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1. Introduction  51 

Ditches and canals are important but largely unaccounted for components of global 52 

greenhouse gas (GHG) budgets. These human-made, linear waterways have a vast range of 53 

typologies and conditions (see Clifford et al., 2025 for a detailed review). In general, ditches 54 

tend to be narrower, variably inundated, and primarily used for drainage of wet soils for 55 

agriculture or forestry, while canals tend to be wider, used for transportation or irrigation, 56 

more likely to be made of impermeable substrate and perennially inundated (but these two 57 

terms are sometimes used interchangeably) (Table 1). The cumulative extent of ditches and 58 

canals is large; often rivalling stream and river length at regional scales (Brown et al., 2006), 59 

but remains poorly quantified at the global scale. Recent global syntheses have shown that 60 

ditches and canals emit notable amounts of methane (CH4) (Gan et al., 2024; Peacock et al., 61 

2021) as well as carbon dioxide (CO2) and nitrous oxide (N2O); often more per unit area than 62 

other inland waters (Silverthorn et al., 2025), and in some landscapes, even exceeding 63 

emissions from adjacent terrestrial areas (van der Knaap et al., 2025). These elevated 64 

emissions largely result from high nutrient and carbon inputs from the intensively managed 65 

agricultural and urban landscapes where these waterways are typically found (Peacock et al., 66 

2021). Although local-scale studies about GHG emissions from ditches and canals have 67 

increased (Figure 1A), these water bodies remain overlooked in global inland water GHG 68 

budgets and national inventory reporting, despite Intergovernmental Panel on Climate 69 

Change (IPCC) recommendations to include emission from ditches draining organic soils 70 

(IPCC, 2014) and subsequently from all ditches and canals (IPCC, 2019). Improved reporting 71 

would enable mitigation measures leading to reduced ditch and canal emissions to be 72 

recognised in Nationally Determined Contributions to the UN Framework Convention on 73 

Climate Change (UNFCCC). Moreover, reducing ditch and canal emissions should be 74 

recognized as an important measure for achieving net-zero emission targets set by many 75 
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nations. Given the importance of ditch and canal GHG emissions, we (1) identify key 76 

knowledge and data gaps that must be addressed to better constrain global estimates of GHG 77 

emissions from ditches and canals, and (2) explore potential strategies for mitigating these 78 

emissions.  79 

Table 1. Functional and physical descriptions of five common ditch and canal types. These 

types may be referred to by other names (e.g. agricultural ditch or agricultural canal; 

roadside ditch or swale). This list is not exhaustive as other ditch types exist (see Clifford et 

al., 2025), such as residential canals, transportation canals, sewage ditches, peat extraction 

ditches, moats, and hydropower channels.   

Ditch type Description and representative study Photo 

Forest ditch Ditches used for draining wet soils for 

commercial tree growth. Typically 

narrow (~1m wide) and found in the 

northern hemisphere (Rissanen et al., 

2023).  

 
Agricultural 

ditch 

Ditches used for draining wet soils for 

agricultural use. Variable widths, 

typically <10m, found around the world 

(Wu et al., 2023). 

 
Roadside ditch Ditches used for collecting and 

transporting excess water from roads 

and to prevent their flooding. Variable 

widths, intermittently flooded, often 

vegetated, typically <2m, found around 

the world (McPhillips et al., 2016). 

 
Urban canal Canals used for providing 

transportation, aesthetic, flood control, 

and other functions in urban settings. 

Substrate is often impermeable, variable 

widths (Pelsma et al., 2023). 
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Irrigation 

canal 

Canals used to transport water for 

agricultural production. Substrate can be 

impermeable, variable widths, found 

around the world (Palmia et al., 2021).  

 
Photos: forest ditch in Sweden (M. Peacock); agricultural ditch in Hebei province, China 

(Z. Yan); Roadside ditch in Ontario, Canada (K. Kolman); Urban canal in Rio de Janeiro, 

Brazil (S. Kosten); Irrigation canal in India (S. Balathandayuthabani). 

