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Abstract

The Arctic is warming rapidly, with atmospheric rivers (ARs) amplifying ice melt, extreme
precipitation, and abrupt temperature shifts. Detecting ARs in the Arctic remains challeng-
ing, because AR detection algorithms designed for mid-latitudes perform poorly in polar
regions. This study introduces a regional deep learning (DL) image segmentation model
for Arctic AR detection, leveraging large-ensemble (LE) climate simulations. We analyse
historical simulations from the Climate Change in the Arctic and North Atlantic Region and
Impacts on the UK (CANARI) project, which provides a large, internally consistent sample
of AR events at 6-hourly resolution and enables a close comparison of AR climatology
across model and reanalysis data. A polar-specific, rule-based AR detection algorithm was
adapted to label ARs in simulated data using multiple thresholds, providing training data
for the segmentation model and supporting sensitivity analyses. U-Net-based models are
trained on integrated water vapour transport, total column water vapour, and 850 hPa
wind speed fields. We quantify how AR identification depends on threshold choices in
the rule-based algorithm and show how these propagate to the U-Net-based models. This
study represents the first use of the CANARI-LE for Arctic AR detection and introduces a
unified framework combining rule-based and DL methods to evaluate model sensitivity
and detection robustness. Our results demonstrate that DL segmentation achieves robust
skill and eliminates the need for threshold tuning, providing a consistent and transferable
framework for detecting Arctic ARs. This unified approach advances high-latitude mois-
ture transport assessment and supports improved evaluation of Arctic extremes under
climate change.

Keywords: atmospheric rivers; Arctic; integrated water vapour transport; deep learning;
image segmentation; U-Net; large-ensemble climate model simulations; ERA5; MERRA-2

1. Introduction

The Arctic is warming nearly four times faster than the global average [1], a phe-
nomenon known as Arctic amplification. Rising temperatures increase atmospheric mois-
ture, driving enhanced precipitation, accelerated sea-ice loss, and more frequent extremes
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with global repercussions. Among the key drivers of these changes are atmospheric rivers
(ARs), which are long, narrow corridors of strong horizontal water vapour transport typi-
cally associated with the low-level jet ahead of the cold front in an extratropical cyclone,
as defined by the American Meteorological Society [2].

ARs play a key role in transporting moisture into the Arctic and are frequently as-
sociated with episodes of enhanced precipitation, winter warm spells, and rain-on-snow
events. Although ARs occur much less frequently in the Arctic than their mid-latitude
counterparts [3], they contribute disproportionately to Arctic moistening, accounting for
approximately 90% of poleward moisture transport to the Arctic [4]. Lee et al. [5] demon-
strated that Arctic amplification during 19892009 was primarily driven by enhanced
downward longwave radiation linked to increased moisture transport via Arctic ARs
(AARs). Luo et al. [6] further showed that North Atlantic sea surface temperature (SST)
anomalies and high-latitude blocking facilitate warm, moist air intrusions into the Arctic,
particularly in the Barents-Kara Seas, amplifying downward infrared radiation and acceler-
ating sea-ice loss. Studies based on reanalysis and satellite-era observations indicate that
AARs have exhibited increasing frequency and intensity in recent decades. For example,
Wang et al. [4] show that AARs have become more frequent and intense during summer
and have contributed approximately 36% of the observed increase in Arctic atmospheric
moisture since 1979. Similarly, Zhang et al. [7] report that early-winter ARs have increased
in occurrence and have slowed sea-ice recovery in the Barents—Kara Seas, accounting for
roughly one-third of the regional winter sea-ice decline. Consistent with these findings,
Ma et al. [8] show that wintertime extreme warming events in the high Arctic occur almost
exclusively under atmospheric river conditions and have increased in frequency, duration,
and intensity over the past four decades, concurrent with wintertime warming of about
0.8 °C per decade. These findings highlight that the increased moisture import from the
lower latitudes plays a pivotal role in Arctic energy balance and cryosphere change.

Beyond their climatological representation, AARs critically influence Arctic sea-ice
melt and ice-sheet mass balance, with far-reaching impacts on ecosystems, livelihoods,
and infrastructure across polar regions [9,10]. For instance, Gong et al. [11] showed that
AARs have emerged as a major driver of sea-ice thinning since 2000, accounting for ap-
proximately 44% of total melt through a combination of pre-entry warming, dynamic and
thermodynamic impacts during peak intensity, and a prolonged thermodynamic decay
phase. Similar to Mattingly et al. [12], their rule-based detection applied a climatological
vertically integrated water vapour transport (IVT) percentile threshold to identify anoma-
lous moisture transport. However, to isolate strong, persistent, and spatially coherent
events most relevant to sea-ice impacts, Gong et al. [11] adopted a substantially higher
absolute IVT threshold of 400 kg m~! s~! and imposed a minimum event duration of 24 h.
By contrast, the high-latitude AR algorithm by Mattingly et al. [12] employed a lower raw
IVT threshold of 150 kg m~! s~1, allowing for the inclusion of weaker and shorter-lived
filaments. Together, these studies underscore the growing role of AARs, the importance
of accurate representation given methodological sensitivities, and the need for a robust
detection framework.

