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Abstract Flood protection authorities are not prepared for compound flood risk in estuaries—now and in
the face of climate change. Climate projections are rarely downscaled appropriately to assess future changes in
storm surge and concurrent river discharge extremes, and their interactions to exacerbate flooding. This is the
first time that hourly and fine spatial resolution (7/2.2 km sea level/precipitation), physically consistent, climate
projections are used to assess changes in storm surge and river discharge‐driven compound events. The analysis,
applied to the Dyfi estuary, western UK, uses 12 downscaled perturbed parameter ensembles for the high‐
emissions “RCP8.5” scenario from a global climate model (HadGEM3‐GC3.0). Residual surge and river
discharge projections are assessed independently to identify changes in magnitudes and return periods—then
combined to identify changing patterns of dependence and timing of compound events. Under RCP8.5 scenario
to 2080, river discharge is expected to increase by 28%–29% for 1/20 and 1/50‐year events. Extreme (95th
percentile) discharge events are more likely to occur concurrently with extreme surges, and compound events
will occur more often, and with a shorter time lag between peak surge and peak discharge—potentially
compounding flooding further. The analysis provided forcing conditions representative of future 1 in 20‐year
and 1 in 50‐year events used to simulate a potential increased flood footprint in the estuary. The research raises
the question of the wider pattern of future compound events throughout the UK, and worldwide, highlighting the
critical need for downscaled, coastal and fluvial projections to futureproof flood management strategies.

Plain Language Summary Effective flood protection strategies are essential as flooding remains one
of the most devastating and costly challenges for communities worldwide, and the likelihood of extreme flood
events is expected to increase due to climate change. Climate models rarely capture how storm surges and river
floods interact to worsen flooding in estuarine environments. This study is the first time that state of the art
climate projections are used to assess changes in the combined effect of extreme sea and river level in the Dyfi
estuary, UK, under a high‐emissions scenario (RCP8.5). By 2080, river floods could increase by 28%–29%, and
extreme surges and river floods are likely to coincide more often, reducing the time between peak events. These
findings highlight the urgent need for models to represent the processes that control coastal and estuarine
flooding to support effective flood management globally.

1. Introduction
Communities throughout the world face urgent challenges from projected changes in natural hazards this century,
and must develop, refine, and implement adaptation solutions as new understanding evolves (Toimil et al., 2020).
This is especially pertinent in low‐lying coastal areas. Globally, over 40% of the world's population live within
100 km of the coast (Reimann, 2023), with one billion people occupying land less than 10 m above current high
tide limits, including 230 m below 1 m (Kulp & Strauss, 2019). 22 of the 32 largest cities in the world are located
on estuaries (e.g., New York, Shanghai, London, Rio de Janeiro, Tokyo) and are vulnerable to co‐dependant risks
of sea‐level rise (SLR) and coastal erosion, alongside risks associated with compound flooding (Lewis, Palmer,
et al., 2019; Ward et al., 2018).

Compound flooding is a common coastal hazard, causing substantial damages and fatalities worldwide (Bevacqua
et al., 2017; Wahl et al., 2015). Compound flooding can be a consequence of two mechanisms; first, extreme
coastal water levels during an incoming tide can “hold” or even reverse river flows through the backwater effect
(Hoitimk & Jay, 2016; Zhang et al., 2019). Second, severe storm events can generate storm surges through the
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inverse barometer effect at the same time as heavy precipitation which increases runoff and river discharge
(Hendry et al., 2019; Kew et al., 2013). The occurrence of high sea level and heavy precipitation at the same time
or in close succession can amplify storm impacts for estuarine populations who sit at the interface of all flood
drivers (Zscheischler & Seneviratne, 2017). Cyclone Nargis in Myanmar (Fritz et al., 2009), Hurricane Katrina in
the US (Jonkman et al., 2009), Storm Desmond and Ciara in NW England (Ferranti et al., 2017), and Hurricane
Harvey in the US (Emanuel, 2017), are examples of compound events that caused extensive damage and asso-
ciated costs (Couasnon et al., 2020).

Climate change is already a driver of increasing flood hazard due to changes in sea level and precipitation
conditions and increased natural variability (Kay et al., 2011, 2018; Malhi et al., 2020). Historic observations and
reanalysis simulations of sea level, river discharge (Wang et al., 2024; Gudmundsson et al., 2021), and flood
events show changing trends in the drivers of the occurrences of flooding, with nearly 40% of analyzed flood
events linked to heavier precipitation (Alifu et al., 2022). Global analyses of tide gauge records reveal accelerated
and sustained SLR over the 20th and 21st centuries, accompanied by an increase in extreme high‐water events
since 1970 (Haigh et al., 2014; Lowe et al., 2010; Meli et al., 2020, 2023; Menéndez &Woodworth, 2010; Pugh &
Maul, 1999; Watson et al., 2015). However, challenges remain in separating out contributions to coastal flooding
from mean sea level, storm surges, waves, and land movements (Howard et al., 2014, 2024). As such, compound
flooding in estuaries is a growing threat due to accelerating SLR, variability in surge, and the intensification of
river discharge associated with climate changes (Church et al., 2013; Hallegatte et al., 2013; Seneviratne
et al., 2021; Yin et al., 2018).

Research has assessed estuarine flood hazards under climate change (Harrison et al., 2021) and focused on fluvial
or coastal flood drivers individually (Bates et al., 2021; Wing et al., 2017). Hydrodynamic models parameterize
uniform changes in flood drivers to show increased fluvial flood risk from intensified precipitation (Feyen
et al., 2011; Kundzewicz & Pińskwar, 2022; Steinhausen et al., 2022) and greater coastal flood hazards driven by
SLR (Neumann et al., 2015; Nicholls et al., 2021; Vitousek et al., 2017). Climate change will also likely influence
the timing, magnitude, and interdependences between the drivers, measured by upper tail dependence (Ganguli
et al., 2020; Zscheischler & Seneviratne, 2017). Therefore, assessments of the future dependence between storm
surge and river discharge requires coherent projections of both drivers as their interplay underpins these complex
flooding phenomena.

Global Climate Models (GCMs) generate estimates of future climate (IPCC, 2021; Seneviratne et al., 2021)
following an inter‐model agreement of climate scenarios, such as the Coupled Model Intercomparison Project
(CMIP), used to inform change via Phase 5 (CMIP5) (Muis et al., 2020) and Phase 6 (CMIP6) (Chen et al., 2020;
Li et al., 2021). GCMs from CMIP5 have been used in combination with hydrodynamic models to identify
regional, future variability and trends in return periods across NWEurope, with probability of compound flooding
increasing along parts of northern Europe (Bevacqua et al., 2019). However, the coarse spatial resolution of
GCMs (∼1–3°) can introduce biases and uncertainty in the representation of the drivers of compound floods at
estuary‐scales (Maraun et al., 2015; Schaller et al., 2020)—in particular, underestimating extremes (Marsooli
et al., 2019; Muis et al., 2016). Key physical processes are not included in GCMs, for example, shelf seas are
under‐represented in GCMs due to the absence of tides (Hermans et al., 2020; Tinker et al., 2020).

The UK Climate Projections (UKCP18) use the HadGEM3‐GC3.05 GCM, with 12 perturbed parameter ensemble
members (UKCP18 GCM–PPE) to force Convection‐permitting model (CPM) simulations at kilometer‐scale that
give a downscaled and improved representation of hourly precipitation extremes (Chan et al., 2020). Convection
Permitting Models (CPMs) represent a significant advancement in the representation of atmospheric convection
at the temporal and spatial scales critical for driving changes in intensity, frequency, and clustering of extreme
precipitation, which is important for flood generation (Chan et al., 2014; Fosser et al., 2024; Fowler, Lenderink,
et al., 2021; Kendon et al., 2012; Prein et al., 2015). These kilometer‐scale variations in extreme precipitation play
a critical role in the generation of fluvial floods (Paschalis et al., 2014; Peleg et al., 2020), and ensembles of
climate projections from CPMs provide an opportunity to assess future changes to flooding in catchments and
estuaries (Archer et al., 2024; Orr et al., 2021; Rudd et al., 2019). CPMs capture storm characteristics and are used
to force hydrological models to simulate river flows and future risks under climate change (Kay et al., 2019).

