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Abstract

Ecological networks tend to contain many weak and only a few strong links. Furthermore, link strengths are often patterned
within a network in ways that enhance system stability considerably, increasing the ability of the system to return to equilibrium
after a perturbation. However, little attention has been given to the relation between the skewed “many weak and few strong
links” distribution and the stabilising effect of patterning. Here, we focus on the stabilising effect of a hierarchical patterning
in bryozoan competition networks and demonstrate that this stabilising effect critically depends on a skewed distribution of
link strengths. We first show that, in line with many other ecological networks, the empirically derived link strengths in these
competition networks were characterised by a high level of skewness, with many weak and few strong links. Then, we analysed
the relationship between the link strength distributions, hierarchy and stability by comparing theoretical competition matrices
with different distributions of link strengths. We found that the full stabilising effect of hierarchy only appeared when we used
skewed link strengths produced by a gamma distribution, but not in matrices built with uniform or half-normal distributions.
This has important methodological implications, since theoretical studies often assume normal or uniform distributions to
investigate ecological stability, and therefore might overlook stabilising mechanisms. These implications are relevant for
theory on the relation between structure and stability of ecological networks in general, since skewed link strengths are also
a common feature of food webs and mutualistic systems.
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Introduction

In diverse communities, direct and indirect interactions
between species form complex ecological networks. This
complexity makes it challenging to predict how assemblages,
communities and whole ecosystems will react to environ-
mental changes and disturbances (Montoya et al. 2006;
Woodward et al. 2010; Strona and Lafferty 2016; Barnes et al.
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2021). Understanding how the strengths of interactions in
ecological networks relate to system stability, a system’s abil-
ity to return to equilibrium after a perturbation (May 1972;
Landi et al. 2018), has therefore been a long-standing focus
in the field of community and ecosystem ecology (Yodzis
1981; Ruiter et al. 1995; McCann et al. 1998; Emmerson and
Yearsley 2004; Jacquet et al. 2016; Landi et al. 2018).
There is ample evidence of a characteristic distribution
of many weak and few strong links in empirical studies
on ecological networks, in particular in food webs (Paine
1992; Neutel et al. 2002; Berlow 1999; O’Gorman et al.
2010; Jacquet et al. 2016) but also in mutualistic systems
(Jordano 1987; Bascompte et al. 2006). Theoretical studies
(McCann et al. 1998; Emmerson and Yearsley 2004; James
et al. 2015; Van Altena et al. 2016; Gellner and McCann
2016; Jacquet et al. 2016) as well as some experimental evi-
dence (O’Gorman and Emmerson 2009) suggest that these
weak links have a stabilising effect, meaning they increase
a system’s ability to return to equilibrium after being dis-
turbed. Weak links contribute to stability by lowering the
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overall mean link strength (May 1972), as well as through a
dampening effect on oscillations, which has been well studied
in small network modules (McCann et al. 1998; Emmerson
and Yearsley 2004). However, studies based on observed net-
works have demonstrated that patterning, that is, how exactly
weak and strong links are arranged within a network, also has
an important stabilising effect (Yodzis and Innes 1992; Ruiter
et al. 1995; James et al. 2015). Examples of stabilising pat-
terns include the presence of weak links in omnivorous loops
in food webs (Neutel et al. 2002; Emmerson and Yearsley
2004; Bascompte et al. 2005; Wootton and Stouffer 2016) as
well as hierarchical patterns in competitive systems (Koch
et al. 2023).

Thus, it is known that both the distribution of many weak
and few strong links and the patterning of link strengths are
important for stability. This is in apparent contradiction to
analytical results derived from random matrix theory. It has
been shown that the exact shape of the distribution of link
strengths does not influence the stability of large networks
with randomly arranged links (Tao et al. 2010). For sim-
plicity, many theoretical studies consequently use standard
uniform or normal distributions (Allesina and Tang 2012,
2015), instead of more realistic, skewed distributions. How-
ever, for networks where link strengths are derived from
observations and are thus not arranged randomly, it remains
unclear whether, and if so, how the distribution of link
strengths influences the stabilising effect of patterning.