Despite their importance, AARs remain poorly characterised. It is worth noting that
the AMS definition of AR is qualitative rather than quantitative, leading to differences
among AR detection algorithms that vary in their interpretation. Furthermore, most AR
detection algorithms were developed for mid-latitudes; they perform poorly in polar
environments, where atmospheric structure differs, storms are more transient, and ob-
servational coverage is limited [7,12,13]. Results from the Atmospheric River Tracking
Method Intercomparison Project (ARTMIP) highlight substantial discrepancies among
widely used rule-based methods, with particularly large uncertainty in the Arctic [13,14].
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For example, comparisons across multiple detection algorithms show that estimated AAR
frequency, duration, and intensity can differ by up to a factor of five, underscoring major
inconsistencies in AR identification in polar regions [15].

Similar challenges have been documented in the Antarctic, where AR detection is
likewise sensitive to algorithm design and threshold choice [16]. Some rule-based ap-
proaches attempt to address these issues by adapting IVT thresholds or applying additional
geometric constraints for polar regions [12,17,18]. However, even with such adaptations,
detected AAR characteristics remain sensitive to methodological choices, particularly for
weaker or short-lived events. Together, these findings emphasise the need for coherent,
region-specific approaches to AAR identification in order to robustly quantify their role in
Arctic moisture transport, surface energy balance, and cryosphere change.

Deep learning (DL) models have recently emerged as a promising alternative for
AR detection. Segmentation models such as ARDetect, based on a U-Net architecture,
have achieved strong performance in global applications when trained on ARs labelled
by rule-based algorithms [19,20]. Galea and Ma [21] compared multiple deep learning
architectures for AR prediction, demonstrating the growing potential of DL approaches
while also underscoring the importance of model choice and training data.

Recent advances in DL segmentation models highlight both opportunities and chal-
lenges for Arctic application. Table 1 summarises representative approaches, illustrating their
strengths and limitations. While these models have proven effective for global or mid-latitude
ARs, none have yet been designed or evaluated specifically for polar environments.

Table 1. Comparison of DL segmentation models for AR detection, highlighting strengths, limitations,
and degree of adaptation.

Model Strengths Limitations AR Use

ARDetect [19] Purpose-built; U-Net style; strong performance ~ No polar tuning Global detection

ARCNN (ARCI) [22]  Trained on ARTMIP consensus; reproducible No polar tuning Reanalysis-based detection
DeepLabV3+[23,24]  High accuracy; pretrained weights Not AR-specific; high memory demand ~ ClimateNet, general tasks
U-Net++ [25] Robust to sparse /noisy labels; modular Complex; limited climate use Potential for polar segmentation
HRNet [26] Maintains high-resolution features Rarely used in climate DL; complex Potential for polar segmentation

A major challenge in applying DL to detect AARs lies in the scarcity of high-quality
observational and labelled training data. Reliable ground-based and satellite observations
across the Arctic are also largely limited to the satellite era beginning in 1979 [7,13]. While
reanalyses such as ERA5 and MERRA-2 have been widely used to investigate ARs, relatively
few studies have examined how features are represented within climate model simulations.
Analyses of CMIP5 and CMIP6 ensembles reveal substantial inter-model spread in both the
frequency and spatial distribution of AARs, particularly during summer [27,28]. Espinoza
et al. [27] showed that although CMIP5 models broadly reproduce the intensification of
ARs under a warming climate, they exhibit large regional and seasonal inconsistencies.
Building on this, Zhang et al. [28] found that CMIP6 models tend to underestimate AAR
frequency over the North Pacific during winter but overestimate it over the North Atlantic
during summer, highlighting persistent uncertainties in modelled moisture transport into
the Arctic. The limited record and inconsistency among CMIP models restrict both the
ability to characterise AAR behaviour and the supply of consistent training samples for
supervised DL model development and evaluation.

Single-Model Initial-condition Large Ensemble (SMILE) climate datasets provide an
opportunity to address these challenges by offering physically consistent atmosphere—
ocean—ice coupled simulations tailored to study extreme events such as AARs. Such
datasets enable a more accurate learning of AR features in data-sparse regions, improving
both detection skill and uncertainty quantification. For example, Eyring et al. [29] showed
that SMILE-based datasets facilitate advanced machine learning for extreme-event detection
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and uncertainty estimation, while Higgins et al. [30] used a DL segmentation model to
track ARs in a high-resolution large-ensemble simulation, demonstrating the efficiency and
adaptability of this approach. In this study, a similar methodology is applied to investigate
ARs in the Arctic.

Here, we use the large-ensemble model simulations generated by the Climate Change
in the Arctic and North Atlantic Region and Impacts on the UK (CANARI) project to build a
framework for Arctic-focused AAR detection. Also, for the first time, this CANARI large
ensemble (CANARI-LE) is used to examine AARs in terms of the regional distribution,
seasonal variation, and sensitivity to threshold values. Specifically, we (i) leverage the
CANARI-LE as a regional, ensemble-rich resource for AAR analysis and sensitivity testing;
(ii) compare AAR climatology derived from the CANARI-LE with existing ERA5 and
MERRA-2 AAR catalogues to assess consistency across model and reanalysis data; and
(iii) develop and evaluate a U-Net-based segmentation model that removes the need for
threshold tuning while capturing high-latitude moisture transport structures. Together,
these contributions establish a unified, reproducible framework for AAR detection and
evaluation across models and observations.

