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Executive Summary 
The aim of Amplify activity 1.1b was to inform the design of a NERC Environmental Data 
Service (EDS) sensor commons (activity 1.1a) through a series of experiments and 
reflections. This report describes the outcomes of one of these experiments, as 
envisaged in the original proposal: 

 

Development work between May 2024 and October 2025 has delivered the core 
elements within the proposal text above. A prototype system, based around an Apache 
Kafka message broker containerised within Kubernetes, was deployed on the RRS Sir 
David Attenborough (SDA) in October 2024 and ran in parallel with the primary logging 
system throughout the 2024/25 Antarctic season. During this time, the prototype 
received a significant subset of the existing real-time sensor messages, writing them to 
disk and database, as well as mirroring these messages to a replica shore-side system 
in Cambridge. Following this successful trial, the prototype was fully incorporated 
within the BAS IT infrastructure onboard and took over as the primary logging system in 
early October, ahead of the 2025/26 Antarctic season.  

The chosen architecture consists of open-source components and has greatly reduced 
the amount of in-house code that was present within the previous system. While 
connecting and configuring these components was not always plain sailing, and 
learning curves were often steep, most of the benefits outlined in the proposal have 
been realised.  

This report includes: the background and history of data acquisition onboard NERC 
vessels, the previous acquisition system (RVDAS) and its limitations, the architecture of 
the new system (DAMP) and lessons learned in its development, and a list of next steps 
after the Amplify project concludes. 

  

“In the first experiment, British Antarctic Survey (BAS) and the National 
Oceanography Centre (NOC) will co-develop a prototype of a reimagined 
vessel data acquisition system based on cloud-native principles, including 
the use of Kubernetes to enable a heterogeneous set of software to work 
together robustly. In addition, this prototype will investigate the use of a 
stream processing platform such as Apache Kafka which will allow: different 
software components to communicate without knowing about each other; 
in-flight processing/transformation of data streams for near-real time 
QA/QC; delivery guarantees with persistent, fault tolerant storage of 
messages in transit and no data loss in the event of hardware failure; 
utilisation of a rich ecosystem of existing plugins (e.g. database connection, 
replication, alerting).” 
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Background 
There has been a long history of digital data acquisition systems onboard NERC 
research vessels, primarily focussing on permanently fitted underway sensors that 
continuously output data (e.g. wind velocity from anemometers). At their heart, these 
systems listen or poll for sensor data, accurately timestamp these data on receipt, and 
then write them securely to disk for onward reuse. Acquisition systems can have myriad 
additional functions (metadata, events, monitoring, reformatting, QA/QC processing, 
visualisation etc.) but they are all built around this core ‘Receive-Timestamp-Store’ 
functionality.  

The ‘ABC’ system was developed by the Southampton Oceanography Centre’s Research 
Vessel Services (RVS) group in the 1980’s and was used onboard NOC and BAS vessels 
until the late 2000’s. It had three acquisition levels (A, B and C) corresponding to 
distinct levels of data processing, from raw through to structured calibrated data. From 
the mid 2000’s, IFREMER’s TECHSAS1 replaced the RVS system as the primary 
acquisition system on NOC vessels while BAS moved to NOAA’s SCS2 software. Both 
systems have the advantage of being developed and maintained by external groups and 
were/are provided free of charge. However, their development is focussed on national 
research fleet priorities (TECHSAS -> France, SCS -> United States) and they are closed-
source software making modifications difficult for third parties. The use of different 
acquisition systems across the NERC vessels was also a disadvantage for researchers 
who regularly sail on BAS and NOC vessels as they had to interact with the differing 
aspects of each system.  

In 2017, staff within the National Marine Facilities (NMF) group at NOC undertook a gap 
analysis to identify areas of improvement in their underway data acquisition systems. 
This resulted in an in-house development of a prototype Research Vessel Data 
Acquisition System (RVDAS) that was used in a secondary capacity onboard the RRS 
Discovery and RRS James Cook. At around the same time, BAS were designing IT and 
data systems for the new UK polar research vessel, RRS Sir David Attenborough (SDA). A 
requirement gathering exercise (aided by a community workshop in Nov. 2018) was 
followed by an evaluation of current marine data acquisition software from around the 
world. The evaluation resulted in the prototype RVDAS software being used on the SDA 
from the outset and the RVDAS project became a BAS/NOC co-development.  

