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Abstract

Recent advances in earthquake monitoring have led to the development of methods for the automatic generation
of high-resolution catalogues. These catalogues are created at considerably reduced processing times and contain
significantly larger volumes of data concerning seismic activity compared to standard catalogues created by human
analysts. Disciplinary statistics and physics-based earthquake forecasting models have shown improved perfor-
mance when rich catalogues are used. The use of high-resolution catalogues paired with machine learning algo-
rithms, which have recently evolved due to the rise in the availability of data and computational power, is therefore

a promising approach to uncovering underlying patterns and hidden laws within earthquake sequences. This study
focuses on the development of short-term data-driven spatiotemporal seismicity forecasting models with the help
of deep learning and tests the hypothesis that deep neural networks can uncover complex patterns within earth-
quake catalogues. The performance of the forecasting models is assessed using metrics from the data science

and earthquake forecasting communities. The results show that deep learning algorithms are a promising solution
for generating short-term seismicity forecasts, provided that they are trained on a representative dataset that accu-
rately captures the properties of earthquake sequences. Comparisons of machine learning-based forecasting models
with an epidemic-type aftershock sequence benchmark show that both types of models outperform the persistence
null hypothesis commonly used as a benchmark in forecasting the behaviour of other types of non-linear systems.
Machine learning forecasting models achieve similar performance to that of an epidemic-type aftershock sequence
benchmark on the Southern California and Italy test datasets at significantly reduced processing times - a major
advantage in applications to short-term operational earthquake forecasting.
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1 Introduction

The rising volumes of available data and computational
power have recently led to the rapid development of
the field of machine learning (ML) and the use of its
power to address computational challenges in various
scientific fields including seismology, where ML mod-
els are used to tackle different tasks, from Earth model
inversions to seismic phase picking and event discrimi-
nation (Mousavi and Beroza 2022, 2023). The use of
ML tools is also a promising development in the field
of earthquake forecasting. Within this scope, Beroza
et al (2021) described how multi-object deep learning
catalogues will revolutionise earthquake forecasts and
triggering studies. Segou (2020) posed the question of
whether standard forecasts using catalogues generated
with the help of ML or data-driven ML-based forecast
models will present higher predictability. Mancini et al
(2022) explored the predictability of physics-based and
statistical models using standard and ML catalogues
to find that forecasting models benefit from the use of
high-resolution catalogues when advanced experimen-
tal setups, such as fine spatial grids, are adopted. In this
paper, we investigate whether data-driven models using
standard and high-resolution catalogues can robustly
forecast short-term seismicity. The rapid evolution of

artificial intelligence has revolutionized data assimila-
tion to the point that ML-based catalogues include a
factor of ten more events compared to standard cata-
logues produced by human analysts (e.g. Tan et al
(2021)). The community is now starting to explore
how data-driven ML models can contribute towards
improving predictability and, perhaps, discovering cur-
rently unknown physical laws that govern earthquake
occurrence (Mizrahi et al 2024).