2. Data and Methods

This study comprises three main components: preparation of physically consistent
predictor fields from a large-ensemble climate model, construction of an AAR label set
using a rule-based detector adapted for high latitudes, and development and evaluation of
a convolutional encoder—decoder segmentation model that performs grid-cell-wise AAR
detection. To explicitly assess how label definition propagates into DL behaviour, we
construct two AAR label sets (using the Default and Intermediate thresholds; Table 2) and
train two otherwise identical segmentation models on each set. We refer to these as the
Default and Intermediate models throughout.

Table 2. Threshold configurations evaluated for the rule-based AAR detector. IVT_Thresh is the abso-
lute IVT magnitude threshold (kgm~!s~1); IVT_PR_Thresh is a climatological percentile threshold;
min_num_grid_points is the minimum contiguous area; min_length is the minimum object length
(km); min_length_width_ratio is the minimum length-to-width ratio required for an object to be
considered filamentary; and v_poleward_cutoff_lat defines the latitude beyond which the poleward
flow criterion is relaxed (70° N).

Parameter Strictest Intermediate Default Most Permissive
IVT_Thresh 250 150 150 100
IVT_PR_Thresh (percentile) 95 90 85 85
min_num_grid_points 180 180 150 150

min_length 1500 2000 1500 1500
min_length_width_ratio 1.5 2.0 1.5 1.5
v_poleward_cutoff_lat (°N) 70 70 70 70

2.1. Datasets

We use the CANARI-LE, a newly released large-ensemble climate simulation, to train our
DL segmentation models. The CANARI-LE consists of outputs from the global HadGEM3-
GC3.1-MM climate model, configured identically to the CMIP6 HighResMIP experiments [31].
Studies have shown that HadGEM3-GC3.1-MM performs well in representing key circula-
tion features, including storm tracks and atmospheric blocking [32]. With forty ensemble
members, comparatively high resolution, and six decades of sub-daily output, the CANARI-
LE enables the study of high-impact weather systems and captures synoptic-scale variability
critical to Arctic moisture transport. This extensive and physically consistent dataset pro-
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vides thousands of AAR samples, forming an unprecedented basis for feature detection,
DL model training, and sensitivity testing.

More specifically, the dataset that we used is the CANARI-LE historical simulation,
which spans 1950-2014 using a 360-day calendar and follows the CMIP6 historical forcing
protocol, which prescribes observed changes in greenhouse gas concentrations, aerosols,
ozone, solar variability, volcanic eruptions, and land-use changes to ensure consistency
with past climate conditions [33]. A macro-initialisation produces five members, which are
then stochastically perturbed to generate eight members each for a total of forty members.
This method introduces ensemble spread in the ocean state, enabling the robust sampling
of internal variability and extreme events, e.g., AARs. The model employs an atmospheric
resolution of approximately 60 km and an ocean resolution of 0.25°, sufficient to resolve
synoptic-scale moisture transport. A 6-hourly output north of 40° N is used to capture
mid-latitude filaments that extend into the Arctic, as previous studies suggest that the
majority of poleward moisture transport originates from the eastern North Atlantic, with an
uptake maximum poleward of 50° N [34].

The atmospheric fields from the CANARI-LE are defined on the native N216 regular
latitude-longitude grid of HadGEM3-GC3.1, with an approximate horizontal resolution
of 60 km at mid-latitudes. As with any regular latitude-longitude grid, grid-cell area
varies with latitude, decreasing towards the pole. All analyses in this study are performed
on this native grid, and grid-cell-based statistics are, therefore, not equal-area measures.
However, because all threshold configurations and datasets are evaluated consistently on
the same grid, grid-cell counts provide a robust basis for comparing relative differences in
AR morphology and detection behaviour.

For independent benchmarking, we use two global reanalyses, ERAS5 [35] and MERRA-
2 [36]. ERA5, produced by the European Centre for Medium-Range Weather Forecasts,
assimilates a wide range of observations using a four-dimensional variational scheme in
the Integrated Forecasting System model, providing hourly atmospheric fields at 31 km
resolution from 1940 to the present. In this study, only the period since 1979 was used to
ensure consistency with the satellite-observation era and the availability of high-quality
moisture and wind fields. MERRA-2, from NASA’s Global Modeling and Assimilation
Office, employs the GEOS-5 satellite model with radiance assimilation to generate a hy-
drologically consistent global reanalysis from 1980 to the present. Both datasets provide
dynamically consistent moisture and wind fields widely used in AR studies.

2.2. Predictor Variables and Preprocessing

Five predictors were derived at each timestep: IVT magnitude, its zonal and meridional
components (ulVT, vIVT), total column water vapour (TCWV), and wind speed at 850 hPa.
IVT and its components follow the standard vertically integrated formulation [37] using the
available pressure levels in the CANARI-LE dataset (925, 850, 700, 600, 500, 300, 250, 200, and
50 hPa). The 850 hPa wind field was included as a predictor because of its strong association
with low-level moisture transport and orographic precipitation enhancement [38]. These
variables collectively describe the magnitude, direction, and thermodynamic environment of
moisture transport relevant to AARs.