Initially (2019-2021) BAS acted as an intelligent customer providing requirements and 
use cases while NOC led on the software development. However, SDA science 
commissioning from 2021 onwards and the recruitment of an internally funded 
temporary software developer in late 2022 meant that BAS have taken a more active 
development role in the last few years.  

 
1 https://www.flotteoceanographique.fr/en/Facilities/Shipboard-software/Gestion-de-missions-et-des-
donnees/TECHSAS 
2 https://scsshore.noaa.gov/ 



 
 

Research Vessel Data Acquisition System (RVDAS) 

Overview 
Figure 1.1 provides a graphical overview of the current version of RVDAS which is 
operational on all three NERC deep-water research vessels, noting that exact 
implementations vary slightly between BAS and NOC. 

 
Figure 1.1 – A schematic of the modules and functional elements of the current (October 2025) RVDAS 
production version with arrows showing the flow of sensor information. 

Component Architecture 
The RVDAS Acquisition Module (RAM) was developed with a narrowly defined scope of 
listening for NMEA3 sentences over the User Datagram Protocol (UDP). RAM 
timestamps the incoming messages, rebroadcasts them over the local network (also 
UDP) and writes them to disk, usually as per-sensor daily ascii files. RAM is written in 
Node.js and has a web-based interface for monitoring and configuration, the latter 
augmented with sensor metadata held within JSON files.  

A small number of network-ready sensors provide NMEA sentences directly to RAM, but 
the majority must route through a mixture of hardware and software to be translated 
into a form that RAM can receive. This is referred to as the ‘Translation layer’ in Figure 
1.1 and includes serial-to-ethernet hardware units and Python code to interact with 
sensor protocols not addressed by RAM (TCP listening, Modbus polling, MQTT 
subscriptions, SNMP listening etc.) and messages that don’t to conform to the NMEA-
standard syntax. This translation layer is more extensive on the SDA, reflecting the fact 
that the vessel is newer and has a greater number of sensors providing data in a wider 
variety of ways.  

 
3 https://gpsd.gitlab.io/gpsd/NMEA.html 



 
 
The Ingester module, written in Python, listens for the messages broadcast by RAM and 
parses them based on sensor metadata configuration values. These parsed messages 
are then written to PostgreSQL database tables for onward visualisation and querying. 
TimescaleDB4, a dedicated time-series PostgreSQL extension, performs real-time 
aggregations allowing for efficient onward querying and display. 

The RAM module broadcasts to an onboard MQTT message broker (currently only on the 
Discovery and James Cook) used for real-time monitoring and for transfer to a shore-
side message broker. This ship-to-shore pipeline has been utilised elsewhere within the 
Amplify project (Task 1.2) to send real-time temperature sensor data and metadata to a 
shore-side FROST server providing an onward OGC SensorThings API connection (i.e. 
see https://linkedsystems.uk/sensorthings/v1.1/Sensors) 

Before outlining the limitations in the current system and how this experiment aims to 
improve matters, it is worth noting that RVDAS has worked remarkably well over the last 
few years. Functionally, it has addressed all the initial must-have requirements and it 
has proved robust in operational use. For example, RVDAS on the SDA receives ~500 
messages per second from ~70 different sensors and the system has achieved 99.8% 
uptime over the last three years of continuous running. 

Limitations 
The RVDAS system has the following limitations: 

• Bespoke code - Almost all the RVDAS components have been created from 
scratch using in-house software code (Python or NodeJS). This code has grown 
organically to solve specific issues and is becoming time-consuming to 
maintain. 

• Lack of flexibility - The design of the existing system makes it difficult to add 
new features (e.g. the ship-to-shore message broker) and when these functions 
are bolted on, they increase the maintenance burden further. New sensors 
cannot be added, and existing sensors cannot be modified without restarting the 
RAM or Ingester modules, thus causing temporary data loss across all sensors. 
This is because processes are not sufficiently parallelised or independent from 
each other. 

• Limited resilience – While RVDAS has proved remarkably reliable in operation, 
this is more through luck than design. For example, a problem that causes the 
RAM module to crash would stop data ingestion for all sensors with no message 
buffering occurring and no automatic procedures in place to back off and restart.  

• Duplicated functions – There are several generic functions that are repeated 
(using differing code) across the various modules. For example, there is generic 
UDP listening functionality in the translation layer, as well as both the RAM and 

 
4 https://www.timescale.com/ 



 
 

Ingester modules. This duplication adds to the technical debt and means 
messages are spending more time transiting the network than is necessary. 