In addition to dynamical downscaling of hydrological processes, Tinker et al. (2024) developed a set of Northwest
European Shelf (NWS) marine climate projections. The 12 UKCP18 GCM‐PPE members, also based on
HadGEM3‐GC3.05, were downscaled with the 7 km shelf seas version of NEMO 4.04 (Coastal Ocean version 9,

Methodology: Charlotte Lyddon,
Laura Devitt, Mirko Barada,
Gemma Coxon, Thomas Coulthard,
Andrew Barkwith, Peter Robins
Project administration: Mirko Barada,
Andrew Barkwith, Peter Robins
Resources: Charlotte Lyddon,
Laura Devitt, Mirko Barada,
Gemma Coxon, Jonathan Tinker,
Thomas Coulthard, Andrew Barkwith,
Peter Robins
Software: Charlotte Lyddon,
Laura Devitt, Mirko Barada,
Gemma Coxon, Jonathan Tinker,
Thomas Coulthard, Peter Robins
Supervision: Charlotte Lyddon,
Mirko Barada, Thomas Coulthard,
Andrew Barkwith, Peter Robins
Validation: Charlotte Lyddon,
Laura Devitt, Mirko Barada,
Gemma Coxon, Jonathan Tinker,
Thomas Coulthard, Peter Robins
Visualization: Charlotte Lyddon,
Mirko Barada, Andrew Barkwith,
Peter Robins
Writing – original draft:
Charlotte Lyddon, Mirko Barada,
Peter Robins
Writing – review & editing:
Charlotte Lyddon, Laura Devitt,
Mirko Barada, Gemma Coxon,
Jonathan Tinker, Thomas Coulthard,
Andrew Barkwith, Peter Robins

Earth's Future 10.1029/2024EF005822

LYDDON ET AL. 2 of 26

 23284277, 2025, 12, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024E

F005822 by B
ritish G

eological Survey, W
iley O

nline L
ibrary on [12/01/2026]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



CO9) (Tinker et al., 2020). Simulations represent the state of the art for Northwest Shelf marine projections
(Tinker et al., 2024), and directly simulate the multitude of atmospheric‐ocean processes that affect coastal and
estuarine flood hazard at relevant temporal and spatial scales, from local effects of wind waves to tides and the
inverse barometer effect (Ponte et al., 2019). By providing high‐resolution projections, these models enable
robust assessments of how evolving oceanographic and storm conditions, including SLR and extreme weather
events, may amplify coastal flooding risks (Jevrejeva et al., 2024). This comprehensive downscaling approach
demonstrates the potential for more accurate assessments of climate change impacts on extreme precipitation,
river flows, and sea level, crucial for assessment of future compound flooding.

The research here demonstrates a step change in capacity to estimate future compound flood behavior in estuaries.
For the first time, we use multiple ensembles of hourly and sub‐mesoscale, physically consistent, hydrological
and marine projections that allow us to diagnose future changes to compounding flood conditions. Projections of
future storm surges and river discharge have been used to assess changes in the magnitude and timing of storm‐
driven compound events. The Dyfi Estuary, west Wales, UK, was chosen as a test case due to the availability of
data and documented evidence of past compound storm events, such as Storm Ciara in February 2020 (Harrison
et al., 2021; Lyddon et al., 2022; Robins et al., 2021). The use of PPE simulations means that model uncertainty of
GCMs can be included and combined with return level uncertainty specific to each ensemble member. The study
aims to identify how the timing and magnitude of extreme storm‐driven compound events will change in the
future, providing crucial insights for future incident and hazard management strategies to determine whether these
events will become problematic, and how best to prepare for them. Section 2 provides an overview of the data
sets, compound flood indicators, and a hydrodynamic model applied here to assess future changes in compound
flooding. The results identify the magnitude of change in drivers of storm‐driven compound flooding, future
changes in dependence and characteristics of flood inundation and depth in the Dyfi Estuary.

2. Methods
2.1. Case Study

The Dyfi Estuary is studied here due to the availability of long observational timeseries to assess temporal
changes in the magnitude, timing, and behavior of storm‐driven compound events. There is a long instrumental
record of sub‐daily river discharge measurements at the head of the estuary, sea level measurements near the
estuary mouth, and the availability of hourly projections of river discharge combined with hourly projections of
sea surface height (SSH) and residual surge—both driven by the same GCM‐PPE. The Dyfi estuary is located on
the west coast of Britain, has a mean surface area of 17 km2, is approximately 15 km long, and is relatively
shallow, largely drying out at low tide (Robins &Davies, 2010; Shi, 1993). The estuary is macro‐tidal with a mean
spring tidal range of∼5 m. The River Dyfi is the primary fluvial input to the estuary, draining a steep mountainous
catchment area of 470 km2 and having a length of 48 km with an annual mean discharge of 23 m3/s and extreme
95th flow of 78 m3/s (Robins et al., 2021). These scales imply that fluvial flood waters will reach the Dyfi Estuary
in a matter of hours. Previous research has shown compound flooding is likely to occur in this estuary (Harrison
et al., 2021; Lyddon et al., 2022; Robins et al., 2021) due to the high number of storms per season, the aspect of the
estuary (facing prevailing storm tracks from the Atlantic), and the steep catchment shape with short runoff
transmission times. Indeed, the Dyfi Estuary has experienced compound flooding, notably on 18 November 2009
(0.77 m skew surge occurred within 5 hr of a 382 m3/s discharge) and 11 February 2002 (0.54 m skew surge
occurred within 15 min of a 337.7 m3/s discharge), in both cases causing widespread flood damage and road
closures (Griffith et al., 2020). A national characterization of compound flood drivers by Lyddon et al. (2022)
shows the Dyfi to be typical of ∼25 estuaries on Britain's west coast that are similar in scales and driver behavior.

2.2. Instrumental Data

The NTSLF Class A tide gauge located at Barmouth, 20 km north of the mouth of the Dyfi Estuary, was used as a
record of observed total water level and residual storm surge (total water level – predicted tide). The tide gauge
record is available from 1 January 1991–31 December 2021 at 15‐min resolution. The record was processed to
remove flagged data (error or modeled data) to leave only actual observed data. This produced a record with 66%
data coverage, with no data available since January 2016. Observed river discharge measurements are available at
15‐min resolution at Dyfi Bridge (gauge number: 64001; location: 52.60°N, 3.85°W) from 1 January 1970–1
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December 2021 (NTSLF, 2022). This is the most downstream, non‐tidal river gauge in the catchment, and the
record has 87% data coverage.

2.3. Future Projections

Future projections of river discharge and sea level were driven by the 60 km HadGEM3‐GC3.0 GCM (Figure 1).
The projections comprise 28 global PPE ensemble members, formed by varying uncertain parameters within the
model physics, including global carbon and sea ice, allowing uncertainty in future projections up to 2100 to be
explored systematically (Sexton et al., 2021; Williams et al., 2018). These marine and fluvial projections were run
under the Representative Concentration Pathway (RCP) 8.5, corresponding to a high‐emissions climate change
scenario where greenhouse gas emissions continue to increase into the 22nd Century. Despite being recognised as
a low‐likelihood scenario, RCP8.5 has a high signal‐to‐noise ratio so climate response can more easily be
separated from internal variability and is valuable for risk‐based decision‐making as it provides a comprehensive
view of potential future risk (IPCC, 2021; Tinker et al., 2024). 12 ensemble members of the RCP8.5 GCM‐PPE
(see Table 1) were downscaled to the 12 km Regional Climate Model (RCM) simulations over the northwest
European shelf as part of the UK Climate Projections project (Tucker et al., 2021)–termed UKCP18 RCM‐PPE.
For atmospheric processes, the RCM simulations were downscaled to a 2.2 km CPM, used to simulate small scale
behavior seen in the atmosphere, in particular convection‐permitting precipitation (Kendon, Fosser, et al., 2021;
Murphy et al., 2018). For marine processes, the RCM simulations were downscaled to a 7 km regional ocean
model (NEMO 4.04 (Coastal Ocean version 9, CO9), run on the Atlantic MarginModel 7 km grid (AMM7)), used
to simulate small scale behavior seen in the NW European shelf sea hydrodynamics, in particular storm‐driven
surge‐tide propagation (Tinker et al., 2020, 2024). From these models, hourly continuous climate data was
used to force marine and hydrological models to provide projections of changes in each driver of storm‐driven
compound flooding. This is the first time that hourly and fine spatial resolution (7/2.2 km sea level/

Figure 1. Framework showing downscaled fluvial and marine projections used here for the Dyfi Estuary, west Wales.
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precipitation), physically consistent, climate projections are used to assess changes in storm surge and river
discharge‐driven compound events.

2.3.1. Marine Projections

Marine data at the mouth of the Dyfi Estuary was accessed from theMet Office Managed Archive Storage System
archive on JASMIN, via the Met Office Operational Storage Environment interface. Monthly output files con-
tained data at hourly resolution, spanning 1990–2098, for 12 ensembles (listed in Table 1). As stated in Tinker
et al. (2024), there were a series of files that were not archived correctly, as shown in Table S1 in Supporting
Information S1. Tinker et al. (2024) recommended recreating missing files by averaging the daily mean files;
however, this approach would result in the loss of sub‐daily temporal resolution. An alternative method involves
averaging data from the same month of the previous and following years. This latter approach, which was used in
this study, maintains the seasonal cycle and any trends in the data, though it may affect some statistics, such as
estimates of interannual variability. Although NEMO CO9 includes a wetting and drying module to account for
realistic coastal bathymetry and coastal processes, caution is advised when using model outputs within three grid
boxes of the land. Consequently, manual processing and qualitative checks were performed to ensure that coastal
grid boxes are “wet.” Projections were taken from position 52.534, − 4.111, located one grid cell from the coast
and at the mouth of the Dyfi Estuary. It is important to note that while the oceanographic SLR is included in the
forcing GCM, this model does not fully account for other SLR aspects such as tectonics and ice dynamics, and
thus should not be considered a comprehensive SLR model. Total water level time series were de‐tided using a
Doodson filter, which is a bandstop filter for frequency bands including diurnal, semi diurnal, 8 hr, 6 hr, to
generate a residual storm surge. Separating the residual storm surge from the modeled total water level gives a tide
only signal. The Doodson filtering approach yields a residual that is not identical to the surge derived from
harmonic tide–subtraction of observed total water level, and therefore the two signals may differ subtly in
amplitude and timing, though both capture the storm surge variability on multi‐hour to multi‐day timescales.