Zlydenko et al (2023) introduced FERN, a neural
encoder-decoder model for spatiotemporal earthquake
rate forecasting using a point-process framework based
on a multilayer perceptron, a simple neural network that
consists of multiple layers of neurons, with each neu-
ron using a non-linear activation function. FERN learns
spatial and temporal embeddings that are able to cap-
ture complex correlations, thus succeeding in producing
accurate spatiotemporal rate forecasts based on stand-
ard ML evaluation metrics (log-likelihood score, area
under Receiver Operating Characteristic curve) as well
as metrics that are specific to earthquake forecast evalu-
ation (Average Information Gain Per Earthquake (IGPE),
S-test). FERN is applied to the region of Japan, using
data from the JMA catalogue (Japan Meteorological
Agency 2024). Stockman et al (2023) developed a highly
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flexible neural point process for short-term seismicity
forecasting, which proved to be fast to train and robust
to missing data. This is an important asset as earthquake
catalogues are incomplete due to the fact that when large
events occur, seismic stations receive waveforms that
correspond to many events simultaneously. Many of
these events are relatively small magnitude aftershocks
whose waveforms overlap with the waveforms of larger
events and are therefore not detected. This phenom-
enon is known as short-term aftershock incompleteness
(STAI). Stockman et al (2023) tested their approach on
the 2016—2017 Central Apennines high-resolution cata-
logue by Tan et al (2021) using the log-likelihood score
and the Cumulative Information Gain (CIG) as evalu-
ation metrics, leading to the conclusion that the model
is able to make use of the wealth of information present
in high-resolution catalogues due to its ability to han-
dle incomplete data , i.e. to constrain the likelihood of
future triggered events based on the information pro-
vided in incomplete catalogues. This is a major advance
over physical and statistical models, which generally
require complete data above a given magnitude thresh-
old. Dascher-Cousineau et al (2023) introduced RECAST,
a flexible recurrent neural network-based point pro-
cess model, which was tested on Southern California
earthquake catalogues using the log-likelihood score
and proved to be efficient on large datasets, showing
improved performance when provided with more train-
ing data. All of these approaches are based on point
processes, which are the basis of statistical forecasting
models. A different approach is to represent the seismic-
ity recorded in earthquake catalogues using spatiotempo-
ral series of seismic maps. Within this scope, Zhang and
Wang (2023) used a convolutional long short-term mem-
ory (ConvLSTM) neural network to learn temporal and
spatial correlations of global-scale seismicity data. They
evaluated model performance using the precision, recall,
accuracy, Critical Success Index (CSI), False Alarm Ratio
(FAR) and R-score metrics. Their model achieves good
performance at forecasting earthquakes with moment
magnitude above 4, but struggles to forecast larger events
(with magnitudes greater than 6) due to the fact that the
amount of larger magnitude data available for training
is very limited, therefore the magnitude distribution of
examples is highly skewed (class imbalance).

In this study, we develop ML -based seismicity forecast-
ing models based on architectures that have been shown
to successfully address spatiotemporal time series (Yu
et al 2024). We focus on building models that are able to
produce spatiotemporal next-day forecasts of aftershocks
following events of magnitude 4 and above. We address
the challenging question of whether a larger magnitude
earthquake is likely to follow a moderate-sized event,
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Fig. 1 Frequency-magnitude distributions of the catalogues used
in this study

which is something that current statistics and physics-
based forecasting methods struggle with. We explore
whether recent advances in the fields of seismology and
artificial intelligence, including high-resolution cata-
logues and machine learning techniques, can effectively
model seismicity rates following an event of magnitude
4 and above based on recent preceding seismicity. This
forms the basis of our testing strategy in this work. We
focus on building ML forecasting models that are trained
on a bulk seismic catalogue dataset that consists of cata-
logues from different tectonic regions, aiming to cre-
ate models that are able to generalise well in a variety of
different scenarios. We follow different paths to training
those models in order to understand how existing seis-
mic catalogues, standard and high-resolution, could play
a critical role in predictability and influence the models’
generalisability. Considering that earthquake forecasting
research now involves both data scientists and seismolo-
gists, we evaluate the models using performance metrics
from both communities. We find that ML models are a
promising solution for producing short-term seismicity

Table 1 Temporal extent and magnitude of completeness (M)
of earthquake catalogues. The M, was estimated based on the
method described in Mizrahi et al (2021a)

Catalogue Dates # days M.
Southern California 01/01/1980-30/09/2023 5979 38
Northern California 01/01/1980-30/09/2023 5979 33

1

1
01/01/1980-30/09/2023 15979 4.0

1

1

New Zealand

Italy 02/01/1985-30/09/2023 4151 3.1
Greece 01/01/1980-30/09/2023 5979 40
Japan 01/10/2000-31/12/2012 4475 25
Southern California (QTM) 01/01/2008-31/12/2017 3653 24
[taly (ML) 15/08/2016-15/08/2017 366 2.8
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Table 2 Number of events in earthquake catalogues