Data Acquisition and Metadata Platform (DAMP) 

Overview 
To address limitations with RVDAS, design work for a revised architecture has been 
ongoing since at least early 2023. Initial work looking at component orchestration by 
Juan Ward at NOC, was taken forward by Mike Crosier in late 2023 and formed the basis 
of the proposed experiment within the original Amplify proposal in May 2024.  

As described in the summary, a prototype revision of RVDAS, termed the Data 
Acquisition and Metadata Platform (DAMP) was installed on the SDA in October 2024.  

Figure 2.1 provides a graphical overview of DAMP as it exists on the SDA at the time of 
writing.  

 

Figure 2.1 – A schematic of the components of the current (October 2025) DAMP production version with 
arrows showing the flow of sensor information.  

DAMP is implemented as a Helm chart for Kubernetes (specifically K3s5), with inter-
component communication built around an Apache Kafka6 message broker. 

Component Architecture 
DAMP consists of containerised components, each of which performs a single function. 
They operate independently of each other, communicating via Kafka topics. A particular 

 
5 https://k3s.io/ 
6 https://kafka.apache.org/ 



 
 
DAMP installation may have only a subset of components enabled, depending on the 
required functionality. 

Readers 
Readers are responsible for acquiring messages from a sensor and inserting them into a 
raw topic in Kafka, without modifying the message in any way. There is one reader per 
sensor and one raw topic per sensor. These readers may be of different types, 
depending on how the sensor communicates: for example, one type of reader receives 
UDP messages; another type communicates with Modbus devices. Kafka topic 
metadata includes the timestamp of each message received.  

Raw file writers 
Raw file writers consume messages from a Kafka raw topic and write the message 
content plus received timestamp to a file on the local file system. There is one raw file 
writer per sensor (per raw topic). DAMP is configured to create one ascii file per sensor 
per day. 

Parsers 
Parsers consume messages from a Kafka raw topic and parse them into individual 
fields, according to schema information contained within the sensor metadata topic. 
Parsed values are inserted into Kafka parsed topics. Any message which cannot be 
parsed (e.g. because it is corrupt) is inserted into a single parsing failures topic, along 
with error messages, for troubleshooting purposes. There is one parser per sensor (per 
raw topic). A parser may write to more than one parsed topic; for example, in the case 
where a single sensor emits multiple sentences per message. Additionally, multiple 
parsers (for different sensors) may write to the same parsed topic, if the sensors emit 
messages of the same type / share sensor metadata; for example, multiple instances of 
the same instrument placed in different locations. 

Parsers monitor the sensor metadata topic and reload themselves whenever updated 
metadata for their sensor is received. 

The actual parsing logic is implemented via a system of plug-ins, each of which handles 
a specific message format (e.g. NMEA, CSV). The choice of which plug-in to use is a 
property of the sensor metadata. 

Currently, the parsers are also responsible for creating (but not writing to) database 
tables. This is an interim measure and will be moved to a more appropriate component 
in the future. 

Database writer (JDBC sink) 
The database writer consumes messages from Kafka parsed topics and inserts them 
into a database. There is a one-to-one correspondence between parsed topics and 
database tables. The database writer runs under Kafka Connect and handles all sensors 
concurrently. 



 
 
Sensor metadata loader 
The sensor metadata loader allows populating the Kafka sensor metadata topic based 
on config sent via Helm. It runs as a Helm post-install hook. This is a transitional 
measure and will eventually be replaced by a more direct means of pushing sensor 
metadata into DAMP. 

Ship-to-shore message replication  
Kafka MirrorMaker2 is used to replicate the raw and sensor metadata topics from the 
onboard Kafka cluster back to shore. A shore-side DAMP installation then parses the 
messages and writes them to file and database, producing an exact replica of the vessel 
installation in near real time – testing shows that the delay is less than a second for 
most sensors, assuming the satellite link is stable. 

Visualisation 
Real-time data visualisation is still undertaken by Grafana using PostgreSQL plus 
TimescaleDB as the primary data source.  

Transition from RVDAS to DAMP 
While DAMP appears architecturally very different from RVDAS, it is actually an 
evolutionary step along a longer-term development path. For example, much of the 
bespoke Python code that made up the sensor-to-RAM translation layer (see Figure 1.1) 
still exists within DAMP. However, the translation modules are now containerised within 
per-sensor readers and the previous translator management functions have been 
replaced by in-built Kubernetes functionality. A future enhancement could replace the 
remaining bespoke translator code with open-source equivalents (see next steps 
section). 