To assess the performance of AMM7 in reproducing the magnitude of storm surges, it is important to appreciate
that GCMs are not designed to replicate the observed phase of weather events, making direct comparison of high‐
resolution time series unrealistic. Instead, the climate is evaluated by comparing long‐term statistical records of
observations with model outputs. SLR was first retained in the modeled simulations to reflect any changes
captured in the tide gauge record. The observed 20‐year mean (1991–2011, with 78% data coverage) was
calculated and compared with the modeled 20‐year mean for each ensemble member (1990–2080). As per Tinker
et al. (2024), an offset of 0.85 m was calculated to align observations and projections: the difference between the
NWS‐PPE ensemble mean and temporal mean and tide gauge temporal mean for the common overlap period. All
analysis is presented with this offset applied. A normalized bias was calculated to determine how many standard
deviations the observed 20‐year mean deviates from the ensemble mean of the PPEs. If the normalized bias was
less than 2, the observations are within 2 standard deviations of the ensemble mean, indicating that the PPE is
consistent with the observations. The ±2 range is intended to show that the observed surge generally falls within
the modeled variability, indicating that the PPE captures realistic surge behavior over time.

Normalized Bias =
Ensemble mean − observed mean
Ensemble standard deviation

(1)

The comparison of ensemble annual means to observation annual means follows the approach used by Tinker
et al. (2024) (Figure 6, pp. 848). Tinker et al. (2024) demonstrated good agreement between observations and

Table 1
Normalized Bias to Show How Many Standard Deviations the Observed 20‐Year Mean (Sea Level: Barmouth, River
Discharge: Afon Dyfi at Dyfi Bridge) Is From Each Modeled 20‐Year Ensemble Mean (Sea Level: NEMO CO9, River
Discharge: Decipher)

Ensemble 0000 0605 0834 1113 1554 1649 1843 1935 2123 2242 2305 2335

NEMO CO9 − 0.18 − 0.57 − 0.25 0.02 0.37 − 0.14 0.43 − 0.1 0.22 − 0.49 0.57 0.11

Decipher − 0.29 − 0.02 0.49 0.07 0.3 0.14 0.21 − 0.36 0.02 − 0.26 0.43 − 0.73

Note. Less than 2 is considered acceptable.
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model ensembles at Holyhead approximately 100 km north of the Dyfi. This method is now applied to the
Barmouth tide gauge, 20 km north of the Dyfi, and baseline projections from a grid cell close to the tide gauge,
offshore from the River Mawddach for a 20‐year period of overlapping data (1990–2020) where more than 50%
of observation data exists in the record to maximize data for comparison. Similarly, the method is applied to a
20‐year overlap period with river gauge data (1980–2000), from Dyfi Bridge (gauge number: 64001) and baseline
hydrological projections. Table 1 shows a strong agreement between the annual mean storm surge from the
Barmouth tide gauge and the ensemble mean, and annual mean river discharge and the ensemble mean. For all
ensembles, the normalized bias was less than 2, indicating that the PPE is consistent with observations. This
analysis has been extended to a range of percentiles (25, 50, 75, 95, 99th) and also applied at Fishguard tide gauge,
located 80 km southwest of the Dyfi Estuary, which has a longer record of complete data (1980–2021), all
showing normalized bias within 2 to illustrate model agreements (Tables S2–S4 in Supporting Information S1).

The modeled and observed storm surge data include a component of SLR, which was removed by subtracting
linear regressions of the long‐term trends. The resulting detrended modeled and observed storm surge was used
for all subsequent analyses. The comparison of detrended ensemble annual means to observation annual means
shows good agreement in Figure 2a. The ensemble mean is less variable than the observations and individual
ensemble members, and variance of each individual baseline ensemble member (0.016–0.02 m) is consistent with
the observation (0.023 m).

The observed annual mean, 25, 50, 75, 95, and 99th percentile storm surge over a 21‐year period was calculated
from tide gauge data and each ensemble mean. A normal distribution was then fitted to these values for each
ensemble to interpret the spread within each model's projections and identify ensembles that may predict more or
less extreme outcomes (Figures S1 and S2 in Supporting Information S1). The distributions were then averaged
across all ensembles (Figure 2b) to smooth out variability from individual models and emphasize broader trends
and robustness. Results for the mean and 99th percentile are only shown here. Combining the ensemble means and
variance of individual normal distributions into one averaged distribution makes it easier to understand the

Figure 2. (a) Comparison of time series of annual mean storm surge from Barmouth tide gauge (red) and 12 ensemble members (gray), with the ensemble mean ± 2
ensemble standard deviations shown in black. (b) Normal distribution fitted to annual mean (left) and 99th percentile (right) storm surge from Barmouth tide gauge
(red), and 12 ensemble members grouped in three time slices (gray to white) with mean (dashed line). (c) Doodson (blue) and low pass (purple) filter applied to
observation tide gauge data (red) to assess influence of filtering process on magnitude of residual surge.
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collective characteristics of the ensemble. A probability density function fitted to the mean for modeled and
observed data shows good agreement, centered around 0 m. The mean observed 99th percentile (0.61 m) is higher
and the tails longer than the projections across three time slices. To demonstrate how the filtering process in the
projections can dampen extremes in surge magnitudes, the same Doodson filter that is applied to total water level
fromAMM7 is applied to the Barmouth tide gauge total water level, alongside a Chebyshev Type II low pass filter
as an additional example. Figure 2c illustrates that after detrending the modeled surge data, the Doodson filter acts
as a bandstop filter for the main frequency bands (diurnal, semi‐diurnal, 8‐hr, 6‐hr), effectively reducing the
peaks. The Doodson method removes some higher frequency surge behavior and depresses the magnitude of
storm surge peaks, with the low pass filter producing a similar result. Although the AMM7 model does not fully
capture higher frequency surges, the simulations are sufficiently realistic and suitable for analyzing compound
events. These simulations provide extensive data: 100 years of continuous hourly resolution over 12 ensemble
members, generated from the same GCM that produces hourly river discharge projections.

2.3.2. River Discharge Projections

The 12 member UKCP18 RCM‐PPE were downscaled to a 2.2 km resolution CPM (termed UKCP18 Local) for
three time periods: baseline (1981–2000), near future (2021–2040) and far future (2061–2080) (Kendon
et al., 2019; Kendon, Prein, et al., 2021; Murphy et al., 2018) (Figure 3a). Uplift analysis of outputs fromUKCP18
Local show an intensification of summer hourly precipitation compared to the driving RCMs (Chan et al., 2023).
DECIPHeR, a hydrological model (Coxon et al., 2019), was used to simulate river discharge in the Dyfi
catchment, to allow for realistic representation of rainfall intensity and storm duration (Devitt, 2023). To
parameterize the hydrological model, 10,000 simulations were performed with within a Monte Carlo simulation
framework with parameter sets randomly sampled from a wide parameter space. Calibration simulations were
forced with hourly observational rainfall (CEH‐GEAR 1 hr, Lewis, Quinn, et al., 2019) and potential evapo-
transpiration (CEHMcGuinness‐Bordne; Tanguy et al., 2018) for the period 1990–2014. Both observational data
products were regridded from their native 1 km resolution to 2.2 km to match UKCP18 Local. Calibration
simulations were evaluated against observed hourly river flow data (Figure 3b) using Nash‐Sutcliffe Efficiency

Figure 3. Fluvial projections showing (a) time series of projected discharge across the baseline, near future and far future time slices; (b) time series of observational
(red) and model calibration (purple) discharge for 1990–2014; (c) annual mean discharge averaged across observational (red) and model calibration (purple) data for
1990–2014, and annual mean discharge across the 12 UKCP18 Local ensembles (gray lines) for the baseline, near future and far future time slices, with the ensemble
mean ± 2 ensemble standard deviations (black lines); (d) normal distributions fitted to the annual 99th percentile discharge for the observational and calibration data;
and (e) normal distributions fitted to the annual 99th percentile discharge across the 12 ensembles for the baseline, near future and far future time slices. See Figure S2 in
Supporting Information S1 for distributions of each ensemble run and averaged.
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(NSE; Nash & Sutcliffe, 1970) and Kling‐Gupta Efficiency (KGE; Gupta et al., 2009) analyses. The NSE and
KGE scores for the best performing parameter sets were 0.82 and 0.79. DECIPHeR was run continuously to
simulate hourly discharge for all 12 ensemble members using the top 100 model parameterizations with the
UKCP local data during the baseline, near future, and far future time slices. The UKCP18 Local precipitation was
not biased corrected as it was found to agree well with hourly rainfall observations. UKCP18 Local has no explicit
PET data, and so PET was derived from hourly temperature data using the same PET equation (McGuiness‐
Bordne) as is used by the observational data in the calibration simulations. Discharge projections were extracted at
the location of the Dyfi Bridge river gauge (52.6, − 3.85), at the head of the estuary (15 km up estuary from the
mouth). Further details of the hydrological modeling procedure are provided by Devitt (2023).

