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Abstract 

Background  The microorganisms colonizing the gastrointestinal tract of animals, collectively referred to as the gut 
microbiome, affect numerous host behaviors dependent on the central nervous system (CNS). Studies comparing 
germ-free mice to normally colonized mice have demonstrated influences of the microbiome on anxiety-related 
behaviors, voluntary activity, and gene expression in the CNS. Additionally, there is epidemiologic evidence support-
ing an intergenerational influence of the maternal microbiome on neurodevelopment of offspring and behavior 
later in life. There is limited experimental evidence however directly linking the maternal microbiome to long-term 
neurodevelopmental outcomes, or knowledge regarding mechanisms responsible for such effects.

Results  Here we show that that the maternal microbiome has a dominant influence on several offspring phenotypes 
including anxiety-related behavior, voluntary activity, and body weight. Adverse outcomes in offspring were associ-
ated with features of the maternal microbiome including bile salt hydrolase activity gene expression (bsh), abun-
dance of certain bile acids, and hepatic expression of Slc10a1. In cross-foster experiments, offspring resembled their 
birth dam phenotypically, despite faithful colonization in the postnatal period with the surrogate dam microbiome. 
Genome-wide DNA methylation analysis of hippocampal DNA identified microbiome-associated differences in DNA 
methylation of 196 loci in total, 176 of which show conserved profiles between mother and offspring. Further, single-
cell transcriptional analysis revealed accompanying differences in expression of several differentially methylated 
genes within certain hippocampal cell clusters, and vascular expression of genes associated with bile acid transport. 
Inferred cell-to-cell communication in the hippocampus based on coordinated ligand-receptor expression revealed 
differences in expression of neuropeptides associated with satiety.

Conclusions  Collectively, these data provide proof-of-principle that the maternal gut microbiome has a domi-
nant influence on the neurodevelopment underlying certain offspring behaviors and activities, and selec-
tively affects genome DNA methylation and gene expression in the offspring hippocampus in conjunction 
with that neurodevelopment.

*Correspondence:
Aaron C. Ericsson
ericssona@missouri.edu
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40168-025-02226-3&domain=pdf


Page 2 of 22Gustafson et al. Microbiome          (2025) 13:254 

Keywords  Gut microbiome, Fetal programming, Maternal microbiome, Gut-brain axis, DNA methylation, 
Hippocampus, Gene expression, Bile acids, Neurodevelopment

Background
Neurodevelopmental and behavioral disorders are a 
growing concern worldwide. According to the World 
Health Organization, nearly one billion people worldwide 
live with a mental disorder [1]. Behavioral disorders are 
commonly associated with social impairments, decreased 
productivity, financial losses, and general maladjust-
ment [2]. Previous studies have found that such disor-
ders contribute substantially to global nonfatal health 
loss [1]. Anxiety disorders (AD) are increasing in preva-
lence, affecting close to 1 in 10 children and adolescents 
between the ages of 3 and 17 with girls having a higher 
incidence (11%) than boys (9%) [3]. Like most mood 
disorders, AD are multifactorial and often result from a 
combination of genetic, environmental, and experien-
tial factors. Similarly, one in five children in the USA are 
obese or overweight [4], reflecting the combined influ-
ence of western diet, increasingly sedentary lifestyles, 
sex, race and ethnicity, access and barriers to health care, 
and other factors. Moreover, AD and obesity/overweight 
(OO) are reciprocal risk factors, frequently occurring as 
co-morbidities [5–10].

A growing body of research has linked the gut micro-
biome (GM) to neurodevelopment and behavior [11–
16], and growth rate or weight gain [17–20]. Work 
with germ-free mice shows the importance of the GM 
in normative behavior and metabolism [21–23], and 
transfer of an anxiety-related phenotype or increased 
energy harvest via fecal microbiome transfer indicates 
that certain features within naturally occurring micro-
biomes influence these phenotypes [24–26]. There is 
also evidence that indicates that the effects of the GM 
can go beyond simply influencing the host. Research 
in rodents has revealed that the GM of a pregnant dam 
can influence the fetus and phenotype of the offspring 
following birth [27, 28]. Eloquent studies in mice have 
shown that effects of diet and exercise on the mater-
nal GM can be transferred to the offspring, reliev-
ing negative metabolic phenotypes [27, 28]. There are 
also developmental components to both AD and OO, 
raising the question of how the maternal microbiome 
during pregnancy affects fetal development and sub-
sequent behavior and energy metabolism in the adult 
offspring. The maternal gut microbiome during preg-
nancy produces metabolites which reach peripheral 
circulation and the fetal CNS [29], and maternal pro-
teins and peptides produced by enteroendocrine cells 
in response to the microbiome likely also cross the 

placenta and reach fetal circulation [30–32]. Disruption 
of the maternal GM can affect these processes as dem-
onstrated by increased anxiety or overweight/obesity in 
the offspring of mice with antibiotic- or diet-induced 
dysbiosis [28, 33–37].

There are still major gaps in our knowledge however 
regarding the mechanisms through which the maternal 
microbiome during pregnancy programs long-lasting 
changes in offspring behavior and metabolism. These 
intergenerational effects suggest fetal imprinting by 
an unknown mechanism, while differences in anxiety-
related behavior (and other complex behaviors) indicate 
a neurodevelopmental basis. Owing to the genetic, die-
tary, and environmental heterogeneity, analysis of these 
processes in a human population requires very large sam-
ple sizes and long-term tracking of mother–child pairs. 
To circumvent these factors, here we use two groups of 
genotype-, age-, and sex-matched outbred CD-1 mice 
consuming the same diet. To be clear, all mice in these 
two colonies are of the same genetic background, and 
only differ in the two microbiomes they harbor. These 
microbiomes, originally derived from Jackson Labora-
tory and Envigo (now known as Inotiv), are character-
ized by low and high alpha diversity relative to each 
other and distinct beta diversity. These two colonies were 
developed at MU Mutant Mouse Resource and Research 
Center (MMRRC) by initially transferring CD-1 embryos 
into respective C57BL/6 dams and allowing the dams 
to transfer their GMs to offspring via natural postnatal 
transmission. These CD-1 pups became the founders of 
these two colonies which have been maintained and con-
tinually monitored for GM stability within our facility 
for over 35 generations. Additionally, a rotational breed-
ing scheme and routine introduction of CD-1 genetics 
via embryo transfer from CD-1 mice purchased from 
Charles River allows for the maintenance of allelic hete-
rozygosity within each colony and ensures these colonies 
do not become genetically distinct from each other. Since 
CD-1 mice that harbor a Jackson Laboratory origin GM 
have a GM with low phylogenetic richness and diversity, 
the GM of these mice was designated GMLow. The CD-1 
colony with an Envigo origin GM has relatively high 
phylogenetic diversity and is thus designated GMHigh. 
Phenotypic assessments of these two colonies revealed 
differences in anxiety-related behavior, voluntary activity, 
fetal growth, food intake, and adult growth [38, 39].

We hypothesized that the maternal GM would influ-
ence the neurodevelopment of the offspring via fetal 
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programming while in utero by GM-derived metabo-
lites. Taking advantage of the phenotypic differences 
in these two colonies, we utilized cross-foster studies 
to determine the relative influence of the parental (i.e., 
prenatal) and offspring (i.e., postnatal) microbiome on 
offspring phenotypes. Here, we expand on previous 
behavioral phenotyping to include control and cross-
fostered (CF) offspring, demonstrating a dominant 
influence of the birth dam GM on offspring develop-
ment and behavior at 7  weeks of age. This work was 
complemented by microbial and metabolic profiling of 
mice in each colony, genome-wide methylome analysis 
of hippocampal DNA from dams and control and CF 
offspring, and single nuclei transcriptome analysis of 
RNA from control and CF offspring. Previously identi-
fied phylogenetic differences are now complemented by 
differences in certain metabolites, including bile acids 
(BA), and differential ileal and hepatic expression of 
BA receptors and transporters. Analysis of hippocam-
pal DNA revealed dominant effects of the maternal 
microbiome on CpG DNA methylation, maintained in 
offspring independent of the postnatal microbiome. 
Single-nuclei RNA sequencing (snRNA-seq) of hip-
pocampal RNA confirmed fetal programming of several 
cell-specific differentially methylated genes, including 
genes involved in G protein-coupled receptor and orex-
igenic signaling pathways.

Methods
Mice
All mice tested in the current study were outbred CD-1 
mice (Crl:CD1(ICR)) generated from breeders obtained 
from the Mutant Mouse Resource and Research Center 
at the University of Missouri (MU MMRRC). Multiple 
different cohorts of mice were utilized for various out-
comes. CD-1 mice were from two colonies in which the 
founders were originally purchased from Charles River 
(Frederick, MD), and were generated via rederivation to 
harbor either a high richness Envigo (now Inotiv, Indian-
apolis, IN) origin GM (GMHigh), or a low richness Jackson 
Laboratory origin GM (GMLow) as previously described 
[24]. All donor mice were reared at the MU MMRRC and 
the two colonies have been maintained and continually 
monitored for GM stability within our facility for over 35 
generations. Additionally, a rotational breeding scheme 
and routine introduction of CD-1 genetics via embryo 
transfer from CD-1 mice purchased from Charles River 
allows for the maintenance of allelic heterozygosity 
within each colony and ensures these colonies do not 
become genetically distinct from each other. Since CD-1 
mice that harbor a Jackson Laboratory-origin GM were 
found to have a GM with low phylogenetic richness and 
diversity, the GM of these mice was designated GMLow. 

Similarly, since CD-1 mice that harbored an Envigo-ori-
gin GM were found to have a GM with high phylogenetic 
richness and diversity relative to GMLow, the GM of these 
mice was designated GMHigh. Colonies of mice were 
housed under barrier conditions in microisolator cages 
with compressed pelleted paper bedding and nestlets, on 
ventilated racks with ad libitum access to irradiated chow 
and acidified, autoclaved water, under a 14:10 light/dark 
cycle. Mice were determined to be free of all bacterial 
pathogens including Bordetella bronchiseptica, Filobac-
terium rodentium, Citrobacter rodentium, Clostridium 
piliforme, Corynebacterium bovis, Corynebacterium 
kutscheri, Helicobacter spp., Mycoplasma spp., Roden-
tibacter spp., Pneumocystis carinii, Salmonella spp., 
Streptobacillus moniliformis, Streptococcus pneumoniae; 
adventitious viruses including H1, Hantaan, KRV, LCMV, 
MAD1, MNV, PVM, RCV/SDAV, REO3, RMV, RPV, 
RTV, and Sendai viruses; intestinal protozoa including 
Spironucleus muris, Giardia muris, Entamoeba muris, 
trichomonads, and other intestinal flagellates and amoe-
bae; intestinal parasites including helminths; and external 
parasites including all species of lice and mites, via quar-
terly sentinel testing performed by IDEXX BioAnalyt-
ics (Columbia, MO). Fecal samples were collected from 
pregnant dams at 19 days of gestation, and from mouse 
pups at time of weaning (21 days of age) using previously 
described methods [40]. Briefly, mice were placed in an 
empty autoclaved cage within a biological safety cabi-
net and allowed to defecate. Freshly evacuated samples 
feces were immediately collected into a sterile collec-
tion tube using autoclaved wooden toothpicks discarded 
after each single usage. All samples were promptly placed 
on ice. Following fecal sample collection, samples were 
stored in a − 80  °C freezer until DNA extraction was 
performed. Samples were collected from all experimen-
tal mice at 50 days of age, at time of necropsy. All dams 
were mated with sires of the same GM and were housed 
together until approximately day 14 of gestation, at which 
time sires were removed. All dams were singly housed for 
the last week of gestation to ensure pups were correctly 
assigned to their birth dams. All dams were handled 
minimally during gestation, and only handled for routine 
cage changes by vivarium care staff and once for pre-
parturition fecal sample collection. During the 1 week of 
anxiety-related behavior testing, only the investigators 
handled and entered the home cages to avoid unknown 
and excessive disturbances to the mice.

