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• Machine learning tools are developed to 
accelerate a physics-based solar pump 
model

• The designed emulators are applied to 
Africa and the Indian Indo Gangetic 
Basin

• These emulators reduce the computa
tion time of the physics-based model by 
>1500

• These emulators achieved high accu
racy: R2 ≥ 0.99, NRMSE ≤ 5%.

• They open up the way for optimizing the 
large-scale deployment of solar pumps
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A B S T R A C T

Photovoltaic Groundwater Pumping Systems (PVGWPSs) have experienced growing interest, particularly in two 
key regions. In Africa, they offer a means to improve water availability for millions. In northern India, they could 
help decarbonize the agricultural sector. However, large-scale deployment must be approached carefully to avoid 
risks such as groundwater overextraction or widespread unmet irrigation demand. To support informed 
deployment, a large-scale, physics-based, dynamic PVGWPS model is introduced, that simulates pumping ca
pacities of PVGWPS. Given the computational intensity of this model, machine learning-based emulators are 
explored to replicate its results more efficiently without significant loss in accuracy. The emulator operates in 
two stages. First, it predicts whether the motor-pump will stop due to water level dropping below the operational 
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threshold. Among the models tested, the Gradient Boosting Classifier model performed best. Second, when no 
stoppage is predicted, the emulator estimates the pumping capacity of the PVGWPS. Among the models tested for 
this second task, the Random Forest Regressor gave the most accurate results. Applied to datasets from Africa and 
the Indo-Gangetic Basin within India, the emulator achieved high accuracy (R2 ≥ 0.99, NRMSE ≤ 5 %) while 
reducing computation time by more than a factor of 1500. The emulators thus offer high computational speed 
and sufficient accuracy to open the way to addressing large-scale dispatch problems, such as the optimal posi
tioning and pre-sizing of PVGWPSs at regional, national, or even continental scales while considering a large 
number of possible climate scenarios. Coupled with sustainability analyses (not explored in this study), they 
could serve as powerful upstream decision-support tools for PVGWPSs planning, complementing more detailed, 
site-specific analyses.

1. Introduction

1.1. Literature review

Photovoltaic groundwater pumping systems (PVGWPSs) have 
garnered significant attention over the past decade, with over 1.3 
million PVGWPSs installed globally by 2023 [1]. There has been 
particular interest in these systems in Africa and in South Asia.

In Africa, an estimated 400 million people still lack access to basic 
drinking water service [2], and less than 10 % of the continent’s culti
vated land is irrigated [3]. Although surface water is often shallower and 
more economical to extract, groundwater represents the largest source 
of freshwater on the continent, albeit variably distributed [4]. Moreover, 
unlike surface water, groundwater often requires no treatment [4,5] and 
its slower response to meteorological changes makes it a natural buffer 
against climate variability [6–8]. While careful management of natural 
resources is essential [3], groundwater can help meet the increasing 
demand for domestic and agricultural water across the continent [9]. In 
this context, PVGWPSs, which harness affordable and low carbon 
photovoltaic energy, offer a promising solution to enhance water access 
in off-grid areas. These systems are already economically viable in 
various contexts [10], with technological advancements enhancing their 
durability [11], and local case studies demonstrated encouraging out
comes [12,13]. Consequently, the development of this technology is 
actively promoted across the continent by governments and interna
tional institutions such as the World Bank or UNICEF [14,15].

In South Asia, the Indo-Gangetic Basin (IGB), home to approximately 
15 million groundwater pumping systems (GWPSs) for irrigation [16], is 
one of the most intensively cultivated regions globally [17,18]. With 
annual groundwater extraction for irrigation surpassing 200 km3 [19], 
the region accounts for about 20 % of global groundwater withdrawal 
[20]. This extraction is particularly concentrated in Punjab and Haryana 
where, despite a century of groundwater accumulation [21], ground
water is currently over exploited [19]. The region’s GWPSs are primarily 
powered by diesel or connected to a carbon-based grid [16], making 
them substantial contributors to greenhouse gas emissions [22]. For 
instance, the 20 million grid-connected pumps and 10 million diesel 
pumps in India are estimated to emit over 200 million tons of CO₂ 
annually, representing more than 5 % of the country’s total CO₂ emis
sions [23]. Given the imperative of SDG 13, which calls for the decar
bonization of all economic sectors [24], a low-carbon alternative to 
these traditional pumping systems is required. In response, the Indian 
Ministry of New and Renewable Energy (MNRE) initiated a solar 
pumping program in 1992 to convert existing GWPSs into PVGWPSs 
[10]. By 2023, India has emerged as a global leader in PVGWPS 
installation, with over one million systems deployed for agricultural use 
[1]. However, despite this progress, the adoption rate within the Indian 
part of the IGB region remains modest, with less than 5 % of GWPSs 
converted to PVGWPSs [25].

Therefore, PVGWPSs hold significant potential for advancing sus
tainable development in both Africa and South Asia. However, the 
higher initial capital cost of PVGWPSs compared to that of conventional 
GWPSs [16,18] slow their widespread adoption, despite their lower 
lifecycle costs [22]. Consequently, widespread subsidies are often 

required to facilitate the large-scale deployment of PVGWPSs [26,27]. 
Nevertheless, by facilitating access to free solar energy, these subsidies 
could also exacerbate groundwater over-exploitation [3,28]. Thus, to 
maximize the impact of such subsidies, it is essential to deploy PVGWPSs 
in regions where their pumping capacities can align with local 
groundwater demands, while also safeguarding against over- 
exploitation. To support this effort, it is important to develop large- 
scale PVGWPS models that can quantitatively assess their pumping 
performance and identify where they are most effective.

Several PVGWPS models have been proposed to investigate the po
tential of PVGWPSs over different large-scale geographical areas: in 
Ethiopia [29], Ghana [30], Egypt [31,32], Algeria [33], China [34–36], 
Spain and Morocco [37], in the Sahel [38], in sub-Saharan Africa 
[39,40] or even for the whole African continent [41]. However, they 
remain limited in several ways. Many of these studies [29–32,36,38] do 
not model the operation of PVGWPSs, which prevents them from 
quantitatively accounting for the solar and hydrogeological resources. 
Campana et al. [34], Rubio-Aliaga et al. [37], Falchetta et al. [39], and 
Xie et al. [40] have quantified the pumping capacity of PVGWPSs by 
modeling the energy system using physics-based PVGWPS models. 
Nevertheless, they opt for monthly average irradiance figures rather 
than hourly or sub-hourly time series data, which reduces the model’s 
ability to accurately estimate the abstractable groundwater volume of 
PVGWPSs [41,42]. Analyses from [34,37,39] also only consider the 
depth to the water table without modeling the drawdown at the pump, 
despite its significant influence on pumping capacities [41]. While 
simulating the drawdown, Xie et al. nevertheless do not consider the 
saturated thickness of the aquifer and the depth of the motor-pump [40], 
although these impose limits on the maximum possible drawdown and 
consequently the pumping flow rate [41]. Another study uses sub-hourly 
average irradiance values and considers the saturated thickness and the 
motor-pump depth [41]. It also highlights that, in certain locations 
(notably where the transmissivity is low), the PVGWPS regularly stops 
due to the water level in the borehole reaching the motor-pump. How
ever, it uses a steady-state model that does not account for the specific 
yield and the time-dependent dynamics of pumping [43]. Moreover, it 
takes 10 h to [41] to compute the pumping capacities of PVGWPSs at 
62500 locations across Africa. Such a model is thus considered too time- 
consuming to be used for large-scale decision-making processes, such as 
the optimal positioning and pre-sizing of PVGWPSs at regional, country 
or even continental scale, especially if multiple climate scenarios and 
their associated uncertainties are to be considered. These analyses could 
nonetheless support large-scale investments in PVGWPS projects, mak
ing them valuable to governments and funding organizations. Machine 
learning tools could help address this computing time challenge. How
ever, to our knowledge, only Haddad et al. [44] have used machine 
learning (specifically, Regression Neural Networks) to predict the 
pumping capacity of a PVGWPS. Nevertheless, their study did not 
consider hydrogeological factors and focused on a single location, pre
venting the generalization of their findings to other locations.

