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2

3

4

5 51 1. Introduction

6

; 52 Ditches and canals are important but largely unaccounted for components of glabal
9 .

10 53  greenhouse gas (GHG) budgets. These human-made, linear waterways have a vast range of

12 54  typologies and conditions (see Clifford et al., 2025 for a detailed review). In general, ditches
14 55  tend to be narrower, variably inundated, and primarily used for drainage oféwet soils for

56  agriculture or forestry, while canals tend to be wider, used for transportation or irrigation,

19 57  more likely to be made of impermeable substrate and perennially inundated-(but these two
21 58  terms are sometimes used interchangeably) (Table 1). The cumulative extent of ditches and
23 59  canals is large; often rivalling stream and river length at regional scales (Brown et al., 2006),
26 60  but remains poorly quantified at the global scale. Recent global syntheses have shown that

28 61  ditches and canals emit notable amounts of methane (CHa4)(Gan et al., 2024; Peacock et al.,

2(1) 62  2021) as well as carbon dioxide (CO2) andaitrous oxide (N>O); often more per unit area than
gg 63  other inland waters (Silverthorn et al., 2025), and in'seme landscapes, even exceeding

gg 64  emissions from adjacent terrestrial areas (van der Knaap et al., 2025). These elevated

gz 65  emissions largely result from high nutrient and carbon inputs from the intensively managed
ig 66  agricultural and urban landscapes where these waterways are typically found (Peacock et al.,

41 >N
42 67  2021). Although local-scale studies about GHG emissions from ditches and canals have

44 68 increased (Figure 1A), these water bodies remain overlooked in global inland water GHG
46 69  budgets and national inventory reporting, despite Intergovernmental Panel on Climate
49 70  Change (IPCC)recommendations to include emission from ditches draining organic soils

51 71 (IPCC, 2014) and subsequently from all ditches and canals (IPCC, 2019). Improved reporting

gi 72  would enable mitigation measures leading to reduced ditch and canal emissions to be

55 . , . . . .

56 73 recogniseddn Nationally Determined Contributions to the UN Framework Convention on
57

58 74  Climate Change (UNFCCC). Moreover, reducing ditch and canal emissions should be

60 75, recognized as an important measure for achieving net-zero emission targets set by many
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nations. Given the importance of ditch and canal GHG emissions, we (1) identify key
knowledge and data gaps that must be addressed to better constrain global estimates of GHG
emissions from ditches and canals, and (2) explore potential strategies for mitigating these

emissions.

Table 1. Functional and physical descriptions of five common ditch and canal types:These
types may be referred to by other names (e.g. agricultural ditch or agricultural canal,
roadside ditch or swale). This list is not exhaustive as other ditch types@xist (see Clifford et
al., 2025), such as residential canals, transportation canals, sewage ditches, peat extraction
ditches, moats, and hydropower channels.

Ditch type Description and representative study oto
Forest ditch Ditches used for draining wet soils for Sy '

commercial tree growth. Typically
narrow (~1m wide) and found in the
northern hemisphere (Rissanen et al.,

2023).
Agricultural Ditches used for draining wet soils/for
ditch agricultural use. Variablé widths,

typically <10m, found around the world
(Wu et al., 2023).

Roadside ditch  Ditches used for collecting and
transporting excess water from roads
and to prevent{heir flooding. Variable
widths, intermittently flooded, often
vegetated, typically <2m, found around
the world (MePhillips et al., 2016).

Urban canal Canals used for providing
transpoftation, aesthetic, flood control,
and-other functions in urban settings.
Substrate 1s often impermeable, variable
widths (Pelsma et al., 2023).
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Irrigation Canals used to transport water for

canal agricultural production. Substrate can be
impermeable, variable widths, found
around the world (Palmia et al., 2021).

oNOYTULT D WN =

12 Photos: forest ditch in Sweden (M. Peacock); agricultural ditch in Hebei provinee, China
13 (Z. Yan); Roadside ditch in Ontario, Canada (K. Kolman); Urban canal in Rio de Janeiro,
Brazil (S. Kosten); Irrigation canal in India (S. Balathandayuthabani).

17 80

20 81
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Figure 1. Conceptual synthesis of eurrent knowledge and priorities for improved accounting
and mitigation of greenhouse gas(GHG) emissions from ditches and canals. A)

Annual number of peer-reviewed articles related to GHG emissions from ditches compared to
other inland waters; B) Relative eontribution of each gas to ditch GHG emissions in terms of
COz-equivalents from n = 22 studies (Silverthorn et al., 2025); Summary of C) key
knowledge gaps; and D) mitigation measures. Figure details in Supplementary Materials.