Gut microbiome analysis
DNA extraction
Fecal DNA was extracted using QIAamp PowerFecal Pro 
DNA kits (Qiagen) from feces from 50 days old male and 
female mice of the GMLow and GMHigh colonies according 
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to the manufacturer’s instructions, with the exception 
that the initial sample disaggregation was performed 
using a TissueLyser II (Qiagen), rather than a vortex and 
adaptor as described in the protocol.

16S rRNA amplicon library preparation and sequencing
Extracted fecal DNA was processed at the University of 
Missouri DNA Core Facility. Bacterial 16S rRNA ampli-
cons were constructed via amplification of the V4 region 
of the 16S rRNA gene using previously developed univer-
sal primers (U515F/806R), flanked by Illumina standard 
adapter sequences [41, 42]. Oligonucleotide sequences 
are available at proBase [43]. Dual-indexed forward and 
reverse primers were used in all reactions. PCR was per-
formed in 50  µL reactions containing 100  ng metagen-
omic DNA, primers (0.2  µM each), dNTPs (200  µM 
each), and Phusion high-fidelity DNA polymerase (1U, 
Thermo Fisher). Amplification parameters were 98  °C(3 

min) + [98 °C(15 s) + 50 °C(30 s) + 72 °C(30 s)] × 25 cycles + 72 °
C(7 min). Amplicon pools (5 µL/reaction) were combined, 
thoroughly mixed, and then purified by addition of Axy-
gen Axyprep MagPCR clean-up beads to an equal vol-
ume of 50 µL of amplicons and incubated for 15 min at 
room temperature. Products were washed multiple times 
with 80% ethanol and the dried pellet was resuspended in 
32.5 µL EB buffer (Qiagen), incubated for 2 min at room 
temperature, and then placed on a magnetic stand for 
5  min. The final amplicon pool was evaluated using the 
Advanced Analytical Fragment Analyzer automated elec-
trophoresis system, quantified using quant-iT HS dsDNA 
reagent kits, and diluted according to Illumina’s standard 
protocol for sequencing on the MiSeq instrument.

Bioinformatics
DNA sequences were assembled and annotated at the 
MU Informatics Research Core Facility. Primers were 
designed to match the 5′ ends of the forward and reverse 
reads. Cutadapt [44] (version 2.6) was used to remove the 
primer from the 5′ end of the forward read. If found, the 
reverse complement of the primer to the reverse read was 
then removed from the forward read as were all bases 
downstream. Thus, a forward read could be trimmed at 
both ends if the insert was shorter than the amplicon 
length. The same approach was used on the reverse read, 
but with the primers in the opposite roles. Read pairs 
were rejected if one read or the other did not match a 5′ 
primer, and an error-rate of 0.1 was allowed. Two passes 
were made over each read to ensure removal of the sec-
ond primer. A minimal overlap of three bp with the 3′ 
end of the primer sequence was required for removal. 
The QIIME2 [45] DADA2 [46] plugin (version 1.10.0) was 
used to denoise, de-replicate, and count ASVs (ampli-
con sequence variants), incorporating the following 

parameters: (1) forward and reverse reads were truncated 
to 150 bases, (2) forward and reverse reads with num-
ber of expected errors higher than 2.0 were discarded, 
and (3) Chimeras were detected using the “consensus” 
method and removed. R version 3.5.1 and Biom version 
2.1.7 were used in QIIME2. Taxonomies were assigned to 
final sequences using the Silva.v132 [47] database, using 
the classify-sklearn procedure. The cladogram was con-
structed with GraPhlAn using genus-level taxonomic 
classifications [48]. Branch color depicts phylum-level 
classification. The outer ring denotes Benjamini-Hoch-
berg-corrected p values from Wilcox Rank-Sum tests 
comparing the relative abundance of each genus between 
GMs. The color of the outer ring indicates the GM with 
the greater average relative abundance of that genus.

Real‑time reverse transcription‑polymerase chain reaction 
(qRT‑PCR)
Total RNA was isolated from ileum, liver, and hippocam-
pus using the Qiagen RNeasy Mini Kit per manufac-
turer’s instructions. RT-PCR was performed using the 
BioRad iTaq Universal SYBR Green One-Step Kit follow-
ing the manufacturer instructions. Briefly, each reaction 
consisted of 5  μL of SYBR Green Supermix, 0.125  μL 
iScript reverse transcriptase, 0.45  μL of forward and 
reverse primers, 1.475  μL of water, and 2.5  μL of tem-
plate RNA. The reaction was run on a BioRad C1000 
Touch thermal cycler with a BioRad CFX384 Real-Time 
System with the following parameters: 50 ˚C for 10 min 
for reverse transcription, 95 ˚C for 1 min for DNA Poly-
merase activation and DNA denaturation, and 40 cycles 
of 95 ˚C for 10 s and 60 ˚C for 30 s. Melt-curve analysis 
was performed using the following parameters: 65–95 ˚C 
with 0.5 ˚C increments for 5 s/step. All gene expression 
levels were normalized to β-actin expression. Primers 
used can be found in Table S1.

Bile salt hydrolase metagenomic and metatranscriptomic 
analysis of mouse feces
Metagenomic and metatranscriptomic bsh (K01442) read 
counts were acquired from previous multi-omic analysis 
of GMLow (GM1) and GMHigh (GM4) [49]. Expression 
counts from metatranscriptomic analysis were normal-
ized to bsh metagenomic reads.

Measurement of BSH activity in mouse feces
BSH activity in the mouse feces was measured using 
previously reported bioluminescent bile acid activatable 
luciferin probes (BAL) protocol [50] with major modifi-
cation by replacing whole-cell bioluminescence readout 
with the recombinant luciferase enzymatic assay [51]. 
Mouse fecal samples were soaked in PBS (pH 7.4, Gibco, 
ref# 10,010–023) supplemented with 2-mercaptoethanol 
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(Acros Organics, 20  mM) at a concentration of 10  mg/
mL on ice for 30  min. The mixtures were homogenized 
by sonication in ultrasound cleaner (Elmasonic Easy 
40 H, 340 W) at 0  °C for 30 min, stirring every 10 min. 
Resulting mixtures along with blank buffer (3 replicates 
by 50  μL) were mixed with working solutions of BAL 
probes (50  μL, 20  μM in PBS) along with a solution of 
luciferin (50  μL, 2  μM in PBS) in a 96-well assay plate 
(Corning, ref# 3595) and incubated at 37 °C for 1 h. After 
incubation, the mixtures were diluted with 2% Triton 
X-100 in PBS (100  μL) to stop the reaction. In a sepa-
rate 96-well flat bottom black plate (Corning, ref# 3650), 
resulting mixtures (5  μL) were diluted with PBS (50  μ). 
A luciferase solution containing recombinant luciferase 
from Photinus pyralis (Sigma-Aldrich, 20  μg/mL), ATP 
disodium trihydrate (Fisher Scientific, 2 mM), and mag-
nesium sulfate heptahydrate (Fisher Scientific, 2  mM) 
in PBS (50  μL) was added to each well simultaneously. 
Bioluminescence was measured immediately in an IVIS 
Spectrum (Xenogen) imaging system for 20  min with 
1 min intervals using automatic settings. Raw data were 
processed using Living Image 4.2 software (Caliper LifeS-
ciences), further data processing was carried out in Excel 
(Microsoft 365), and finally visualization and statistical 
calculations were performed in Prism 9 (GraphPad soft-
ware). Deconjugation potentials or percentage of probe 
hydrolysis were calculated as the ratio of the signal from 
the BAL probe to the signal from luciferin in the corre-
sponding fecal extract and reported as the mean value of 
3 replicates. The signals from incubation of BAL probes 
in blank buffer provided a background result of nonspe-
cific hydrolysis of the probes.

Metabolite analyses
GC–MS
Fecal and serum samples collected from 50 days old mice 
of the GMLow and GMHigh colonies were diluted in 18 
volumes of ice-cold 2:2:1 methanol/acetonitrile/water 
containing a mixture of internal standards (D4-citric 
acid, D4-succinic acid, D8-valine, and U13C-labeled glu-
tamine, glutamic acid, lysine, methionine, serine, and 
tryptophan; Cambridge Isotope Laboratories), where the 
1-part water was composed of sample volume + water. 
Sample extraction mixtures were vortexed for 10 min at 
RT and rotated for 1 h at − 20 °C. Mixtures were centri-
fuged for 10 min at 21,000 × g, and 150 µL of the cleared 
metabolite extracts were transferred to autosampler 
vials and dried using a SpeedVac vacuum concentra-
tor (Thermo). Dried metabolite extracts were reconsti-
tuted in 30 μL of 11.4 mg/mL methoxyamine (MOX) in 
anhydrous pyridine, vortexed for 5  min, and heated 
for 1  h at 60  °C. Next, to each sample 20  μL of N,O-
Bis(trimethylsilyl)trifluoroacetamide (TMS) was added, 

samples were vortexed for 1 min, and heated for 30 min 
at 60 °C. Derivatized samples were analyzed by GC–MS. 
One microliter of derivatized sample was injected into 
a Trace 1300 GC (Thermo) fitted with a TraceGold TG-
5SilMS column (Thermo) operating under the follow-
ing conditions: split ratio = 20:1, split flow = 24  μL/min, 
purge flow = 5  mL/min, carrier mode = Constant Flow, 
and carrier flow rate = 1.2 mL/min. The GC oven temper-
ature gradient was as follows: 80 °C for 3 min, increasing 
at a rate of 20 °C/min to 280 °C, and holding at a temper-
ature at 280 °C for 8 min. Ion detection was performed by 
an ISQ 7000 mass spectrometer (Thermo) operated from 
3.90 to 21.00 min in EI mode (− 70 eV) using select ion 
monitoring (SIM).