1.2. Research gap and question, contributions and method overview

Review of the literature therefore reveals that there is no PVGWPS 
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model at large-scale (e.g., regional or continental) that is both compu
tationally efficient and accurate. Our hypothesis is that this research gap 
can be addressed by developing machine learning-based emulators 
trained on the outputs of detailed physics-based dynamic models. 
Consequently, our research question is: can the combination of physics- 
based modeling and machine learning allow to simulate PVGWPS 
pumping capacities at large-scale in a significantly reduced computing 
time while maintaining high accuracy?

To answer this question, a two-step method is proposed in this 
article. First, a large-scale, physics-based, dynamic PVGWPS model to 
simulate the pumping capacities of PVGWPSs is developed. Second, 
machine learning-based emulators are designed to reproduce the results 
of the physics-based model at a much faster rate. Publicly accessible 
meteorological and groundwater input data are employed to apply the 
models across Africa and the Indian IGB. A visual overview of the 
approach is shown in the graphical abstract of this article.

Therefore, the first novel contribution of this work lies in the detailed 
design of a large-scale, physics-based and dynamic PVGWPS model 
which considers the specific yield, the saturated thickness, and hourly 
irradiance values. The second and main contribution of this work is the 
development of large-scale emulator models based on machine learning 
tools to improve the calculation time of the physics-based model without 
significantly reducing the quality of its estimation. Together, these 
contributions directly address the main identified research gap by 
providing a computationally efficient and accurate framework for the 
large-scale simulation of PVGWPS performance. Finally, the last 
contribution is the presentation of results spanning the Indian IGB, 
where quantitative large-scale PVGWPS models had never been applied.

The results are provided for five PVGWPS sizes, with a particular 
focus on PVGWPSs of 3000 Wp, which represents a typical PVGWPS size 
for irrigation [10,27,45]. Presenting quantitative results for large-scale 
areas facilitates the comparison of different regions and helps identify 
zones with the greatest potential for PVGWPSs. Moreover, the ability 
offered by the developed emulators to simulate the pumping perfor
mance of PVGWPSs at large-scale in a strongly reduced computing time, 
that must be combined with sustainability analyses (not covered in this 
article, see note1), helps pave the way for the development of upstream 
strategies to optimally position and pre-size PVGWPSs at wide (e.g., 
regional, country) scale ahead of local-scale implementation ap
proaches. The method is detailed in Section 2. The results are shown in 
Section 3 and are discussed in Section 4.

2. Materials and methods

In this section, PVGWPSs are first described in Section 2.1. Secondly, 
the input location-dependent data required for this study are presented 
in Section 2.2. Then, a physics-based model to estimate the groundwater 
volume abstractable by a PVGWPS across Africa and the Indian IGB is 
proposed in Section 2.3. Finally, in Section 2.4, machine learning-based 
emulators are developed.

2.1. Photovoltaic groundwater pumping systems

In rural areas, PVGWPSs have emerged as a low-carbon and cost- 
effective solution for enhancing water access both for domestic and 

irrigation use [49]. The simplest architecture for a PVGWPSs includes 
photovoltaic (PV) modules, a controller, and a motor-pump. Some 
configurations include storage options like batteries or water tanks to 
reserve energy or water for periods of low sunlight, albeit at the cost of 
increased system complexity and expense [50,51]. The selection of the 
motor-pump type depends on the water source [52]: surface pumps are 
commonly used for extracting water from streams, rivers, or shallow 
groundwater (less than 7 m deep), whereas submersible pumps access 
deeper groundwater, which is more resilient to climate variability and 
less susceptible to surface contamination [6,8].

The off-grid submersible PVGWPS architecture considered for this 
study is presented in Fig. 1a. This architecture is common for ground
water abstraction with PV energy [12,53]. The motor and the pump are 
built-in together [10] and the motor-pump set is submersed in the 
borehole [54]. Control equipment is also installed between the PV 
modules and the motor-pump and/or directly integrated to the motor- 
pump set [10,55]. This equipment allows the motor-pump to stop and 
also to operate the motor-pump and the PV modules at their best 
operating points [10]. In the case of a surface pump (see Fig. 1b), the 
only difference is the motor-pump being placed above ground, lifting 
water by suction. This method prevents the motor-pump from lifting 
water beyond 7 m. Therefore, in this article, surface pumps and sub
mersible pumps are modelled by the same equations, and will not be 
studied separately, the only difference being the pumping depth Hp 
which cannot be higher than 7 m in the case of a surface pump. In 
addition, in the following, the term “pumping depth” Hp is used for both 
submersible and surface pumps and represents the maximum depth at 
which water can be pumped. In this article, generic PVGWPSs are 
considered, with the size of the motor-pump proportional to the peak 
power of the photovoltaic modules. The PV modules peak power is 
therefore used as a proxy for the size of the PVGWPSs.

Two operating modes can be distinguished: 

• The first operating mode is when the water level in the borehole Hb 
never reaches the pumping depth Hp, so it does not cause the motor- 
pump to stop. This is the most common operation for a PVGWPS, and 
is referred to, in this study, as ‘no motor-pump stoppage’.

• The second operating mode is when the water level in the borehole 
Hb reaches the pumping depth Hp at least once during the simulation 
period. When it occurs, it typically happens around midday on sunny 
days, as this is when the electrical power from the PV modules, the 
pumping flow rate and, therefore, the drawdown are at their highest 
[41]. Additionally, this situation is generally encountered in loca
tions with low transmissivity, which leads to increased drawdown 
and a higher risk of the water level falling below the motor-pump or 
pump intake [41,56]. This is referred to as ‘motor-pump stoppage’ in 
this study.

2.2. Input location-dependent data

To fulfill these objectives, input location-dependent data for Africa 
and the Indian IGB are used and summarized in Table 1. This table 
notably shows that the input datasets have different spatial resolutions. 
For the rest of the article, for each region, the resolution of the irradiance 
maps, 0.25◦ for Africa and 0.1◦ for the Indian IGB, is used. They are 
considered sufficient for the large-scale analysis carried out in this study. 
These resolutions of 0.25◦ and 0.1◦ were applied to all input datasets for 
their respective regions using nearest neighbor interpolation via the 
Rasterio library in Python [57]. Datasets originally in shapefile format 
were rasterized at the same resolutions also using Rasterio.

For the African datasets, for the static water depth Hb,s, the trans
missivity T, and the saturated thickness Hst, the original source provides 
only value ranges, not exact values, for each location. The midpoint of 
each range is generally used, except in the following cases: if Hb,s ex
ceeds 250 m, 300 m is considered (same for Hst); if Hb,s falls between 

1 Studying the sustainability of PVGWPS development, particularly across the 
Indian IGB which already counts numerous over-exploited locations, is crucial. 
However, the complexity of the mechanisms involved, such as the high sea
sonality of groundwater recharge and levels [46], spatial heterogeneity of the 
resource [47], interactions with major rivers [48], and the distinction between 
natural and artificial recharge [19], makes it challenging to also address sus
tainability in this single study. Consequently, this study focuses on the pumping 
capacities of PVGWPSs, while future studies will concentrate on studying the 
sustainability of the large-scale deployment of PVGWPSs.
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0 and 7 m, 7 m is used [41]. For the aquifer transmissivity across the 
Indian IGB, only ranges of aquifer conductivity across 7 groundwater 
typologies were available [58]. For each typology, the midrange value is 
chosen and is multiplied by the aquifer thickness to obtain the aquifer 
transmissivity at each location across the Indian IGB [4]. For the static 
water level across the Indian IGB, 6 classifications were provided [59]. 
The midrange value is chosen for each classification, except for the 
highest one (“>40 m”) which is taken equal to 50 m.