Here, we explore the relationship between the distribu-
tion of link strengths, their patterning and system stability in
realistic, multi-species competitive communities. While it is
obvious that some level of variation in strengths is needed
to enable patterning, we do not know whether greater varia-
tion in link strengths will lead to stronger stabilising effects
or how exactly the “many weak and few strong” links dis-
tribution influences stability in patterned systems. In this
study, we address these open questions by analysing the
stabilising effect of a hierarchical pattern of link strengths,
which was recently identified in assemblages of encrusting,
marine bryozoan colonies (Koch et al. 2023, see Box 1 for
details). Koch et al. (2023) find a competitive hierarchy in
these assemblages, a clear ranking from strongest to weakest
competitor. They show that this strict ranking causes asym-
metric patterns in community matrices, both within pairs of
competitive interactions and at the whole assemblage level.
Koch et al. (2023) explain the stabilising effect of hierarchy
based on the strength of feedback loops, closed chains of
interactions that either amplify or dampen disturbances (see
Fig. 1 for details).

In a first step, we show that the “many weak and few
strong” link distribution that has been found in other net-
work types also appears in competitive systems. Then, we
ask if and to what extent the stabilising effect of hierarchy
depends on this underlying distribution of link strengths. To
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address this question, we generated theoretical matrices in
which we varied the proportion of strong and weak links by
using random link strengths drawn from distributions with
different shapes. For each type of distribution, we quantified
the stabilising effect of hierarchy by comparing the stabil-
ity of asymmetric matrices to randomly patterned ones (see
Fig. 2 for a visual overview of our approach). We find that the
stabilising effect of hierarchy critically depends on the skew-
ness of link strengths. This suggests that the “many weak and
few strong” link distribution plays a critical role in the sta-
bility of these competitive systems.

Box 1: explaining the stabilising effect of
asymmetry in bryozoan assemblages (Koch
etal. 2023)

Bryozoans are small, aquatic animals that grow in
colonies on the seabed, where they form diverse assem-
blages. The dynamics of these assemblages are almost
entirely driven by interference competition as individ-
ual colonies compete for space by overgrowing each
other. The outcomes (win/loss/draw) of these ongo-
ing competitive interactions can be assessed visually
(Barnes and Rothery 1996; Barnes and Dick 2000).
Based on data sets that contained records of overgrowth
interactions in 30 bryozoan assemblages, Koch et al.
(2023) analyse the stability of these systems by deriv-
ing inter- and intraspecific link strengths (see Methods).

Interference competition networks derived from bry-
ozoan data sets have a hierarchical structure, meaning
that all species can be ranked from weakest to strongest
competitor. This hierarchy results in asymmetric pat-
terns of link strengths within the competition networks.
Asymmetry can be found both within pairwise inter-
actions, where a strong link is coupled with a weak
link (Fig. 1a), and at the community level, where strong
links are concentrated on one side of the community
matrix diagonal (Fig. 1b). While the observed competi-
tion networks are found to be unstable, their instability
is reduced compared to randomised systems. This sta-
bilising effect of asymmetric patterns of link strengths
can be explained based on the concept of feedback
loops, that is, closed chains of interactions that con-
nect one network element back to itself (Levins 1974).
They determine how perturbations propagate through
the nodes and links of a network, through both direct and
indirect effects (Zelnik et al. 2024). A loop is quantified
as the product of all link strengths within the loop. Pos-
itive feedback loops (those with a positive product, for
example 2-link loops in competitive systems) amplify
disturbances that are introduced into the system, while
negative feedback loops (those with a negative prod-
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Fig. 1 Asymmetric patterns in link strengths caused by hierarchical
competition. a Pairwise asymmetry means that the loop formed by each
pair of competing species consists of a strong link, coupled to a much
weaker link. b Community asymmetry means that when we order the
community matrix according to the hierarchical ranking, from strongest

uct, for example 3-link loops in competitive systems)
counteract them (Levins 1974).

Using an approach that was developed for trophic
networks (Neutel et al. 2002, 2007; Neutel and Thorne
2014) and extending it for competition networks, Koch
et al. (2023) show that the asymmetric patterns of
link strengths reduce network instability by keeping
short and long feedback loops weak. Pairwise asym-
metry reduces the instability of empirical competition
networks by weakening the effect of positive 2-link
feedback loops. As the effect of a loop depends on the
product of link strengths, pairwise asymmetry means
that a strong link is multiplied with a weak link (Fig. 1c),
so that the overall product remains low. The stabilising
effect of community asymmetry, on the other hand, is
related to longer, negative loops, which can cause unsta-
ble oscillations (Levins 1974). Community asymmetry
avoids the formation of such long negative loops, as all
longer loops also contain at least a single weak link,
which keeps the overall effect of the loops low (Fig. 1).