Extensive calibration of DECIPHeR has been undertaken (Coxon et al., 2019) and robustness of river discharge
projections at the Dyfi tested (Devitt, 2023). For completeness, the methodology applied to show the reliability of
the marine projections was applied to the best performing hydrological parameter set. The methodology was
applied to one hydrological set only to reflect the resolution of data that is available for the marine data. A
normalized bias was calculated per ensemble member between the overlapping data (1990–2000) from the 12
ensemble members of the baseline time slice and the river gauge (Table 1). All show a bias under 2 indicating
good agreement. An offset, the difference between the UKCP18 Local CPM ensemble mean and river gauge
temporal mean for the common overlap period, is also calculated and applied (0.34 m3/s), and annual mean river
discharge across 12 ensembles shows good comparison with observation gauge data (Figure 3c).

A normal distribution was fitted to annual 99th percentile for every hydrological simulation, and averaged for
each ensemble (see Figure S3 in Supporting Information S1), and then averaged across all ensembles for each
time slice to understand how well the hydrological models perform (Figures 3d and 3e). Figure 3d shows normal
distributions fitted to the observational and calibration runs, and Figure 3e shows normal distributions for the
concatenated baseline, near future and far future simulations from the best performing parameter set. The baseline
simulations vary from near future and far future simulations in terms of peakedness and magnitude, with smaller
variance. The variance of each individual baseline ensemble member (520–975 m3/s) is consistent with the
observation (1,019 m3/s). This gives confidence when using outputs from the hydrological models to understand
future changes in river discharge.

2.4. Future Changes in Compound Events

2.4.1. Changes in Magnitude and Return Periods of Skew Surge and River Discharge

Sea level and river projections were first analyzed individually, to identify future changes in means, quantiles,
outliers, and return periods for each driver. For river projections, quantiles were calculated for each complete
20‐year time slice (1980–2000, 2020–2040, 2060–2080) across all hydrological runs and ensemble members.
Means, quantiles, and outliers were calculated for each of the 100 best performing hydrological runs, for 12 PPEs.
The 100 hydrological runs were then averaged across the 12 PPEs, and then averaged across each time slice.
Boxplots show quantile range, mean, and maximum outliers (Figures 6 and 8).

Similarly, quantiles and means were calculated for each of the 12 storm surge PPEs and averaged for each time
slice. Skew surge was calculated from the storm surge projections, which is defined as the difference between
maximum observed and predicted high tide within a 12‐hr tidal cycle (Batstone et al., 2013). Skew surge has been
used as a more representative measure of dependence between extreme sea level and river flow, across Europe
(Camus et al., 2021; Hendry et al., 2019; Paprotny et al., 2018) and the USA (Jane et al., 2022; Moftakhari
et al., 2019), and a more useful metric for flooding (Haigh et al., 2016). Despite the first 10 years of marine
projections defined as “spin up,” 1980–1990 projections are still used here for comparison with river discharge
also simulated for this time slice. This is acceptable here as the model is able to “spin up” quicker for barotropic
conditions (e.g., storm surge), but would require longer for baroclinic processes (e.g., salinity and temperature).

Return periods of the magnitudes of 1/2‐year up to 1/50‐year skew surge and river discharge events, unique to
each ensemble member, were calculated. Previous research has concatenated individual ensembles to give
240 years of data (12× 20‐year time slices) (Archer et al., 2024), which does not explicitly account for uncertainty
associated with each ensemble member. The approach used here is based on Chan et al. (2023) which handles
each ensemble separately to acknowledge that each PPE represents different parameterizations with its own
uncertainty. For the river discharge data, each set of 100 hydrological runs was treated separately across the 12
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ensembles. 20‐year annual maxima (AMAX) for each hydrological run was identified to generate 100, 20‐year
AMAX time series. These time series were concatenated to give a 2000‐year data set from which 1/2‐year to
1/50‐year return periods were calculated for each ensemble (Figure S3 in Supporting Information S1). For skew
surge data, one 110‐year time series of AMAX was generated per NEMO AMM7 ensemble member. We
used bootstrap resampling of the AMAX for each of three 20‐year time slices respectively, to produce 100
resampled 20‐year series for each ensemble. Histograms were used to test if the 100 resampled AMAX set is from
the same distribution as the original ensemble member. As for fluvial projections, the 100, 20‐year AMAX time
series were then concatenated into a 2000‐year data set (Figure S4 in Supporting Information S1). Return levels
corresponding to different return periods were estimated using the Gumbel distribution, which is a commonly
applied extreme value distribution for modeling annual maxima, across 12 ensembles for each 20‐year time slice.
For each ensemble, the annual maximum values representing the sampling distribution of extremes, from which
sample mean and standard deviation were calculated.

Return levels QT for return periods T = 2 to 50 years were calculated using the Gumbel reduced variate:

yT = − log(− log(
T − 1
T

))

These values were standardized using the ensemble mean and standard deviation of the reduced variate distri-
bution (yn, sn), and scaled to the data distribution:

QT = x + (
yT − yn

sn
) · σ

This method provides an ensemble‐based estimate of return levels, accounting for model variability.

2.4.2. Changes in Dependence and Timing of Compound Events

Whilst the GCM does not simulate weather events, the same atmospheric conditions in each PPE will cause
extremes in both the storm surge residual (and skew surge) and precipitation (and subsequently river discharge).
The following analysis shows how changes in atmospheric conditions will cause changes in the co‐occurrence of
extreme skew surge and river discharge that cause compound flooding.

The best performing parameter set for river discharge projections was used to limit the analysis to one set of 12
PPE projections. A peaks‐over‐threshold analysis (Lyddon et al., 2022) identified peaks in discharge that
exceeded a moving threshold of the data for each ensemble (calculated based on a 3‐month moving mean + 50th
percentile of each 20‐year time slice) (red circles in Figure S4 in Supporting Information S1). The hydrograph
storm window, based on the average hydrograph duration (1984–2013) is 20.42 hr for the River Dyfi (Lyddon
et al., 2022). The largest skew surge within the hydrograph storm window, that is, within 10.21 hr before and after
the peak in river discharge, was identified (red crosses in Figure S5 in Supporting Information S1). We assessed
the dependence between the peaks in river discharge and associated peaks in skew surge using Kendall's rank
correlation coefficient (using two‐way sampling). This standard measure of dependence has been used in previous
studies (Hendry et al., 2019; Lyddon et al., 2022; Marcos et al., 2019; Wahl et al., 2015; Ward et al., 2018), and
provides information about dependence when one driver is extreme but not necessarily the other. To investigate
the frequency the most extreme compound events, where extreme discharge has occurred at the same time as an
extreme skew surge, the mean number of times per storm season (June–May) that peak river discharge and
associated skew surge both exceeded the 95th percentile was identified (Lyddon et al., 2022). The above analyses
provide insight on the dependence (or lack of dependence) between the drivers of compound flooding. Further,
the average time lag between extreme peak river discharge and skew surge (95th percentiles) was calculated.

2.4.3. Multi‐Variance Extreme Value Analysis (Extreme Dependence Measure)

In addition to using Kendall's rank correlation coefficient, extremal dependence using tail dependence co-
efficients was used to characterize joint behavior of compound events when both drivers were extreme. Following
the peaks‐over‐threshold analysis described above, the probability of extreme compound events, where both peak
river discharge and associated peak skew surge exceeded the respective 95th percentile, was calculated for
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baseline, near future and far future simulations. The extremal dependence measure χ(u) (Coles et al., 1999) was
calculated for each set extreme discharge and skew surge peaks to investigate the level of dependence in tail
behavior using different thresholds (q= 0.1–0.99). Results are presented as ensemble means, and the coefficient χ
represents the probability of one variable being extreme (exceeding a threshold q), given that the other variable is
extreme (exceeding the same threshold q). If one variable exceeds a certain extreme threshold (percentile), then
the value of χ represents the risk that the other variable will also exceed that extreme threshold (Defra/Envi-
ronment Agency, 2005; Svensson & Jones, 2002, 2004). If all of the extreme occurrences of two variables exceed
a given threshold at the same time, this indicates total dependence (χ = 1). If all the extreme occurrences of one
variable exceed a given threshold but all of the second variable do not, this indicates total independence (χ = 0).