All predictors were collocated on the CANARI-LE grid and temporally aligned with
the labels. To place variables on comparable scales while preserving spatial gradients, each
predictor was min—-max-scaled to the interval [0, 1] independently at every timestep, with a
small stabilising constant of 10~8 added to the denominator. Ensemble members 1-28 were
reserved for model training and 2940 for final testing.
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2.3. Rule-Based AAR Labels

AAR labels were generated using the algorithm by Mattingly et al. [12], adapted from
reanalysis to the CANARI-LE data structure and 360-day calendar. The procedure follows
the standard approach of identifying contiguous regions of high IVT that exceed both an
absolute value and a climatological threshold, followed by filtering based on geometric
criteria. North of 70° N, the directional constraint (parameter v_poleward_cutoff_lat) was
relaxed, meaning that features are not required to have poleward v-wind or vIVT. This
ensures that high-latitude filaments with zonal or equatorward moisture transport are
not excluded.

To examine the sensitivity of detected AARs to threshold choice, four configurations
were evaluated, ranging from permissive to strict (Table 2). The four configurations
were designed to represent qualitatively distinct regimes rather than a strictly monotonic
progression across all parameters. For DL experiments, two label sets were retained: (i) the
Default configuration, corresponding to that used by Mattingly et al. [12] for ERA5 and
MERRA-2 catalogues, and (ii) an Intermediate configuration that applies slightly stricter IVT
and geometric thresholds. The Default configuration generates frequent AAR detections,
providing many positive samples that support model training, but tends to over-identify
diffuse or implausible shapes. In contrast, the Intermediate configuration yields more
coherent and physically realistic AAR filaments but introduces stronger class imbalance,
with AAR grid cells comprising less than 3% of the dataset.

Because the CANARI-LE provides 40 members, offering more than 40 times the sam-
pling available from a single reanalysis, this large training base allows for the exploration of
stricter thresholds without compromising statistical robustness. Therefore, these two con-
figurations define complementary label regimes to assess how threshold design influences
segmentation performance. The corresponding models are referred to as Default (trained on
the more permissive labels) and Intermediate (trained on the stricter “intermediate” labels)
in the following sections.

2.4. Segmentation Model

A convolutional encoder-decoder network with U-Net-style skip connections [39]
was used for grid-cell-wise segmentation of AARs, following the design principles of
ARDetect [19]. The network ingests five predictor channels and produces a binary mask
of AAR presence at the native grid resolution. Skip connections transfer fine-scale spatial
information from the encoder to the decoder, which reconstructs the output mask by
upsampling and merging features across multiple scales.

2.5. Training Procedure

The model was implemented using a custom-built training pipeline. Each input
sample comprised five channels, IVT, ulVT, vIVT, TCWYV, and 850 hPa wind speed, paired
with a binary AAR mask (Figure 1). Data were supplied as 6-hourly NetCDF files and
divided into independent development (members 1-28) and test (members 29-40) subsets.

The model was trained to minimise a composite loss function, Ly, consisting of Dice
loss [40] and focal loss [41]:

‘Ctotal = ‘CDice + ﬁFocalr (1)
where 27 PG+
Lo —1— iLiGi T € 2
Dice Zipi+ZiGi+€ ( )
and
L¥ocal = _0‘(1 - Pt)ylog(Pt)- 3)
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where P and G denote the predicted and ground-truth masks, P; is the predicted probability
for the true class, a controls class weighting, and y adjusts the emphasis on difficult
examples. Using both loss functions helps the model capture AAR shapes more accurately
and prevents the abundant background grid cells from dominating the optimisation.

Hyperparameters were optimised using Ray Tune with the Asynchronous Successive
Halving Algorithm for early stopping [42]. Learning rate, dropout rate, number of convolu-
tional filters per layer, batch size, and focal loss parameters («, v) were tuned automatically.
Trials were evaluated on a dedicated validation set (a 20% random subset of the training
set), and training stopped when the Dice score did not improve for ten consecutive epochs
(with each epoch representing one complete pass through the training dataset). Learning
rates between 1 x 107° and 5 x 1074, dropout rates between 0.1 and 0.5, and batch sizes
between 8 and 32 were tested. All runs used GPU acceleration on the JASMIN cluster,
the UK’s collaborative data analysis environment for environmental science [43].

For each epoch, performance was evaluated using grid-cell-wise counts of true posi-
tives (TP), false positives (FP), and false negatives (FN). From these, the Dice score, precision,
and recall were computed:

. 2TpP . TP TP
Dice = TP+ EP L EN Precision = TP+ ED Recall = TPLEN 4)
where the Dice score was the principal optimisation criterion, and precision and recall were
used to quantify false-alarm control and detection sensitivity.

All experiments were run with fixed random seeds to ensure reproducibility. The final
model configuration, demonstrating consistent validation performance and numerical stability,
was selected for evaluation on the CANARI-LE. Training diagnostics were logged with
Weights & Biases [44], recording loss evolution, validation metrics, and sample predictions.