LC–MS SCFA analysis
Eighteen-fold (w/v) extraction solvent (Acetonitrile: 
Methanol:Water (2:2:1)) containing deuterated SCFA 
standards (D3-acetate, D7-butyrate, and D5-propionate) 
was added to each sample and rotated at − 20 °C for 1 h 
and then centrifuged at 21,000 × g for 10 min. Superna-
tant was used for LC–MS SCFA analysis. LC–MS data 
was acquired on a Thermo Q Exactive hybrid quadru-
pole Orbitrap mass spectrometer with a Vanquish Flex 
UHPLC system or Vanquish Horizon UHPLC system. 
The LC column used was a ZIC-pHILIC guard column 
(20 × 2.1 mm). The injection volume was 2 µL. For the 
Mobile phase, Solvent A consisted of 20  mM ammo-
nium carbonate [(NH4)2CO3] and 0.1% ammonium 
hydroxide (v/v) [NH4OH] at pH ~ 9.1] and Solvent B 
consisted of Acetonitrile. This method was run at a 
flow rate of 0.1 mL/min, and the injection volume was 
2 µL. Linear gradient was used at 70% solvent B with a 
5 min elution time. The mass spectrometer was oper-
ated in targeted selected ion-monitoring (tSIM) mode 
from 1 to 5  min. An inclusion list for the three short 
chain fatty acids and their deuterated versions were 
used in tSIM method.

LC–MS bile acid analysis
Extraction solvent (methanol:acetonitrile:water, 2:2:1) 
was spiked with (5  µLl/mL) deuterated bile acids Max-
Spec Mixture (Cayman Chemicals Item no. 33506). 
Eighteen-fold volume extraction buffer was added to 
each sample. The samples were placed in a –  20  °C 
freezer for 1 h while rotating. The samples were then cen-
trifuged at 21,000 × g for 10 min. Supernatant was trans-
ferred to LC–MS autosampler vials for analysis. LC–MS 
data was acquired on a Thermo Q Exactive hybrid quad-
rupole Orbitrap mass spectrometer with a Vanquish Flex 
UHPLC system or Vanquish Horizon UHPLC system. A 
Thermo Hypersil GOLD (2.1 × 150 mm, 1.9 µm) UHPLC 
column was used with a column Temperature of 30  °C. 
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For the Mobile Phase, solvent A consisted of 1% acetoni-
trile in water with 0.1% formic acid, and solvent B is 99% 
acetonitrile with 0.1% formic acid. The gradient started at 
50% Solvent B and was held for 2.5 min; then increased 
to 100% B at 10  min and held for 0.5  min before re-
equilibration to 50% solvent B for 5.5 min. Flow rate was 
0.4  mL/min, and injection volume was 3  µL. The mass 
spectrometer was operated in full-scan negative mode, 
with the spray voltage set to 3.0 kV, the heated capillary 
held at 275  °C, and the HESI probe held at 350  °C. The 
sheath gas flow was set to 40 units, the auxiliary gas flow 
was set to 15 units, and the sweep gas flow was set to 1 
unit. MS data acquisition was performed in a range of 
m/z 70–1000, with the resolution set at 70,000, the AGC 
target at 1 × 106, and the maximum injection time at 
200 ms [52].

Metabolomic data analysis
GC–MS Raw data were analyzed using TraceFinder 
5.1 (Thermo). Metabolite identification and annota-
tion required at least two ions (target + confirming) and 
a unique retention time that corresponded to the ions 
and retention time of a reference standard previously 
determined in-house. A pooled-sample generated prior 
to derivatization was analyzed at the beginning, at a set 
interval during, and the end the analytical run to correct 
peak intensities using the NOREVA tool [53]. NOREVA 
corrected data were then normalized to the total sig-
nal per sample to control for extraction, derivatization, 
and/or loading effects. Acquired LC–MS data were pro-
cessed by Thermo Scientific TraceFinder 4.1 software, 
and metabolites were identified based on the University 
of Iowa Metabolomics Core facility standard-confirmed, 
inhouse library. NOREVA was used for signal drift cor-
rection [53]. For bile acids, data were normalized to one 
of the d4-bile acid standards. For SCFA, analyte signal 
was corrected by normalizing to the deuterated analyte 
signal and the signal obtained from processing blank was 
subtracted.

Cross‑fostering
Cross‑fostering for behavioral experiments
To provide clarity regarding transfer terminology and 
nomenclature used in this study, we have provided 
Fig. S1 as a schematic to assist the reader in following 
the experimental groups and cross-fostering procedure. 
Dams of both GMLow and GMHigh colonies used for the 
behavioral cross-foster experiments were time mated 
so that they would give birth on the same date to allow 
for cross-fostering of pups between colonies when 
pups are less than 24 h of age. Mice in cross-foster (CF) 
groups were cross-fostered to a surrogate nursing dam 
of the reciprocal GM at less than 24 h of age. Following 

identification of recently birthed litters from both 
GMs, cages were moved to a biosafety cabinet. Litters 
were removed from the cage of the biological dam and 
placed onto clean paper towels. Bedding from the cage 
of the surrogate dam was gently mixed with the pups 
to transfer the surrogate dam’s scent to the pups and 
reduce the possibility of cannibalism. The pups were 
then placed into the surrogate dam cage, and cages 
were returned to the appropriate housing rack and CF 
pups were seeded with surrogate dam’s GM via nursing 
and maternal care. CF pups were generally accepted by 
the surrogate dam within an hour after being moved to 
the surrogate dam cage.

Cross‑fostering for DNA methylome analysis
Four dams of both GMLow and GMHigh colonies used 
for the DNA methylome analysis cross-fostering experi-
ments were time mated so that they would give birth 
on the same date to allow for cross-fostering of pups 
between colonies when pups are less than 24  h of age. 
Three female pups were left with their birth dam’s litter 
while also cross-fostering three female pups of the recip-
rocal GM into the litter as well so there was six pups per 
litter. This allowed us to follow the methylation patterns 
of the non-cross-fostered and cross-fostered offspring 
and compare them to their birth dams and surrogate 
dams, respectively, as well as their birth siblings non-
cross-fostered and cross-fostered.

Behavior testing
Open field exploration
The open field exploration test was used to evaluate anx-
iety-related behavior and locomotor function. Environ-
mental control chambers (Omnitech Electronics, Inc., 
Columbus, OH, USA) consisting of 4 separate environ-
mental isolation chambers containing a plexiglass box 
(41  cm × 41  cm × 30  cm) placed onto an infrared grid 
(41  cm × 41  cm) to track locomotion. Lighting for each 
isolation chamber was set to 159  lx. Mice were allowed 
to acclimate to the behavior room for 1  h prior to test-
ing. Before starting each test, the plexiglass was cleaned 
with 0.25% bleach, followed by 70% ethanol to remove 
any residual olfactory cues. Each mouse was placed into 
the middle of the open field exploration test and recorded 
for 30  min by the Fusion behavior monitoring software 
(Omnitech Electronics, Inc., Columbus, OH, USA). The 
first 20 min of the test were considered acclimation time, 
and the final 10 min were analyzed following completion 
of the test. Total distance traveled (cm), time spent in 
the center zone (seconds), distance traveled in the center 
zone, and vertical activity (rearing) were measured.
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Light/dark transition
The light/dark transition test was performed within the 
environmental control chambers (Omnitech Electron-
ics, Inc., Columbus, OH, USA). The apparatus consisted 
of a plexiglass box within the environmental chambers 
(41  cm × 41  cm × 30  cm) that were partitioned into two 
equal sections by a black plexiglass insert with a door 
that allowed one half to be a dark zone, and a second half 
to be a light zone. The light zone was illumination was set 
to 200 lx. Mice were allowed to acclimate to the behavior 
room for 1 h prior to testing. Before the start of each test, 
the plexiglass box and insert were cleaned with 0.25% 
bleach, followed by 70% ethanol to remove any residual 
olfactory cues. Mice were placed into the light zone fac-
ing away from the dark zone and monitored by Fusion 
behavior monitoring software (Omnitech Electronics, 
Inc., Columbus, OH, USA) for 15 min. Time spent in the 
light zone (sec), distance travelled in the light zone (cm), 
and number of transitions between light and dark zones 
were measured.

Elevated plus maze
The elevated plus maze test consisted of an apparatus 
with two open arms (32.5 × 5 cm, with 2-mm ledges) and 
two closed arms (32.5 × 5  cm, with 14.5  cm high walls). 
The open arms were arranged perpendicular to the 
closed arms so the apparatus formed the shape of a plus 
sign with a center square (5 × 5 cm). The entire apparatus 
was raised 50 cm above the floor. The center zone of the 
apparatus was illuminated to 50 lx. Mice were allowed to 
acclimate to the behavior room for 1  h prior to testing. 
Prior to testing, the apparatus was cleaned with 0.25% 
bleach followed by 70% ethanol to remove olfactory cues. 
Each mouse was placed in the center square facing an 
open arm and was recorded and monitored for 5  min. 
Distance Traveled in the open arms (cm), time spent in 
the open arms (sec), and number of entries into the open 
arms was calculated from distance measurements and 
entry counts obtained by Any-Maze monitoring software 
(Stoelting Co., Wood Dale, IL, USA).

Voluntary running
New litters of CD-1 GMLow and GMHigh mice were 
generated to evaluate voluntary wheel running assays 
(the mice used in the behavior assays did not undergo 
wheel running evaluation). Litters for running wheel 
experiments were culled to six pups per litter (3 male, 
3 female) at birth, and then weaned into cages of same-
sex trios at weaning. During wheel set-up at 7 weeks of 
age, mice were transferred from their home cage to a 
new static microisolator cage containing a wireless run-
ning wheel (Med Associates, ENV-047) connected to a 
wireless hub and laptop computer in the animal room. 

Only investigators entered the behavior room to check 
mice and equipment daily during the 12  days of testing 
to avoid excessive disturbances to the mice. Mice were 
singly housed during the experiment, assigned to run-
ning wheel cages using a random number generator, and 
were placed in alternating order on the shelf such that 
microbiome group and sex were consistently alternated. 
Following 5 days of acclimation, data were collected con-
tinuously for seven consecutive days using Wheel Man-
ager software, v2.04.00 (Med Associates, SOF-860). Data 
were analyzed using Wheel Analysis software, v2.02.01 
(Med Associates, SOF-861). No other mice were housed 
in the room containing running wheel cages, traffic was 
limited to once daily checks at the same time of day by 
one laboratory staff, and no cage changes were per-
formed during the acclimation and testing period.

Necropsy
Dams and offspring mice were transported to the nec-
ropsy room at 50  days of age and allowed to acclimate 
to the room for 1  h. Mice were then euthanized one at 
a time by CO2 asphyxiation out of sight of other mice. 
The euthanasia chamber was cleaned with 70% ethanol 
between mice to eliminate olfactory cues. Following loss 
of paw pinch and righting reflexes, blood was collected 
by cardiac puncture and placed into serum separator 
tubes. The brain was then removed, and the hippocam-
pus was gently dissected out, placed in a 2-mL tube, and 
promptly plunged into liquid nitrogen to flash freeze. 
Liver and ileum were isolated, placed in a 2-mL tube, and 
promptly plunged into liquid nitrogen. Two fecal pellets 
were collected from the colon for 16S rRNA amplicon 
sequencing. Blood was allowed to clot for 30 min at room 
temperature and was then centrifuged at 4000 RPM for 
15 min, and serum placed into a 1.5-mL microcentrifuge 
tube. Hippocampus, feces, and serum were promptly 
placed into − 80 °C freezer for storage.