Methods
Empirical link strength distributions

We obtained empirical distributions of link strengths (which
can also be called interaction strengths) from Koch et al.
(2023). For background on the methodology used by Koch
etal. (2023), we describe the procedure of deriving empirical
link strengths here. Following May (1972), link strengths
are defined as the elements of the Jacobian or “commu-
nity matrix”, which contains the partial derivatives of an
underlying system of differential equations, evaluated at
equilibrium. The elements describe the per-capita effect
(dimension 1/7) of a change in the biomass of species j
on the biomass of species i. Koch et al. (2023)’s calculation
assumes Lotka-Volterra equations at equilibrium, with the
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to weakest competitor, all strong links appear below the diagonal while
all weak links appear above the diagonal. ¢ A hierarchical ranking
reduces the strength of all feedback loops in a competitive network.
Due to the asymmetric arrangement of weak links (dashed arrows) and
strong links (thick arrows), each loop contains at least one weak link

observed abundances corresponding to equilibrium densities.
This equilibrium assumption is used as a methodological step
to be able to test whether the empirical systems can be con-
sidered stable (see Koch et al. 2023 for more details).

First, the amount of biomass loss due to competition
between two species is estimated from observed outcomes
of spatial contests between bryozoan colonies. In bryozoan
assemblages, individual colonies compete for space by
overgrowing each other, and these ongoing competitive inter-
actions can be visually assessed (Barnes and Rothery 1996;
Barnes and Dick 2000). The data sets used by Koch et al.
(2023) consist of records of such overgrowth interactions,
where the outcome of each observed interaction between two
colonies was classified as either a win/loss or a draw (follow-
ing the methodology described in Barnes et al. 2014). If one
colony of species A overgrew at least 5% of another colony
of species B, this was scored as a win for A and a loss for B.
Draws were scored when the colonies ceased growth along
their boundaries or were mutually overgrowing each other.
The data sets also contain records of intraspecific interac-
tions, where two colonies of the same species interacted.

In a second step, these biomass loss rates are com-
bined with the observed abundances to translate them
to link strengths (see Supplementary Note 1 for a more
detailed description). Finally, link strengths are normalised
by dividing all off-diagonal matrix elements by their cor-
responding diagonal matrix elements (following Neutel and
Thorne 2014). This scaling procedure preserves the essen-
tial stability characteristics (see Thorne et al. 2021 for a
detailed explanation) and makes the matrices dimensionless,
which simplifies the comparison of stability (see Section
“Calculation of network stability via the critical amount
of self-regulation).

As a starting point of our analysis, we describe the shapes
of the empirically based normalised distributions of link
strengths observed by Koch et al. (2023) by calculating mean,
variance, minimum, maximum and skewness and kurtosis
(using the R-package “moments”) of the non-zero interspe-
cific link strengths in each of the 30 empirical matrices.
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Fig. 2 Assessing the relation between link strength distribution and
the stabilising effect of hierarchy using theoretical matrices. We started
with a community matrix derived from empirical data, which contained
normalised interspecific links of varying strengths (indicated by differ-
ent shades of grey). Due to the normalisation, diagonal matrix elements,
which represent intraspecific links, are equal to —1 (shown here in white
for simplicity). As a first step (1.1), we extracted the empirical topology,
the location of missing links (white off-diagonal cells), and we fitted
uniform, half-normal and gamma distributions to the empirical link
strengths (1.2). In a second step, the theoretical matrices were assem-

Using theoretical matrices to quantify the stabilising
effect of asymmetry under different distributions
of link strengths