2.5. Inundation Modeling Future Compound Flooding

To explore how changes in drivers of compound events impact the degree of flooding in the Dyfi estuary, the
LISFLOOD‐FP hydrodynamic model (Bates et al., 2010) was used within a sensitivity test framework. A series of
idealized compound events were simulated, parameterized on river and sea level conditions that are representative
of the baseline, near future, and far future time slices (see Section 2.3) to identify how changes in drivers of
compound flooding change the degree of flooding in the Dyfi estuary. LISFLOOD‐FP uses a flow‐routing al-
gorithm that determines the direction of flow based on the elevation gradient and conserves mass and partial
momentum (Bates et al., 2010; Coulthard et al., 2013). We identify areas that have a higher chance of flooding
under future conditions, presented as a series of flood hazard maps.

2.5.1. Model Setup and Calibration

The LISFLOOD‐FPmodel domain extended from the Dyfi Bridge river gauge station in the northeast, to an ocean
boundary to the west of the estuary mouth (longitude: − 4.10), and south to cover the low‐lying flood plains of the
catchment (latitude: 52.47). The production of the digital elevation model (DEM) of the bathymetry of the Dyfi
estuary and elevation of surrounding land was performed by using multiple data sources (see Supporting In-
formation S1 for further details). All elevation data were corrected to Ordnance Datum Newlyn (ODN) and
merged into a regular grid with a spatial resolution of 20 m. A DEMwith 20 m grid cell size has been shown to be
optimal for flood modeling of medium to small size estuaries (Harrison et al., 2021; Seenath, 2018) without
compromising on computational efficiency. LISFLOOD‐FP was run in reach mode, in which the model is forced
with river discharge and water level time series at the upstream (river) and downstream (offshore) boundaries,
respectively. For model calibration, gauged time series of river discharge and sea level were used, outlined in
Supporting Information S1, and refer to Barada et al. (2022) for further details.

2.5.2. Idealized Model Scenarios

A set of LISFLOOD‐FP simulations were performed with idealized sea level and river discharge boundary
conditions to show how projected climate changes this century will influence flood inundation in the Dyfi Es-
tuary. In total, 14 distinct simulations were performed, each lasting 3 days, that combine river discharge
concurrently with storm surge superimposed on an idealized tide at levels representative of 1/20‐year and
1/50‐year return period events for baseline, near future, and far future time slices derived from the marine and
hydrological projections, including UKCP18 SLR projections (Table 2). The simulations allow for model spin‐
up, thus allowing the assumed initial condition to become consistent with the hydrodynamic system, and with
peak water level and peak discharge occurring after ∼40 hr (Figure 4). Two baseline simulations were initially
run, representing 1/20‐year (termed “B20”) and 1/50‐year (B50) compound events. Next, six near future events
were simulated, three for 1/20‐year events no SLR (N20_noSLR), with SLR projected by a “low emissions”
future RCP2.6 (N20_minSLR), and with SLR projected by a “high emissions” future RCP8.5 (N20_maxSLR),
and three similarly for 1/50‐year events (N50_noSLR, N50_minSLR, N20_maxSLR). Finally, these six scenarios
were repeated for the far future time slice (F50_noSLR, F50_minSLR, F20_maxSLR, F50_noSLR,
F50_minSLR, F20_maxSLR) (Table 2). The boundary conditions for these 14 simulations were created as per
Lyddon et al. (2024, Section 2.5) and are described in more detail below.

To characterize river discharge behavior, a two‐parameter gamma distribution was used to generate a synthetic
series of normalized, idealized gamma curves that represent hydrograph shapes that cover the natural range of river
flow behaviors experienced in the Dyfi based on 30 years of river discharge data from the Dyfi Bridge river gauge

Earth's Future 10.1029/2024EF005822

LYDDON ET AL. 10 of 26

 23284277, 2025, 12, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024E

F005822 by B
ritish G

eological Survey, W
iley O

nline L
ibrary on [12/01/2026]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



(see Lyddon et al., 2024; Robins et al., 2018). Next, the gamma curve with the gradient of the rising hydrograph
limb that most closely resembled the average gradient of the top 100 most extreme events analyzed in Lyddon
et al. (2022)was selected. The selected idealized hydrograph had the largest gradient representing the flashiest flow
behavior. Finally, themagnitude of the idealized hydrographwas scaled to a peak discharge representative of 1/20‐
year and 1/50‐year return levels, with a base flow of 20 m3 s− 1 which represents mean flow conditions (Table 3).

Total water level time series were created using idealized tidal signals combined with residual surges. First, a
sinusoidal elevation with a period of 12.42 hr (equivalent to the dominant M2 tidal constituent) was parameterized

Figure 4. Boundary conditions for LISFLOOD‐FP simulations showing river discharge (left axis) and sea level (tide + surge and sea‐level rise (SLR), right axis) for
(a) 1‐in‐20 and (b) 1‐in‐50 years return period under baseline, near future and far future scenarios (solid curve) with the additional of SLR under RCP2.6 (dotted curve)
and RCP8.5 (dashed curve).

Table 2
LISFLOOD‐FP Flood Inundation Simulations for the Dyfi Estuary, Showing Return Period, Time Slice, Q, S, and Sea‐Level
Rise Projection Used

Run
Return
period

20‐year time
slice

Peak river discharge
(m3/s)

Peak skew
surge (m)

SLR
projection (m)

B20 1/20‐year Baseline 617 0.71 0

N20_noSLR 1/20‐year Near‐future 667 0.72 0

N20_minSLR 1/20‐year Near‐future 667 0.72 0.21 (RCP2.6)

N20_maxSLR 1/20‐year Near‐future 667 0.72 0.39 (RCP8.5)

F20_noSLR 1/20‐year Far‐future 797 0.74 0

F20_minSLR 1/20‐year Far‐future 797 0.74 0.21 (RCP2.6)

F20_maxSLR 1/20‐year Far‐future 797 0.74 0.39 (RCP8.5)

B50 1/50‐year Baseline 731 0.79 0

N50_noSLR 1/50‐year Near‐future 790 0.8 0

N50_minSLR 1/50‐year Near‐future 790 0.8 0.27 (RCP2.6)

N50_maxSLR 1/50‐year Near‐future 790 0.8 0.72 (RCP8.5)

F50_noSLR 1/50‐year Far‐future 937 0.82 0

F50_minSLR 1/50‐year Far‐future 937 0.82 0.27 (RCP2.6)

F50_maxSLR 1/50‐year Far‐future 937 0.82 0.72 (RCP8.5)

Note. Row colours correspond to flood scenario in Figure 8 and Figures S12–S25 in Supporting Information S1.
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to represent mean tides at Barmouth, determined using a harmonic analysis (T‐Tide, Pawlowicz et al., 2002),
based on 12 months of tide gauge data from Barmouth (2002–2003). This experimental design purposely
neglected the influence of other constituents so that the results were standardized. The model simulated the
shallow‐water propagation of the tide advancing up the estuary. Second, a residual surge was added to the tidal
elevation time series to represent the meteorological contribution to the total water level. The shape of the surge
was representative of typical storm conditions for Barmouth (Environment Agency, 2018). The surge was shifted
in time so that the maximum surge height coincided with the fourth high tide (at around 40 hr), which was also the
timing of peak discharge. The surge was scaled to the magnitude of a 1/20‐ and 1/50‐year return period surge, for
each time slice (see Table 2). The representative surge curve has a standard duration of 100 hr which was
maintained across all simulations so changes in flood inundation could be attributed to changes in surge
magnitude. The resultant 3‐day time series represented several tidal cycles where flooding was not expected (tide‐
only), followed by a tide + max surge event at ∼40 hr, before the regular tidal cycles resumed. The peak total
water level had a 0 hr time lag with peak in river discharge to represent a concurrent compound flood event.
Further studies could consider the sensitivity of flooding to different time lags. Finally, for the SLR scenarios, an
increase in water level was added in line with expected levels during each time slice (Table 2). Annual average
50th percentile SLR projections under RCP2.6 and RCP8.5 climate change scenarios were obtained from the grid
cell closest to the Dyfi Estuary, from the publicly available UKCP18 21st century time‐mean sea level projections
(Met Office Hadley Centre, 2018). The RCPs used represent a more and less extreme emissions projections. Low‐
emission scenario, RCP2.6, which represents limiting warming and stronger mitigation efforts, is used as an
indicator of higher likelihood, lower severity SLR.

2.5.3. Simulations of Flooding

The following methodology was applied to identify the extent of flood extent under each scenario. FloodArea
quantifies the inundation area (km2) of the Dyfi estuary floodplains as a function of river discharge, total water
level, and sea level drivers. FloodAreawas compared between the 14 simulations. The output data comprise water
depth grids in time layers with an interval of 15 min. Percentage increases in FloodArea between simulations and
maximum modeled water surface elevations along the deepest channel of the estuary were calculated, and spatial
inundation maps were presented.