Due to the lack of available information, the input groundwater data 
provided in Table 1 is considered to remain constant over time. In 
Supplementary fig. 1 (see Appendix A), the annual mean static water 
level Hb,s, the saturated thickness Hst, the aquifer transmissivity T, the 
specific yield Sy, the annual mean of the ambient temperature at 2 m Ta, 
and the annual mean of the irradiance on the plane of the PV modules 
GPV are plotted for each region (see Section 2.3 for information on the 
calculation of the irradiance on the plane of the PV modules GPV based 
on the surface solar radiation downwards SSRD).

2.3. Physics-based model

In this section, the methodology for one pixel is presented. Note that 
the term “pixel” is used interchangeably with the term “location” in this 
study. The methodology is then the same for every pixel.

The groundwater volume Vp abstractable by a single off-grid 
PVGWPS during a certain period can be estimated thanks to the flow 
rate profile at the pump during this period. Thus, Vp is given by: 

Vp =

∫

period

Q(t)dt (1) 

where Q is the pumping flow rate during the period. The pumping flow 
rate of the PVGWPS at time t can be determined by solving the following 
equation [41,62]: 

Fig. 1. Architectures for (a) a submersible and (b) a surface photovoltaic groundwater pumping system (PVGWPS). Adapted from [41]. Abbreviations: rb: radius of 
the borehole; Hb,s: static water depth (corresponding to the water depth in the borehole when there is no pumping); Hb,d: drawdown; Hb: water depth in the borehole; 
Hst: saturated thickness of the aquifer; Hb,b: borehole depth; and Hp: pumping depth. All the lengths are defined as positive.

Table 1 
Input location-dependent data for Africa/Indian IGB.

Data Symbol Description Spatial 
resolution

Temporal 
resolution and 
coverage

Year of 
release

Provider

Annual mean static 
water level (m)

Hb,s Depth of water in the borehole when there is no 
pumping.

0.05◦ / 
0.04◦

One value for each 
location

2012/ 
2025

British Geological Survey [56] / 
India-WRIS (Water Resource 
Information System) [59]

Aquifer saturated 
thickness (m)

Hst Vertical thickness of the hydrogeologically 
defined aquifer unit in which the pore spaces are 
saturated with water

0.01◦ / 
shapefile

2012/ 
2016

British Geological Survey [4,56] / 
British Geological Survey [19,58]

Aquifer transmissivity 
(m2/s)

T Rate at which groundwater flows horizontally 
through an aquifer

0.05◦ / 
shapefile

Specific yield (− ) Sy Equal to the effective porosity, which is the 
porosity of a rock available to contribute to fluid 
flow through the rock

0.25◦/ 
shapefile

2 m temperature (◦C) Ta Ambient temperature 2 m above the ground level 0.25◦ / 0.1◦ One temporal 
vector for each 
location.

2024 ERA5 [60] / ERA5-Land [61]

Surface solar radiation 
downwards (J/m2)

SSRD Amount of solar radiation reaching the surface of 
the Earth.

0.25◦ / 0.1◦ Data for 2024 with 
a time step of 1 h

Note: When the cell format is a / b, a refers to the African datasets, and b refers to the Indian IGB datasets.
Note: Meteorological data from 2024 are used in this study; however, multi-year datasets are available to support multi-year planning.
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∀t,
(
β+ ν⋅Lp +K

)
⋅Q(t)3

+Hb,s⋅Q(t)+Ha
b,d(t)⋅Q(t) −

P(t)⋅ηmp

ρ⋅g
= 0 (2) 

where β is the borehole losses coefficient, Lp the pipe lengths (taken 
equal to the pumping depth in this article), ν the linear pipe losses co
efficient, K the junction losses coefficient, Ha

b,d is the head loss due to 
aquifer losses, ηmp the efficiency of the motor-pump, ρ the water density 
(equal to 1000 kg/m3) and g the gravitational acceleration (equal to 
9.81 m/s2). Typical ranges for the parameters are provided in Table 2. 
The power supplied to the pump changing every hour (due to hourly 
irradiance values), the head loss due to aquifer losses Ha

b,d can be 
expressed as [63]: 

Ha
b,d(t) =

1
4πT

∫ t

0
Q(τ)⋅e

−
Sy ⋅r2

b
4T(t− τ)

t − τ dτ (3) 

where rb is the borehole radius. Ha
b,d is the drawdown solution from the 

Theis equation considering an unsteady flow rate [63]. This solution 

implies confined aquifer conditions, which might not always represent 
the actual field conditions. In unconfined aquifer conditions, similar 
equations could be implemented [64]. Nevertheless, the findings from 
[65] highlight that the results in terms of abstractable volume assuming 
unconfined conditions would be very similar (in [65] the abstractable 
volume differs on average by less than 5 % between confined and un
confined conditions). In addition, to our best knowledge, there are no 
maps indicating whether aquifers are predominantly confined or 

unconfined across the different parts of the considered areas, which 
prevents a consistent spatial application of different formulations. Thus 
we found sufficient to use only Eq. (3) for this large-scale study. 
Considering that the maximum power point tracking of the PV modules 
is properly achieved, the following model is used to calculate the power 
P produced by the modules [34,66]: 

P(t) =
GPV(t)

G0
⋅PP⋅

(

1+ γ⋅
(

Ta(t)+
NOCT − 20

800
⋅Gpv(t) − 25

))

(4) 

where G0 is the reference irradiance (1000W/m2),PP the peak power of 
the PV modules, γ the loss coefficient related to PV modules tempera
ture, Ta the ambient temperature, and NOCT the nominal operating cell 
temperature. GPV is the irradiance on the plane of the PV modules, which 
is maximized by appropriately setting the azimuth and tilt angles of the 
PV modules according to the location. To this end, the azimuth angle of 
the PV modules α is set to 180◦ for locations in the northern hemisphere 
and 0◦ for those in the southern hemisphere [67]. The tilt angle of the PV 
modules is set to [67]:  

where ϕ is the latitude of the location. Eq. (5) also ensures that the 
absolute tilt angle of the PV modules is always greater than 10◦, 
providing sufficient inclination for effective cleaning by rainfall [41]. 
Given these angles, and after converting SSRD data into Global Hori
zontal Irradiance (GHI), Direct Horizontal Irradiance (DHI), and Direct 
Normal Irradiance (DNI) thanks to the PVlib python library, PVlib then 
estimates the irradiance on the plane of the PV modules GPV [68]. An 
albedo of 0.2 is assumed, representative of cropland, a typical land cover 
in the rural areas under study [69]. A map of the annual mean of GPV for 
each region is shown on Supplementary fig. 1f and ll (see Appendix A).

To implement Eq. (3) numerically, it is discretized by considering 
that the flow rate varies at each one-hour time-step (i.e., the temporal 
resolution of irradiance data). By integrating Eq. (3) and (4) into Eq. (2), 
one can see that, after the discretization of the integral, Eq. (2) is a 
polynomial equation at each time-step t. When solving Eq. (2), the only 
physically feasible solution of the equation is taken.