We used theoretical competition matrices with random link
strengths to explore the stabilising effect of pairwise and
community asymmetry under varying distributions of link
strengths (see Fig.2 for a visual overview of our approach).
Our goal was to create theoretical matrices that closely
resembled the empirical systems, but differed in their pro-
portion of weak and strong links. For each empirical data
set, we extracted the empirical topology, that is the network
size, connectance and the location of non-zero links (Fig. 2,
step 1.1). Then, we fitted distributions with different shapes to
the empirical link strengths (Fig. 2, step 1.2). These were then
used to generate artificial link strengths (Fig.2, step 2; see
section “Theoretical link strength distributions” for details).
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bled using random link strengths generated with the fitted distributions.
We then imposed three types of patterns on the theoretical matrices by
arranging the theoretical link strengths in random (2.1), pairwise asym-
metric (2.2) and community asymmetric (2.3) patterns. We preserved
the locations of non-zero links extracted from the empirical matrix in
this step. In a third step, we compared the stability of random, pair-
wise asymmetric and community asymmetric matrices. We measured
stability as the critical amount of self-regulation s*. Lower values of s*
indicate more stable systems

We arranged the artificial link strengths within the theoretical
matrix to form random, pairwise asymmetric and community
asymmetric pattern (Fig.2, steps 2.1-2.3; see section “Pat-
terning of link strengths in theoretical matrices” for details).
We quantified the stabilising effect of the asymmetric pattern
by comparing the stability of a set of random matrices to a
set of patterned matrices (Fig. 2, step 3).

As a frame of reference that allowed us to compare the
behaviour of the theoretical matrices to the empirical sys-
tems, our analysis also included an additional set of matrices
using the observed, empirical link strength distributions but
arranged in the same way as the theoretical link strengths.

Theoretical link strength distributions

The off-diagonal matrix elements, representing interspe-
cific link strengths, were randomly drawn from probability
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distributions. Our goal was to obtain distributions with
comparable ranges, but with different proportions of weak
and strong values across this range. To achieve this, we
first fitted half-normal, uniform and gamma distributions
to each empirical data set using the firdistrplus R-package
(Delignette-Muller and Dutang 2015). We chose the gamma
distribution as it allowed us to generate random link strengths
that closely resembled the empirical data. In contrast to that,
half-normal and uniform distributions were chosen as they
have often been used to generate random link strengths in pre-
vious studies (see, e.g. Allesina and Tang 2012). Then, we
used the parameters of these fitted distributions (uniform:
min and max; half-normal: scale o ; gamma: shape « and
rate A, all fitted parameter values can be found in Supple-
mentary Table 2) to generate random links strengths. As the
gamma and half-normal distributions are defined for positive
values, we fitted to the absolute values of the link strengths.
As our goal was to preserve the range of values, we could
not preserve the mean link strengths in the half-normal and
uniform distributions. For uniform distributions, the means
were on average 3.6 times higher than the empirical mean.
The means of the half-normal distributions were on average
1.5 times higher than the empirical means, while there was
no difference between the means of the gamma distributions
and the means of the empirical distributions.

The diagonal elements of each matrix, which represent
intraspecific link strengths, were set to —1. We did this to
make them comparable to the normalised, empirical matri-
ces. It is also consistent with previous theoretical work using
random matrices (May 1972; Allesina and Tang 2012), which
thus implicitly uses the assumption that the matrix elements
represent normalised link strengths.

Patterning of link strengths in theoretical matrices

We then imposed three types of patterns on the theoreti-
cal matrices: random, pairwise asymmetric and community
asymmetric (following Koch et al. 2023). To preserve empir-
ical topology, we placed random link strengths only in
locations that also had non-zero link strengths in the orig-
inal empirical matrix. We also created matrices with random
topologies, to test the generality of our results (Supplemen-
tary Fig. 1).

In the randomly arranged matrices used for the main anal-
ysis (Fig.2, step 2.1), each link strength was independently
placed in arandom position within the matrix. These matrices
served as null models, which allowed us to quantify the sta-
bilising effect of asymmetry. To impose pairwise asymmetry
(Fig.2, step 2.2), we made sure that within each pair, a strong
link was paired with a weak link. This was achieved by sorting
the set of random link strengths from weakest to strongest.
The weakest link was then paired with the strongest link, the

second strongest with the second weakest, etc. The location
within the matrix was assigned randomly. To impose commu-
nity asymmetry (Fig. 2, step 2.3), we additionally controlled
the positions above or below the matrix diagonal, so that all
strong links were located below the matrix diagonal.