2. Knowledge gaps

The Key gaps in data and in our understanding of ditch and canal GHG emissions are
associated with (1)1ack of accurate and representative estimates of GHG emissions, with
partieular focuson CO2 and CH4, which contribute the most to climatic warming (Figure
1B); and (2) the mapping of the global extent of ditches and canals (Figure 1C). Addressing

these gaps is critical for improving global estimates of ditch and canal emissions and for
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accurate reporting in national inventories. For inventory reporting, key challenges include
both completeness (reporting all emissions) and avoiding double-counting ditch and canal

emissions with agricultural, wetland, or urban wastewater emissions.

2.1. Knowledge and data gaps in GHG emissions
The growing, but still limited, dataset of ditch and canal emissions that has

accumulated since the 1990s has allowed global upscaling of all three main GHGs (Peacock
et al., 2021; Silverthorn et al., 2025). However, current estimates rgly on.asingle global
average (“emission factor”) for each GHG, which could be refined.and disaggregated
through consideration of climate zones, trophic state, temporal variability, etc. To improve
global estimates, we suggest three critical gaps must be addressed: (1) the global bias of data,
(2) the underrepresentation of ebullitive and plant-mediated CH4 emissions, and (3)

insufficient measurement frequency.

Half of the data points from theiglobal syntheses of Peacock et al. (2021) and
Silverthorn et al. (2025) are from Europe. Although Australia, North America, and Asia are
moderately well-covered, to dateythere.is just one study from South America and none from
Africa. Missing national- or continental-scale data leads to fundamental uncertainty in global
upscaling. Moreover, measurements from these under-represented regions are needed to
refine global estimates according to geographic and/or climate regions, as has been done for

other inland waters (IPCC, 2019; Lauerwald et al., 2023).

Although some early studies measured ditch CH4 ebullition (Minkkinen et al., 1996),
it remains largely neglected. Those that have measured ebullition have often found it to be the
dominant emission pathway, making up 80% of total CH4 emissions (Silverthorn et al.,
2025), although some cases of negligible ebullition contributions also have been reported
(Kohn'et al., 2021). The magnitude of ebullitive relative to diffusive fluxes will likely depend

5
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on sediment properties, trophic state, water velocity, and water depth (which can influence
sediment temperature). In addition, few studies have measured plant-mediated transport of
CHa, presumably due to logistical difficulties of measuring emissions from tall emergent
vegetation such as Phragmites and Typha. However, the presence of plants with
aerenchymatous tissue can enhance CH4 emissions (Bastviken et al., 2023). More
measurements of these two pathways will allow for better estimates of CH4 emissions to be

incorporated into future global estimates.
~

Most ditch and canal GHG studies rely on non-continuous measurements (although
see Harrison et al., 2005; Paranaiba et al., 2025) which are then extrapolated to annual
estimates, despite their poor ability to capture diel cycles and episodic events (e.g. droughts,
storms, and management interventions) that can significantly. influence GHG emissions. For

4
example, peaks in ditch CO2 and CH4 emissions have'been observed post-flood (Webb et al.,
2016), while continuously inundated ditches have higher N>O emissions compared to ditches
that periodically dry out (Silverthorn'et al.;22025). In addition, higher ditch CO2 and CH4
emissions have been observed atnight than during the day (Paranaiba et al., 2025),
suggesting that relying solely on daytime.measurements (when photosynthetic uptake by
ditch vegetation is occurring) may-leadfo an underestimation of total emissions. These

dynamics highlight the need for continuous, sensor-based GHG monitoring to more

accurately capture temporal variability.

2.2. Knowledge and data gaps in mapping and mapping methods

Werhave yet to map the global extent of ditches and canals due to knowledge and data
gaps pertaining to (1) the limited availability of drainage maps, (2) a lack of harmonised
labelled training data (e.g., ground truthed features) and (3) limitations to scale current

mapping efforts. Existing regional and national maps remain outdated, inconsistent, or
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1

2

z 144  incomplete, especially where waterways are small and/or obscured with vegetation canopy
5 . . . . . .

6 145  (Lidberg et al., 2023). To address this, remote sensing and image analysis techniques have
7

8 146  been explored, although methodological and data gaps persist.

9

10

:; 147 Optical aerial or high resolution satellite imagery can be used for ditch and canal
12 148  mapping, but vegetation, canopy cover, and persistent cloud cover can limit its effectiveness,
15

16 149  particularly in dense forested, agricultural or peatland areas (Connolly & Holden, 2017;

B 150  Habib et al., 2024). Airborne LiDAR can overcome these issues and detect\subtle

20 451 geomorphological features like ditches and canals (Lidberg et aly, 2023). However, its limited
23 152 spatial coverage and high cost hinder broader application. Similarly, Synthetic Aperture

25 153  Radar (e.g., Sentinel-1) provides all-weather capabilities and has been used for mapping

;é 154  water level in ditches (Al-Khudhairy et al., 2001), but it.lacks .the spatial resolution to resolve

30 195  narrow waterways.