VT

Ground Truth Mask

850 HPa Wind Speed

Figure 1. Example model input comprising min—-max-scaled IVT, ulVT, vIVT, TCWV and 850 hPa
wind speed, paired with a binary AAR mask.

2.6. Evaluation Metrics and Testing

Grid-cell-wise comparisons between predictions and labels provided counts of true
positives, false positives, and false negatives. Evaluation metrics included the Dice score
for spatial agreement, precision for false-alarm control, and recall for missed detections.
An overprediction ratio, defined as the fraction of predicted AAR grid cells absent from
the labels, was used as a reliability measure. Spatial frequency maps of predictions and
residuals were also examined to identify systematic regional biases. These metrics allow
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for a direct comparison between the DL and rule-based detections across the CANARI-LE,
ERA5, and MERRA-2.

3. Results

This section presents the main findings from the rule-based and DL detection of AARs
in the CANARI-LE. The first part establishes the AAR climatology in the CANARI-LE
and compares it with ERA5 and MERRA-2 under identical rule-based logic. The second
examines how varying the detection thresholds affects AAR frequency and morphology.
The final sections evaluate segmentation model performance and the sensitivity of DL
detection to the definition of training labels.

3.1. Integrated Water Vapour Transport Bias in CANARI-LE

Before comparing AAR detections between datasets, it is useful to assess the represen-
tation of IVT in the CANARI-LE. The mean IVT from the CANARI-LE was compared with
the MERRA-2 and ERAS reanalyses for the period 2000-2014 (Figure 2). Spatial patterns
are broadly consistent across datasets, with maxima over the North Atlantic and North
Pacific corresponding to the major storm-track corridors. However, the CANARI-LE sys-
tematically underestimates IVT magnitude relative to both reanalyses, particularly north of
70° N and over Greenland and the central Arctic Ocean.

The seasonal climatologies show that this low-moisture bias is the strongest in summer
(JJA) and autumn (SON), when poleward moisture transport typically peaks. Modest
regional overestimations occur around the Greenland coast and northwest Alaska, which
may arise from differences in topographic resolution and the weaker representation of high-
latitude atmospheric blocking in the CANARI-LE. In reanalysis datasets, such blocking can
suppress meridional transport, whereas its underrepresentation in many climate models
can lead to biases in IVT magnitude and structure [45,46].

Recent work by Gao et al. [47] shows that increasing model resolution substantially
improves the simulation of atmospheric blocking, particularly for long-lived events ex-
ceeding ten days, through improved representation of baroclinic eddies, SST gradients,
and orographic effects. Given that the CANARI-LE employs an intermediate resolution
(approximately 60 km for the atmosphere and 0.25° for the ocean), it is likely to share some
of the blocking-related biases identified in lower-resolution models, which can weaken
blocking intensity and associated circulation patterns and, in turn, affect poleward moisture
transport and IVT fields.

Overall, the CANARI-LE reproduces the large-scale structure of Arctic moisture
pathways but with a general dry bias of 20-40 kg m~! s~1. This systematic offset pro-
vides important context for interpreting subsequent differences in AAR frequency among
the datasets.

3.2. Rule-Based AARs in the CANARI-LE and Comparison with Reanalyses

Application of the detection algorithm by Mattingly et al. [12] to the CANARI-LE
produces spatially coherent AAR structures aligned with the major North Atlantic and
North Pacific moisture pathways into the Arctic. The comparison with ERA5 and MERRA-2
in Figure 3 shows that all datasets capture the dominant storm-track corridors and the
decline in occurrence toward higher latitudes.

Seasonal patterns are also illustrated in Figure 3, which compares the CANARI-LE
with MERRA-2 across the four meteorological seasons, together with their differences and
corresponding zonal-mean profiles (60-90° N).

The spatial distribution of AARs is broadly consistent between datasets, with maxima
over the North Atlantic and North Pacific in all seasons. The CANARI-LE systematically
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underestimates AAR frequency, most notably in summer (JJA) and autumn (SON), when
poleward moisture transport is the strongest. The seasonal difference maps highlight a
widespread negative bias across the polar cap, while the zonal means confirm that this
bias increases towards the pole. These results are consistent with the IVT underestimation
identified in Section 3.1 and indicate that the CANARI-LE captures the structure and timing
of Arctic moisture transport but with reduced intensity relative to reanalysis.

JJIA

\
\
\
\
1}
\
i
i
i
i
9
/
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VT (kgm='s—")

-5 -30 -15 0 15
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Figure 2. Seasonal mean IVT from MERRA-2 (a-d) and CANARI-LE (e-h) averaged over 2000-2014,
the IVT difference (CANARI-LE - MERRA-2) (i-1), and corresponding zonal-mean IVT and AAR
frequency at 60°-90° N (m—p). Blue shading indicates regions where CANARI-LE is drier than
MERRA-2. The red-dashed circle marks the Arctic Circle.