Methylome analysis
Due to constraints on resources, methylome analysis 
were performed in only one sex. To assess intergenera-
tional effects on DNA methylation, we analyzed dams 
and female offspring in both control and CF mice. 
Females were utilized for DNA methylome analysis as 
we speculated that the metabolites seen in female serum 
might affect fetal development during pregnancy. Four 
dams from both colonies were time mated, and follow-
ing birth, litters were culled to six female pups. Three of 
the pups from each litter remained with the birth dam, 
and three were cross-fostered onto a dam of the opposite 
GM so that every dam from both GMs had three of their 
birth pups and three cross-foster surrogate pups. Hip-
pocampi were collected from all dams following weaning, 
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flash frozen in liquid nitrogen, and stored at –  80  °C. 
At 7  weeks of age, hippocampi from the offspring were 
collected, flash frozen in liquid nitrogen, and stored at 
– 80  °C. Hippocampal genomic DNA was isolated from 
adult female CF and control offspring hippocampi using 
the DNeasy kit (Qiagen, Valencia, CA, USA) following 
manufacturer instructions. For studying genome-wide 
DNA methylation profiles, 1  μg of genomic DNA was 
treated with sodium bisulfite (Zymo Research, Irvine, 
CA, USA). Converted DNA was analyzed using Infinium 
Mouse Methylation BeadChip assay (Illumina, San Diego, 
CA, USA). This array includes over 285,000  CpG sites 
covering all RefSeq genes, including CpG islands, trans-
lation start sites, enhancers, imprinted loci, and other 
regions [54]. All data analyses were conducted using the 
R environment version 4.2.0. Microarray data was pro-
cessed using the ENmix version.1.34.02 [55] and minfi 
v.1.44.0 [56] packages. Quantile normalization of U or 
M intensities for Infinium I or II probes were performed, 
respectively. A model-based correction was performed 
using oob  [55], and a dye-bias correction was conducted 
using RELIC [57]. A probe-type bias adjustment was per-
formed using RCP  [58]. A batch effect correction was 
performed using the function ctrlsva() to estimate sur-
rogate variables for batch effects and unknown experi-
mental confounders. β-values representing the averaged 
total intensity value per CG position was calculated as 
unmethylated intensity (U) + methylated intensity (M) 
[M/(U + M + 100)]. Probes with a detection p < 1 × 10−6 
and less than 3 beads were defined as low quality. Samples 
with low quality DNA methylation measurements > 5% or 
low intensity bisulfite conversion probes were removed 
from further analysis. Differentially methylated positions 
(DMPs) between the experimental groups were deter-
mined using the ENmix version.1.34.02 [55] package. For 
each position, the magnitude of the DNA methylation 
difference was expressed as Fold Changes in the logarith-
mic scale (Log2FC) and the significance of the difference 
as a FDR-corrected p value (q value).

Isolation of hippocampal nuclei
Single nuclei were isolated from mouse hippocampal 
tissue samples as follows. Briefly, nuclei lysis buffer was 
prepared by adding 12 mL of Nuclei EZ Prep Lysis Buffer 
(Sigma-Aldrich, St. Louis, MO, USA) to a 15-mL tube 
and adding 1 cOmplete Ultra tablet (Sigma-Aldrich, St. 
Louis, MO, USA) and allowing tablet to dissolve. Two 
4-mL aliquots of the Nuclei EZ Prep Lysis Buffer + cOm-
plete Ultra tablets were then placed in 15  mL tubes. 
Twenty microliters of Protector RNase inhibitor (Sigma-
Aldrich, St. Louis, MO, USA) and 20 uL of Superase-In 
(MilliporeSigma, Burlington, MA, USA) were added to 
one 4 mL aliquot to make Nuclei Lysis Buffer 1 (NLB1). 

Four microliters of Protector RNase inhibitor (Sigma-
Aldrich, St. Louis, MO, USA) and 4  µL of Superase-In 
(MilliporeSigma, Burlington, MA, USA) were added 
to the second-mL aliquot to make Nuclei Lysis Buffer 2 
(NLB2). Suspension Buffer (SB) was prepared by add-
ing 1 mL of fetal bovine serum (Sigma-Aldrich, St. Lous, 
MO, USA) to 9 mL of 1 × phosphate-buffered saline with 
4  µL of Protector RNase inhibitor (Sigma-Aldrich, St. 
Louis, MO, USA). Eight hippocampi halves from eight 
individual mice were pooled and homogenized to a single 
cell suspension in a 2 mL dounce homogenizer with 2 mL 
of NBL1. The sample was then strained through a 200 µm 
strainer (pluriSelect Life Science, El Cajon, CA, USA) and 
the strained cell suspension returned to the 2 mL dounce 
and homogenized to a nuclei suspension. The nuclei were 
strained through a 40  µm strainer (pluriSelect Life Sci-
ence, El Cajon, CA, USA) and centrifuged at 500 RCF at 
4 °C for 5 min. Supernatant was removed, and pellet was 
resuspended with NLB2 and incubated at 4 °C for 5 min. 
Nuclei were then centrifuged at 500 RCF at 4  °C for 
5 min, supernatant was removed, and nuclei were resus-
pended in suspension buffer.

10x genomics single cell 3’ RNA‑Seq library preparation
Libraries were constructed by following the manufac-
turer’s protocol with reagents supplied in 10x Genom-
ics Chromium Next GEM Single Cell 3′ Kit v3.1. Briefly, 
nuclei suspension concentration was measured with an 
Invitrogen Countess II automated cell counter. Nuclei 
suspension (1200 nuclei per microliter), reverse tran-
scription master mix, and partitioning oil were loaded 
on a Chromium Next GEM G chip with a capture tar-
get of 8000 nuclei per library. Post-Chromium controller 
GEMs were transferred to a PCR strip tube and reverse 
transcription performed on an Applied Biosystems Ver-
iti thermal cycler at 53 °C for 45 min. cDNA was ampli-
fied for 13  cycles and purified using Axygen AxyPrep 
MagPCR Clean-up beads. Fragmentation of cDNA, 
end-repair, A-tailing and ligation of sequencing adap-
tors was performed according to manufacturer specifi-
cations. The final library was quantified with the Qubit 
HS DNA kit and the fragment size determined using an 
Agilent Fragment Analyzer system. Libraries were pooled 
and sequenced on an Illumina NovaSeq 6000 to generate 
50,000 reads per nuclei.

Single cell bioinformatics
FASTQ files were generated from the raw base call out-
puts using Cell Ranger (10x Genomics) pipeline, mkfastq 
v3.0. Using default parameters, a UMI (gene-barcode) 
count matrix per sample was obtained using the built-in 
Cell Ranger count pipeline. To reduce noise, we only kept 
genes that were detected in at least three barcodes, and 
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subsequently removed ribosomal-encoded genes from 
the count matrix. Scrublet [59] was then used to identify 
potential multiplet-barcodes and only those with a dou-
blet score of less than 0.15 were used for downstream 
analyses. The files were then combined in a single embed-
ding for the control and CF groups separately, following 
the Seurat v3 integration workflow [60]. SCTransform 
was used to normalize each sample, followed by the iden-
tification of integration anchors and variable features 
using the Seurat workflow. Dimension reduction was 
performed scaled data after 4000 highly variable genes 
across the samples were identified (SelectIntegration-
Features function). The IntegrateData function was then 
used to obtain a combined and centered matrix, where 
the top 30 components were used to carry out ordina-
tion analyses. These components were used to build a 
SNN (shared nearest neighbor) graph which was subse-
quently clustered using the Louvain algorithm for speed 
and computational efficiency. The principal components 
were then mapped into two dimensions using the default 
uniform manifold approximation and projection (UMAP) 
algorithm, where the n = 30 neighbors was set, with a 
minimum distance of 0.4. Finally, the FindAllMarkers 
function was used to identify marker genes for each clus-
ter. The top marker genes were used manually based on 
literature searches to assign cell type annotations for each 
cluster. This was further corroborated by cluster annota-
tions using the Azimuth mouse reference datasets [60]. 
The cell types across samples and groups were combined 
with their pseudo bulk profiles, and the resulting gene-cell 
type matrix was normalized by estimating transcripts per 
million and transformed (log2) for downstream analyses. 
To obtain statistically enriched differential gene expres-
sion, we used generalized additive regression models, 
where in the control or CF variables, alongside the GMLow 
or GMHigh status were encoded as independent variables. 
The models were analyzed for each cluster independent 
of the other, where per gene log2 fold-change was deter-
mined. Significance was identified as those genes with an 
adjusted p value of less than 0.05, following Benjamini–
Hochberg correction. All figures and statistical analyses 
were performed using R v4.1 [61].

Cell-to-cell communication was inferred using log10-
transformed gene expression data collected from 
snRNA-seq of the mouse hippocampus using CellChat 
[62, 63]. Cell clusters as identified above were grouped 
into the following cell types based on Azimuth clas-
sification: glutamatergic and GABAergic neurons, 
periendothelial cells, microglia, astrocytes, and oli-
godendrocytes. Ligand-receptor interactions were 
inferred using the mouse reference database provided 
by CellChat (Accessed May 25, 2023). Overexpressed 

genes and interactions were determined using default 
settings. Cell–cell communication probability was 
inferred using default settings. Information flow was 
determined by the summation of communication prob-
ability for each pathway.

Statistics
Two-way analysis of variance (ANOVA) followed by 
Tukey’s post hoc analysis was used to test for main 
effects of GM and sex in OFE, LDT, and EPM behavior 
tests for all behavior testing parameters. Due to lack of 
normality, CF LDT parameter distance travelled in the 
light zone and CF EPM parameters time spent in open 
arms and distance travelled in open arms were normal-
ized by square root transformation. Two-way ANOVA 
followed by Tukey’s post hoc was used to test for main 
effects of GM and Time (day) for voluntary running dis-
tance data. Two-way ANOVA followed by Tukey’s post 
hoc was used to test for main effects of GM and sex in 
the body weight data. Two-way permutational analy-
sis of variance (PERMANOVA) was used to test group 
beta-diversity for main effects of GM and sex. Two-way 
ANOVA followed by Tukey’s post hoc was used to test 
Chao-1 richness for main effects of GM and treatment. 
Since it was not possible to include a male dam group, 
the main effect of sex was excluded from Chao-1 anal-
ysis. Chao-1 richness was calculated using PAST 4.03 
software [64]. Differences in family- and genus-level 
relative abundance between GMs was assessed using 
Wilcoxon Rank-Sum tests with a Benjamini–Hochberg 
correction for multiple comparisons. Due to uniform 
lack of normality across metabolites, a Mann–Whit-
ney U test was used to test for differences in metabolite 
concentrations between GMLow and GMHigh treatment 
groups, followed by Benjamini–Hochberg correction 
for multiple comparisons. Spearman’s rank correlation 
was used to test correlations between genus-level abun-
dance and statistically significant metabolites. Two-way 
ANOVA followed by Tukey’s post hoc was used to test 
for main effects of GM and sex in the gene expression 
data. A student’s t-test was used to test for differences 
in the GMLow and GMHigh groups in the bsh metagen-
omic and metatranscriptomic read counts. A two-way 
ANOVA followed by Tukey’s post hoc was used to test 
for main effects of GM and sex in the BSH activity data. 
All univariant data analysis was performed using Sig-
maPlot 14.0 (Systat Software, Inc, San Jose, CA). Sha-
piro–Wilk test was used to test for normality using 
SigmaPlot 14.0. Two-way PERMANOVA testing was 
based on Bray–Curtis dissimilarities using the adonis2 
library from the vegan library [65].
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Results
Taxonomic differences are associated with different levels 
of biologically relevant metabolites
Compositional differences between GMLow and GMHigh 
have been described previously [38, 39, 66], includ-
ing greater richness in GMHigh compared to GMLow 
(Fig.  1A). Families enriched in GMLow included Erysip-
elatoclostridiaceae, Erysipelotrichaceae, Sutterellaceae,  
Saccharimonadaceae, Acholeplasmataceae, and unre-
solved members of orders Tissierellales and RF39; 
while families enriched in GMHigh included Prevotel-
laceae, Marinifilaceae, Clostridiaceae, Desulfovibrion-
aceae, Deferribacteraceae, and an unresolved family 
within the order Rhodospirillales (Table  S2). Genera 
that were enriched in GMLow included Anaeroplasma, 
Lachnoclostridium, Lachnospiraceae,Oscillospira and 
Ruminococcaceae; while genera that were enriched in 
GMHigh included Odoribacter, Alloprevotella, Rikenella, 
Bilophila, Desulfovibrio, Lactobacillus, and Akkermansia 