Catalogue # earthquakes # M2+ earthquakes # M4+ earthquakes
(depth < 40 km) (depth < 40 km)

Southern California 820787 137975 1300

Northern California 1094185 143327 2338

New Zealand 559221 272183 8892

Italy 446702 104100 866

Greece 359031 202056 5574

Japan 1091640 108030 1921

Southern California (QTM) 1811362 28187 303

[taly (ML) 900058 10128 65

forecasts given that they are exposed to a large enough
high-quality dataset during training.

2 Data

We assemble a dataset containing publicly available
earthquake catalogues from diverse tectonic regions:
Southern California (SCEDC 2013), Northern Califor-
nia (NCEDC 2014), New Zealand (GNS Science 1970),
Italy (ISIDe Working Group 2007), Greece (NOAIG-
CATALOGUE 2024) and Japan (Yano et al 2017). The
frequency-magnitude distributions of the catalogues can
be seen in Fig. 1. Using the method described in Mizrahi
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et al (2021a) , we estimate the magnitude of completeness
(M) of the catalogues, which can be seen in Table 1. As
our target is to forecast what happens immediately fol-
lowing events of magnitude 4 and above, we only take
into account events with a minimum magnitude (M)
of two orders below that, i.e. events of magnitude 2 and
above. Although this allows us to take into account all
events that are felt by humans and have the potential to
cause damage, it also means that our models inevitably
learn the incompleteness of the catalogues. This is not a
problem in our case, as ML models have been shown to
perform well in incomplete data settings (Stockman et al
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Fig. 2 Spatiotemporal rate, maximum magnitude and average depth sequences used to produce next-day rate forecasts. We identify events
with magnitude 4 and above, create a square spatial grid around them and produce deep learning-based next-day rate forecasts using the rate,
maximum magnitude and average depth maps of the previous 7 days as input. The neural network visualisation was created using http://alexlenail.

me/NN-SVG/. BGSOUKRI 2025
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2023). For example, a cluster of small earthquakes, even
of magnitude below the completeness threshold, could
indicate a raised probability of a larger event at that loca-
tion. We consider shallow crustal events with depths up
to 40km, as these tend to be the most destructive events.
Further details about the catalogues can be seen in
Tables 1 and 2. We use 80% of the data for training, 10%
for validation and 10% for testing and follow a temporal
data splitting strategy, with older data used for training
and newer data used for testing. We perform an itera-
tive training procedure in order to select an appropriate
set of hyperparameters, which are various configuration
variables that are manually set and used to manage ML
model training. Once the hyperparameter tuning process
is complete, we retrain the ML models on the training
and validation data and evaluate using the independent
test set, which has been kept out of the whole process up
to that point.

Motivated by the fact that the training process of deep
learning models requires the use of large volumes of data,
we also employ high-resolution catalogues to further
train the models and improve their performance. For this
purpose, we use the Southern California quake template
matching (QTM) catalogue (Ross et al 2019), a long-term
catalogue containing events that occurred in the 10 years
between 2008 and 2017, and the short-term -based cat-
alogue introduced by Tan et al (2021), a localised high-
resolution catalogue covering the year-long 2016-2017
Central Italy earthquake sequence. The Southern Cali-
fornia QTM catalogue reduces the minimum magnitude
of completeness by more than a full magnitude unit over
the 10-year period covered, whereas the Italy ML cata-
logue also contains considerably more events compared
to the standard Italy catalogue for the same year.

3 Methods

3.1 Goal

The aim of this study is to model next-day seismicity
following events with a magnitude of 4 and above. The
spatial area that we consider is a square centred at the
M4+ event, with sides equal to 2 longitude and latitude
degrees. This is essentially an aftershock forecasting sce-
nario and is highly relevant to local communities. Such
information can aid authorities in decision-making and
resource allocation during the earthquake response and
recovery process, contribute to infrastructure risk assess-
ment and guide the general public towards safety meas-
ures (Hardebeck et al 2024).

