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Abstract

Diazotrophy is the most important nitrogen source in the oligotrophic surface ocean, but the organisms involved and their contributions
are incompletely understood due to limited observations. Only diazotrophic organisms possess the nifH gene to reduce dinitrogen to
ammonium, but their distribution and activity can only be quantified through sampling and experiments during research cruises. Some
recent studies document small diatoms with symbionts able to fix nitrogen, a new source of biologically available nitrogen in addition to
the well-known cyanobacterial species such as Trichodesmium or symbionts of haptophytes (UCYN-A) and diatoms (Diatom–Diazotroph
Associations, or DDAs). Here, we document a very active symbiosis between small pennate diatoms such as Mastogloia and Haslea with
rhizobial and cyanobacterial symbionts in waters of the Western tropical North Atlantic influenced by the Amazon River plume. We
used NanoSIMS analysis of 15N2 tracer experiments to quantify high rates of nitrogen fixation in generally abundant, symbiont-bearing
pennate diatoms. This newly described symbiosis may contribute a previously unquantified flux of biologically available nitrogen to
oceanic systems. Pennate diatoms and their symbionts may close a key gap in our understanding of the supply of nutrients to the ocean
and provide a previously unknown biological sink for carbon dioxide.
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Dinitrogen (N2) fixation plays a key role in supplying reactive
nitrogen to pelagic ecosystems, and filamentous cyanobacteria
were long thought to be the only marine diazotrophs. In recent
years, the application of fluorescence analysis, molecular and
bioinformatic approaches, and single-cell mass spectrometry has
generated increasing evidence for a significant contribution of
new nitrogen by other groups including non-cyanobacterial dia-
zotrophs [1] and newly discovered endosymbionts of haptophytes
[2] and diatoms [3, 4]. Interestingly, these latter diazotrophs could
represent an early stage of organellogenesis [5].

Among the enigmatic marine diazotrophs are spheroid bodies
containing N2 fixation genes [6] in rhopalodiacean diatoms
such as Rhopalodia gibba [7]. Similarly, Nakayama [8] found non-
photosynthetic intracellular cyanobacteria in the rhopalodiacean
Epithemia turgida [9], and N2 fixation has been documented
in other rhopalodiaceans [4]. More recently, Tschitschko et al.
[3] have described a rhizobial symbiont, Candidatus Tectiglobus
diatomicula, of biraphid diatoms belonging to the genus Haslea.
The rhizobial symbiont appears to be broadly distributed in the
world ocean [3], but its host specificity and activity remain poorly

characterized. Taken together, these different lines of evidence
suggest an overlooked contribution of symbiosis between
diatoms and multiple diazotroph lineages to nitrogen supply in
the ocean.

Here, we report unexpectedly high 15N enrichment within pen-
nate diatoms tentatively identified as Mastogloia spp. and Haslea
spp. from 15N2—tracer experiments carried out in the northern
Amazon River Plume (Figs 1 and 2, Supplementary Fig. S1,
Supplementary Tables S1–S3). We could not visualize the rhizobial
symbionts reported from of Haslea [3] and Epithemia [4], but
many of the diatoms we observed contained symbionts with
phycoerythrin fluorescence flanking the nucleus axially, in
contrast to the lateral arrangement of the previously described
rhizobial symbionts (Fig. 2, Supplementary Fig. S3). Our Nano-
SIMS analyses of 15N in individual diatoms provide definitive
evidence of direct assimilation of 15N2 by cells containing these
endosymbionts (Fig. 1).

Although pennate diatoms are known to acquire reac-
tive nitrogen from sympatric, free-living diazotrophs [4], this
pathway cannot generate 15N enrichments greater than those
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Figure 1. 15N enrichment in at% in cells of Trichodesmium, pennate diatoms, and other diazotrophs such as Rhizosolenia-Richelia, Chaetoceros over
the incubation time of up to 25 h from three stations (A, station 30-19; B, station 31-05; and C, station 32-02) in the Amazon river plume. Boxplots
display the median and interquartile range with whiskers extending to the minimum and maximum, excluding outliers. Outliers are shown as dots
and defined as values more than 1.5 times the interquartile range removed from either the lower or upper quartile. Numbers below the boxplot
indicate the number of cells measured. Significant differences in 15N enrichment after 24–25 h between Trichodesmium and all analyzed pennate
diatoms are indicated by asterisks, ns means not significant. Depth was not considered as a factor since it did not affect 15N enrichment (Wilcoxon
rank sum test, P > .05). At the end of the incubation, the 15N enrichment of pennate diatoms with two color fluorescence is shown as red points and
the significance of the difference with resp. to Trichodesmium enrichment is indicated for station 30-19 in parentheses. Typical examples of the
enrichment of pennates are shown in the panels (D–G) below for the different time points 0 (D), 4 h (E), 10–14 h (F), and 24–25 h (G). The scale bar
illustrates enrichments with 15N from zero to 6 × 10−2 � (cold to warm colors from left to right).