The proposed model considers the possible stops of the motor-pump 
when the water depth in the borehole Hb is found to be deeper than the 
pumping depth Hp (see Section 2.1). It also considers that the motor- 
pump starts only when the power supplied by the PV modules is 
higher than a power Pmp,0, particularly when the sun has risen suffi
ciently in the morning and the irradiance has surpassed a certain 
threshold.

Finally, after calculating the pumping flow rate for every time step, 
the groundwater volume abstractable by an off-grid PVGWPS Vp of 
installed power Pp can be calculated for each desired period (see Eq. 
(1)).

It takes the physics-based model ~9 h to estimate the pumping ca
pacities of a given PVGWPS for the 40,100 locations across Africa and ~ 
1.5 h for the 5500 locations across the Indian IGB for a given set of input 
design parameters (e.g., the PV modules peak power Pp, the borehole 
radius rb, see the list of all design parameters in Supplementary Table 1, 
in Appendix A). Note that the computation times in this study are ob
tained with the following computer server: Intel(R) Xeon(R) W-2245, 
3.90 GHz, 8 cores.

Table 2 
Ranges considered for each input location-dependent data and design 
parameters.

Input Data Range References

Annual mean static water level (m) 
Hb,s

0 – 300 [56]; [19]

Saturated thickness (m) 
Hst

10 – 500 [56]

Aquifer transmissivity (m2/s) 
T

10− 6 – 5⋅10− 1 [56]; [58]

Specific yield (− ) 
Sy

10− 5 – 0.5 [88]; [89]; [90]

Pumping depth (m) 
Hp

Hb,s +

[1–100]
[41]; [91]

Borehole radius (m) 
rb

0.05 – 0.5 [92]

Borehole losses (s2 m− 5) 
β

103 – 106 [66]; [93]; [94]; 
[95]; [96]

Linear pipe losses (s2 m− 6) 
ν 0 – 104 [62]; [97]; [98]

Junction losses (s2 m− 5) 
K

0 – 105 [62]; [97]; [98]

Motor-pump efficiency (− ) 
ηmp

0.1 – 0.8 [99]; [100]; [101]

Peak power of the PV modules (Wp) 
Pp

100 – 10⋅103 [41]; [27]

Loss coefficient related to PV modules 
temperature (%/◦C) 
γ

− 0.45 - -0.30 [102]; [103]

Nominal operating cell temperature (◦C) 
NOCT

41 – 46 [104]; [103]

Starting power of the motor-pump (W) 
Pmp0

[10 % - 30 
%]⋅Pp

[101]

θ =

{
max(10, 1.3793 + (1.2011 + ( − 0.014404 + 0.000080509ϕ)ϕ )ϕ )if ϕ > 0
min( − 10, − 0.41657 + (1.4216 + (0.024051 + 0.00021828ϕ)ϕ )ϕ )if ϕ < 0 (5) 
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2.4. Emulator models

2.4.1. Overview and models selection
The computing times (reported in the previous section) required to 

evaluate the dynamic PVGWPS model for Africa/the Indian IGB are too 
high for large-scale decision-making processes, such as optimally posi
tioning and pre-sizing PVGWPSs at extensive scale (e.g., a country, a 
continent), particularly when several climate scenarios and their un
certainties need to be accounted for. Indeed, a robust optimization 
taking into consideration uncertainties would require numerous model 
evaluations. For instance, using a genetic optimization algorithm with a 
population size of 100 and 100 generations (which are common default 
hyper parameter values for genetic optimization algorithms [70,71]) 
would take the algorithm 10,000 evaluations of the model to run. This 
would then take ~10 years to optimally size the PVGWPSs at every 
location across Africa using the above physics-based model, and ~ 2 
years for the Indian IGB.

To address this challenge, emulator models are proposed in this 
section. The concept of an emulator involves replacing the time- 
consuming physics-based model with a machine-learning-based alter
native relying on classification or regression tools (e.g., neural networks, 
random forests) to replicate physics-based model results at a faster rate 
[72]. Therefore, this study explores emulator models designed to predict 
the abstractable groundwater volume of a PVGWPS at a specific loca
tion, based on input location-dependent data, particularly irradiance 
time-series, and design parameters of the PVGWPS, such as the peak 
power of the PV modules and the borehole radius.

A critical aspect of the problem addressed in this study is the 
consideration of pumping stoppages when the water table at the bore
hole drops below the pumping depth, caused by the drawdown induced 
by pumping (see Section 2.1). Indeed, when this situation does not 
occur, the relationship between the power supplied to the motor-pump 
by the PV modules and the abstractable groundwater flow rate is found 
to be a power law relationship, though dependent on location and design 
parameters (see Supplementary note 1, in Appendix A). This power law 
relationship between the two time-series has the potential to substan
tially reduce the complexity of the emulator models.

As a result, the problem has been divided into two steps: 

• Step 1: A first machine-learning based model (called ‘motor-pump 
stoppage forecasting model’) predicts whether the PVGWPS is likely 
to stop due to the water level declining to the point of reaching the 
pumping depth when pumping.

• Step 2: 
o If the first model does not predict that the PVGWPS is likely to 

stop, a second machine-learning based model (called ‘Prediction 
model for abstractable groundwater volume’) can be used to 
forecast the abstractable groundwater volume.

o If the first model forecasts that the PVGWPS is likely to stop, the 
physics-based model can be employed to compute the abstractable 
volume. Indeed, training machine learning models in this case is 
more challenging as no pattern between the power supply and the 
abstractable flow rate has been found. In any case, practitioners try 
to avoid this situation in the field as much as possible, as it may 
damage the motor pump.

Motor-pump stoppage forecasting model: The task is a classifi
cation problem, i.e., the output of the model is a binary number: 1 if the 
motor-pump is likely to stop during the simulation period due to the 
drawdown (and thus the water level) reaching the pumping depth when 

pumping, or 0 if it is not. The drawdown is influenced by the power 
supplied to the pump from the PV modules and by hydrogeological 
factors (particularly the transmissivity) [41,56]. As the maximum 
drawdown is expected to occur for the maximum power supply (reached 
at the maximum irradiance)2 [73], it is assumed that if the motor-pump 
can operate without stopping at the maximum power supply, it will 
continue functioning under normal conditions. This assumption sim
plifies the problem by eliminating the need for a full time-series analysis 
of power supply. Instead, only the maximum power supply over the year 
is considered. Consequently, the problem is reduced to a classification 
task based on structured (i.e., time-independent) data enabling the use 
of relatively simple machine learning models.

Prediction model for abstractable groundwater volume: Given 
the fact that it is a time-series problem which can be reduced to a power 
law problem (see Supplementary note 1, in Appendix A), the model will 
then predict the power law regression coefficients of the power law 
relationship between power supply and the abstractable groundwater 
flow rate, using only structured (i.e., time-independent) data. This in
cludes input location-dependent data and design parameters of the 
PVGWPS. That allows for the use of relatively straightforward machine 
learning models. Finally, the abstractable groundwater flow rate time- 
series is obtained by applying the regression coefficients to the power 
supply time-series. The volume is then obtained by integrating the flow 
rates.

Given the nature of the problems, the following models are tested in 
this study: 

• Random Forest (RF): This method builds multiple independent 
decision trees in parallel and aggregates their outputs to provide a 
final prediction. A decision tree is a tree-like structure where each 
node represents a decision based on a feature, and branches repre
sent the outcome of the decision. A Random Forest Classifier (RFC) 
is used for the motor-pump stoppage forecasting model and a 
Random Forest Regressor (RFR) for the prediction model for the 
abstractable groundwater volume.