3. Results
3.1. Future Changes in Skew Surge

Projected changes in magnitude of skew surges at the Dyfi Estuary, based on the RCP8.5 “high emissions”
scenario across 12 ensembles, is shown in Figure 5a for three time slices (baseline, near future, far future). Median
skew surge of the projections (all three time slices) remains in line with current observations, at ∼0 m. Removing
the sea level trend shows that skew surge is unlikely to change significantly up to the end of the 21st century. The
75th percentile skew surge remains between 0.28–0.29 m, and there is also little variability (a few centimeters) in
95th percentile skew surge and maxima, over the three time slices.

Projected changes in skew surge return periods are shown in Figure 5b, which give an indication of the magnitude
of baseline, near future, and far future storm events up to a 1/50‐year return period. The shaded area shows
variability in return periods across the 12 ensembles, and solid lines show ensemble mean. The magnitude of a
mean 1/20‐year skew surge shifts from 0.71 m under baseline conditions to 0.74 m in the far future time slice
(a 4% increase). The magnitude of a mean 1/50‐year skew surge shifts from 0.79 m under baseline conditions to
0.82 m in far future time slice (a 3.8% increase). The range of skew surge magnitude across far future simulations

Table 3
1/20‐Year and 1/50‐Year Return Period Magnitudes (Q) Used to Scale Idealized Hydrograph

1/20‐year 1/50‐year

Baseline Near future Far future Baseline Near future Far future

Q (m3/s) 617 667 797 731 790 937

S (m) 0.71 0.72 0.74 0.79 0.8 0.82
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is noticeably wider than for near future, and baseline shows the narrowest range. The upward shift in skew surge
magnitude indicates that (a) a 0.5 cm skew surge, as an example, will have a lower return period; or (b) a 1/10‐year
return period skew surge will be a higher magnitude.

Figure 5. (a) Interquartile range (box), whiskers indicating furthest data point within the 1.5 * Interquartile range from the
quartiles (vertical lines), median (center black line), mean (cross), maximum outlier (red dot) averaged across 12 perturbed
parameter ensemble (PPEs) for baseline, near and far future skew surge projections; (b) Skew surge return periods for the
baseline, near and far future simulations. Shaded areas shows uncertainty across bootstrapped data for 12 PPEs, and solid line
shows ensemble mean. Figure S6 in Supporting Information S1 shows result for each PPE.
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3.2. Future Changes in River Discharge

Projected changes in the magnitudes of peak river discharges are shown in Figure 6a, between projected baseline,
near future, and far future scenarios. Means, quantiles, and outliers were calculated for each of the 100 best
performing hydrological runs (Figures S7 and S8 in Supporting Information S1) then presented across the 12
ensemble members, and across each time slice. The projected median discharge shows a decrease from 10.2 m3/s

Figure 6. (a) Interquartile range (box), whiskers indicating furthest data point within the 1.5 * Interquartile range from the
quartiles (vertical lines), median (center black line), mean (cross), maximum outlier (red dot) averaged first across 100
hydrology runs and then across 12 perturbed parameter ensemble members (PPEs) for baseline, near and far future river
discharge projections. See Figure S9 in Supporting Information S1 for percentiles on a linear y‐axis (b) projected peak river
discharge return periods for baseline, near and far future time slices. Shaded area shows uncertainty across all 100 hydrology
runs and 12 PPEs and solid line shows ensemble mean. Figure S10 in Supporting Information S1 shows result for each PPE.
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in baseline, to 7.4 m3/s in far future time slices (− 27%). However, the 75th and 95th percentile discharge show a
noticeable increase in magnitude from near future to far future: for the 75th percentile, from 80.3 m3/s to 100 m3/s
(+24.5%); and for the 95th percentile, from 128.46 m3/s to 168 m3/s (+30.8%). The (maximum) outliers (red
circles, Figure 6) are shown to decrease from baseline to near future, and then increase, exceeding 1,250 m3/s in
far future.

Projected changes of peak river discharge return periods, for the baseline, near future, and far future time slice are
shown for up to 1/50‐year return periods (Figure 6b). Solid lines show the ensemble mean return periods, and the
shaded area shows the range across the 12 ensemble members. The magnitude of discharge associated with each
return period will increase up to 2080. While mean river discharge shows a slight decline over time (Figure 6a),
the return level curves in Figure 6b reflect changes in annual maximum discharge. These extremes increase in
magnitude resulting in an upward shift in return levels. A 1/20‐year event will generate a baseline discharge of
617 m3/s, near future of 668 m3/s, and far future of 797 m3/s, which is a 29% increase. A 1/50‐year event will
generate a baseline river discharge of 731 m3/s, near future of 790 m3/s, and far future of 937 m3/s, which is a 28%
increase. As seen for skew surge, the upward shift in river discharge magnitude indicates that (a) a 600 m3/s
discharge, as an example, will have a lower return period changing from a 1/17‐year event under baseline
conditions to a 1/6‐year event; or (b) a 1/10‐year return period discharge will be larger changing from representing
520 m3/s under baseline conditions up to 692 m3/s in far future.

3.3. Future Changes in Co‐Occurrences

Projected changes in characteristics of the co‐occurrences between skew surge and river discharge are shown in
Figure 7. Previous research on storm driven compound events at the Dyfi estuary (using historic gauge data:
1984–2014) has shown a Kendall rank correlation coefficient of 0.25 between peaks in skew surge and river
discharge, with an average of five extreme compound events per storm season (May‐June), and an average 5‐hr
time lag between peaks (Lyddon et al., 2024).

Figure 7. Projected changes for (a) Kendall rank correlation coefficient between peak river discharge and associated skew surge; (b) Mean number of extreme compound
events (both drivers >95th percentile) per season (May–June); (c) Mean time lag (hours) between peak skew surge and peak discharge (both drivers >95th percentile).
Data is shown as interquartile ranges (boxes), with whiskers indicating furthest data point within the 1.5 * interquartile range from the quartiles (vertical lines), median
(center black line), maximum outlier (red cross) averaged across 12 perturbed parameter ensemble members (PPEs) for baseline, near and far future time slices. See
Figure S11 in Supporting Information S1 for results for individual PPEs.

Table 4
Estimates of Chi χ(u) for u Associated With a Range of Percentiles

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99

Baseline 0.91 0.82 0.71 0.61 0.52 0.41 0.26 0.17 0.08 0.03 0.02

Near future 0.91 0.81 0.71 0.6 0.51 0.41 0.29 0.19 0.1 0.04 0.03

Far future 0.91 0.82 0.71 0.61 0.52 0.43 0.34 0.24 0.13 0.07 0.06
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Figure 7a presents the Kendall rank correlation coefficient between pairs of skew surge and river discharge data,
for the baseline, near future, and far future time slices. Mean correlations show an increasing but still weak overall
relationship for baseline (0.10), near future (0.12), and far future (0.16) time slices. Further, the range of cor-
relations across the 12 ensembles is narrower in the far future than earlier time slices. These projected correlations
are weaker compared with the analyses of historical observational data. Figure 7b displays the mean number of
storms per season (May–June) and Figure 7c shows the average time lag between peak skew surge and peak
discharge. The frequency of extreme compound events occurring together is projected to increase on average
from 3 (baseline) to 3.57 (far future), although there is considerable variability across the PPEs. Time lags

Figure 8. Simulated flood inundationmaps for modeled compound event scenarios (simulations with smaller flood extent have been superimposed upon simulations with
larger flood extent) which represent a range of storylines including (a) Far future 1/50‐year event with different sea level rise (SLR); (b) Near and far future 1/20‐year
event with maximum SLR. Basemap and buildings © OpenStreetMap contributors 2023. Distributed under the Open Data Commons Open Database License (ODbL)
v1.0. Flood defense structures distributed under OpenGovernment License (NRW, 2020). (c) Increase in inundation extent (%) relative to the Baseline 1/20‐year scenario
(B20). The colors refer to scenarios in Table 3: blue/green indicate near‐future scenarios; orange/red indicate far‐future scenarios. Darker color indicates a higher return
period and greater magnitude of SLR.
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between peak skew surge and peak discharge are similar between the baseline and near future time slices, with a
reduction of up to 1 hr projected for the far future time slice (Figure 7c). This indicates that peaks in both drivers
will occur closer together in time, potentially amplifying the effects of compound flooding further.

3.4. Multi‐Variance Extreme Value Analysis

Table 4 shows the estimates of χ for different percentiles, averaged across the 12 ensembles. The estimated value
of χ(u) for u associated with the 90th percentile for the baseline (1980–2000) is 0.08. This value is close to zero,
which indicates it is unlikely that the 90th percentile of most extreme compound events will occur concurrently. It
is more likely that the 10th percentile of the most extreme compound events will occur concurrently (χ = 0.91).
There is little variation in dependence χ(u) between the most extreme compound events for baseline, near future,
and far future time slices, for different given percentile thresholds. Tail dependence is shown to be marginally
stronger under the most extreme percentile in the far future, compared to baseline and near future. Dependence in
the far future is marginally stronger for the more extreme events from 70th to 99th percentile, with an increase in χ
of 0.02–0.06.