 80 

  81 
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 82 

Figure 1. Conceptual synthesis of current knowledge and priorities for improved accounting 83 

and mitigation of greenhouse gas (GHG) emissions from ditches and canals. A)  84 

Annual number of peer-reviewed articles related to GHG emissions from ditches compared to 85 

other inland waters; B) Relative contribution of each gas to ditch GHG emissions in terms of 86 

CO2-equivalents from n = 22 studies (Silverthorn et al., 2025); Summary of C) key 87 

knowledge gaps; and D) mitigation measures. Figure details in Supplementary Materials.   88 

 89 

2. Knowledge gaps  90 

 The key gaps in data and in our understanding of ditch and canal GHG emissions are 91 

associated with (1) lack of accurate and representative estimates of GHG emissions, with 92 

particular focus on CO2 and CH4, which contribute the most to climatic warming (Figure 93 

1B); and (2) the mapping of the global extent of ditches and canals (Figure 1C). Addressing 94 

these gaps is critical for improving global estimates of ditch and canal emissions and for 95 
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accurate reporting in national inventories. For inventory reporting, key challenges include 96 

both completeness (reporting all emissions) and avoiding double-counting ditch and canal 97 

emissions with agricultural, wetland, or urban wastewater emissions.    98 

2.1. Knowledge and data gaps in GHG emissions 99 

The growing, but still limited, dataset of ditch and canal emissions that has 100 

accumulated since the 1990s has allowed global upscaling of all three main GHGs (Peacock 101 

et al., 2021; Silverthorn et al., 2025). However, current estimates rely on a single global 102 

average  (“emission factor”) for each GHG, which could be refined and disaggregated 103 

through consideration of climate zones, trophic state, temporal variability, etc. To improve 104 

global estimates, we suggest three critical gaps must be addressed: (1) the global bias of data, 105 

(2) the underrepresentation of ebullitive and plant-mediated CH4 emissions, and (3) 106 

insufficient measurement frequency.  107 

Half of the data points from the global syntheses of Peacock et al. (2021) and 108 

Silverthorn et al. (2025) are from Europe. Although Australia, North America, and Asia are 109 

moderately well-covered, to date, there is just one study from South America and none from 110 

Africa. Missing national- or continental-scale data leads to fundamental uncertainty in global 111 

upscaling. Moreover, measurements from these under-represented regions are needed to 112 

refine global estimates according to geographic and/or climate regions, as has been done for 113 

other inland waters (IPCC, 2019; Lauerwald et al., 2023). 114 

Although some early studies measured ditch CH4 ebullition (Minkkinen et al., 1996), 115 

it remains largely neglected. Those that have measured ebullition have often found it to be the 116 

dominant emission pathway, making up 80% of total CH4 emissions (Silverthorn et al., 117 

2025), although some cases of negligible ebullition contributions also have been reported 118 

(Köhn et al., 2021). The magnitude of ebullitive relative to diffusive fluxes will likely depend 119 
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on sediment properties, trophic state, water velocity, and water depth (which can influence 120 

sediment temperature). In addition, few studies have measured plant-mediated transport of 121 

CH4, presumably due to logistical difficulties of measuring emissions from tall emergent 122 

vegetation such as Phragmites and Typha. However, the presence of plants with 123 

aerenchymatous tissue can enhance CH4 emissions (Bastviken et al., 2023). More 124 

measurements of these two pathways will allow for better estimates of CH4 emissions to be 125 

incorporated into future global estimates.  126 

Most ditch and canal GHG studies rely on non-continuous measurements (although 127 

see Harrison et al., 2005; Paranaíba et al., 2025) which are then extrapolated to annual 128 

estimates, despite their poor ability to capture diel cycles and episodic events (e.g. droughts, 129 

storms, and management interventions) that can significantly influence GHG emissions. For 130 

example, peaks in ditch CO2 and CH4 emissions have been observed post-flood (Webb et al., 131 