Calculation of network stability via the critical amount
of self-regulation

The theoretical competition matrices were assumed to rep-
resent Jacobian matrices of some underlying (potentially
non-linear) system of differential equations, which has been
linearised around an equilibrium point (May 1972). System
stability here is the local asymptotic stability of this equilib-
rium point, which describes whether a system has the ability
to return to its steady state after an infinitesimally small dis-
turbance. Stability is measured using the real part of the
dominant eigenvalue, Re(A4), of the Jacobian matrix, which
in the case of a stable system (Re(Ay) < 0) is also called
resilience (the speed of return to equilibrium). If Re(A4) > O,
the system is unstable and will hence not return to equilib-
rium, but the level of instability can still be compared in
terms of the magnitude of Re()y4), which describes how fast
the system moves away from its equilibrium point.

In general, any unstable system can be made stable by arti-
ficially increasing the absolute value of the diagonal matrix
elements (the intraspecific link strengths), making these neg-
ative elements stronger, while any stable system can be made
unstable by decreasing the absolute value of the diagonal
matrix elements. The critical amount of self-regulation uses
this mechanism to measure stability. It is defined as the fac-
tor by which the observed intraspecific link strengths have
to be multiplied to bring the matrix to the threshold between
stability and instability (Neutel et al. 2002). In the case of an
unstable system, s* is larger than 1, and its value describes
how much more self-regulation needs to be added to make
the system stable. In the case of a stable system, s* < 1, it
describes the “buffering capacity” of a system.

As all matrices used in this study have uniform diago-
nals (all a;; = —1, see section 2.2.1), the critical amount
of self-regulation (s*) is equivalent to Re(Ay) of the same
matrix but with the diagonal set to O (for details, see Sup-
plementary Material of Neutel and Thorne 2014). Hence, we
could have used Re(A4) as a stability metric here. However,
Re()g) of the Jacobian matrix is time-dependent, while s*
offers a dimensionless measure of stability that works for
matrices with varying diagonal terms, representing different
time scales (Neutel et al. 2002). This is usually the case when
deriving link strengths from empirical data, where intraspe-
cific competition can differ a lot between species in a given
community or assemblage. In order to emphasise our focus
on stabilising patterns in realistic systems and to enable com-
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parison to the results of Koch et al. (2023), we therefore use
the critical amount of self-regulation instead of Re(Ay).

Results

Empirical link strengths can be closely
approximated by a gamma distribution

We analysed the shapes of the distributions of link strengths
from 30 empirical competition networks published in Koch
et al. (2023). Link strengths were the normalised elements of
the Jacobian matrix (see Methods and Supplementary Note
1). For each of the 30 data sets, we calculated not only the
mean and variance but also the skewness (3‘) and Kurtosis
(12 ) (Supplementary Table 1). Skewness describes a distri-
bution’s asymmetry, while kurtosis describes how peaked a
distribution is (Cristelli et al. 2012; Gross et al. 2021). We
found that overall, the empirical link strengths showed dis-
tributions that were very asymmetric (mean §=—24)and
peaked (mean K = 9.9), with a large variability in their
skewness and kurtosis values (Fig. 3a).

The shapes of these empirical distributions thus differ
clearly from half-normal and uniform distributions, which
are more symmetric (S = 0.96 and § = 0, respectively)
and have low kurtosis (I% =39and K = 1.8). A gamma

distribution (shown as the dashed line in Fig. 3a) allows for
varying skewness and kurtosis values and is able to capture
the shape of empirical distributions much better. Fitting a
gamma distribution to empirical link strengths allowed us to
generate random link strengths with a more realistic pattern
of many weak and few strong values (shown in Fig.3b for
one example data set). In contrast to that, a half-normal distri-
bution produced too many intermediate values, while strong
values were too rare. A uniform distribution, where all values
are equally likely, generated too many strong values and too
few weak ones (Fig. 3c).