in the free-living diazotrophs. In all, we identified 108 pennate
diatoms that became enriched in 15N, of which 56 contained
two-color fluorescent inclusions indicative of cyanobacteria
(Supplementary Table S4). At the end of our incubations, many

pennate diatoms had significantly higher 15N enrichments
than Trichodesmium and other Diatom-Diazotroph Associations
previously known to supply reactive nitrogen to the Amazon River
Plume [9–11] (Fig. 1, Supplementary Tables S4–S6).
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Figure 2. Examples of pennate diatoms showing putative Mastogloia sp. (A, B) and Haslea sp. (C, D) cells with two-color fluorescence. Panels (A and C)
show general morphology, while panels (B and D) show fluorescence under trichromatic excitation (see Supplementary Fig. S3 for details). In contrast,
panel (E) shows a diatom lacking putative symbionts and exhibiting monochromatic fluorescence.

The high 15N enrichment of the pennate diatoms with flu-
orescent symbionts implies that they were not acquiring 15N
secondarily from other diazotrophs via a recycling pathway. As
a quantitative test, we estimated that the maximum possible
enrichment of 15N in pennates via release of labeled 15N-NH4

+ by
other active diazotrophs in the surrounding water is ∼1.15 at%
15N, a third of the median enrichment of 3.89 at% (n = 28) we
found in pennates after 24 h of incubation (SI-Methods). The
15N enrichment of pennate diatoms with symbionts increased
through our 24 h incubations to as high as 7.24 at% 15N (Fig. 1,
Supplementary Table S4), while the significantly lower 15N enrich-
ments of pennates without symbionts are consistent with acquisi-
tion of 15N via a recycling pathway (Dunn’s test, z = 4.12, P < .001).

Because these findings were serendipitous, we lack molecular
analyses allowing us to unambiguously resolve the identity of
these fluorescent endosymbionts. However, we collected samples
for metatranscriptomics and interrogated them for community-
level signals of nifH gene transcription as well as diatom taxonomy
to explore the potential identity of both symbionts and hosts. For
taxonomic assessment, Kaiju, a protein-level classification tool
[12], could classify between 13.6% and 45.7% of metatranscrip-
tomic reads (Supplementary Table S3) revealing relatively similar
diatom communities across the sampled region with site-by-site
variability (Supplementary Fig. S4).

Among the diatoms, transcripts attributed to Mastogloia
spp. occurred at all stations with the highest relative abun-
dance at station 29-04 (Supplementary Fig. S4B), while tran-
scripts attributed to Haslea spp. were highest at station 31-05
(Supplementary Fig. S4B), suggesting broad presence but relatively
low contribution of these pennates to the diatom community.
Pennate diatoms of these genera benefit from elevated silicate
concentrations e.g. in the river plumes like that of the Amazon
(Supplementary Table S1) [11, 13] and may be observed elsewhere.

Although we could not identify the symbionts of our diatoms
unambiguously, an evaluation of putative nifH gene expression
within the assemblage using a combination of blast searches
versus curated and public databases revealed the presence of
the rhizobial symbiont, Candidatus Tectiglobus diatomicola, in our

samples despite its absence in our microscopic observations
(Supplementary Fig. S5). Overall, the highest nifH transcript pro-
portion was observed at Station 28-01 for transcripts attributed
to Trichodesmium (3.84 TPM), while transcripts belonging to the
recently identified rhizobial symbiont (Candidatus Tectiglobus
diatomicola, [3]) showed the highest expression at Station 29-04
(1.87 TPM; Supplementary Fig. S5). Our samples also contained
transcripts attributed to Richelia, Crocosphaera, UCYN-A, and an
unclassified cyanobacterium (Supplementary Fig. S5). Although
we cannot yet identify the inclusions associated with high rates of
assimilation of 15N by pennate diatoms, they have morphological
and fluorescence characteristics of cyanobacteria. Our methods
did not allow us to visualize the previously described rhizobial
symbionts of Haslea, but our molecular data show them to be
present (Fig. S5). Our observations thus provide strong evidence
that pennate diatoms may form symbiotic associations with both
rhizobia and currently unidentified cyanobacteria.

In summary, multiple broadly distributed diatom genera may
be associated with rhizobial and/or cyanobacterial symbionts, but
the small size of the pennate diatom host and the challenge of
characterizing Diatom–Rhizobial Associations (DRAs) and some
Diatom–Cyanobacterial Associations (DCAs) by light or fluores-
cence microscopy has led to them being largely overlooked. Pen-
nate diatoms are abundant and broadly distributed but whether
they play an important role in supplying new nitrogen to tropical
waters of the North Atlantic cannot yet be assessed. Further
field studies are needed to explore the possibility that DRAs and
DCAs with pennate diatom hosts are active in other ocean basins,
and to quantify their overall contribution to the oceanic nitrogen
budget.
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