2016), while continuously inundated ditches have higher N2O emissions compared to ditches 132 

that periodically dry out (Silverthorn et al., 2025). In addition, higher ditch CO2 and CH4 133 

emissions have been observed at night than during the day (Paranaíba et al., 2025), 134 

suggesting that relying solely on daytime measurements (when photosynthetic uptake by 135 

ditch vegetation is occurring) may lead to an underestimation of total emissions. These 136 

dynamics highlight the need for continuous, sensor-based GHG monitoring to more 137 

accurately capture temporal variability.  138 

2.2. Knowledge and data gaps in mapping and mapping methods 139 

We have yet to map the global extent of ditches and canals due to knowledge and data 140 

gaps pertaining to (1) the limited availability of drainage maps, (2) a lack of harmonised 141 

labelled training data (e.g., ground truthed features) and (3) limitations to scale current 142 

mapping efforts. Existing regional and national maps remain outdated, inconsistent, or 143 
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incomplete, especially where waterways are small and/or obscured with vegetation canopy 144 

(Lidberg et al., 2023). To address this, remote sensing and image analysis techniques have 145 

been explored, although methodological and data gaps persist.   146 

Optical aerial or high resolution satellite imagery can be used for ditch and canal 147 

mapping, but vegetation, canopy cover, and persistent cloud cover can limit its effectiveness, 148 

particularly in dense forested, agricultural or peatland areas (Connolly & Holden, 2017; 149 

Habib et al., 2024). Airborne LiDAR can overcome these issues and detect subtle 150 

geomorphological features like ditches and canals (Lidberg et al., 2023). However, its limited 151 

spatial coverage and high cost hinder broader application. Similarly, Synthetic Aperture 152 

Radar (e.g., Sentinel-1) provides all-weather capabilities and has been used for mapping 153 

water level in ditches (Al-Khudhairy et al., 2001), but it lacks the spatial resolution to resolve 154 

narrow waterways. 155 

For image analysis, traditional pixel-based classification methods are often inadequate 156 

due to the small size and complex morphology of many ditches and canals. Object-Based 157 

Image Analysis improves detection by incorporating spatial and geometric contexts 158 

(Connolly & Holden, 2017). More recently, Deep Learning methods such as Convolutional 159 

Neural Networks have shown considerable promise for the automated identification of 160 

ditches (Habib et al., 2024). However, Deep Learning approaches require extensive training 161 

data, lack transferability across geographic areas, and are computationally intensive, limiting 162 

scalability. Overcoming these challenges will require harmonised multi-sensor frameworks, 163 

transferable Machine Learning models, and collaborative data generation. 164 

3. Mitigation  165 

 Mitigation of ditch and canal GHG emissions can be achieved through a diverse 166 

range of strategies (Figure 1D, Figure 2). Advancing their implementation will require both 167 
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further research into their effectiveness as well as supportive government policies and 168 

incentives. 169 

170 
Figure 2. Photographs of ditches and canals with various greenhouse gas (GHG) emission 171 

mitigation measures related to physical interventions, in-stream vegetation, and riparian 172 

vegetation: (A) Recently dredged agricultural lowland peat ditch in England; (B) Recently 173 

dredged irrigation canal in Tamil Nadu, India; (C) Urban canal with submerged macrophytes 174 

and floating algae in the Netherlands; (D) Sphagnum moss-covered forest ditch in Finland; 175 

(E) Continuous cover forestry (selective cutting) around a forest ditch in Sweden; (F) 176 

Agricultural ditch in Scotland with Salix riparian vegetation periodically harvested for 177 

biomass. Photos: M. Peacock (A, E), S. Balathandayuthabani (B), J.R. Paranaíba (C), M. 178 

Kurki (Luke) (D), and D. Bryan (F).  179 

 180 

Page 10 of 23AUTHOR SUBMITTED MANUSCRIPT - ERL-123613

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



 