33 156 For image analysis, traditional pixel-based classification methods are often inadequate
35 157  due to the small size and complex morphology of many ditches and canals. Object-Based

158  Image Analysis improves detection by incorporating spatial and geometric contexts

40 159  (Connolly & Holden, 2017). Mori recently, Deep Learning methods such as Convolutional
j; 160  Neural Networks have shown considerable promise for the automated identification of

161  ditches (Habib et al., 2024). However, Deep Learning approaches require extensive training
47 162 data, lack transferability across geographic areas, and are computationally intensive, limiting

49 163  scalability. Oyvercoming these challenges will require harmonised multi-sensor frameworks,

>l 164  transferable Machinedearning models, and collaborative data generation.

2> 165 3. /Mitigation

57 166 Mitigation of ditch and canal GHG emissions can be achieved through a diverse

9 167 rangeof strategies (Figure 1D, Figure 2). Advancing their implementation will require both
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further research into their effectiveness as well as supportive government policies and

incentives.

(i) Physical interventions

A)

Figure 2. Photographsofditches and canals with various greenhouse gas (GHG) emission
mitigation measures related.to physical interventions, in-stream vegetation, and riparian
vegetation: (A)Recently dredged agricultural lowland peat ditch in England; (B) Recently
dredged/rrigation eanal in Tamil Nadu, India; (C) Urban canal with submerged macrophytes
and floating algae in the Netherlands; (D) Sphagnum moss-covered forest ditch in Finland;
(E) Continuouscover forestry (selective cutting) around a forest ditch in Sweden; (F)
Agricultural ditch in Scotland with Salix riparian vegetation periodically harvested for
biomass. Photos: M. Peacock (A, E), S. Balathandayuthabani (B), J.R. Paranaiba (C), M.
Kurki (Euke) (D), and D. Bryan (F).
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1

2

i 181 3.1. Nutrient management

5 182 Measures that reduce the inputs of nutrients and organic matter into ditches and canals
6

; 183  can help lower GHG emissions. Excessive nitrogen and phosphorus loading, often from

9

10 184  agricultural runoff or urban stormwater, can increase organic matter production (e.g., algal

12 185  growth) and accelerate its decomposition. This decomposition, in turn, fuels mierobial

14 486 processes such as methanogenesis, nitrification, and denitrification, all of which release

17 187  GHGs (Wu et al., 2023). High nutrient inputs can therefore drive emissions bothby

19 188 enhancing organic matter accumulation and by directly stimulating micrebial activity (Zhou
21189  etal., 2025). Thus, mitigating point-source pollution from sources'such as‘wastewater

190 treatment plants and infrastructure like boat docks can reduce GHG emissions from canals

26 191 (Martinez-Cruz et al., 2017; Mwanake et al., 2024). While reducing fertiliser application rates
28 192  and other nutrient amendments at the catchment scale, together with improving crop nutrient
193  use efficiency and excluding livestock from riparian areas; can mitigate GHG emissions from

33 194  agricultural ditches.

37 195 3.2. Riparian vegetation

196 Riparian vegetation canelp mitigate inputs of nutrients and sediments by

41 197 intercepting them before reachingithe waterway, thereby reducing aquatic GHG production
43 198  (Fisher et al., 2014). However, impervious substrate and banks may limit the effectiveness of
45 199  this strategy for many-eanals. Adthough organic matter inputs from vegetated riparian zones
48 200  can fuel respiration,increasing CO2 and CH4 emissions, these can be reduced through

50 201  vegetation harvesting (Baiet al., 2022). Additionally, riparian shading may reduce water

22 202 temperature (Rothet al., 2010), reducing microbial activity rates and therefore GHG

55 203 emissions (Ywen-Durocher et al., 2010). For forest ditches, maintaining a continuous riparian

57 204  forest.canopy by using selective cutting instead of clear-cutting can attenuate post-harvest
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water table rise and thus reduce nutrient leaching from peat soils into ditches (Nieminen et

al., 2018).