• Gradient Boosting (GB): Unlike RF, this other tree-based method 
builds trees sequentially rather than in parallel. Each new tree fo
cuses on correcting the mistakes made by the previous ones. In GB, 
the decision trees are typically shallow, with only a few levels. A 
Gradient Boosting Classifier (GBC) is used for the motor-pump 
stoppage forecasting model and a Gradient Boosting Regressor 
(GBR) for the prediction model for the abstractable groundwater 
volume.

• Multi-layer perceptron (MLP): This is a neural network composed 
of three main components: an input layer, one or more hidden layers, 
and an output layer. Each layer is composed of neurons, and every 
neuron from one layer is connected to every neuron of the next one. 
Between each layer, the data is transferred to the next one through a 
linear transformation, introducing weights and biases, and at each 
neuron, the data is transformed once more through an activation 
function. One MLP is developed for Classification for the motor- 
pump stoppage forecasting model and one for Regression for the 
prediction model for the abstractable groundwater volume.

Fig. 2 provides a block diagram illustrating the overall workflow of 
the emulator models. The input and output data for each model are 
shown. It is worth noting that, to reduce the problems’ complexity, some 
input parameters are aggregated into “macro-parameters,” such as the 
quadratic losses term λ (which adds together the borehole losses, the 
linear pipe losses, and the junction losses), and the well function 

2 This assumption is supported by an analysis conducted on 300 randomly 
selected locations where the physics-based model returns a stoppage. Indeed, 
the motor-pump was observed to stop at the maximum solar power for all of 
these 300 locations.
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coefficient Wc. The expressions of the macro-parameters are provided in 
Fig. 2, in the “Input data” panel. Also, from Eq. (2), it can be observed 
that, as the static water level Hb,s increases, the power law relationship 
approaches linearity, regardless of other input parameters. This occurs 
because the non-linear effects associated with drawdown and losses 
become negligible when the static water level increases. Conversely, 
when Hb,s is lower, the deviation from linearity increases, though this 
effect may be moderated by a high transmissivity. Thus, to simplify the 
prediction model for abstractable groundwater volume, the model is 
divided into seven sub-models based on static water level values: from 
0 to 10 m, 10 to 20 m, 20 to 30 m, 30 to 40 m, 40 to 50 m, 50 to 100 m, 
and 100 to 300 m (see Fig. 2). This approach prevents each sub-model 
from being overly complex and allows more focus on either the linear 
or non-linear aspects of the problem. Consequently, stating that an 
“RFR” (resp. GBR, resp. MLP) is applied implies that each of the seven 
sub-models corresponds to an RFR (resp. GBR, resp. MLP).

The models have been selected as they are considered state-of-the-art 
in the field of machine learning and have been used for energy systems 
and in hydrology. For instance, MLP can be used for solar production 
forecasting [74,75], and for studying variations in groundwater levels in 
India [76,77]. Decision tree-based algorithms (e.g., Random Forest and 
Gradient Boosting) have also been utilized for predicting groundwater 
levels [78,79], but also for estimating groundwater recharge [80,81], as 
well as for forecasting streamflow [82,83]. They can also be used for 
fault detection in PV systems [84], or detection of cleaning intervention 
on PV modules [85]. Each of these models requires tuning several 
hyperparameters, including the optimization algorithms, the loss func
tions, the number of layers and neurons and the activation functions 
specifically for the MLPs, and the number of decision trees specifically 
for the RFs and GBs. In this study, the PyTorch library is used to 
implement the MLPs [86], and the scikit library [87] is used to imple
ment the RFs and the GBs within a Python environment. Hyper
parameters have been determined through fine-tuning by hand and are 
listed in Supplementary note 2 (see Appendix A). In summary, the MLPs 
comprised 3–4 hidden layers with 50 neurons per layer and ReLU acti
vation functions (Sigmoid or Quantile output), and were trained over 
1000–1500 epochs using the Adam optimizer. The RF models were 
configured with 20–30 trees, and the GB models with 200 trees, the 

latter using binary cross-entropy or quantile loss functions depending on 
the target variable.

2.4.2. Training and validation data
To incorporate the outputs of the physics-based model into the 

emulator development process, the physics-based model is first run 
using random values for the input location-dependent data (except for 
the irradiance on the plane of the PV modules GPV and the 2 m tem
perature Ta) and for the design parameters, uniformly selected from 
literature-based ranges deemed realistic. The outputs of the physics- 
based model are then used to train and validate the emulators, with 
the aim of reproducing the model behavior for the same inputs. Note 
that the selection of each input location-dependent data and design 
parameters is made to ensure a consistent set of parameters. For 
instance, even though the pumping depth is randomly selected from a 
wide range (see Table 2), it is always between the static water level Hb,s 

and the static water level plus the saturated thickness Hb,s + Hst. For the 
irradiance on the plane of the PV modules GPV and the 2 m temperature, 
to ensure large and realistic datasets, the values covering the African 
continent and the ones covering the IGB (see Table 1) were used. Thus, 
the physics-based model is run using real irradiance and temperature 
values along with random input location-dependent data and design 
parameters, producing hourly flow rate data. These datasets provide 
information for 45,600 locations with hourly data throughout an entire 
year. The literature-based ranges considered for each input location- 
dependent data and design parameters are listed in Table 2. Training 
and validating the emulator models across such broad ranges aims to 
enable the development of emulators that are not only suitable for our 
datasets but can also be applied in other contexts. In addition, although 
we use a single year of data, the spatial coverage for the training and 
validation includes a large number of pixels spanning diverse meteo
rological conditions, thus capturing a range of meteorological condi
tions that one might encounter at a single site over multiple years. This 
supports the robustness and generalizability of the emulator for multi- 
year planning.

It is worth noting that, since 7 ranges of static water level Hb,s are 
considered for the prediction model for abstractable groundwater vol
ume (see Fig. 2), the physics-based model is run 8 times for the 45,600 

Fig. 2. Block diagram of the emulator models to simulate the pumping capacities of a photovoltaic groundwater pumping system. *: Input data only used for the 
prediction model for abstractable groundwater volume. The other input data are used for both models.
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instances. Indeed, the first run covers static water levels from 0 to 300 m 
to generate training and validation datasets for the motor-pump stop
page forecasting model. It is then run seven more times, each time for a 
specific static water level range (e.g., 0–10 m, 50–100 m), while keeping 
all other parameter ranges unchanged. These additional runs generate 
training and validation datasets for each sub-model of the prediction 
model for abstractable groundwater volume.

When predicting motor-pump stoppage, the initial dataset presented 
an imbalance, as the motor-pump stopped in only ~25 % of instances. 
To address this imbalance and avoid introducing bias into the model 
training, the dataset when predicting motor-pump stoppage was 
reduced to make it more balanced, such that motor-pump stoppages 
occur in ~50 % of the instances. In contrast, when predicting the 
abstractable groundwater volume when the motor-pump does not stop, 
the dataset was treated differently. In this case, all instances where the 
motor-pump stops were completely removed. Finally, the models are 
trained with 70 % of the instances (chosen randomly) and validated on 
the remaining 30 %. This hold-out validation ensures that the validation 
is performed on data not seen during training. It applies to all types of 
data considered, including the meteorological data.

3. Results

3.1. Emulator models statistics

In this section, results are given for the validation datasets (see 
Section 2.4.2).