9 
 

3.1. Nutrient management 181 

 Measures that reduce the inputs of nutrients and organic matter into ditches and canals 182 

can help lower GHG emissions. Excessive nitrogen and phosphorus loading, often from 183 

agricultural runoff or urban stormwater, can increase organic matter production (e.g., algal 184 

growth) and accelerate its decomposition. This decomposition, in turn, fuels microbial 185 

processes such as methanogenesis, nitrification, and denitrification, all of which release 186 

GHGs (Wu et al., 2023). High nutrient inputs can therefore drive emissions both by 187 

enhancing organic matter accumulation and by directly stimulating microbial activity (Zhou 188 

et al., 2025). Thus, mitigating point-source pollution from sources such as wastewater 189 

treatment plants and infrastructure like boat docks can reduce GHG emissions from canals 190 

(Martinez-Cruz et al., 2017; Mwanake et al., 2024). While reducing fertiliser application rates 191 

and other nutrient amendments at the catchment scale, together with improving crop nutrient 192 

use efficiency and excluding livestock from riparian areas, can mitigate GHG emissions from 193 

agricultural ditches.  194 

3.2. Riparian vegetation 195 

 Riparian vegetation can help mitigate inputs of nutrients and sediments by 196 

intercepting them before reaching the waterway, thereby reducing aquatic GHG production 197 

(Fisher et al., 2014). However, impervious substrate and banks may limit the effectiveness of 198 

this strategy for many canals. Although organic matter inputs from vegetated riparian zones 199 

can fuel respiration, increasing CO2 and CH4 emissions, these can be reduced through 200 

vegetation harvesting (Bai et al., 2022). Additionally, riparian shading may reduce water 201 

temperature (Roth et al., 2010), reducing microbial activity rates and therefore GHG 202 

emissions (Yvon-Durocher et al., 2010). For forest ditches, maintaining a continuous riparian 203 

forest canopy by using selective cutting instead of clear-cutting can attenuate post-harvest 204 
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water table rise and thus reduce nutrient leaching from peat soils into ditches (Nieminen et 205 

al., 2018). 206 

3.3. In-stream vegetation 207 

Within ditches and canals, vegetation can play a critical role in regulating GHG 208 

dynamics (Bodmer et al., 2024; Theus & Holgerson, 2025). Submerged plants can facilitate 209 

CH4 oxidation by transporting atmospheric oxygen to the rhizosphere through their 210 

aerenchyma tissues, creating micro-oxic zones in anoxic sediments which support 211 

methanotrophic bacteria that consume CH4 (Lemoine et al., 2012). Floating plants can 212 

decrease the diffusive flux of GHGs to the atmosphere, resulting in a large proportion of CH4 213 

oxidized below the plants, but they may increase CH4 ebullition thereby potentially leading to 214 

an overall increase in emissions (Theus & Holgerson, 2025). In forest ditches, CH4 emissions 215 

can be significantly lower in Sphagnum moss-covered ditches compared to “cleaned”, moss-216 

free ditches (Rissanen et al., 2023). Therefore, measures that protect or restore submerged 217 

macrophytes and Sphagnum moss can play a critical role in reducing ditch CH4 emissions. 218 

However, aquatic vegetation can augment emissions by providing a carbon source during 219 

seasonal plant senescence (Theus & Holgerson, 2025) and emergent rooted plants can be 220 

direct conduits of CH4 from sediments to the atmosphere (Bodmer et al., 2024). The effects 221 

of aquatic vegetation on GHG fluxes are therefore challenging to disentangle, and vary by 222 

plant type (e.g. submerged, floating, emergent, non-vascular) and time of year, with more 223 

ditch and canal-specific research needed. This strategy is mostly unsuitable for navigation 224 

canals as in-stream vegetation can obstruct vessel movement, but separated, shallow margins 225 

have been trialled as a way to increase aquatic plant abundance without obstructing boat 226 

traffic (Boedeltje et al., 2001).    227 
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3.4. Dredging 228 