3.3. In-stream vegetation

Within ditches and canals, vegetation can play a critical role in regulating GHG
dynamics (Bodmer et al., 2024; Theus & Holgerson, 2025). Submerged plants can facilitate
CH4 oxidation by transporting atmospheric oxygen to the rhizosphere through their
aerenchyma tissues, creating micro-oxic zones in anoxic sediments which support
methanotrophic bacteria that consume CH4 (Lemoine et al., 2012). Floating plants can
decrease the diffusive flux of GHGs to the atmosphere, resulting in a large proportion of CHy
oxidized below the plants, but they may increase CH4 ebullitionithereby potentially leading to
an overall increase in emissions (Theus & Holgerson, 2025). I.n forest ditches, CH4 emissions
can be significantly lower in Sphagnum moss-covered ditches compared to “cleaned”, moss-
free ditches (Rissanen et al., 2023). Therefore, measures that protect or restore submerged
macrophytes and Sphagnum moss can play a ¢ritical role in reducing ditch CH4 emissions.
However, aquatic vegetation can'augment emissions by providing a carbon source during
seasonal plant senescence (Theus & Holgerson, 2025) and emergent rooted plants can be
direct conduits of CH4 from sedimentso the atmosphere (Bodmer et al., 2024). The effects
of aquatic vegetationton GHG fluxes are therefore challenging to disentangle, and vary by
plant type (e.g. submerged, floating, emergent, non-vascular) and time of year, with more
ditch and canal-specific research needed. This strategy is mostly unsuitable for navigation
canals as in-streaim vegetation can obstruct vessel movement, but separated, shallow margins
have been trialled as a way to increase aquatic plant abundance without obstructing boat

traffic (Boedeltje et al., 2001).

10
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1

2

i 228 3.4. Dredging

5 229 Dredging, routine in many agricultural ditches, may help reduce GHG emissions by
6

; 230 removing accumulated sediments rich in organic matter and nutrients, along with the

9

10 231  microbial communities that drive carbon and nitrogen cycling (Paranaiba et al., 2025). While
12 232  dredging can trigger short-term emission spikes, it has been associated with a longer-term

14 233 reduction in agricultural ditch GHG emissions: ~35% less COz-equivalent émissions within
17 234  one year following dredging (Paranaiba et al., 2025). However, emissions fromhe displaced
19 235  ditch sediments must be accounted for (Paranaiba et al., 2023), and dredging disturbs aquatic
21 236  habitats, including benthic communities. The effects of dredging ftequeney, timing, and

237  methods on GHG mitigation remain poorly understood and require further attention. In

26 238 addition to dredging, we argue that other physical considerations such as channel design,

28 239  water depth, and flow rates should be explored for/their potential to reduce ditch GHG

240  emissions.

3% o4 3.5. Novel mitigation measures

36 242 Novel measures, such ag.biochemical manipulation and enhanced rock weathering,
243  are gaining recognition as a promising fiontier in ecosystem management. Although still in
41 244  its early stages and largely limited.to experimental settings, microbial inoculations in

43 245  sediments, such as with nitrite/nitrate-dependent anaerobic methane-oxidizing

45 246 microorganisms (Legierse €taly2023) and stimulation of iron-dependent anaerobic methane-
48 247  oxidizing bacteria through iron chloride additions (Struik et al., 2024), show promise in

50 248  agricultural ditches asqdnnovative strategies to mitigate CH4 emissions. These specialized

>2 249  microbidl communities can oxidize CHs using nitrite, nitrate, or iron as electron acceptors,

55 250  playinga keyrole in reducing CH4 emissions under anoxic conditions commonly found in

57 251  ditchsediments. Chemical weathering of rocks is a natural process that absorbs CO», and this

59 252 “process.can be enhanced by applying crushed rocks to the land surface or aquatic systems. As

11
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the minerals dissolve in water, the dissolution products are transported to the ocean where the
carbon is stored (Strefler et al., 2018). Other novel measures include nutrient-binding
amendments, and using salinization, oxygenation, and sulphate additions to reduce anacrobie
CHj4 production (Paranaiba & Kosten, 2024; Varjo et al., 2003). However, uncertainties
remain about large-scale implementation of these novel measures, including long=term
efficiency, transferability across ecosystems, unintended ecological impacts, and economic

viability.

4. Conclusions and implications

Ditches and canals are important but overlooked sourees,of GHG emissions. Moving
forward, policymakers and land managers should integrate ditch and canal GHG mitigation
into broader climate and land-use planning. Ditch and canal emissions should also be
incorporated into global inland water GHG/medels, particularly predictive models assessing
the impacts of global change, such as warming and eutrophication, which are expected to
increase emissions from these waterbodies. The riparian zones of ditches (located at the
terrestrial-aquatic interface) can alse be emission hotspots (van der Knaap et al., 2025). Thus,
to obtain the full picture, these areas should be included in landscape scale upscaling.
Additionally, legislative framewo\rks should be updated to recognize ditches and canals as
fundamental and functional ecosystems that influence landscape carbon and nitrogen cycles.
Much of the current knowledge on mitigation remains in the experimental phase, therefore
accelerating research in.collaboration with stakeholders and policymakers is crucial.
Addressing keyaesearch priorities in mapping, geography, emission pathways, and
measurement frequency will improve understanding of ditch and canal GHG production and

emissions to refine global upscaling. Through improved accounting and emission reductions,

ditches and canals can be important actors in climate change mitigation.

12
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