Motor-pump stoppage forecasting model: The confusion matrixes 
for each fine-tuned classification model (see the value of each hyper
parameter in Supplementary note 2, in Appendix A) are shown in Fig. 3. 
While the MLP is worse than the other 2, the confusion matrixes of the 
RFC and the GBC show similar results with ~96 % of instances correctly 
classified. Nevertheless, it is worth noting that in the context of effi
ciently sizing a PVGWPS, it is preferrable to predict that the motor-pump 
stops when it actually does not, than predicting that the motor-pump 
does not stop while it actually does. In this context, the GBC model 
appears to be the most appropriate model to detect motor-pump stop
page, as it has the lowest occurrence of the “predicted no-stop/true stop” 
error (93 occurrences over 6572 simulated cases). Note that it takes each 
model less than 0.02 s to classify the 6572 simulated cases.

Even though the training process of the GBC may appear as a black- 
box, a feature from the scikit-learn library allows to calculate the 
“importance” of each input variable on the predicted results, i.e., how 
much the GBC model relies on each input variable [105]. Importance is 
calculated as a numerical value, normalized between 0 and 1. The closer 
it is to 1, the more important it is. Transmissivity is found to be the most 
important parameter (importance of 0.65), which is logical as it is one of 
the main factors influencing the drawdown [56]. The adjusted pumping 
depth Hp-Hb,s also proves to be relatively important (importance of 0.2), 
which is expected as it represents the physical limit for the drawdown. 
Finally, while the static water level, as well as the maximum power 
supply, have non-negligible importance (both importances around 
0.07), the other parameters contribute insignificantly. Therefore, these 

findings help in building confidence in the GBC model’s training 
process.

Prediction model for abstractable groundwater volume: To 
verify the prediction results, the abstractable groundwater flow rates 
estimated by the emulators were compared with the ones estimated by 
the physics-based model using two complementary indicators: the co
efficient of determination (R2) and the normalized root mean square 
error (NRMSE). R2 measures how well the emulator reproduces the 
variations of the physics-based model’s outputs, by comparing the pre
diction errors with the natural variability of the physics-based results. 
The NRMSE evaluates the root mean square of the differences between 
the results of the physics-based model and the emulators, normalized by 
the mean value of the non-zero abstractable groundwater flow rates 
estimated by the physics-based model. Together, these metrics indicate 
how accurate the emulator’s predictions are (with values of R2 closer to 
1 and lower NRMSE values indicating better performance). The 
computation time to predict the final abstractable groundwater flow rate 
time series is also provided as the main goal of the emulator models is to 
reduce the computation time of the physics-based model. It is worth 
noting that the results for the three models (RFR, GBR, and MLP), which 
predict the power law regression coefficients of the relationship between 
power supply and the abstractable groundwater flow rate time-series, 
are presented after the final calculation of the abstractable ground
water flow rate time-series. This means that the R2 and NRMSE metrics 
are calculated for the abstractable groundwater flow rate time-series, 
not for the power law regression coefficients. Additionally, the given 
computation times account for the time needed to apply the power law 
to the power supply time-series.

The results of each fine-tuned model (see the value of each hyper
parameter in Supplementary note 2, in Appendix A) are shown in 
Table 3. For each model, the reported values represent the mean values 
obtained across the seven sub-models (see Fig. 2). However, the con
clusions drawn in this section remain applicable to each individual sub- 
model, as their results are consistent with the mean values.

The RFR stands out as the best model to predict the groundwater 
volume abstractable by a PVGWPS with the best R2 and NRMSE values. 
Although the MLP is the fastest model, the difference in absolute 
computation time compared to the RFR is relatively small (only a 0.3 s 
difference compared to a physics-based model which originally takes 
hours). Therefore, the RFR has been chosen as the best overall model to 
forecast the groundwater volume abstractable by a PVGWPS.

Once again, a feature from the scikit-learn library enables the 
calculation of each input variable’s “importance” in the predicted 

RFC
Predicted 
no-stop

Predicted 
stop

True no-
stop

3049 200

True 
stop

158 3165

GBC
Predicted 
no-stop

Predicted 
stop

True no-
stop

3022 196

True 
stop

93 3261

MLP
Predicted 
no-stop

Predicted 
stop

True no-
stop

2681 568

True 
stop

161 3162

Fig. 3. Confusion matrices of the RFC (Random Forest Classifier), the GBC (Gradient Boosting Classifier), and the MLP (Multi-Layer Perceptron).

Table 3 
Quantitative results of each emulator regression model for predicting the 
groundwater
volume abstractable by a photovoltaic groundwater pumping system.

R2 NRMSE Computation time (s)

RFR 0.997 3.46 % 2.27
GBR 0.983 8.52 % 2.27
MLP 0.992 5.79 % 1.97
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results, indicating the extent to which the RFR models depend on each 
variable. The mean and maximum power supply, along with the static 
water depth, transmissivity, and quadratic losses, logically emerge as 
the most influential parameters in predicting the groundwater volume 
abstractable by a PVGWPS. Nevertheless, their relative importances are 
varying with the static water level range considered (see Fig. 2). The 
other parameters have negligible impact.

3.2. Detailed results for one location

Based on the results from the previous Section, the combination of 
the GBC (for predicting motor-pump stops) and of the RFR (for pre
dicting abstractable volume) is considered in the rest of the article. This 
combination is now applied to the real input location-dependent data 
and fixed design parameters (detailed in Supplementary table 1, in 
Appendix A) to predict the groundwater volume abstractable by a 
PVGWPS. Before showing averaged results at large-scale (see Section 
3.3), this section describes results for one randomly selected location. An 
interesting aspect of working with random forest is the ability to use the 
central limit theorem to also obtain the confidence intervals of the 
model [106]. The central limit theorem states that, assuming the indi
vidual decision trees within the Random Forest are independent and that 
the number of trees is sufficiently large (20 trees are used here, see 
Supplementary note 2, in Appendix A), the average prediction from the 
RFR model follows a normal distribution. This means that confidence 
intervals can be computed around the predicted values. In practice, this 
allows estimates of the uncertainty of the model’s output, providing a 
more robust interpretation of the results.

Therefore, Fig. 4 illustrates the time-series of the groundwater flow 
rate abstractable by a PVGWPS of 3000 Wp throughout the first day of 
the year at location: latitude: − 29◦, longitude: 28.28◦ (Lesotho). Note 
that no motor-pump stop was predicted beforehand by the GBC for this 
location. This location has been selected as both its transmissivity and 
static water level are low (3.5⋅10− 5 m2/s and 7 m respectively), making 
it suitable for evaluating the emulator’s robustness under conditions 
that deviate from the central ranges. In Fig. 4, the blue line represents 
the abstractable groundwater flow rate estimated by the physics-based 
model, the orange-dotted line represents the abstractable groundwater 
flow rate predicted by the emulator, and the grey zone is the confidence 
interval of the emulator at 95 %. Although the emulator does not 
perfectly match the physics-based solution, the latter remains within or 
close to the confidence interval. An additional analysis is provided in 
Supplementary note 3 (see Appendix A), where we compare both the 
large-scale physics-based and emulator models to field data from an 
installed PVGWPS in Burkina Faso.

3.3. Large-scale results

Fig. 5 illustrates the annual mean daily groundwater volume 
abstractable by a PVGWPS of 3000 Wp across Africa and the Indian IGB. 
Fig. 5a and d show the results of the physics-based model across Africa 
and the Indian IGB respectively. The chosen design parameters to obtain 
these maps are listed in Supplementary Table 1 (see Appendix A). 
Figs. 5b and e show the results of the emulator across Africa and the 
Indian IGB respectively. Finally, Figs. 5c and f show the absolute relative 
difference between the physics-based model and the emulator across 
Africa and the Indian IGB respectively. It is important to note that the 
figures relative to the physics-based model do not show results when the 
motor-pump is predicted to stop to facilitate the comparisons. Never
theless, the physics-based model is able to calculate the groundwater 
abstractable volume even though the motor-pump does stop (as done for 
instance to compute the emulator model statistics, see Fig. 3 in Section 
3.1).