Care was taken to ensure the transition would be mostly invisible to end users, and it 
was important to have a prototype DAMP installation running (in parallel with RVDAS) for 
a significant period before it became the primary logging system, to test for reliability.  

Addressing RVDAS limitations 
DAMP has addressed many of the limitation described in the RVDAS section above. 
However, none of these limitations have been completely removed, and work will 
continue to make a more resilient, flexible, scalable system in the future. 

Bespoke code 
DAMP contains many more lines of code than RVDAS but the majority of this is 
boilerplate configuration associated with the main architectural components 
(Kubernetes/Helm, Kafka, Docker etc.). This appears more complex and impenetrable 
than the bespoke RVDAS components and code that it replaces, but the big difference 
is that the boilerplate is well documented online and any issues that arise are almost 
certainly discussed and solved by countless other developers in online fora.  



 
 
Lack of flexibility 
The use of containers and their orchestration through Kubernetes has allowed new 
sensors to be added to DAMP with no effect on existing data flows. The same is true for 
modifying the setup of existing sensors. The use of a Kafka message broker at the core 
of DAMP is already advantageous for the exiting functions (parsing, file writing, 
database writing, ship-to-shore mirroring) but it provides the foundational platform for a 
host of other components to be added in the future (stream processing, additional 
writers, monitoring etc.).  

Limited resilience 
Much of the resilience of DAMP is built-in to the chosen architectural components by 
default. For example, Kubernetes provides self-healing functionality whereby it can 
redeploy components (e.g. readers, parsers, writers etc.) if they should fail, to bring the 
system back to a given desired state. The DAMP Kafka component is running as a three-
node cluster within Kubernetes, providing the high availability and fault tolerance 
needed for a system that needs to operate all the time. Containerised components like 
the sensor readers are independent from one another meaning that an unrecoverable 
failure in one reader will not impact other data flows.  

Duplicated functions 
DAMP has eliminated the functional duplication that existed within the RVDAS RAM and 
Ingester modules, mostly replacing it with inter-component communication via Kafka. 
In other areas, ‘good’ duplication has been introduced within DAMP, using 
containerisation. This has allowed DAMP components to operate independently from 
each other, improving resilience. 

Other DAMP enhancements 
During the development of the DAMP prototype, and transition to a production version, 
we made several additional enhancements that have streamlined the management and 
deployment of DAMP services including: 

GitLab CI/CD improvements 
RVDAS code is managed within Git repositories (using GitLab) and the same is true for 
DAMP. Prior to the Amplify project we had discussed the use of CI/CD (Continuous 
Integration/Delivery/Deployment) pipelines, and these ideas were taken forward during 
the development of DAMP. Deployment of DAMP is now almost entirely undertaken via 
Gitlab CI/CD pipelines. 

Reduction in server-level configuration 
At least onboard the SDA, RVDAS requires server-level automation code to deploy and 
run the various components (via Puppet7). Deployment automation is now undertaken 

 
7 https://github.com/puppetlabs/puppet 



 
 
within DAMP or through DAMP CI/CD pipelines and the Puppet code is now much 
simpler and focusses on server-level aspects like firewalls settings.  

Highly configurable DAMP installations 
DAMP has a hierarchy of configuration files that allow deployment of the software in 
different settings. In order, this allows deployment in different organisational 
environments (e.g., BAS vs NOC), on different platforms (e.g., SDA vs Discovery), and to 
different servers (e.g., production vs testing) with each level inheriting, and optionally 
overriding, the one above.  

User engagement 
This section describes user engagement activities that prioritised the underway data 
logging system (versus other data management activities onboard) and informed the 
eventual design of DAMP. Some of these activities were funded through the Amplify 
project while others occurred as part of other projects or simply as business as usual. 

Vessel data systems questionnaire and workshop (BAS, 2018) – While this occurred 
some time ago, the results of both the questionnaire and workshop have helped to 
inform our development strategies ever since. One firm conclusion from this 
engagement was that the underway logging system was the highest priority vessel data 
system component and should be allocated significant time and resource to achieve a 
set of user requirements. These requirements were also articulated in the engagement 
exercise and formed the basis of the early RVDAS development work. 

Marine cruise participants (onboard NERC research vessels, ongoing): Marine cruise 
legs typically last between four and eight weeks and often host >40 researchers as well 
as technical support staff and crew. This large number of ever-changing, highly 
focussed end users is an ideal population to get real-time suggestions and feedback on 
data systems. This has ensured that the development of DAMP has continuously 
focussed on practical outcomes for end users rather than being an academic exercise 
in stitching together software components. 