The stabilising effect of community asymmetry
depends on the distribution of link strengths

We tested whether and how the distribution of link strengths
affected the stabilising effect of asymmetries by comparing
asymmetric to randomised theoretical competition matrices
with uniform, half-normal and gamma-shaped distributions
of link strengths. For each type of distribution, we compared
the stability (measured as critical self-regulation s*) of ran-
domly patterned matrices to asymmetric ones, where strong
links were paired to weak links as well as to community
asymmetric ones, where strong links were also paired to weak
links and all strong links additionally appear on one side of
the diagonal (see Methods and Fig. 2).
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Fig.3 Skewed empirical link strengths are best represented by a gamma
distribution a Skewness-kurtosis relationship of the empirical distribu-
tions of link strengths on a Cullen and Frey graph, which can be used to
differentiate between different types of distributions (Delignette-Muller
and Dutang 2015). Each orange dot represents one empirical data set.
Normal and uniform distributions both only have one possible skew-
ness S and kurtosis K value (half-normal: S = 0.9, K = 3.9, shown as
a black triangle; uniform: S = 0, K = 1.8 shown as a black square).
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The gamma distribution allows for varying S and K values and is rep-
resented as a dashed line, that represents how Sand K depend on the
shape parameter. b Histograms showing the empirical distribution of
link strength for one example matrix (Rothera 3) as well as a uniform
(blue), half-normal (green) and gamma (yellow) distribution fitted to
these empirical values. ¢ Example sets of random link strengths drawn
from these fitted theoretical distributions
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Fig.4 The stabilising effect of asymmetries in theoretical matrices with
varying distributions of link strengths. We quantify this effect by com-
paring the stability of randomly patterned and asymmetric matrices for
theoretical distributions (a). For comparison, we also quantify the effect
in theoretical matrices with the observed, empirical distribution of link
strengths (b). The level of (in)stability was compared using the criti-
cal amount of self-regulation, s*. As most matrices were unstable, this

Almost all theoretical matrices had critical amounts of
self-regulation (s*) larger than 1 (Fig.4a), indicating that the
networks were unstable, and that additional self-regulation
would be required to reach stability (where s* = 1, or
equivalently, Re(Az) = 0). This was no surprise, as the ran-
dom link strengths were fitted to link strengths from empirical
community matrices that were also unstable (Koch et al.
2023). Throughout this analysis, we were thus comparing
different levels of instability. Similarly, also, the differences
in instability between randomly patterned matrices of differ-
ent distributions were expected (Fig.4a, light boxes). They
arise from differences in mean link strengths (May 1972):
As the uniform distributions contained a higher proportion
of strong values, these matrices were more unstable.

In theoretical matrices with empirical distributions of link
strengths, which we use as a reference, pairwise asymmet-
ric patterns reduced instability and community asymmetry
reduced instability even further (Fig. 4b, in line with the find-
ings of Koch et al. 2023). Correspondingly, for all theoretical
distributions, a pairwise asymmetric pattern resulted in a
reduction of instability as well. However, adding community
asymmetry only had an additional stabilising effect in sys-
tems with a gamma distribution. In matrices with half-normal
or uniform distributions, there was no additional effect of
community asymmetry (Fig.4a). This implies that a cer-
tain level of skewness is required to enable an additional
stabilising effect of community asymmetry. This result was
independent of the specific architectures or sizes of the net-
works and also held for random topologies (Supplementary

described how much self-regulation would have to be added to reach
stability. Size, connectance and topology of each theoretical matrix were
chosen based on one of the 30 empirical systems. They contained link
strengths drawn from a uniform, normal or gamma distribution fitted
to the same empirical counterparts’ link strengths (a) or the observed
link strengths (b). This was repeated 100 times per empirical data set,
resulting in 30 x 100 = 3000 data points per boxplot

Fig. 1) and for larger networks involving hundreds of species
(Supplementary Fig. 2).

Skewness enables the stabilising effect
of community asymmetry

In a final step, we wanted to obtain a better understanding
of how skewness affected the stabilising effect of pairwise
and community asymmetry. We created additional sets of
matrices using gamma distributions in which we systemati-
cally varied the level of skewness, while keeping matrix size
S, connectance C and the mean link strength constant. For
each level of skewness, we quantified the stabilising effect
of asymmetry by calculating stability gain, the ratio of mean
s* of randomly patterned to asymmetric matrices (Fig. 5a).
We found that for low skewness values between § = 0 and
§ =2, stability gain due to pairwise asymmetry and stabil-
ity gain due to community asymmetry increased equally. An
additional stabilising effect of community asymmetry only
appeared for higher levels of skewness. For skewness values
above § = 2, the stability gain due to pairwise asymmetry
remained constant at about 2, while the effect of community
asymmetry kept increasing strongly.