With regard to the motor-pump stoppage forecasting model, the 
comparison of Fig. 5a and b and the one of Fig. 5d and e underscore the 
efficacy of the emulator in predicting motor-pump stoppage due to 

drawdown reaching the pumping depth. Across Africa, the forecasting 
model misclassifies fewer than 1 % of locations. At locations where the 
transmissivity is low (3.5⋅10− 5 m2/s), the forecasting model mis
classifies only 0.68 % of locations. This highlights the strong perfor
mance of the GBC, even where the physics-based model deviates from 
linearity. Across the Indian IGB, the forecasting model does not 
misclassify any locations.

With regard to the abstractable groundwater volume estimated by 
the physics-based model, the comparison of Fig. 5a and d highlights the 
relatively higher pumping capacity in the Indian IGB compared to Af
rica. This difference can primarily be attributed to the comparatively 
lower static water levels in the Indian IGB, as well as to the higher 
transmissivity values observed in this region. Thus, according to the 
physics-based model, the median daily groundwater volume abstract
able by a 3000 Wp across Africa is 28 m3/day, ranging from 6 m3/day to 
198 m3/day, whereas the corresponding value for the Indian IGB is 158 
m3/day, with a range of 32 m3/day to 236 m3/day.

With regard to the abstractable groundwater volume estimated by 
the emulator, comparisons with the physics-based model highlight the 
high performance of the emulator. For the African dataset, the NRMSE 
between the physics-based model and the emulator is 5.06 %, with an R2 

value of 0.996.3 The absolute relative difference between the physics- 
based and emulator models for the groundwater volume abstractable 
by a 3000 Wp across Africa ranges from 10− 4 % to 42 %, with 95 % of 
locations falling between 0.11 % and 8.9 %. At locations with a trans
missivity of 3.5⋅10− 5 m2/s, the median absolute relative difference is 
5.1 %, showing that the emulator remains accurate even where the 
physics-based model is less linear. Finally, the emulator estimates the 
pumping capacity of the 3000 Wp PVGWPS for the 40,100 locations 
across Africa in just 17 s (including less than 0.2 s for the GBC which 
predicts motor-pump stops) achieving a ~ 1900-fold reduction in 
computation time compared to the physics-based model.

For the Indian IGB dataset, the NRMSE between the physics-based 
model and the emulator is 3.69 %, with an R2 value of 0.995.4 The ab
solute relative difference between the physics-based and emulator 
models for the estimated groundwater volume across the Indian IGB 
ranges from 0.02 % to 10.7 %, with 95 % of locations falling between 
1.1 % and 9.1 %. At locations with a low static water level (1 m), the 
median absolute relative difference is 4.7 %, further confirming the 
strong performance of the emulator even where the physics-based model 
exhibits more pronounced nonlinearity. Finally, the emulator estimates 
the pumping capacity of the 3000 Wp PVGWPS for the 5500 locations 
across the Indian IGB in just 3 s (including less than 0.2 s for the GBC), 
again demonstrating a computation time reduction (by a factor of 
~1600).

The difference between the computation-time reductions obtained 
for Africa (40,100 locations, reduction of ~1900) and for the Indian IGB 
(5500 locations, reduction of ~1600) highlights that the computation- 
time reduction factor depends on the number of studied locations. To 
characterize this dependency more comprehensively, Supplementary 
fig. 4 in Appendix A provides a runtime scaling curve showing how the 
computation time reduction varies with the number of studied locations.

Similar results as Fig. 5 are shown for 4 other PVGWPS sizes: 100, 
1000, 5000, and 10,000 Wp in Appendix A (supplementary figs. 5 to 8). 
In addition, Supplementary fig. 9 shows the lower and upper bounds of 
the confidence interval of the daily water volume abstractable by a 3000 
Wp PVGWPS estimated by the emulator. The physics-based solution falls 
within the 95 % confidence interval for 77 % and 91 % of locations of the 

3 For comparison, assuming a single global regressor model, rather than the 
seven regressor sub-models used in this study (see Figure 2) results in an 
NRMSE of 14.1 % and an R2 of 0.970 for the African dataset.

4 For comparison, assuming a single global regressor model, rather than the 
seven regressor sub-models used in this study (see Figure 2) results in an 
NRMSE of 13.0 % and an R2 of 0.940 for the Indian IGB dataset.
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African and Indian IGB datasets respectively. At locations where it lies 
outside, the median absolute relative difference between the physics- 
based model and the nearest bound is 1.57 % and 1.67 % for the Afri
can and Indian IGB datasets respectively. Thus, even at locations where 
the physics-based results are not within the confidence interval, the 
deviation from it remains small. Finally, Supplementary note 4 in Ap
pendix A presents a sensitivity analysis that quantifies how selecting 
mid-range values for hydrogeological parameters (see Section 2.2) in
fluences the pumpable groundwater volume estimated by the large-scale 
physics-based model.

4. Discussion

4.1. Influence of groundwater levels

The results of this study underscore the linkage between the 
groundwater volume abstractable by an off-grid PVGWPS and the static 
water table. To estimate the abstractable groundwater volume, the static 
water table is assumed to remain constant during the whole year in this 
study, due to the lack of data. However, seasonal fluctuations in the 
water table are expected, notably across the Indian IGB, due to its al
luvial geology and the pronounced differences between the dry and 
monsoon seasons [47,107,108]. Such seasonality can impact the esti
mations of the abstractable groundwater volume. With static water 
levels typically lower during the dry season and higher during the wet 
season [108], the evaluation of the physics-based model in this article 
tends to overestimate the PVGWPS potential for the dry season and 
underestimate it for the wet season. It should be noted, however, that if 
the data are available, there is no technical difficulty in evaluating the 
model using time series of static water depth as input. The emulator 
could for instance be applied iteratively for different static water levels. 
The long-term viability of PVGWPSs could also be explored by analyzing 
future groundwater conditions and demands in the context of climate 
change [109]. Thanks to their strongly reduced computation time, the 
proposed emulator models can facilitate these long-term analyses of 
PVGWPS over their lifespan (~20 years [66]) and for a large number of 

scenarios.

4.2. Considerations about sustainability

The primary emphasis in this article has been on estimating the 
pumping capacity of PVGWPSs. However, even though African and In
dian IGB’s high photovoltaic and groundwater potentials make 
PVGWPSs attractive for meeting both current and future water demands 
in each region, the uncontrolled deployment of these systems can also 
have negative impacts on groundwater resources that extend beyond 
their potential benefits [110,111]. While they can reduce greenhouse 
gas emissions, when they are improperly implemented and sized, they 
may indeed exacerbate groundwater depletion by impeding optimal 
water utilization practices [112–114]. This, in turn, could notably 
worsen an already preoccupying groundwater situation in the western 
part of the Indian IGB [109]. Thus, further research should also focus on 
studying the sustainability of such systems with regards to groundwater 
resources. Future works could for instance quantify the renewable 
groundwater resources across the studied regions, particularly consid
ering the impact of climate change. This research should take into 
consideration the role of groundwater resources at sustaining ecosyste
mic services [115]. It should also account for the linkage between 
groundwater recharge and groundwater abstraction [116], which will 
likely evolve as the climate changes. Incorporating these processes into 
the sizing of PVGWPSs would help ensure the long-term sustainability of 
the systems throughout their life cycle.

