1990 and 2013 were due to individual trawls
apturing 37 tonnes and 24 tonnes of icefish, respectively, each
ccounting for more than 50% of the survey total). Despite
hat, short-term variability in demersal fish populations, and 

onsequently krill requirements, ought to be a higher priority 
or consideration in krill fishery management when compared 

o other krill consumers, such as fur seals or penguins, whose
opulations vary less among years. 
Our consumption estimates are, however, based on uncer- 

ain estimates of daily feeding rates. Whilst feeding rates of
p to 2% body mass per day have been recorded for mackerel
cefish (Kock et al. 2012 ), these may be under ideal conditions
f abundant prey and zero competition. Daily feeding rates 
f 1% body mass per day when annualized (i.e. Q/B = 3.65)
xceeds those used in ecosystem models for mackerel icefish 

t South Georgia (Q/B = 1.9; Hill et al. 2012 ) and for de-
ersal fish in the Ross Sea (Q/B = 1.89; Pinkerton et al.
010 ) and the Western Antarctic Peninsula (Q/B = 2; Bal-
erini et al. 2014 ). They also exceed those estimated for gad-
form fish in northern hemisphere high-latitude ecosystems 
Q/B = 2–2.713; Whitehouse et al. 2014 , Bentley et al. 2017 ).
aken together, this suggests that estimates corresponding to 

.5% body mass per day are more likely. Therefore, we sug-
est that krill consumption of 62kt per year represents an
bsolute minimum, but that realized consumption is poten- 
ially an order of magnitude higher given biased estimates of
iomass. 
Given uncertainties in biomass and feeding rate, we advise 

hat our estimates of krill consumption are only applied along-
ide some appreciation of the potential magnitude of those 
iases. Addressing our major concern, that icefish biomass is
nderestimated by demersal trawl sampling, will require ap- 
roaches such as concurrent acoustic sampling (Godø and 

espestad 1993 , McQuinn et al. 2005 , Kotwicki et al. 2018 )
o identify the vertical distribution of icefish in the water col-
mn, as well as studies investigating net avoidance behaviour 
Doray et al. 2010 ). Acoustic sampling may also help to iden-
ify patches of high icefish density (i.e. Everson et al. 1996 )
hat could be used in sampling design to obtain more accurate
nd precise estimates of biomass (McQuinn et al. 2005 ); how-
ver, this would also require studies to further refine the acous-
ic characteristics of icefish to distinguish them from krill and
ther semi-pelagic species (Fallon et al. 2016 ). Refining feed-
ng rate estimates, by collecting additional data from South 

eorgia across different seasons, or via alternate approaches 
uch as those based on metabolic rates (Johnston and Battram
993 ), would help to ascertain whether feeding rates vary sea-
onally, or in accordance with prey availability or composition 

Pedersen 2000 ). We also implicitly assume that icefish distri-
utions are similar year-round, as we have insufficient data 
utside of the summer survey period (December-February).
dditional trawl surveys at other times of year may enable

he development of seasonal distribution models, as well as
o identify seasonal variation in diet if concurrent stomach 
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ontent sampling were to be performed. However, in the near-
erm, these data are unlikely to become available within the
imeframe needed to inform krill fishery management. As an
nterim measure, we would propose that krill consumption
y mackerel icefish be included in the krill fishery manage-
ent evaluation via multiple scenarios, such as by scaling
redicted distributions in accordance with ecosystem model
i.e. Hill et al. 2012 ) or predator diet (Reid et al. 2005 ) es-
imates of total biomass and evaluating the impact on spa-
ial management outcomes. This type of sensitivity analysis, if
lso applied across other krill-dependent species considered in
he krill fishery management approach (Warwick-Evans et al.
022a , b), would help to ensure that decisions are made given
he data currently available, while acknowledging key sources
f uncertainty. 

verlap with the krill fishery 

iven that the krill fishery operates exclusively during winter
round South Georgia (Trathan et al. 2021 ), penguins and fur
eals that are highly mobile may be more able to adapt to lo-
alized depletions of krill, than less mobile demersal fish. Our
ssessment of relative overlap between the fishery and icefish
onsumption indicated relatively low overlap due to high ice-
sh abundance in areas where fishing does not currently oc-
ur (south of South Georgia) or is prohibited (within 22 km
f Shag Rocks), and the relative concentration of fishing ef-
ort. Despite current low overlap, our results provide the foun-
ation for including demersal fish in the future development
f krill fishery management at South Georgia. Furthermore,
ur study illustrates the data and methods required to evalu-
te overlap between demersal fish and the krill fishery, which
ould be applied elsewhere, such as at the Western Antarctic
eninsula and South Orkney Islands where the krill fishery is
ore active (Trathan et al. 2021 ). 

onclusion 

ur study represents one of the few to examine the fine-scale
istribution of a demersal fish species in the Southern Ocean.
urthermore, our exploration of spatial variability in diet rep-
esents an important consideration for icefish ecology and the
otential availability of krill to predators on the South Geor-
ia shelf. Whilst our study demonstrates that spatial overlap
etween icefish and krill fishing is currently low at South Geor-
ia, present management of the krill fishery allows for signif-
cant spatial and seasonal concentration of krill catch, rais-
ng the risk to krill-dependent predators at targeted locations.
e-establishment of spatial management, incorporating spa-

ial information on krill consumption by both resident (dem-
rsal fish, gentoo penguins, fur seals) and seasonally abundant
macaroni penguins, cetaceans) taxa, is therefore critical to
inimize the potential for adverse impacts to krill-dependent
redator populations. 
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