3.2 Features
We create daily maps of key metrics by splitting the spa-
tial area covered by the catalogues into bins of 0.1 degrees
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of longitude and latitude. Three types of two-dimensional
daily maps are used, containing: (i) the number of events
(rate per unit time) in each grid cell, (ii) the maximum
magnitude of events in each grid cell and iii) the average
depth of events in each grid cell. We identify events with
magnitude > 4 and aim to forecast the next day’s seis-
micity (rate) in the spatial area where those events have
occurred. For each one of the M4+ earthquakes, we use
the M2+ events in the catalogues to create 7-day rate,
magnitude and depth spatiotemporal training sequences.
These training sequences cover the seven non-overlap-
ping 24-hour time intervals that end with and include
the M4+ event that triggered their creation, whereas the
target map covers the 24-hour period that starts directly
after the M4+ event. We pass these 7-day sequences
through a deep learning model and produce localised
next-day spatiotemporal rate forecasts with a grid resolu-
tion of 0.1 longitude and latitude degrees. The developed
forecasting models are testable following the guidelines
and principles of Jordan et al (2011) for earthquake fore-
casting research. The whole workflow is shown in Fig. 2.

3.3 Models

3.3.1 Small attention UNet (SmaAt-UNet)

The first deep learning model used is a convolutional neu-
ral network (CNN) called UNet (Ronneberger et al 2015).
UNets were first designed for biomedical image segmen-
tation but have been shown to perform well in various
tasks involving two-dimensional data, which makes them
an appropriate choice for our task. They consist of two
parts: the encoder and the decoder. The encoder consists
of a series of convolutional operations followed by recti-
fied linear unit (ReLU) activations and maximum pooling
(MaxPool) operations used for downsampling. At each
downsampling step, the number of feature channels is
doubled. The decoder consists of consecutive upsampling
steps, each of which halves the number of feature chan-
nels, and a series of convolutional operations followed
by ReLU activations. UNets also include skip connec-
tions, which are shortcuts used to connect the output of
each encoder layer to the corresponding decoder layer in
order to minimise the loss of spatial information due to
downsampling.

The small attention UNet used in this study was
first introduced by Trebing et al (2021) for the task of
precipitation nowecasting, yielding promising results
despite its compact size. This neural network is a UNet
that includes convolutional block attention modules
(CBAM) (Woo et al 2018), which are mechanisms that
apply attention to the channels and spatial dimensions
of two-dimensional data. It also uses depthwise-sep-
arable convolutions (DSC) (Chollet 2017) instead of
regular convolutions in order to reduce the number of
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parameters without compromising on the network’s per-
formance. The SmaAt-UNet is therefore a high-perform-
ing convolutional neural network that can be trained in
a relatively short amount of time, which is important for
operational forecasting models.

3.3.2 Earthformer

This is an example of a sequence-to-sequence model (Sut-
skever et al 2014), a neural network that can be used
to convert an input sequence into a target sequence.
Sequence-to-sequence models have been introduced
to tackle problems with a sequential nature, such as
machine translation or time series forecasting, and are
therefore a reasonable framework choice for our prob-
lem. Like UNets, these networks consist of two parts: the
encoder and the decoder. The encoder is responsible for
creating a representation to encode information about
the source sequence, producing a final hidden state. The
decoder then receives the encoder’s final hidden state as
input and uses it to generate the target sequence. These
models were initially implemented with the use of recur-
rent neural networks (RNNs), but the emergence of the
mechanism of attention and the transformer neural net-
work architecture largely changed sequence-to-sequence
model design.