In gamma distributions, increasing skewness also increases
variance, so that these two properties cannot be separated. We
therefore conducted a similar experiment with half-normal
distributions, where variance can be increased but skewness
is constant (Fig. 5b). In this case, we found no relationship
between stability gain and the level of variance. Thus, we can
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Fig.5 Relation between the shape of link strength distribution and the
effect of patterning on system stability. Comparison between gamma
distributions (a) and half-normal distributions (b). Levels of skewness
(in a) and variance (in b) were related to the gain in stability obtained by
introducing pairwise and community asymmetric patterning. We calcu-
lated stability gain as the mean s* of 100 randomly arranged matrices
divided by the mean s* of 100 asymmetric matrices. Matrix size and
connectance were kept constant at § = 10 and C = 0.8, and the loca-

conclude that the stabilising effect of community asymmetry
indeed depended on skewness, which describes the specific
proportion of strong and weak links, and not on variance
alone.

Discussion

Our results show the importance of having many weak and
few strong links for enabling stabilising patterns of link
strengths in competition networks. First, we showed that link
strengths derived from empirical competition assemblages
have very skewed distributions. Then, we demonstrated that
this skewness is necessary to reproduce a stabilising effect
of community asymmetry, and hence of hierarchy, which has
been found in empirical competition networks (Koch et al.
2023). We did this using theoretical matrices in which asym-
metric patterns were generated using random link strengths
drawn from distributions with varying shapes. We compared
uniform, half-normal and gamma distributions and found that
a stabilising effect of community asymmetry could only be
observed with skewed gamma distributions. By systemati-
cally varying the skewness level of gamma distributions, we
could confirm that the stabilising effect of community asym-
metry indeed depended on skewness.

Competition for space or other resources is often funda-
mental to realised richness and persistence of biodiversity
(Paine 1966). Yet, our understanding of patterns, mecha-
nisms, drivers and stability underpinning this at the assem-
blages or community level still has significant gaps. One
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tion of non-zero links was chosen randomly. a Stability gain in matrices
constructed with gamma distributions of varying skewness values. To
isolate the effect of skewness, we kept the mean link strength constant
at —3. To vary the skewness Sofa gamma distribution while keeping
the mean m constant, we calculated the shape « and rate A paramters
asia = 4/ (3’2) and A = o/m. b Stability gain in matrices constructed
with half-normal distributions with increasing scale parameters o and
thus increasing variance

of these gaps is that studies of empirical distributions of
competitive link strengths are scarce. While there are many
studies that quantify the intensity of competition in some
way, they tend to focus on individual effects that cannot be
easily transferred to the population level link strengths used
in ecological network models (Goldberg et al. 1999; Wootton
and Emmerson 2005; Hart et al. 2018). Studies on competi-
tive networks, often in the context of intransitive competition,
have therefore been using binary who-beats-whom networks
(Laird and Schamp 2006; Allesina and Levine 2011; Gallien
et al. 2018).

To the best of our knowledge, the only other empiri-
cally quantified competitive community matrix, apart from
the ones published by Koch et al. (2023), is the one pre-
sented by Roxburgh and Wilson (2000). In contrast to our
results, they identified an approximately uniform distribu-
tion of link strength in a single matrix based on a (terrestrial)
lawn community. However, their parametrisation was based
on experiments with isolated pairs of species rather than on
multi-species systems where biomass distributions have nat-
urally formed. In the 30 empirical networks we used for the
present study, which were based on observations of whole
assemblages (Koch et al. 2023), the skewness we saw in the
link strengths was largely the result of assemblage dynam-
ics, which generated very skewed distributions of observed
species abundances and biomass loss rates (see Supplemen-
tary Note 2).

In trophic networks, where there is a long tradition of
determining link strengths from observations (Paine 1992;
Polis 1994; Ruiter et al. 1995; Wootton 1997; Berlow 1999;
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Emmerson and Yearsley 2004; Neutel et al. 2007; Neutel
and Thorne 2014), there is ample evidence of skewed link
strengths across various types of environments (Ruiter et al.
1995; Berlow et al. 2004; Wootton and Emmerson 2005;
Jacquet et al. 2016). The “few strong and many weak” link
distribution has also been observed in mutualistic systems
(Jordano 1987; Bascompte etal. 2006). Even though the exact
methods and definitions for quantifying link strengths often
differ, skewed link strengths are a consistent observation and
thus appear to be a common property of natural ecological
networks.