(Fig. S2; Table S3). To determine whether these phyloge-
netic differences were associated with different metabo-
lite profiles, fecal samples were collected from both male 
and female GMLow and GMHigh mice, and a combina-
tion of mass spectrometry (MS)-based platforms were 
used to measure short-chain fatty acids; branched chain 
fatty acids, branched chain keto-acids, and other lipids; 
unconjugated primary and secondary bile acids; all pro-
teinogenic amino acids and several nonproteinogenic and 
acetylated amino acids; tryptophan derivatives including 
kynurenine, serotonin, and several indoles; B vitamins; 
dicarboxylic acids; glucose, fructose, and other com-
pounds within glycolysis; all ribonucleosides and nitrog-
enous bases; compounds within the pentose phosphate 
pathway; compounds within the classic TCA cycle; and 
other biologically relevant microbial metabolites. Analy-
sis of fecal metabolites utilizing uncorrected p-values 
(BH-corrected p-values provided in Table  S4) revealed 
differences in sugar molecules involved in glycolysis, 

Fig. 1  Microbiomes linked to fetal programming of complex behaviors differ in synthesis or catabolism of several metabolites including bile 
acids. A Hierarchical clustering of data from adult GMLow- or GMHigh-colonized mice, demonstrating segregation of GMs by richness (pGM < 0.0001, 
F = 83.6; Two-way ANOVA) and composition (pGM = 0.0001, F = 22.3; Two-way PERMANOVA) (shading color legend at right). Volcano plots showing 
metabolites enriched in GMLow (red dots) or GMHigh (blue dots) (B) feces or (C) serum. N = 6/sex/group. Horizontal dashed line indicates significance 
of uncorrected p < 0.05 between GMLow and GMHigh mice by Wilcox rank sum test. Normalized ileal expression of Asbt (D), Ostβ (E), Gpbar1 (F), 
and Fxr (G) male (M) and female (F) mice colonized with GMLow (red dots) or GM.High (blue dots). Normalized hepatic expression of Cyp7a1 (H), 
Slc10a1 (I), and S1pr2 (J) in the same groups of mice. N = 6–8/sex/group Gene expression normalized to β-Actin expression. Results indicate main 
effect of GM in one- or two-way ANOVA. ns—not significant, * p < 0.05, ** p < 0.01, **** p < 0.0001. Abbreviations: 2-HBA (2-hydroxybutyrate), α-MCA 
(alpha-Muricholic Acid), β-ALA (beta-Alanine), BUTY (Butyrate), CA (Cholic Acid), CDCA (Chendeoxycholic Acid), CYS (Cysteine), DCA (Deoxycholic 
Acid), F6P (Fructose-6-Phosphate), G6P (Glucose-6-Phosphate), GCA (Glycocholic Acid), GLY (Glycerate), INO (Inositol), LAC (Lactate), LEU (Leucine), 
MVA (Mevalonic Acid), R5P (Ribulose-5-Phosphate), SUC (Succinate), TCA (Taurocholic Acid), TCDCA (Taurochenodeoxycholic Acid), TDCA 
(Taurodeoxycholic Acid), TLCA (Taurolithocholic Acid), UDCA (Ursodeoxycholic Acid)
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multiple amino acids, and primary bile acids (Fig.  1B; 
Table  S4). Specifically, glucose-6-phosphate, fructose-
6-phophate, ribulose-5-phosphate, and β-alanine were 
enriched in GMLow feces, while cysteine, succinate, lac-
tate, chenodeoxycholic acid (CDCA) and deoxycholic 
acid (DCA) were enriched in GMHigh feces. These dif-
ferences were particularly apparent in the feces of male 
mice (Fig. S3A), while female mice also showed a single 
secondary bile acid (lithocholic acid, LCA) enriched in 
the feces of GMLow (Fig.  S3B). When genus-level taxo-
nomic abundances were compared to each of the signifi-
cant metabolites, numerous significant correlations were 
identified indicating that multiple taxonomic features in 
each GM were strongly associated with the differentially 
abundant metabolites (Fig.  S4; Table  S5). Spearman’s 
rank order correlation across all taxa and metabolites 
identified significant correlations between 15 genera or 
families and 9 metabolites including CDCA (Fig.  S5). 
Metabolites were also measured in serum, collected at 
the same time as fecal samples. Remarkably, analysis of 
serum metabolites utilizing uncorrected p-values (BH-
corrected p-values provided in Table  S6) revealed the 
only significant difference in the serum was a primary 
bile acid (CDCA) (Fig. 1C; Table S6). There were also sev-
eral bile acids, both primary and secondary, that while 
not reaching statistical significance, had greater levels 
within the serum of female GMLow and male GMHigh 
mice (Fig.  S3C, D). Collectively, these data suggest that 
the GMLow and GMHigh microbiomes have distinct bac-
terial populations that differentially produce metabolites 
and influence expression of select genes associated with 
bile acid transport in the ileum and liver.

To determine whether these differences in bile acids are 
associated with differences in bile acid cellular transport 
and receptor signaling, quantitative RT-PCR was per-
formed with mRNA from both ileal and hepatic tissue, 
dominant sites of bile acid receptor expression (n = 6/
sex/group). Asbt, a gene involved in transporting bile 
acid from the ileal lumen into the ileal epithelium did not 
show a difference in gene expression (Fig. 1D). However, 
Ost-β, a gene involved in transport of bile acids from the 
ileal epithelium into vascular circulation, showed greater 
expression in ileum of GMHigh mice (Fig.  1E). Gpbar1, 
a G protein-coupled receptor (GPCR) also known as 
TGR5, was found to have greater expression in the ileum 
of GMLow mice (Fig. 1F). Fxr, a gene critically involved in 
regulation of hepatic bile acid synthesis, showed no dif-
ference in ileal expression (Fig. 1G). Accordingly, Cyp7a1, 
a gene downstream of ileal Fxr signaling that encodes the 
rate-limiting protein in bile acid synthesis, also showed 
no difference in hepatic expression (Fig. 1H). Expression 
of Slc10a1, a bile acid transport protein, was higher in the 
liver of GMLow mice (Fig. 1I). S1pr2, a GPCR activated by 

bile acids, was also expressed at a greater level in the liver 
of GMLow mice (Fig. 1J). These data indicated that the dif-
ferential abundance of BAs detected in feces and serum 
of GMLow- and GMHigh-colonized mice are also associ-
ated with differential ileal and hepatic expression of bile 
acid receptors and transporters.

We next examined whether bile salt hydrolase (BSH), 
the bacterial enzyme used to deconjugate bile acids, lev-
els showed differential expression or activity between 
GMLow- and GMHigh-colonized female mice (n = 3 
females/group). While no difference was detected in total 
gene read count (Fig.  S3E), microbial expression of bsh 
was significantly higher in GMLow (Fig.  S3F). The BSH 
family of enzymes is widely expressed among gut bacte-
ria, and prone to significant variations in structure with 
some isoforms exhibiting different deconjugation activ-
ity toward various bile acids and possessing various levels 
of enzymatic activities [67, 68]. Using a panel of highly 
sensitive bioluminescent assays [50], we compared BSH 
enzymatic activities of both microbiomes toward various 
bile acids. Our results demonstrated significantly greater 
BSH activity specific for cholic acid in GMLow (Fig. S3G), 
but no other differences were detected in BSH activities 
towards other bile acids examined (Fig.  S3H–K). Col-
lectively, the differences in bacterial bsh expression and 
fecal and serum bile acid levels suggest greater uptake by 
GMLow mice and greater fecal loss by GMHigh mice. This 
is supported by greater hepatic expression of bile acid 
receptors and transporters.

Complex microbiome‑dependent behaviors determined 
by the parental microbiome
Prior work has revealed reproducible differences in behav-
ior and growth between GMLow- and GMHigh-colonized 
mice [38, 39]. To determine the developmental period in 
which these phenotypic differences are established, we 
used an experimental design with four groups, compris-
ing mice born to dams harboring GMLow or GMHigh and 
remaining with their birth dams until weaning (control) 
(n = 11–12/sex/group), or cross-fostered at birth to nurs-
ing dams harboring the reciprocal microbiome (Fig. 2A, 
Fig. S1) (n = 20/sex/group). These cross-foster groups are 
denoted as CFLow and CFHigh, with the microbiome des-
ignation indicating the postnatal offspring composition 
acquired via cross-foster (CF). Comparisons were then 
made between the two control groups, and between the 
two CF groups in behavior tests associated with anxiety-
related behavior and voluntary activity between 5 and 
7 weeks of age, and body weight (BW) at three and seven 
weeks of age.

In agreement with previous studies [39], age-, sex-, and 
genotype-matched CD-1 mice colonized with GMLow 
spent less time and traveled less distance in the light 
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portion of a light–dark transition (LDT) test (Fig.  2B, 
Fig.  S6A), and the open arms of an elevated plus maze 
(EPM) test (Fig. 2C, Fig. S6B), relative to mice colonized 
with GMHigh, indicating differential effects on anxiety-
related behavior of the two microbiomes. No behavioral 
differences were observed in the open-field exploration 
test between GMLow and GMHigh mice (Fig.  S6C, D). 
To assess voluntary physical activity, mice were sin-
gly housed with bluetooth wireless running wheels for 
a 5-day acclimation period followed by a 7-day test 
period. Both male (Fig.  2D) and female (Fig.  2E) mice 
colonized with GMHigh ran significantly more than 
mice with GMLow (p < 0.0001, F = 29.2, and p = 0.0002, 
F = 14.4, respectively; n = 8–12/sex/group). Previously 
reported differences in body weight (BW) at weaning 
and adulthood were also reproducible in the GMLow and 
GMHigh groups [39] (Fig. 2F, Fig. S6E). Collectively, these 
data confirmed microbiome-associated differences in 

anxiety-related behavior, voluntary physical activity, and 
body weight, in sex-, age-, and genotype-matched mice.