3.3. Sensitivity of Rule-Based Detection to Threshold Choice

The rule-based algorithm’s behaviour depends on the IVT and geometric thresholds
applied. Figure 4 illustrates their influence using a representative timestep on 6 June
2012. Stricter settings retain only narrow, intense filaments, whereas permissive thresholds
include broader plumes and diffuse extensions. The zonal-mean response across seasons
(Figure 3m—p) shows that sensitivity is the highest in summer and autumn, when moisture
transport is the strongest. More permissive configurations converge towards the reanalysis
frequencies, while stricter ones underdetect weaker events.

Based on these experiments, two threshold regimes were selected for the DL analy-
sis: the more permissive Default configuration and the stricter Intermediate configuration.
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The Default labels provide dense, easily learned training data but may include marginal or
fragmented events, whereas the Intermediate labels emphasise physical realism and event
coherence. Leveraging the extensive sampling of the CANARI-LE makes it feasible to train
on both, enabling a controlled test of how label strictness influences segmentation skill

and bias.

—— Most Permissive
—— Default

— Intermediate
—— Strictest

ERAS

AR frequency

8 8 % 60 6 0 ) & % 6 6 0 ) & %

] i 7 7 7
Latitude (°N) Latitude (°N) Latitude (°N)

) & %0 6 6

R
Latitude (°N)

Figure 3. Seasonal AAR frequency (1980-2014) comparing the CANARI-LE using the Default thresh-
olds and MERRA-2. Panels (a—d) show MERRA-2, (e-h) the CANARI-LE, and (i-1) the difference
(CANARI-LE-MERRA-2) for MAM, JJA, SON, and DJF, respectively. Negative (blue) values indicate
fewer AARs in the CANARI-LE. Panels (m-p) show the corresponding zonal-mean frequencies
(60-90° N).

3.4. Training Data Characteristics

Two label regimes were used to train and evaluate the segmentation models. The De-
fault 1abel set, based on the thresholds used by Mattingly et al. [12] for MERRA2, captures a
large number of ARs and supports learning through abundant positive examples but in-
cludes broader and less sharply defined features. The Intermediate label set applies stricter
IVT and geometric thresholds, improving physical realism while reducing the proportion
of AR grid cells to less than 3%. This stronger class imbalance presents a more challenging

but physically grounded training target.
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EE———— ]

200 400 600 800

Figure 4. Example from 6 June 2012 showing (a) IVT magnitude and (b—e) AAR detections under the
four threshold configurations (Strictest, Intermediate, Default, and Most Permissive). The red-dashed
circle marks the Arctic Circle, 0 indicates non-AR grid cells, and 1 indicates AR grid cells.

Figure 5 summarises the statistical characteristics of the Intermediate configuration
used for model training. Panels (a—c) describe the spatial and categorical properties of
detected ARs: (a) shows the distribution of contiguous event sizes, (b) the fractional area
of ARs per timestep, and (c) the relative proportions of mid-latitude, Arctic-penetrating,
and Arctic-only AR events. Panels (d—f) characterise the dataset composition and input
predictors: (d) shows the strong class imbalance between AR and background grid cells, (e)
the conditional AR area fraction per timestep, and (f) the normalised mean values of the five
predictor channels. Together, these diagnostics show that ARs occupy only a small portion
of the Arctic domain but display wide variability in size and spatial extent, emphasising the
sparsity and skewness of the training distribution. The corresponding Default distributions
are provided in the Supplementary Materials.

Under the Default thresholds, AR grid cells account for 4.6% of approximately 1.03 bil-
lion labelled grid cells. Most timesteps contain at least one AR, with typical coverage per
timestep between one and ten percent of the domain. The distribution of contiguous AR
sizes is heavy-tailed, with a mean of 431 grid cells and a long upper tail extending beyond
6000 grid cells. About one-quarter of events cross the Arctic Circle, while fewer than three
percent occur entirely within the Arctic domain.

(a) (b) (c)
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Figure 5. Distribution of AR labels under the Intermediate configuration. Panels show (a) event size;
(b) area fraction per timestep; (c) proportion of mid-latitude, Arctic-penetrating, and Arctic-only AR
events; (d) class counts; (e) conditional area fraction; and (f) normalised predictor distributions.

Applying the Intermediate thresholds reduces the AR fraction to 2.9% of the possible
grid cells and shifts the distribution toward smaller, narrower filaments. These differences
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highlight how threshold choice alters the statistical structure of the training data: the Default
set favours event inclusivity, whereas the Intermediate set prioritises physical coherence.
Together, these label sets define the two regimes used for model training and provide the
basis for testing model sensitivity to label definition.

3.5. Segmentation Performance and Sensitivity to Label Definition

Two segmentation models were trained on the CANARI-LE using labels from the
Default and Intermediate configurations. Evaluation was performed on held-out ensemble
members 29—40. Table 3 summarises the grid-cell-wise results, while Table 4 presents the
corresponding confusion matrices aggregated over all test data. The model trained on the
Default labels achieved a Dice score of 0.76 and a recall of 0.79, indicating high sensitivity
to AAR structures but a tendency to overpredict in marginal cases. The Intermediate label
model attained higher precision (0.80) but lower recall (0.55), reflecting a more conservative
learning signal. Both models maintained an accuracy of around 0.98.