The attention mechanism (Bahdanau et al 2014) was
introduced to address a bottleneck in sequence-to-
sequence encoder-decoder models. Up until that point,
the whole input sequence was represented by a single
hidden state, the encoder’s final hidden state. This meant
that the decoder often wasn’t provided with sufficient
information to generate the target sequence. The intro-
duction of attention allows the decoder to select mul-
tiple hidden states of the encoder instead of only using

Table 3 Hyperparameters used for training the SmaAt-UNet and
Earthformer neural networks. BGSOUKRI 2025

Hyperparameter SmaAt-UNet Earthformer
optimizer Adam Adam

Adam B 0.9 0.9

Adam B> 0.99 0.99

starting learning rate 0.001 0.00001
learning rate scheduler PyTorch StepLR PyTorch SteplR
StepLR step size 30 30

StepLR gamma 0.1 0.1

early stopping Yes Yes

early stopping patience 20 epochs 20 epochs
maximum number of epochs 500 500

batch size 64 8

input map concatenation True False

logarithmic rate maps True True
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the final hidden state. In other words, attention enables
the decoder to pay attention to the most important ele-
ments of the input sequence. This is achieved by calcu-
lating the attention scores, which are based on matching
each encoder’s hidden state to every hidden state of the
decoder. Each score is proportional to the relevance of
each encoder’s hidden state to the decoder, with higher
scores indicating higher relevance. These scores add up
to one, and can therefore be used to calculate a weighted
average of the encoder’s hidden states, which can be used
as the decoder’s input.

Transformers (Vaswani et al 2017) are sequence-
to-sequence models that offer an alternative to CNNs
and RNNs. They use an encoder neural network that is
responsible for creating intermediate representations of
input sequences and a decoder neural network that pre-
dicts output sequences based on the source sequences
and the intermediate steps generated by the encoder.
Transformers use the mechanism of self-attention to
decide which parts of the input sequence are more rel-
evant for generating the output sequence by projecting
the inputs to three weight matrices, which are initialised
randomly and optimised during the training process.
Multiple parallel self-attention mechanisms called heads
are often used to help with capturing different aspects
of the inputs. Models that are based on this idea are
becoming increasingly popular for tasks in the fields of
natural language processing, computer vision and time
series forecasting, as they can easily be parallelised and
require considerably less computational power compared
to CNNs and RNNs of similar size (Kamath et al 2022).
The downside is that transformer-based models often
need larger datasets to be effectively trained, as they do
not have an inductive bias and thus tend to overfit small
datasets more easily than CNNs and RNNs (Dosovitskiy
2020).

Earthformer (Gao et al 2022), the second deep learning
model used in this study, is a space-time transformer for
Earth system forecasting. In this case, the input data have
both a spatial and a temporal dimension and can there-
fore be seen as cubes. These cubes are split into non-
overlapping cuboids. The cuboid attention mechanism,
an extension of the attention mechanism to spatiotem-
poral data, is then employed. Self-attention is applied to
each cuboid, a calculation that can be done in parallel to
speed up the process. A set of global vectors is also used,
which attends to all cuboids and can therefore transmit
information about the overall state of the cube to them.
The Earthformer is an excellent architecture choice in
our case, as it is a space-time transformer model specifi-
cally designed to handle spatiotemporal sequences with
a particular focus on applications involving Earth system
data.
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3.4 Training