Microbial 16S rRNA amplicon sequencing was used 
to confirm that CF mice harbored a microbiome of 
comparable richness and beta-diversity to that present 
in surrogate dams, in both directions of CF (Fig. S7A–
C). Behavioral analysis showed the GM-associated dif-
ferences in the LDT, independent of sex, were reversed 
in the comparison between CFLow and CFHigh mice, 
with the CFHigh mice demonstrating behavior sugges-
tive of greater anxiety (Fig.  2G, Fig.  S6F). While the 
main effect of GM was the dominant factor in both 
LDT parameters (Fig. 2B, Fig. S6F), an interaction was 
noted with post hoc analysis revealing a significant 
difference between males but no difference between 
females. Similarly, the robust GM-dependent differ-
ences in the EPM of the non-cross-fostered groups 
were reversed in the CFLow and CFHigh mice (Fig.  2H, 

Fig. 2  Anxiety-related behavior and other outcomes in offspring are influenced by the maternal gut microbiome. A Schematic showing 
the experimental groups and timing of outcome measures. Behavior outcomes in male (M) and female (F) mice colonized with GMLow or GMHigh, 
including B time spent in the light portion of a light/dark test, C time spent in the open arms of an elevated plus maze, and distance run 
per day (Km) by D male and E female mice. Error bars represent SEM. F Body weight per mouse (grams) at day 50 in control mice. N = 11–12/
sex/group; N = 8–12/sex/group in voluntary activity assay. G–J Behavior outcomes in CFLow and CF.High mice as those shown in panels B–E. Error 
bars in I–J represent SEM. K Body weight per mouse at day 50 in cross-fostered mice. N = 20/sex/group in LDT, EPM, and weight; N = 8–12/sex/
group in voluntary activity assay. p and F values represent effect of GM in two-way ANOVA with Tukey post hoc. Significant sex-dependent 
differences were detected in distance on running wheels and body weight in both control and cross-fostered mice, with no significant interactions 
between GM and sex in any tests. * p < 0.05, ** p < 0.01, **** p < 0.0001
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Fig.  S6G) indicating that the birth dam microbiome 
has a substantial, if not dominant, influence on neu-
rodevelopmental events contributing to anxiety-
related behavior in the offspring. Similar to LDT, while 
the GM was the dominant effect in the parameters 
observed in the EPM (Fig.  2H, Fig.  S6G), an interac-
tion was also noted with post hoc analysis revealing a 
significant difference between females but no differ-
ence between males. While a significant difference of 
total distance traveled in the OFE test was observed, 
distance traveled in the center was not found to be 
significant in the cross-foster groups (Fig.  S6H, I). 
The significant GM-associated differences in volun-
tary physical activity were absent in male and female 
CF mice (Fig.  2I, J; n = 12/sex/group). Comparison of 
BW revealed no difference at weaning (Fig.  S6J) and 
reversal in adulthood (Fig. 2K), such that CFHigh mice 
weighed more than age-matched CFLow mice. Collec-
tively, these data supported an equivalent or dominant 
effect of the birth dam GM on offspring behavioral 
phenotypes and body weight.

Fetal programming of gene DNA methylation 
in hippocampus by the parental microbiome
Reasoning that an influence on offspring behavior by the 
parental microbiome must have a biological foundation 
in the CNS, and a mechanism by which cellular function 
and gene expression are established during fetal devel-
opment, we next examined gene expression and its epi-
genetic regulation in offspring hippocampus, given its 
central role in anxiety-related behavior [69–74]. Analysis 
of DNA methylation across the entire array, and parallel 
comparisons between samples from GMLow or GMHigh 
mice, and from CFLow or CFHigh mice, identified only 196 
differentially methylated positions (DMPs) with beta val-
ues differing by log2FC > 1 (Table S7; n = 9–11 female off-
spring/group). Remarkably, 176 of those 196 sites (89.8%) 
showed a difference in DNA methylation at the same 
site in the reciprocal contrast, such that offspring DNA 
methylation matched that of their birth dam (Fig.  3A, 
R2 = − 0.644, p = 2 × 10−7). DMPs identified in offspring 
hippocampi were distributed across the genome, occur-
ring most often early in gene bodies or enhancer/pro-
moter regions and roughly correlating in frequency to 

Fig. 3  Maternal microbiome is associated with gene DNA methylation in offspring hippocampus. A Dot plot showing normalized difference 
[Log2(FC)] in mean DNA methylation between GMLow and GMHigh, and between CFLow and CFHigh, of all CpG markers achieving a Log2(FC) > 1 
in either comparison. B Ratio of observed to predicted differentially methylated positions (DMPs), and locations of DMPs relative to gene bodies, 
on each chromosome. C Mean beta values of 27 CpG sites spanning the enhancers, promoters, introns and exons across the Pde1c gene in all 
four groups, with specific sites indicated above (upper); and log2(FC) between control and cross-fostered groups (lower). Arrows on X-axis 
indicate direction of transcription. Numbers on the X-axis indicated number of CpG sites analyzed. D Mean beta values (upper) and Log2(FC) 
between groups (lower) across adjacent regions of the positive (left) and negative (right) strand of a region of chromosome 14 containing genes 
for Ang5, Ang6, and other genes. E Protein interaction networks among products of DMPs, with node color indicating Log2(FC) in DNA methylation 
between GMLow and GMHigh. N = 9–11 female offspring/group



Page 14 of 22Gustafson et al. Microbiome          (2025) 13:254 

chromosomal gene content, with the exception of an 
apparent enrichment for DMPs on chromosome 14 
(Fig.  3B, p = 0.003). Differential DNA methylation was 
detected at five contiguous markers mapped to promot-
ers, enhancers, and exon 1 of the Pde1c gene, encoding 
phosphodiesterase 1c, a regulator of Ca2+ and cGMP-
dependent intracellular signaling. This DNA methylation 
pattern differed between hippocampus from GMLow and 
GMHigh mice, and was conserved between birth dam and 
offspring, regardless of postnatal colonization (Fig.  3C; 
Table  S7). Similarly, microbiome-associated differences 
in DNA methylation were identified at multiple closely 
spaced markers on both strands of chromosome 14, 
including markers associated with the genes Ang5 and 
Ang6 (Fig. 3D), encoding members 5 and 6, respectively, 
of the angiogenin, ribonuclease A family.

To identify shared pathways or commonalities among 
the functional products (i.e., proteins) encoded by pro-
tein-coding genes among the DMPs, a STRING analysis 
was performed using a final input of 144 gene names [75]. 
Interaction analysis resulted in assembly of one large net-
work with 32 nodes, a smaller network with six nodes, 
and four dyads (Fig. 3E). While enrichment analysis failed 
to detect greater network connectivity than would occur 
at random, stratified analysis of the 32 nodes in the large 
network revealed 10 significantly enriched Gene Ontol-
ogy (GO) Biological Processes; five GO Molecular Func-
tions including TGF-β receptor binding (GO:0005160, 
strength 1.94, FDR-adjusted p = 0.015) and GTPase 
activity (GO:0003924, strength = 1.09, FDR-adjusted 
p = 0.042); five KEGG pathways including gap junction 
(mmu04540, strength = 1.38, FDR-adjusted p = 0.033) and 
TGF-β signaling pathway (mmu04350, strength = 1.32, 
FDR-adjusted p = 0.033); and four Reactome pathways 
including axon guidance (MMU-422475, strength = 1.08, 
FDR-adjusted p = 0.048). Network STRING analysis 
results provided in Table S8.

Fetal programming of gene expression in hippocampus 
by parental microbiome
We next performed single nuclei RNAseq on hippocam-
pus collected from control mice and cross-fostered mice 
(n = 3 biological replicates of 8 pooled hippocampi/

sex/group). Based on expression of cell-specific mark-
ers, 11 cell clusters were identified in the control mice 
(Fig.  S8A, B) and 24 cell clusters were identified in the 
cross-fostered mice (Fig.  S8C, D). A list of differentially 
expressed genes (DEGs) in GMLow and GMHigh control 
mice are presented in Table  S9. Similarly, DEGs from 
mice of the CFLow and CFHigh groups and DEGs within 
each cell cluster are presented in Table S10. After DEGs 
from each cell cluster had been determined using a cut-
off magnitude difference of Log2FC > 1.5, the number of 
DEGs from each cell cluster were compared to the mean 
node degree received from the STRING analysis results 
to determine which cell clusters contained a high number 
of DEGs that were most likely to interact within protein 
pathways. Interestingly the cell cluster with the highest 
number of DEGs, as well as the highest number of mean 
node degree of protein–protein interactions, in both con-
trol and cross-foster mice was identified as hippocampal 
endothelial cells (Fig. S9A, B). STRING analysis was used 
to generate interaction networks using DEGs identi-
fied in the endothelial cells of control mice as well as the 
cross-fostered mice (Fig. 4A, B). Of these interactions, six 
DEGs (Fas, Fzd6, Gja1, Ntng1, Pik3r3, Sox17) showed a 
pattern of fetal programming. Of note, numerous DEGs 
(including Pde1c, Dock1, and Pdzrn3) identified were also 
found to be differentially methylated or closely related 
to differentially methylated genes. When L5 IT gluta-
matergic neurons and astrocytes were examined using 
interaction networks, they also contained multiple DEGs 
that showed a pattern of fetal programming as well as 
DEGs that were identified as differentially methylated 
(Fig.  S10A, B; Fig.  S11A, B). When we examined the 
Log2FC of Dock1 expression of CFLow and CFHigh, Dock1 
was shown to be upregulated in the clusters of endothe-
lial cells, oligodendrocyte, microglial cells, and subsets 
of astrocytes and glutamatergic neurons of CFHigh mice 
compared with CFLow (Fig. 4C). Similarly, when we exam-
ined expression of Pde1c, it too was found to be increased 
in the endothelial cell cluster of CFHigh mice, though not 
consistent with the expression patterns of other cells 
seen with Dock1 (Fig. 4D). We next used CellChat soft-
ware [63] to impute cell–cell communication via pat-
terns of coordinated ligand-receptor expression in each 

Fig. 4  Maternal microbiome is associated with differential gene expression in the hippocampus. Interaction networks constructed using 
differentially expressed genes (DEGs) identified in hippocampal endothelial and perivascular cells of control (A) and cross-fostered (B) mice. 
Highlighted nodes include DEGs identified in both comparisons and showing a pattern of fetal imprinting, and genes that are also differentially 
methylated (Pde1c, Dock1), or closely related (PDE cluster, Dcc, Elmo1, Dock4, Dock5). Log2FC in expression of C Pde1c and D Dock1 in hippocampal 
cell clusters of male and female CFLow and CFHigh mice, as determined via real-time snRNAseq. E Venn diagram showing number of inferred 
cell-to-cell communication pathways identified in hippocampus of GMLow, GMHigh, CFLow, and CFHigh mice. Pathways listed above and below 
the diagram were selectively identified in the indicated groups. Bar charts showing the relative degree of cell-to-cell communication between F 
GMLow and GMHigh, and G CFLow, and CFHigh mice in the indicated pathways. N = 3 biological replicates of 8 pooled hippocampi/sex/group

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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control and cross-foster group, to identify cell signal-
ing pathways that show a pattern of fetal programming. 
There were 42 cell–cell communication pathways that 
were shared among the control mice and the cross-foster 
mice (Fig. 4E). Of the 42 pathways identified, 15 showed 
a pattern of fetal programming including VEGF, IGF, IL2, 
TGFβ, WNT, and NPY (Fig.  4F, G). Interestingly, three 
cell–cell communication pathways that were identified in 
only GMLow and CFHigh were appetite-stimulating orexi-
genic neuropeptide pathways.