Table 3. Segmentation model performance on the held-out ensembles (29-40).

Model Accuracy Precision Recall Dice
Default 0.98 0.74 0.79 0.76
Intermediate 0.98 0.8 0.56 0.65

The confusion matrices highlight the substantial class imbalance, with more than 94%
of grid cells corresponding to non-AAR background. Despite this, both models correctly
identify the majority of AAR grid cells. The Default model detects a larger proportion of
AARs but also produces more false positives, whereas the Intermediate model sacrifices
recall for improved precision. These contrasting behaviours explain the similar Dice scores
yet distinct spatial error patterns seen in Figures 6 and 7. The Default model slightly
overpredicts AARs along the lower Arctic storm-track latitudes, particularly over the North
Atlantic and northwest Pacific, while the Intermediate model shows mild underprediction
along the same corridors. The frequency fields shown in Figure 7 confirm that differences
between the two models occur mainly along the margins of the main filaments rather than
introducing spurious detections elsewhere. Both reproduce the overall AAR climatology of
the CANARI-LE with high spatial fidelity.

Table 4. Confusion matrices for the segmentation models, showing total counts and percentage of all
evaluated grid cells. B stands for Billion.

Default Model Intermediate Model
Pred. Pred.
Pred. AAR Non-AAR Pred. AAR Non-AAR
True AAR 1.32B (3.7%) 0.35B (1.0%) 0.70B (1.6%) 0.57B (1.3%)

True non-AAR 0.47B (1.3%) 33.99B (94.2%) 0.18B (0.4%) 42.36B (96.7%)

The example timesteps in Figure 8 illustrate these behaviours on the event scale. Each
row shows one timestep, with columns representing the rule-based ground truth, the de-
fault model prediction, and the grid-cell-wise classification outcome. The default model
reproduces the main AAR filaments with good spatial alignment, particularly in panels
(a—c) and (g—i), where detections follow the observed structure closely. Overprediction
occurs mainly when no AARs are present, as in panels (d—f), where diffuse IVT features are
misclassified as AARs. These examples demonstrate the inherent precision-recall balance in
imbalanced segmentation tasks, where improving sensitivity to rare features often increases
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false-positive rates [41,48]. The model effectively captures the core of well-defined events
but remains prone to false positives in marginal cases and misses some weaker filaments.

(b)

+8 (%)

+10 (%)

Figure 6. Spatial error (prediction-truth) in AAR frequency for the (a) Intermediate model and
(b) Default model. Red indicates overprediction, and blue indicates underprediction. The red-dashed
circle marks the Arctic Circle.

(b)

— ]
12,5 15 17.5 20 (%) -8 6 -4 -2 o 2 4 6 8 (%)

Figure 7. Predicted AAR frequency from the segmentation models: (a) Intermediate model, (b) Default
model, and (c) difference (a,b).

Ground Truth Model Prediction Performance Analysis
b

I Ground Truth Mask B True Positive (Correct Detection) Il False Negative (Missed Detection)
I Model Predicted Mask Bl ralse Positive (False Alarm) True Negative (Correct Absence)

Figure 8. Representative model predictions for three timesteps. Each row corresponds to a different
case: (a—c) a strong AAR event, (d-f) a non-AAR case with overprediction, and (g-i) a weaker but
well-defined event. Columns show (left to right) rule-based ground truth (a,d,g) with mask shown in
purple, model prediction (b,e,h) with prediction shown in orange, and grid-cell-wise classification
outcome (c,f,i). Green indicates true positives (correct detections), red false positives (false alarms),
blue false negatives (missed detections), and grey true negatives (correct absences).
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4. Discussion and Conclusions

This work provides the first assessment of AARs in the CANARI-LE using a unified
framework combining rule-based detection with machine learning. Three main contri-
butions stand out. First, the CANARI-LE serves as a regional, ensemble-rich resource
for AAR detection and sensitivity analysis, offering a large, internally consistent event
sample at 6-hourly resolution. Second, a polar-specific detection logic is applied to the
CANARI-LE, ERA5, and MERRA-2, enabling close comparison of AAR climatology across
model and reanalysis data. Third, this study examines how threshold settings in the rule-
based algorithm shape training labels and, consequently, the learning behaviour of the
segmentation model. Although the DL approach removes the need for manual threshold
tuning, understanding this dependency remains essential to interpreting performance and
ensuring robustness.

Applying the algorithm by Mattingly et al. [12] to the CANARI-LE yields coherent
AAR corridors aligned with principal North Atlantic and North Pacific moisture pathways.
Relative to ERA5 and MERRA-2, the CANARI-LE shows lower AAR frequency, particularly
north of 75° N and during summer and autumn. This difference reflects reduced IVT mag-
nitude in the CANARI-LE rather than inconsistencies in the detection logic. Because DL
targets derive from these fields, supervised models inherit each dataset’s climatological im-
print. Segmentation metrics, therefore, quantify agreement with a given algorithm—dataset
pair rather than an absolute truth, consistent with the algorithm and data dependence
highlighted by ARTMIP [13,14].