3.5. Inundation Modeling of Projected Future Compound Flooding

Model simulations of climate change induced compound flooding in the Dyfi estuary were performed for 14
scenarios (Table 2) using the LISFLOOD‐FP hydrodynamic model (described in Section 2.5.2). Scenarios
represent 1/20‐ and 1/50‐year return period storm surge and river discharge conditions for baseline, near future,
and far future conditions, with/without SLR representing mean RCP2.6 and RCP8.5 values.

Flood maps compare inundation extent for the two most extreme scenarios (Figure 8a), and difference between
near‐ and far‐future scenarios (Figure 8b). All flood maps are presented individually in Supplementary Infor-
mation (Figure S12–S25 in Supporting Information S1). We show that the coastal village of Borth is exposed to
flooding (from the estuary rather than coast), even with a present day 1/20‐year compound event (B20, Figure 8).
However, simulated flooding inundated presently populated areas (based on Open Street Map data) for near future
and far future scenarios. The town of Aberdyfi (population = 682), for example, was simulated to be flooded for
far future scenarios, while the town of Machynlleth (population = 2163) was largely not flooded (except to the
north where the old Bridge). The simulations are only a snapshot of potential flooding scenarios and do not
consider variability in driver behavior and timings, nor antecedent conditions. Further, these simulations do not
consider future potential changes in land use, land management, urbanization, and flood defences.

Figure 8c shows projected percentage change in flood extent across the Dyfi model domain for each scenario,
relative to the baseline 1/20‐year scenario (B20). Most percentage change in flood extent occurs under the far
future scenarios, especially with increases in SLR included, generating up to 38%more inundation extent from the
present‐day 1/20‐year scenario. Results for the near future scenarios differ in that the return period (1/20‐year or
1/50‐year) is the primary driver of flood extent, rather than SLR. However, these percentage changes are smaller
(<3%) between near future scenarios (green bars on Figure 8).

4. Discussion
This research presents the first use of high spatio‐temporal resolution, physically consistent, 21st century climate
projections of marine and fluvial behavior that have been used together to assess potential changes in extreme
storm‐driven compound events and flooding in a case study estuary. Focusing on the Dyfi Estuary, west‐UK, and
considering 12 PPEs from a high emissions future (RCP8.5; see Devitt, 2023; Tinker et al., 2024), we show that:
(a) peak river discharge magnitudes and return periods are expected to increase (Figure 5), while skew surges will
show little change (Figure 6); (b) compound events will become more likely, more frequent, and more in‐phase
(Figure 7); and (c) these projected changes together with SLR projections will likely lead to increased flood
inundation this century (up to +36%) (Figure 8). In the near future, flood inundation was sensitive to the severity
of the drivers (e.g., 1/20‐year vs. 1/50‐year compound events), although toward the end of the century SLR
projections dominate the flood hazard. As similar climate data becomes available for other estuaries nationally
and worldwide, it will be important to understand how our findings for the Dyfi translate to a general climate
impact storyline.
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From our analyses, annual mean skew surge values are projected to increase only marginally into the far future
(2060–2080), by ∼3 cm, and showed little change by the near future (2020–2040) (Figure 6a). The bootstrap
resampling of annual maxima methodology used here, based on 12 PPEs and where one ensemble exhibited
distinctly more extreme skew surge values than the others, could have influenced the resampled outcomes.
However, since it is computationally expensive to run additional climate simulations at hourly and sub‐mesoscale
resolutions (to a similar ensemble number as done by Tinker et al., 2024), methods are continuing to be developed
to use these climate projections as robustly as possible (Chan et al., 2023; Holt et al., 2025). Analysis of 21st
Century projected changes in storm surge climate for the UK, derived directly from coarser RCMs or GCMs, are
of the same order as the natural climatological variability (Howard et al., 2010; Woth et al., 2005) and emphasize
the dominance of changes in time‐mean sea level in driving changes in future coastal sea level extremes and flood
hazard (e.g., Cannaby et al., 2016; Howard et al., 2014; Lowe et al., 2010). A subset of the Climate Model
Intercomparison Project Phase 5 (CMIP5, Taylor et al., 2012) simulations were used to explore UK coastal skew
surge trends and concluded that there is no evidence for significant changes in future storm surges in the UK
(Palmer et al., 2018). We show no significant future changes in surge values in the Dyfi estuary, but estuarine
resonance, wave setup, river inflow, and tidal phase effects can create a distinct local surge response highlighting
the importance of site‐specific surge assessments. It has been shown that SLR will likely change the frequency of
extreme sea level events (Kirezci et al., 2020; Tebaldi et al., 2021; Vousdoukas et al., 2018). Future research
incorporating both projected SLR with total water level (tide + surge) would provide additional insight on future
extreme sea level hazard for risk assessment and adaptation planning at this and other sites.

Our analysis of projections of river discharge indicates more substantial changes; for example, with increases into
the far future of up to 180 m3/s (29%) for a 1/20‐year return period and 206 m3/s (75%) for a 1/50‐year return
period (Figure 7b). We show that mean discharge is also likely to increase into the near and far future, with
broader distributions and longer tails to the extremes (Figure 7a). This suggests that extreme river flows
are becoming more prominent in the Dyfi. Extreme discharge is driven by extreme rainfall behavior; indeed,
several studies using global observation data have suggested that precipitation events have intensified in the last
30–50 years (Fischer & Knutti, 2016; Gundmussen et al., 2021; Westra et al., 2013), and using GCM have shown
the magnitude of rainfall extremes will intensify further this century (Chan et al., 2023; Fowler & Kilsby, 2007;
Fowler, Ali, et al., 2021; Fowler, Lendernik, et al., 2021). Whilst these projected changes in precipitation can be
used as a proxy for changes in river discharge, the coarse scales do not account for spatial distribution in rainfall at
catchment‐scale nor variability in land use (Ranasinghe et al., 2021). Future assessments of potential changes in
UK river flows, using UKCP18 12 km RCM PPEs and a national‐scale Grid‐to‐Grid hydrological model, showed
potential increases in winter mean and high flows, and in summer decreases in mean and low flows, albeit with
wide uncertainty ranges (Kay, 2021, 2022).

Our analyses of future changes in storm surges and river discharges aligns well with the literature; but further to
this, our study—using higher spatio‐temporal data resolution data than previous studies—highlights the need to
predict not only potential changes in the magnitude of extremes in these drivers but also their joint dependence,
joint probability, relative timings, and how these changes are likely to lead on to flood hazard into the future. We
show that the characteristics and behavior of storm‐driven compound flood events are projected to change this
century (Figure 7). Although marine and fluvial extremes remain largely independent in the upper tail, the
increasing χ values (from 0.02 to 0.06) suggest a modest rise in the likelihood of joint extremes. This suggests a
higher likelihood of extreme peak flows coinciding with extreme storm surges and a potential increase in
dependence under future scenarios. The mean frequency of events where both drivers exceed the 95th percentile is
rising from 3 to 3.6 per year, and the increase in tail dependence points to a stronger correlation between extreme
marine and fluvial values, further amplifying the risk of compound flooding. Additionally, the time lag between
these peaks is shortening by over an hour. Shorter time lags could be due to flashier hydrographs; as rainfall
events become more intense peak discharge is reached quicker (Lane & Kay, 2021; Merz et al., 2021; Tab-
ari, 2020). This quickening hydrological response increases the likelihood that high discharge will coincide with
the storm surge driven by the same storm system. For the Dyfi, there is an increasing chance that both peak events
will occur simultaneously, and this overlap can lead to more severe compound flooding (Harrison et al., 2021).
The time lag that leads to the most severe compound flooding will likely depend on subtle changes in the behavior
of the individual drivers and the specific location within the estuary being considered. This relationship is highly
sensitive to the estuary's unique length, shape, and geometry.
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Knowledge of the joint dependence of fluvial and marine drivers of estuarine flooding is essential for accurately
predicting future flood probability, especially under the influence of climate change (Bevacqua et al., 2020;
Ghanbari et al., 2021). It allows for a more comprehensive understanding of the risks, leading to better protection
of infrastructure, ecosystems, and human communities (Kirkpatrick & Olbert, 2020; Lopes et al., 2022; Zellou &
Rahali, 2019). The assumption of independence between events (e.g., assuming storm surges and river floods
occur independently) could lead to underestimation of the true flood risk. Ignoring this joint dependence could
result in underestimating the risk, leading to inadequate preparation and potentially devastating consequences for
estuarine communities.

Direct comparison of upper tail dependence with previous studies is challenging due to differing methodologies,
thresholds, and event definitions. However, the literature generally supports the finding of weak upper tail
dependence between skew surge and river discharge. For example, Paprotny et al. (2020) identified surge events
using a 90th percentile threshold of daily maxima surge and discharge, and aggregated consecutive days above
this threshold. They then computed the maximum river discharge and precipitation during these storm windows.
The resulting upper tail dependence coefficient, read from their Figure 1b, was approximately 0.25, indicating
modest dependence. They do not calculate lower tail dependence.