In this study, we quantified stability as the amount of self-
regulation needed for system stability, i.e. for all eigenvalues
of the matrix to have negative real parts. Using this stability
measure, we analysed the stabilising effect of hierarchy by
comparing the stability of theoretical matrices with a hierar-
chical pattern of link strengths to that of matrices with ran-
domly arranged links. Our analysis was focussed on matrices
with different levels of instability, as we chose theoretical link
strengths with similar ranges as the empirical link strengths
derived by Koch et al. (2023). In this derivation, Koch et al.
(2023) assumed equilibrium conditions, in order to test the
hypothesis that the observed systems represent stable equi-
libria, where growth and loss rates are in balance. They find
that for all empirical systems, the observed intraspecific com-
petition is not strong enough to make the system stable and
conclude that their systems are unstable. Using a community
matrix approach, which is based on linearisation around a
hypothesised equilibrium point, to analyse systems that are
changing over time (see also Gaedke et al. 2025) opens up
important questions about the ecological meaning of these
stability measures for assessing a system’s ability to respond
to perturbations. However, our study was focussed on the
mathematical properties of community matrices, and in this
context, it does not matter whether we quantify a stabilising
effect by comparing different levels of stability or instability.

Our result that the effect of hierarchy on stability only
appeared with skewed distributions of link strengths was
found to hold for random topologies and for larger theoret-
ical matrices with several hundred species (Supplementary
Figs. 1 and 2). This is interesting, as previous results based
on very large matrices with randomly arranged links indi-
cate that the exact shape of the distribution of link strengths
does not influence stability (Allesina and Tang 2012, 2015).
For these matrices, only the mean and the variance of matrix
elements affect stability, while higher moments of the dis-
tribution, like skewness, are not relevant (Tao et al. 2010).
Our findings indicate that the proportion of strong and weak
links can have an important effect on stability when we look
at matrices with non-random patterns.

Our results can be understood by looking at the feedback
structure of the systems. In general, pairwise asymmetry is
stabilising, as it reduces the amplifying effect of positive

2-link loops. In contrast to this, community asymmetry
is stabilising as it reduces the strength of long, negative
feedback loops (Koch et al. 2023). If these long, negative
feedback loops are too strong compared to shorter loops, the
excessive negative feedback can cause oscillatory instability
(Levins 1974). Community asymmetry avoids this destabilis-
ing imbalance, which explains its additional stabilising effect
compared to pairwise asymmetry. As we found that the sta-
bilising effect of community asymmetry only appeared when
link strengths were skewed, our results indicate that this
imbalance can only form when there is a sufficient level of
skewness. Further analysis of feedback loop strengths would
be necessary to confirm this and to uncover the exact condi-
tions that lead to the emergence of oscillatory instability.

The contrasting mechanisms that explain the stabilising
effects of pairwise and community asymmetry mean that we
have to consider two “regimes” of instability, one governed
by positive feedback, the other governed by excessive nega-
tive feedback (Levins 1974). These two regimes are not only
relevant to competitive systems, but may also play a role in
food webs. In fact, the idea that instability is caused by over-
shoots leading to unstable oscillations is common in food
web literature (McCann et al. 1998; Emmerson and Yearsley
2004; Gellner and McCann 2016), although it is usually not
linked to the concept of feedback loops.

In conclusion, we showed that similar to what has been
found in food webs and mutualistic systems, competition
networks contain many weak and few strong links. We fur-
thermore demonstrated that this type of distribution enables
stabilising patterns in competition webs. These insights have
important implications for theoreticians exploring structure
in random matrices, which often use normal or uniform distri-
butions of matrix elements (Emmerson and Yearsley 2004;
Allesina and Tang 2012). Our study shows that when spe-
cific patterns of link strengths are introduced, the shape of
distributions can have an effect on stability. This needs to be
considered when we want to explore and understand stabil-
ising mechanisms in real systems, which typically have very
skewed link strengths.

Supplementary Information  The online version contains supplemen-
tary material available at https://doi.org/10.1007/s12080-025-00626-
7.
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