Dredging, routine in many agricultural ditches, may help reduce GHG emissions by 229 

removing accumulated sediments rich in organic matter and nutrients, along with the 230 

microbial communities that drive carbon and nitrogen cycling (Paranaíba et al., 2025). While 231 

dredging can trigger short-term emission spikes, it has been associated with a longer-term 232 

reduction in agricultural ditch GHG emissions: ~35% less CO2-equivalent emissions within 233 

one year following dredging (Paranaíba et al., 2025). However, emissions from the displaced 234 

ditch sediments must be accounted for (Paranaíba et al., 2023), and dredging disturbs aquatic 235 

habitats, including benthic communities. The effects of dredging frequency, timing, and 236 

methods on GHG mitigation remain poorly understood and require further attention. In 237 

addition to dredging, we argue that other physical considerations such as channel design, 238 

water depth, and flow rates should be explored for their potential to reduce ditch GHG 239 

emissions.  240 

3.5. Novel mitigation measures  241 

 Novel measures, such as biochemical manipulation and enhanced rock weathering, 242 

are gaining recognition as a promising frontier in ecosystem management. Although still in 243 

its early stages and largely limited to experimental settings, microbial inoculations in 244 

sediments, such as with nitrite/nitrate-dependent anaerobic methane-oxidizing 245 

microorganisms (Legierse et al., 2023) and stimulation of iron-dependent anaerobic methane-246 

oxidizing bacteria through iron chloride additions (Struik et al., 2024), show promise in 247 

agricultural ditches as innovative strategies to mitigate CH4 emissions. These specialized 248 

microbial communities can oxidize CH4 using nitrite, nitrate, or iron as electron acceptors, 249 

playing a key role in reducing CH4 emissions under anoxic conditions commonly found in 250 

ditch sediments. Chemical weathering of rocks is a natural process that absorbs CO2, and this 251 

process can be enhanced by applying crushed rocks to the land surface or aquatic systems. As 252 
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the minerals dissolve in water, the dissolution products are transported to the ocean where the 253 

carbon is stored (Strefler et al., 2018). Other novel measures include nutrient-binding 254 

amendments, and using salinization, oxygenation, and sulphate additions to reduce anaerobic 255 

CH4 production (Paranaíba & Kosten, 2024; Varjo et al., 2003). However, uncertainties 256 

remain about large-scale implementation of these novel measures, including long-term 257 

efficiency, transferability across ecosystems, unintended ecological impacts, and economic 258 

viability.  259 

4. Conclusions and implications 260 

Ditches and canals are important but overlooked sources of GHG emissions. Moving 261 

forward, policymakers and land managers should integrate ditch and canal GHG mitigation 262 

into broader climate and land-use planning. Ditch and canal emissions should also be 263 

incorporated into global inland water GHG models, particularly predictive models assessing 264 

the impacts of global change, such as warming and eutrophication, which are expected to 265 

increase emissions from these waterbodies. The riparian zones of ditches (located at the 266 

terrestrial-aquatic interface) can also be emission hotspots (van der Knaap et al., 2025). Thus, 267 

to obtain the full picture, these areas should be included in landscape scale upscaling.  268 

Additionally, legislative frameworks should be updated to recognize ditches and canals as 269 

fundamental and functional ecosystems that influence landscape carbon and nitrogen cycles. 270 

Much of the current knowledge on mitigation remains in the experimental phase, therefore 271 

accelerating research in collaboration with stakeholders and policymakers is crucial. 272 

Addressing key research priorities in mapping, geography, emission pathways, and 273 

measurement frequency will improve understanding of ditch and canal GHG production and 274 

emissions to refine global upscaling. Through improved accounting and emission reductions, 275 

ditches and canals can be important actors in climate change mitigation.   276 
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