Other studies using statistical thresholds to assess co‐occurrence show weaker dependence. When assessing
dependence on the upper 10% of skew surge events across south and west Britain, χ values estimated for river
gauges nearby the Dyfi Estuary in Wales were consistently low (e.g., Glaslyn: 0.06; Leri: 0.03; Ystwyth: 0.04;
Teifi: 0.13) (Svensson & Jones, 2004). This suggests very weak or negligible extremal dependence at the 90th
percentile threshold. They do not calculate lower tail dependence. It is also worth noting that the dependence
between river flow and sea surge can vary considerably across short distances, reflecting catchment‐specific
hydrological characteristics such as size, topography, and geology.

In our study, storm surge is modeled using the NEMOCO9model, which directly includes tidal processes and the
inverse barometer effect. We identify compound events based on the assumption that in the GCM and downscaled
regional simulations, a low‐pressure storm system simultaneously contributes to elevated fluvial and coastal
water levels by producing precipitation (driving high discharge) and depressing atmospheric pressure (raising sea
level). These events are paired when their respective peaks occur within a set time window. This set time window
is based on observation data from the Dyfi Estuary, 20.42 hr.

However, the co‐occurrence of discharge and surge peaks might not fully replicate observational reality. The
sensitivity of compound event detection to this time lag has been noted in previous work (Green et al., 2025;Wahl
et al., 2015), and we acknowledge that the optimal lag may differ between observations and the model. This may
contribute to a weak tail dependence as extreme compound events may not identified within this set window.

Future research could explore the sensitivity of dependence metrics to the chosen time lag and consider the use of
high‐resolution, coastal climate models to better capture surge dynamics and compound event timing.

Through inundation modeling, we show how projected changes in sea level and river discharge extremes in the
Dyfi estuary are likely influence flooding depth and extent (Figure 8). We show up to 40% more inundation area
into the far future, considering a high‐emissions future (RCP8.5) and “worst‐case” scenario (1/50‐year events).
Our simulations, whilst not exhaustive in exploring how changing driver behaviors will alter the flood hazard,
show that SLR will be a dominant driver of future coastal flood hazard alongside peak river flows. Compound
flooding is not only sensitive to driver behavior but also to estuary shape, implying that our findings are indeed
case sensitive to the Dyfi. However, the Dyfi is predominantly steep sided—other estuaries with larger flood-
plains are likely to experience increased changes in inundation area by similar patterns of driver changes due to
greater space for floodwater. One case study was used here due to constraints on data availability, but the research
can be expanded to other estuaries to explore transferability in the future when new sub‐daily hydrological
projections become available. Previous research in the Severn estuary has shown that just a 6 cm increase in
coastal water level (combined tide, surge, and wave) can substantially increase flood inundation by 19%, and
suburban damage costs by 25% (Lyddon et al., 2020), highlighting the vulnerability of low‐lying estuary com-
munities to such changes. Rising sea levels can reduce the capacity of estuaries to drain riverine floodwaters, as
well as increase river levels several kilometres upstream, that is, SLR will reshape and shift the estuary landward.
Hence, SLR could reduce the effectiveness of levees or flood defences.
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To effectively assess and understand changes in compound flooding risks, sea level and river discharge pro-
jections must be derived from the same GCM, using the same ensemble members, for the same time period, and at
the same temporal resolution. We used only a high‐emissions future (RCP8.5) in our study (although also
included a low‐emissions (RCP2.6) SLR scenario). Incorporating a range of possible futures and using different
GCMs would offer a more comprehensive understanding of potential future changes, as this data becomes
available. It is necessary to use climate projections with good temporal resolution (e.g., hourly, or sub‐daily, for
resolving hydrological extremes in smaller catchments such as the majority in the UK and Europe). It is also
preferable to use continuous projections extending up to 2100 to best capture trends in climatology. Projecting
sub‐daily river discharges under climate change is difficult due to the need for high temporal and spatial resolution
precipitation data, and the uncertainties inherent in climate and hydrological models. The use of CPMs is helping
to develop this understanding (Kendon et al., 2017). However, running models that simulate hydrological pro-
cesses at sub‐daily intervals over long periods (e.g., multiple decades) is computationally expensive (Fowler, Ali,
et al., 2021). GCMs and RCMs do not currently resolve coastal and estuarine bathymetries well for estuarine
impact assessments (Tinker et al., 2024). Further downscaling to coastal inundation models are often needed to
correctly resolve water level extremes propagating into estuaries. Additionally, coastal, estuarine, and riverine
bathymetries are often poorly resolved and require further surveys (Prampolini et al., 2020; Robins et al., 2016,
2018). Cascading downscaled marine and fluvial projections to a hydrodynamic, estuary impact model is a novel
development in hazard assessment here, and additional characteristics of storm‐driven compound flooding could
be modelled, including changes in time lag, storm surge shape, and storm clustering. Our exemplar study for the
Dyfi estuary requires upscaling nationally, as suitable climate projections become available, which can then be
applied to other regions where such projections become available.

Neither marine nor fluvial projections currently account for potential changes to estuarine morphology (e.g.,
sediment loading, erosion, accretion), wave behavior (e.g., significant wave height, wave period), ecosystem
dynamics (e.g., productivity, biomass, chlorophyll), or water quality (e.g., nutrient levels, oxygen levels,
pollution). Sea‐level rise is expected to alter geomorphic and hydro‐ecologic feedback loops in estuaries, and
likely to cause estuarine shoreline retreat, infilling, sediment redistribution, and altered tidal dynamics (Khojasteh
et al., 2021; Weisscher et al., 2023). Also, future changes in land use and urbanisation in estuaries will be
important as this will change the physical routing of catchment drainage (e.g., runoff and groundwater dynamics,
as well as water quality), and in turn affect the vulnerability and exposure of communities. Urbanisation can
increase impermeable surfaces, and influence hydrological behavior dependent on surface type, age and condition
(Redfern et al., 2016). A return period of 1/100‐year may be doubled in size by a 30% paving of the basin
(Hollis, 1975) as roads, roofs and pavements reduce infiltration and increases surface runoff, therefore potentially
leading to quicker river response to rainfall (Chen et al., 2017). In further studies, it would be interesting to
investigate to what extent anthropogenic activities will further alter climate‐driven changes in compound
flooding.

5. Conclusion
We present the first analysis of combined coastal sea level and fluvial projections, downscaled to hourly and sub‐
mesoscales, to assess future changes in storm‐driven compound flooding, with a focus on the Dyfi Estuary, west
UK. By employing physically consistent projections of a high emissions future (RCP8.5, 12 perturbed parameter
ensembles), analyzed for three time slices (1980–2000, 2020–2040, 2060–2080), we independently evaluated
changes in both coastal sea level and river discharge drivers and examined their interdependence. Based on the
ensemble mean, our findings indicated small changes in storm surge magnitude but provided evidence for more
extreme peak river flows in the future. Importantly, we observed changes in the behavior of these drivers when
considered together, such as increasing dependence (i.e., extreme river discharge will more likely occur at same
time as extreme sea level), increasing co‐occurrence (i.e., combined surge and discharge extremes will occur more
often per year), decreasing time lag between peaks in sea level and river discharge (to potentially amplify the
effects of compound flooding), and increasing extreme tail dependence (Table 4). By applying these projections
to an estuary inundation model, we demonstrate that a relatively “worst‐case” storm such as a 1/50‐year event will
increase flood inundation up to 40% by 2080. These results underscore the necessity of incorporating joint
probability and dependence between marine and fluvial drivers in flood hazard assessments. By combining hourly
projections of river discharge with hourly projections of SSH and residual surge, this method offers a scalable
approach that can be applied globally wherever such projections exist (driven by the same GCM). Extending
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projections in time beyond 2100 would support long‐term flood planning, but requires consideration of model
uncertainties, evolving climate scenarios, socioeconomic changes, and long‐term adaptation measures (Easterling
et al., 2024; Heslop et al., 2024). The study highlights the critical need for physically consistent and appropriately
downscaled marine and fluvial projections to accurately simulate and predict future flood hazards, emphasizing
the importance of a comprehensive approach to understanding compound flooding under changing climatic
conditions.
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Data Availability Statement
The NWSPPE data sets are available via CEDA (https://catalogue.ceda.ac.uk/uuid/832677618370457f9e0a85da
021c1312, Tinker, 2023). User registration is required. UKCP Local data are alternatively available via the UKCP
data portal at https://ukclimateprojections‐ui.metoffice.gov.uk/ (Met Office Hadley Centre, 2018). User regis-
tration is required. Observation tide gauge data is available from National Tidal and Sea Level Facility (https://
www.bodc.ac.uk/data/hosted_data_systems/sea_level/uk_tide_gauge_network/processed/). Select Barmouth or
Fishguard tide gauge for records. User registration is required. Further details of Barmouth tide gauge site are
available at https://ntslf.org/tides/uk‐network/portinfo?port=Barmouth. Observation river gauge data is available
from National River Flow Archive (NRFA) (https://nrfa.ceh.ac.uk/data/search). Data for Dyfi Bridge (gauge ID
64001) is available at https://nrfa.ceh.ac.uk/data/station/info/64001.
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