Discussion
Studies comparing germ-free and SPF mice demon-
strate that the parental microbiome can affect off-
spring phenotypes associated with neurodevelopment 
[76], metabolic diseases including obesity [77], and 
organogenesis in the CNS and intestines [78]. While 
challenging to study in human cohorts, recent retro-
spective analyses suggest a dominant influence of the 
maternal microbiome on offspring phenotypes related 
to asthma [79], neurodevelopment [80], and metabolic 
diseases including obesity and diabetes [81]. The cur-
rent data demonstrate that differences among native 
parental microbiomes can influence neurodevelopment 
and behavioral outcomes in the offspring. The current 
findings and prior studies [38, 39] show reproducible 
effects of these native SPF microbiomes on certain phe-
notypes. GMLow-colonized CD-1 mice are consistently 
heavier than age- and sex-matched mice colonized 
with GMHigh, and the same effect is observed in inbred 
C57BL/6  J and BTBR T+ Itpr3tf/J mice [82]. Behavior 
and BW data from the cross-foster (CF) mice provide 
strong evidence of a dominant effect of the parental GM 
on these behavioral phenotypes in offspring. While we 
did not measure food intake in the current study, pre-
vious work showed that the heavier GMLow-colonized 
mice consume more food (normalized to BW) than 
age- and sex-matched GMHigh-colonized at all time-
points examined [38]. The differences in BW between 
CF and control offspring would suggest that these feed-
ing behaviors are similarly programmed during fetal, 
embryonic, or even pre-fertilization events. While 
studies have explored the effect of maternal care on 
behavioral differences of offspring, it this study we 
did not observe any differences in the level of mater-
nal care between the two colonies. As such, these find-
ings raise the possibility of a connection between the 
anxiety-related behaviors and the behaviors underlying 
the difference in BW and voluntary physical activity, 
representing a constellation of behavioral phenotypes 
influenced by common features within the paren-
tal microbiomes. In this study we saw differences 
in numerous bacterial species between GMLow and 

GMHigh that have the potential to influence neurodevel-
opment. We observed that the Lactobacillus and Prevo-
tella, generas had an increased abundancy in GMHigh. 
Individuals that are colonized with Lactobacillus and 
Prevotella spp. have been reported to be correlated 
with positive behavioral outcomes including decreasing 
generalized anxiety [83]. Interestingly, we also saw an 
increase in the abundance of multiple genera involved 
in bile acid production in GMHigh feces including Lacto-
bacillus, and Bacteroides. Previous research performed 
in the GMLow and GMHigh colonies have demonstrated 
that at birth the GMLow colony is dominated by phylum 
Bacillota at 1 week of age and gradually becoming more 
taxonomically rich as they near weaning. In contrast, 
at 1 week of age GMHigh while also being dominated by 
Bacillota also has a high abundance of phylum Pseu-
domonadota which becomes dominate at 11 days of age 
before becoming less prevalent [84]. It is therefore clear 
that these colonies demonstrate key taxonomic differ-
ences at various stages of life.

The GM can influence host physiology through micro-
bially derived metabolites in peripheral circulation [76], 
interactions with the immune system [85], and stimu-
lation of the vagus nerve or enteric nervous system by 
microbially derived neurotransmitters [86] and other 
molecules. Gut metabolites have been implicated as a 
means by which the parental microbiome can influence 
fetal development [76, 87]. The present data provide evi-
dence of a functional difference between these native 
SPF microbiomes, including differential abundance of 
several bile acids. Bile acids stored in the gallbladder are 
released into the duodenum following food intake, and 
the observed differences in fecal bile acids may reflect 
differences in bsh expression, food intake, or other fac-
tors. Regardless, the observed differences in ileal and 
hepatic bile acid transporters and receptors indicate that 
the differences in bile acid levels are physiologically rel-
evant to the host. The observed difference in expression 
of Slc10a1 (Ntcp) may reflect a mechanism to regulate 
reabsorption of bile acids. GMLow mice also demon-
strated greater hepatic expression of S1pr2, a GPCR that 
when bound to primary conjugated bile acids is involved 
in the regulation of hepatic lipid metabolism [88]. There 
is considerable interest in the role of bile acids in anxi-
ety and depressive disorders [89, 90], and causative links 
have been shown between bile acids, bile acid receptor 
signaling, and these outcomes [91–94]. CDCA, present at 
greater levels in the serum of GMLow-colonized females, 
has been shown to readily cross the blood brain barrier 
[95] and influence the expression of transcription factors 
CREB and BDNF through FXR activation, which when 
down-regulated can lead to decreased neuroplasticity 
and mood disorders including anxiety [96]. The current 
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findings suggest that differences in the native microbi-
ome, independent of dietary challenge or host insult, can 
have intergenerational effects on these outcomes.

It is well-established that the GM can influence the 
epigenome of the host [97–99]. The distribution and 
relationship of genes affected by differential DNA methyl-
ation reflects a semi-stochastic effect across the genome, 
with enrichment of genes and pathways associated with 
TGF-β signaling and GTPase activity, both of which were 
identified in the single-cell transcriptome data as well. It 
should also be noted that methylation can be different 
across cell types. While we were unable to explore cell 
type specific methylation due to methodology, the cur-
rent study demonstrates that the microbiome can influ-
ence tissue specific differences within the hippocampus 
as a whole. Four of the 144 protein-coding genes (Dlx5, 
Drd1, Zfp64, and BC034090) identified as DMPs here are 
included among a comprehensive list of 384 genes known 
to undergo fetal imprinting [100]. This suggests that the 
GM-associated effects on DNA methylation of those and 
perhaps other DMPs occurred in germline cells pre-ferti-
lization. Indeed, several recent studies have revealed the 
influence of the paternal microbiome on germline DNA 
methylation and offspring outcomes [101–103]. As all 
matings in the current study were between mice sharing 
the same microbiome, it is unclear whether the effects of 
the GM on offspring DNA methylation occurred pre- or 
post-fertilization and whether the maternal lor paternal 
microbiome had a dominant or selective influence. As 
even transient co-housing to breed mice results in shar-
ing of the GM, in  vitro fertilization or similar methods 
would be needed to investigate those questions. The 
degree of DNA methylation was maintained at an incred-
ibly high degree across all mice at the vast majority of 
CpG sites included in the BeadChip array. However, we 
also observed that DNA methylation at CpG sites was 
maintained at a high degree between dams and offspring 
in the specific DMPs affected by the GM, suggesting the 
affected loci are not the result of random DNA methyl-
transferase (DNMT) activity, but rather an outcome with 
a teleological explanation. While speculative, the DNA 
methylation and gene expression profiles following a pat-
tern of fetal programming may represent an intergenera-
tional feedback mechanism wherein nutrient availability 
in the parent may program the trafficking of, or receptor 
response to, microbial metabolites as a way of fine-tuning 
offspring metabolism.

It is worth noting that the number and connectivity of 
DEGs were greatest in endothelial cells, in both control 
and CF mice. These cells supply blood to tissues within 
the hippocampus and comprise the blood–brain bar-
rier. The greater size of GMLow-colonized mice would 
necessitate greater amount of peripheral vasculature 

to adequately perfuse tissues. Indeed, prior work found 
the total cardiac weight of GMLow-colonized mice to 
be significantly greater than age- and sex-matched 
GMHigh-colonized mice, and no difference in cardiac 
weight when normalized to total BW [39], indicating 
differential growth of the circulatory system commen-
surate with the difference in BW. Moreover, the same 
study found no difference in body composition based on 
DEXA scanning, and a significant correlation between 
BW and crown-to-rump length, further indicating that 
the observed phenotypic difference is associated with 
somatic growth rather than adiposity. Several of the path-
ways identified in the CellChat analysis showing patterns 
of fetal programming represented growth factors includ-
ing TGF-β, vascular endothelial growth factor (VEGF) 
and insulin-like growth factor (IGF).

GPCRs are among the largest classes of receptors and 
common drug targets [104], responding to neurotrans-
mitters, hormones, and a wide range of sensory cues. 
With widespread and strong expression in the CNS 
[105], GPCRs are also broadly expressed by enteroen-
docrine cells [106], vagal efferents [107], and other cells 
throughout the gut [108]. Two of the DEGs identified 
in the endothelial cells included Pde1c and Dock1, two 
genes that were also found to be differentially methyl-
ated. PDE1C is a member of the phosphodiesterase 
family of enzymes involved in the production of cyclic 
guanosine monophosphate (cGMP) and cyclic adeno-
sine monophosphate (cAMP). The production of cAMP 
is necessary to maintain the integrity of the blood–brain 
barrier (BBB) [109], and excessive levels of cGMP are 
associated with anxiety and depression [110]. DOCK1 
is a protein belonging to the dedicator of cytokine-
sis (DOCK) family of guanine exchange factors (GEFs) 
involved in activation of G proteins. DOCK1 is involved 
in neuronal development and angiogenesis [111]. The dif-
ference in expression of Pde1c and Dock1 in the endothe-
lial cells may indicate a difference in permeability of the 
BBB within the hippocampus. It is also worth noting that 
a number of other phosphodiesterase and DOCK genes 
were identified as DEGs in endothelial cells, with a largely 
uniform direction of difference. This suggests a consist-
ent differential effect of these microbiomes on two major 
mechanisms of regulating intracellular signal transduc-
tion (i.e., cyclic nucleotide generation and GEF activity) 
across a sizeable range of surface receptors, including 
GPCRs.

Another gene of interest found to be differen-
tially expressed in astrocytes is the gene encoding for 
brain-derived neurotrophic factor (BDNF). BDNF 
over-expression leads to a decrease in anxiety-related 
behavior in mice [112]. However, we observed rela-
tively greater Bdnf expression in GMLow and CFHigh 
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mice which were found to have relatively increased 
anxiety-related behavior, and these findings therefore 
need to be explored further.

Interestingly, CellChat analysis detected coordinated 
expression of genes involved in orexigenic pathways 
including Ghrelin, Npr, and Qrfp only in GMLow and 
CFHigh mice, the two groups with greater BW. These 
differences in intercellular signaling may provide an 
explanation for the observed differences in feed intake. 
These findings highlight cell type specific differences 
in hippocampal gene expression in genes identified 
within DMPs and genes in pathways associated with 
growth and feeding behavior, giving a possible reason 
for the increased weight noted in these two groups.