The sustainability of PVGWPSs is not only determined by technical 
and environmental considerations, but also by the social and institu
tional contexts within which they are deployed. Governance structures, 
regulatory mechanisms, incentives and social conditions all influence 
how technology is adopted and groundwater managed [117]. For 
instance, a case study from rural Mali highlighted that solar water kiosks 
could improve both water access and revenue generation without 
increasing groundwater abstraction [118]. Conversely, subsidy of solar- 
powered irrigation in Nepal led to increased groundwater use [3]. To 
identify and ultimately manage and mitigate such risks, the adoption of 

Fig. 4. Time-series of the groundwater flow rate abstractable by a photovoltaic groundwater pumping system of 3000 Wp throughout the first day of the year for the 
location (latitude: -29◦; longitude: 28.28◦). The blue line represents the abstractable groundwater flow rate estimated by the physics-based model, the orange-dotted 
line represents the abstractable groundwater flow rate predicted by the emulator, and the grey zone is the confidence interval of the emulator at 95 %. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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PVGWPSs must be accompanied by policy safeguards and widespread 
monitoring. In India, for example, new PVGWPS installations are pro
hibited in areas where groundwater resources are already overexploited 
[26]. Moreover, PVGWPS deployment can be coupled with remote 
monitoring tools to support real-time groundwater management [26].

4.3. Modeling limitations

The principal limitation of this study stems from the inherent chal
lenges of evaluating a model at an extensive spatial scale. Both large- 
scale groundwater and irradiance input data are estimations, lacking 

Fig. 5. Estimated daily water volume abstractable by a 3000 Wp photovoltaic groundwater pumping system (PVGWPS) (m3/day), based on the physics-based model, 
across Africa (a) and the Indian IGB (d). Estimated daily water volume abstractable by a 3000 Wp PVGWPS (m3/day), based on the emulator, across Africa (b) and the 
Indian IGB (e). Absolute relative difference between the physics-based and emulator models for the water volume abstractable by a 3000 Wp PVGWPS (%) across 
Africa (c), and the Indian IGB (f). Grey pixels correspond to locations where the motor-pump is predicted to stop due to water level reaching the pumping depth.

G. Zuffinetti et al.                                                                                                                                                                                                                               Applied Energy 406 (2026) 127268 

11 



specificity for local resources. This limitation is particularly relevant for 
data related to static water depth, transmissivity, and saturated thick
ness, where significant variations may occur over short distances [119]. 
Consequently, the outcomes of this large-scale analysis should be 
considered approximate, providing an overview and serving as a com
plement to more precise local analyses. Given the potential strong local 
variations in hydrogeological parameters impacting abstractable vol
ume [119], a coordinated and detailed local investigation and moni
toring of groundwater resources is an essential component of the 
deployment of PVGWPSs [120,121].

Another limitation of the study is the analysis of model uncertainties, 
especially when dealing with machine-learning tools. Although machine 
learning can predict complex phenomena with very good results, the 
models often operate as “black boxes”, making it difficult to understand 
how uncertainties propagate through the model. While this question of 
model uncertainty has been briefly addressed via the introduction of 
confidence intervals thanks to the specific architecture of Random 
Forests, there is a whole strand of machine learning research aimed at 
making machine learning models interpretable. One example is the rise 
of physic-informed neural networks, which aim to incorporate physical 
principles into learning models, and thus could help to better understand 
how uncertainties propagate into the models [122].

5. Conclusion

A large-scale, physics-based, dynamic model that uses publicly and 
freely available groundwater and irradiance data to estimate the 
pumping capacities of PVGWPSs across Africa and the Indian IGB is 
proposed. The model, which accounts for the different components of 
the PVGWPS, simulates the evolution of the pumping flow rate with a 
one-hour time step during a year. Using this model, the abstractable 
volume by a PVGWPS of 100, 1000, 3000, 5000 and 10,000 Wp is 
estimated for all locations across the 2 regions, with the results for 3000 
Wp particularly described. For a given PVGWPS size, results indicate 
higher abstractable volumes in the Indian IGB than across Africa, 
notably due to lower static water depths and higher transmissivity 
values across the Indian IGB. Therefore, the average annual daily 
abstractable volume per PVGWPS of 3000 Wp across Africa is estimated 
to 28 m3/day, ranging from 6 m3/day to 198 m3/day, whereas the 
corresponding value for the Indian IGB is 158 m3/day, with a range of 32 
m3/day to 236 m3/day.

A drawback of this physics-based model is its lengthy computation 
time: it requires ~9 h to estimate the pumping capacities of PVGWPSs 
across the 40,100 locations of the African dataset, and ~ 1.5 h for the 
5500 locations of the Indian IGB dataset. This notably renders the model 
unsuitable for solving large-scale optimal dispatch problems accounting 
for uncertainty, which requires thousands of model evaluations. Such 
tasks indeed require several thousand iterations of the model. Therefore, 
machine-learning based emulator models are developed to accelerate 
the physics-based model. The emulator models are built to ensure their 
applicability in other contexts. Two models are developed: one model to 
predict whether the PVGWPS is likely to stop due to the water level 
declining below the operational threshold when pumping; and one 
model to predict the groundwater volume abstractable when the 
PVGWPS is not likely to stop. The models were trained and validated 
through data augmentation.

Compared to a Random Forest Classifier and a Multi-Layer percep
tron, the Gradient Boosting Classifier is identified as the most accurate 
model for predicting motor-pump stoppages, with only 4 % of errors. It 
also demonstrates the lowest occurrence of the “predicted no-stop/true 
stop” error, the most critical error in the study’s context. The model 
mainly focuses on the transmissivity and the pumping depth values, 
which literature also identifies as important determinants of pump 
stoppages. When applied to the African dataset, the model misclassifies 
less than 1 % of locations, and misclassifies no locations when applied to 
the Indian IGB dataset.

For the prediction of abstractable groundwater volumes, the Random 
Forest Regressor is found to be the best model when compared to a 
Gradient Boosting Regressor, and a Multi-Layer perceptron. Applied to 
the African (resp. Indian IGB) dataset, the combination of the GBC for 
classification and RFR for regression demonstrates high performances 
with an R2 of 0.996 (resp. 0.995), and a NRMSE of 5.06 % (resp. 3.69 %), 
while reducing the computation time by a factor 1900 (resp. 1600) 
compared to the physics-based model.

Despite its limitations, this study can help identify regions where 
PVGWPSs are most promising. In particular, the study provides valuable 
information about the PVGWPS performance in terms of abstractable 
groundwater volumes at different locations. Furthermore, it shows how 
machine-learning based models can accelerate physics-based models for 
PVGWPS without significantly reducing the quality of estimations. This 
makes them better suited to address certain complex challenges, such as 
the optimal positioning and pre-sizing of PVGWPSs at large (e.g., 
regional, country) scale, while accounting for several possible climate 
scenarios and their associated uncertainties. Still thanks to the reduced 
computation time, such machine-learning tools could also be used to 
study the potential impacts of a large scale deployment of PVGWPSs on 
the groundwater resources. Combined with sustainability analyses (not 
examined in this study), these insights could support decisions for large- 
scale investments in PVGWPS projects, which could be of interest to 
governments and funding organizations. Additionally, the proposed 
models can be used as initial screening tools to estimate the pumping 
performance of PVGWPSs for water sector practitioners, such as local 
companies or NGOs.
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contribution à la recharge de la nappe du Haouz (bassin du Tensift, Maroc). PhD 
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