These dataset-dependent features align with earlier multi-model studies. Consistent
with Zhang et al. [28], the CANARI-LE underestimates winter AAR frequency, especially
north of 75° N, and lacks the summer enhancement seen in several CMIP6 models. This
behaviour reflects persistent biases in simulating large-scale circulation and blocking over
the North Atlantic [45]. Reduced Greenland blocking and weaker meridional moisture flux
likely contribute to the underestimation of poleward moisture transport into the Arctic.
Similar discrepancies were reported by Espinoza et al. [27], who found that most CMIP5
models capture overall AR intensification under warming but miss regional and seasonal
variability. The moisture-source analysis by Papritz et al. [34] supports our interpretation
that the North Atlantic sector dominates poleward moisture flux into the Arctic, consistent
with the CANARI-LE maximum in AAR frequency. These parallels underline both the
value of the CANARI-LE for physically consistent regional analysis and the need to improve
representation of blocking dynamics and moisture transport in climate models.

Beyond circulation biases, algorithm design also shapes detection outcomes. Threshold
sensitivity tests show that permissive IVT and geometry settings increase event counts
and recall but broaden plume margins, while stricter settings reduce event counts, favour
precision, and slightly underpredict along main transport paths. The segmentation models
reproduce this trade-off: training on default labels increases recall and Dice, whereas stricter
labels raise precision but miss edge detections. These results indicate that model behaviour
mirrors label design rather than introducing artefacts, highlighting the CANARI-LE’s value
for systematic testing.

The CANARI-LE enables robust sensitivity testing because it supplies thousands
of events across members and decades. Performance improves with the size and diver-
sity of the training sample, and the DL pipeline offers a substantial speed increase for
ensemble-scale inference compared with the rule-based algorithm. These properties make
the approach well suited to large-member evaluation and scenario analysis, provided that
the label provenance and threshold regime are treated as part of the experimental design.

Despite this, several limitations remain. Labels are generated from the CANARI-LE, so
both training and evaluation inherit its physics, resolution, and moisture biases relative to
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reanalysis. There is no independent human-annotated Arctic benchmark, and expert labels
can diverge [24]. Limited pressure-level availability constrains the IVT integral and may
influence high-latitude magnitude differences. The models operate on single timesteps,
which limits sensitivity to synoptic continuity. Although dataset size affects segmentation
skill, we did not vary training set size due to GPU and time constraints, focusing instead
on model skill. Finally, although the architecture is reproducible and effective, it is not
the focus of novelty; model behaviour is governed primarily by label definition and data
characteristics [19].

Overall, rule-based AAR detection in the CANARI-LE is physically credible but yields
lower frequencies than reanalyses because of background IVT differences. Label thresholds
govern the precision—-recall balance and spatial error structure in both rule-based and DL
detections. An ensemble-rich dataset such as the CANARI-LE is, therefore, valuable for
stress-testing these methodological choices and training models for polar environments.

Future work should evaluate model transfer across domains by training on the
CANARI-LE and testing on reanalysis data, and vice versa, to distinguish algorithmic
from data-model influences. Investigating how model performance varies when trained on
smaller subsets of the dataset could also provide insight into data efficiency and generalisa-
tion. Incorporating temporal context, for example, by analysing sequences of timesteps,
may enhance sensitivity to weaker but continuous AAR filaments. Extending the frame-
work to produce probabilistic outputs and calibrated uncertainty estimates would enable
threshold-independent evaluation and support downstream climate applications. As the
model architecture is fully compatible with the CANARI-LE output, it can also be applied
to future simulations (2015-2100) to examine projected changes in AAR frequency, intensity,
and pathways under warming scenarios.

In summary, this study demonstrates that a regional, polar-focused framework com-
bining rule-based and machine-learning methods can generate consistent AAR detections
across a large ensemble while revealing how detection outcomes depend on label design
and data characteristics. These results establish the CANARI-LE as a valuable resource
for Arctic AR research and provide a foundation for reproducible, scalable approaches to
high-latitude moisture transport analysis.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/atmos17010061/s1, Figure S1: Annual mean AAR frequency
(1980-2014) for (a) CANARI-LE, (b) MERRA-2, and (c) ERA5. Frequencies are expressed as the
percentage of 6-hourly timesteps classified as AARs. Figure S2: Distribution of AAR labels under
the Default configuration. Panels show (a) event size, (b) area fraction per timestep, (c) proportion of
midlatitude, Arctic-penetrating, and Arctic-only events, (d) class counts, (e) conditional area fraction,
and (f) normalised predictor distributions.
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Abbreviations

The following abbreviations are used in this manuscript:

ARs Atmospheric rivers
AARs Arctic atmospheric rivers
SST Sea surface temperature
ARTMIP Atmospheric River Tracking Method Intercomparison Project
CANARLLE Climate change in the Arctic and North Atlantic Region and Impacts
on the UK Large Ensemble
ERA5 Reanalysis version 5 by the European Centre for Medium-Range Weather Forecasts
MERRA-2 Modern-Era Retrospective Analysis for Research and Applications, Version 2
IVT Integrated water vapour transport
ulVT Zonal component of IVT
vIVT Meridional component of IVT
TCWV Total column water vapour
DL Deep learning
U-Net Convolutional Networks for Image Segmentation
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