Vessel data user workshop (NOC, Sept 2024) – A one day workshop for end users was 
held in Southampton as part of the Amplify project. The day included a show-and-tell on 
DAMP developments up to that point and then focussed on discussion topics including 
ship-to-shore data transfer, real-time data processing levels, and sensor metadata. 
User requirements that came out of the break-out groups were used to inform onward 
development where appropriate. 

Amplify workshop presentation (Cranfield, October 2025) – A poster describing the 
DAMP exemplar was presented by Claudette Lopez at the Amplify workshop that 
formed part of the annual NERC Digital Gathering event.  

NERC EDS webinars (online, throughout project) – Perhaps not end user engagement, 
but a series of EDS webinars throughout 2024 and 2025 have highlighted sensor data 



 
 
developments across the other NERC centres. While thematic scopes are often very 
different it is reassuring (but probably not surprising) that many of the architectural 
concepts within DAMP are present in other projects. 

Lessons learned 
Open-source software patchworking 
Mike Crosier (DAMP’s architect) was recruited to BAS as a software developer, but he 
did not describe what he did during the Amplify period as software development. 
Instead, most of his activities involved stitching together open-source software 
components with just enough custom functionality to make the result a vessel data 
acquisition system versus some other type of application. We are not entirely sure what 
the job title should have been, but it is a useful finding when putting together future job 
descriptions for similar work. 

BAS IT engagement was key 
The initial DAMP prototype was developed and deployed on virtual machines that were 
managed by the Polar Data Centre. However, it became clear early on that the long-term 
viability of DAMP was dependent on whether the BAS IT team would adopt and support 
some of DAMP’s architectural components. After the successful deployment of the 
DAMP prototype onboard the SDA, a commitment was made to integrate DAMP within 
the central BAS IT infrastructure, and this was honoured during the Amplify extension 
period. 

Kubernetes networking is hard work 
Kubernetes brings a lot of benefits, but some elements have a steep learning curve with 
its internal networking being particularly difficult to get right. For example, the 
production deployment of DAMP onboard the SDA has a (hopefully) temporary script to 
relay incoming UDP messages originating from the VLAN’s broadcast address. The 
script sits outside of Kubernetes and relays the messages to the localhost, without 
which the DAMP readers pods would fail to pick them up. Despite lots of effort, we have 
not found the magic Kubernetes/Docker network configuration that will allow us to get 
rid of this redundant relaying step. 

Next Steps 
Following on from the Amplify-funded DAMP exemplar presented in this report, the 
development tasks below are the natural follow-on activities. 

Kubernetes cluster 
To reduce complexity, DAMP is deployed within a single node Kubernetes installation. 
However, throughout the Amplify period, staff at NOC have been investigating how to 
operationalise a multi-node Kubernetes installation. This would improve resilience even 
further and allow for periodic maintenance of Kubernetes itself and the host virtual 
machines, without any downtime.  



 
 
Data translation layer 
Bespoke Python code is still used to listen/poll sensors (within each DAMP reader) and 
while this has some advantages (there is a Python module to suit every occasion), there 
is a lot of variability in the code and solutions found are often narrow in scope and don’t 
scale well. Engagement with other NERC EDS partners through the Amplify project has 
shown that Apache NiFi8 is good open-source candidate to replace most, if not all, of 
the existing data translators with a huge library of additional data pipeline functionality 
to satisfy as-yet unencountered sensor workflows. In-house testing of NiFi (as an 
individual software component) has confirmed its potential, the outstanding question is 
how it can be best integrated within DAMP.  

Real-time stream processing 
DAMP’s architecture now makes it much easier to add real-time data processing 
capability. A processor could subscribe to raw Kafka topics, perform a range of 
processing functions, and then publish the results back to a processed Kafka topic for 
onward use. Examples include data quality flagging, merged/aggregated products like 
true wind velocity, and anomaly detection. This type of functionality is provided by a 
range of open-source software such as Flink9, Spark10, and Kafka Streams11 (all Apache 
projects). Apache NiFi also has advanced stream processing capability.  

Open-sourcing DAMP 
The primary aim of this work was to develop a real-time data logging exemplar that 
might inform the design decisions of similar systems across the EDS. However, it is 
possible that there might be broader interest in the software patchworking within DAMP, 
and this could be advertised by making the source code publicly available via GitHub (or 
similar). Work would be required to ensure the current codebase was cleared of any 
security issues and reviewed for areas that are too specific or not documented well 
enough.  
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