We recognize a number of limitations within this 
study. For example, methylome analysis was restricted 
to samples from female offspring and their dams due 
to resource constraints. We chose to concentrate on 
females since we observed differences in the metabo-
lome data and were thus working under the rationale 
that in pregnant females the pups would be exposed to 
the GM metabolites of dams while in utero. Similarly, 
methylome and transcriptome analyses were limited to 
hippocampal tissue, and the latter included a limited 
sample size (n = 3/sex/GM). Additionally, there are 
inherent limitations in our ability to integrate the DNA 
methylation and gene expression data, performed in 
bulk and single cell preparations respectively. It was 
not possible to deconvolute individual cell types in the 
DNA methylation data due to the lack of an appropri-
ate mouse microarray-based reference dataset, rais-
ing questions about the cell specificity in the observed 
DMRs. Despite the compartmentalized nature of the 
hippocampus, it is nonetheless possible that differ-
ences in cell type numbers may have contributed to the 
observed differences in methylation. While these data 
provide strong proof-of-principle and demonstrate the 
utility of the experimental model, additional work is 
needed to determine whether the observed differences 
in hippocampal DNA methylation and gene expres-
sion are conserved in other regions of the CNS or even 
other tissues. Moreover, the parental generation was 
represented by the dams in all analyses presented here. 
There has been growing evidence for paternal pro-
gramming of offspring through the epigenome [101, 
103], and additional studies are needed to determine 
whether the observed effects are due to pre- or post-
fertilization events. Lastly, while all offspring appeared 
healthy and survived to weaning, we did not directly 
assess maternal care in these studies. It is possible that 
the parental microbiome may influence maternal care 
and indirectly affect offspring development.

Conclusion
In total, the findings presented here demonstrate that 
features within healthy native GMs exert an intergenera-
tional effect on offspring behavior, growth, DNA meth-
ylation, and gene expression within the central nervous 
system, and strongly suggest a relationship between these 
factors during fetal development. Moreover, these find-
ings implicate bile acids as potential mediators of these 
effects, including changes in GPCR signal transduction 
and pathways involved in feeding behavior.

Abbreviations
AD	� Anxiety disorders
BSH	� Bile salt hydrolase enzyme
Bsh	� Bile salt hydrolase gene
CF	� Cross-fostered offspring
CNS	� Central nervous system
DEGs	� Differentially expressed genes
DMPs	� Differentially methylated positions
EPM	� Elevated plus maze test
GM	� Gut microbiome
LDT	� Light/dark transition test
OFE	� Open-field exploration test
OO	� Obesity/overweight
snRNA-seq 	� Single nuclei RNA sequencing

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s40168-​025-​02226-3.

Supplementary Material 1: Figure S1. Visual schematic detailing the two 
non-cross-fostered groups (GMLow and GMHigh) and two cross-fostering 
group (CFHigh and CFLow) procedures. Cross-fostering in the two cross-
fostering groups was performed within 24 hours of birth at which time 
pups were removed from the birth dam and transferred to a surrogate 
nursing dam of the reciprocal GM on which the pups would be reared for 
three weeks until weaning same as the non-cross-fostered groups. 

Supplementary Material 2: Figure S2. Cladogram representing genera 
taxa identified within each phyla. Arrows indicate genus with statistically 
significant abundance differences. Wilcox rank sum test with Benjamini-
Hochberg corrected p values. List of genera identified provided in 
Table S3. N = 6/sex/group.

Supplementary Material 3: Figure S3. Volcano plots showing the metabo-
lites enriched in feces of GMLow(red dots) and GMHigh (blue dots) (A) males, 
and (B) females. Volcano plots showing the metabolites enriched in serum 
of GMLow(red dots) and GMHigh (blue dots) (C) males, and (D) females.N 
= 6/sex/group. Dot plots representing (E) gene and (F) the normalized 
(transcript/gene) expression in the feces of adult female mice colonized 
with GMLow or GMHigh (n= 3 females/group). Box plots and individual data 
showing hydrolytic activity of bile salt hydrolase (BSH) in adult male and 
female mice colonized with GMLow or GMHigh, determined using five dif-
ferent bile acid-conjugated bioluminescent probes specific for (G) cholic 
acid (CA), (H) deoxycholic acid (DCA), (I) chenodeoxycholic acid (CDCA), 
(J) ursodeoxycholic acid (UDCA), and (K) lithocholic acid (LCA). N = 8/sex/
group. *p<0.05, **** p<0.0001. Abbreviations: 2-HGA (2-hydroxygluter-
ate), 3-HPA (3-Hydroxyproprionate), α-KGA (alpha-Ketogluterate), α-KIC 
(alpha-Ketoisocaproate), ASP (Asparagine), β-ALA (beta-Alanine), CDCA 
(Chendeoxycholic Acid), CYS (Cysteine), DCA (Deoxycholic Acid), F6P 
(Fructose-6-Phosphate), G6P (Glucose-6-Phosphate), GLY (Glycerate), IAA 
(Indoleacetic Acid), ISO (Isocitrate), LAC (Lactate), LCA (Lithocholic Acid), 
LEU (Leucine), MAL (Malate), MET (Methionine), ORN (Ornithine), PHEN 
(Phenylalanine), PRO (Proline), PTA (Pantothenic Acid), R5P (Ribulose-
5-Phosphate), SUC (Succinate), TDCA (Taurodeoxycholic Acid), TRY 
(Tryptamine), VAL (Valine).

https://doi.org/10.1186/s40168-025-02226-3
https://doi.org/10.1186/s40168-025-02226-3


Page 19 of 22Gustafson et al. Microbiome          (2025) 13:254 	

Supplementary Material 4: Figure S4. Spearman correlation coefficient 
plots comparing relative abundance at the genera level and metabolite 
concentrations to the p value of the Spearman correlation. Spearman 
correlation coefficient is plotted along the x-axis for each metabolite, 
and -Log10(p value) of the correlation between relative taxa abun-
dance and metabolite concentration is plotted on the y-axis. Red dots 
represent genera with an increased relative abundance in GMLow, and 
blue dots represent genera with an increased relative abundance in 
GMHigh.N = 6/sex/group. Dotted lines in each plot represent statistical 
significance of p < 0.05.

Supplementary Material 5: Figure S5. Heatmap showing significant 
Spearman’s rank correlation coefficient (Rho) between microbial taxa 
and metabolites in matched fecal samples of GMLow and GMHigh mice, 
identified using Spearman’s rank order correlation analysis. N = 6/sex/
group. * p< 0.05, ** p < 0.01, **** p < 0.0001.

Supplementary Material 6: Figure S6. Dot and bar plots showing other 
results of behavior tests in adult male (M) and female (F) GMLow and 
GMHigh mice including (A) distance traveled in the light portion of the 
light/dark test and (B) open arms of the elevated plus maze. (C) Total 
distance traveled and (D) time spent in the center zone during OFE. (E) 
Body weight at 21 days of age of GMLow and GMHigh mice. N = 11-12/
sex/group. (F-J) Same outcomes in CFLow and CFHigh mice as those 
shown in panels A-D. (J) Body weight at 21 days of age of CFLow and 
CFHigh mice. Two Way ANOVA for main effects of GM and sex. N = 20/
sex/group. ns – not significant, * p < 0.05, ** p < 0.01, **** p < 0.0001.

Supplementary Material 7: Figure S7. Dot and bar plots showing dif-
ferences in (A) richness and principal coordinate analysis (PCoA) plots 
showing differences in beta-diversity based on (B) Jaccard and (C) 
Bray-Curtis distances, between adult male (M) and female (F) mice colo-
nized with GMLow or GMHigh, and similarities in all of the above metrics 
between CF mice at seven weeks of age and their cognate birth dams. 
N = 12-20 offspring/sex/group; N = 8 dams/group. **** p< 0.0001.

Supplementary Material 8: Figure S8. UMAP projections of hippocam-
pal cell clusters in (A) control GMLow and (B) GMHigh, and cross-foster 
(C) CFLow and (D) CFHigh mice. N = 3 biological replicates of 8 pooled 
hippocampi/sex/group.

Supplementary Material 9: Figure S9. Dot plot correlation between the 
number of differentially expressed genes (DEGs) and the mean node 
degree determined by protein interaction analysis of those DEGs, in 
comparisons of (A) GMLow and GMHigh offspring and in (B) CFLow and 
CFHigh offspring. Marker shapes denote cell type including endothelial/
perivascular cells (Endo, red squares); astrocytes and oligodendrocytes 
(Glial, grey diamonds); GABAergic neurons (GABA, dark blue triangles); 
and glutamatergic neurons (Gluta, brown triangles). N = 3 biological 
replicates of 8 pooled hippocampi/sex/group.

Supplementary Material 10: Figure S10. Interaction networks con-
structed using differentially expressed genes (DEGs) identified in hip-
pocampal level five intratelencephalon (L5 IT)-projecting glutamatergic 
neurons from (A) control and (B) cross-fostered mice. Labeled nodes 
include DEGs identified in both comparisons and showing a pattern 
of fetal imprinting, and genes that are also differentially methylated 
(Dock1), or closely related (PDE cluster,Adcy8, Dcc, Ntn1). N = 3 biologi-
cal replicates of 8 pooled hippocampi/sex/group.

Supplementary Material 11: Figure S11. Interaction networks con-
structed using differentially expressed genes (DEGs) identified in 
hippocampal astrocyte subsets from (A) control and (B) cross-fostered 
mice. Labeled nodes include DEGs identified in both comparisons and 
showing a pattern of fetal imprinting, and genes that are also differ-
entially methylated (Dock1), or closely related (PDE cluster, Adcy8, Dcc, 
Ntn1).N = 3 biological replicates of 8 pooled hippocampi/sex/group.

Supplementary Material 12: Table S1. Primer pairs used for qRT-PCR 
analysis. 

Supplementary Material 13: Table S2. Relative abundance of family taxa 
harbored by either GMLow or GMHigh. 

Supplementary Material 14: Table S3. Fecal metabolite concentrations 
from GMLow and GMHigh mice.

Supplementary Material 15: Table S4. Serum metabolite concentrations 
from GMLow and GMHigh mice. 

Supplementary Material 16: Table S5. Relative abundance of identified 
genera in GMLow and GMHigh mice. 

Supplementary Material 17: Table S6. Comparison of identified bacterial 
genera abundance to statistically significant fecal metabolite concentra-
tions between GMLow and GMHigh mice.

Supplementary Material 18: Table S7. Differentially methylated posi-
tions identified within the genomes of female mouse hippocampi with 
Log2(FC)> 1, as well as values comparing group average Beta-value differ-
ences, Benjamini-Hochberg adjusted group p-values, and q-values.

Supplementary Material 19: Table S8. Network STRING analysis results 
utilizing the 196 DMPs identified in the methylome analysis.

Supplementary Material 20: Table S9. Differentially expressed genes identi-
fied within the hippocampal cells of GMLow and GMHigh control male and 
female mice. 

Supplementary Material 21: Table S10. Differentially expressed genes 
identified within the hippocampal cells of CFLow and CFHigh male and 
female mice.
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