We use an adaptive moment estimation (Adam) opti-
mizer (Kingma and Ba 2014) with initial decay rates
B1 = 0.9 and Bz = 0.99 and a step learning rate scheduler
that reduces the learning rate by a factor of 10 every 30
iterations (epochs). We also use an early stopping mecha-
nism, which monitors the validation loss, i.e. the misfit
between the ground truth and the forecasts in the valida-
tion set, and stops training in case there is no improve-
ment for a period of 20 epochs. The maximum number
of epochs a model can be trained for is set to 500. In the
case of the SmaAt-UNet model, we merge the weekly
rate, magnitude and depth sequences into 3 single maps
by calculating the pixel-wise sum of the 7 rate maps,
the pixel-wise maximum of the 7 magnitude maps and
the pixel-wise average of the 7 depth maps. In the case
of the Earthformer model, each of the 7 rate, magnitude
and depth maps in the sequence is used separately in the
input data cube. In order to reduce the range of the rate
data and ensure greater stability in the input time series,
we use logarithmic rate maps, which leads to improved
learning performance. The hyperparameters used were
selected through a trial-and-error process and are sum-
marised in Table 3. We use the mean squared error
(MSE) between the ground truth, i.e. the true next-day
rate maps, and the model output rate maps (or forecasts)
as a loss function, which is given by

1< .
MSE = p Z()’i — )? (1)
i—1

where # is the number of cells in target rate maps, y; is
the ith cell of the ground truth rate map and y; is the ith
cell of the output or forecast rate map.

3.5 Evaluation

The model performance is evaluated by calculating a col-
lection of metrics from the data science (Hewamalage
et al 2023; Rainio et al 2024) and earthquake forecast-
ing (Zechar et al 2010a; Schorlemmer et al 2018; Savran
et al 2022a) communities.

3.5.1 Regression metrics

The problem that our models are addressing is a regres-
sion problem, as the output is a two-dimensional map
of continuous values. We therefore calculate the mean
absolute error (MAE) and the root mean squared error
(RMSE), which show the difference between the forecast
number of events and the observed number of events per
spatial bin. The mean absolute error is given by
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MAE = ;Z yi — Jil, 2)
i=1
and the root mean squared error is given by
(3)

with n representing the number of cells in target rate
maps, y; the ith cell of the ground truth rate map and y;
the ith cell of the output or forecast rate map.

3.5.2 Classification metrics

In addition, we calculate a collection of metrics that are
used in classification tasks. To do this, we convert the
forecast and ground truth maps to binary maps, with 0
representing grid cells where no events have occurred
and 1 representing grid cells where at least one event
has occurred. As the rate values in the forecast maps are
continuous, we use a threshold of 0.5 events per day to
distinguish grid cells that belong to the 0 and 1 classes.
In our case, these metrics essentially show whether the
models are able to forecast events in the correct spatial
bins. We calculate the number of true positives (TP),
false positives (FP), true negatives (TN) and false nega-
tives (FN) in rate maps that belong to the test set . We
then calculate the accuracy, which measures how many
observations were correctly classified and is given by

TP + TN
TP+ FP + TN + FN’

Accuracy =

(4)

the precision, which measures the proportion of pre-
dicted positives that were actual positives and is given by

TP

Precision = ———,
TP + FP

(5)

the recall, which measures the proportion of actual posi-
tives that were classified correctly and is given by

TP
Recall = ——, (6)
TP + FN

the F1 score, which is the harmonic mean of precision
and recall given by

Precision - Recall . 2TP
Precision + Recall ~ 2TP + FP + FEN’

F=2 (7)
the critical success index (CSI), which is often used in
binary forecasting and measures how well the predicted

positives correspond to the actual positives (Ebert and
Milne 2022), given by
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TP

CSl = ———
TP + FP + FN

(8)
and the false alarm ratio (FAR), also frequently used in
binary forecasting and showing the number of false
alarms per the total number of alarms, given by

Fp

FAR = ——.
TP + FP

)
Furthermore, we use the receiver operating characteristic
(ROC) curve, which shows the trade-off between the true

positive rate (TPR = %) and the false positive rate

(FPR = FPI:L%) for different cutoff thresholds. We calcu-
late the area under the ROC curve (ROC AUC), which is
a measure of the model’s performance across all possible
classification thresholds. We also calculate the area under
the Precision-Recall curve (PRC AUC), which measures
performance based on the combination of precision and
recall scores for different classification thresholds.

As earthquakes show clustering in time and space,
we observe a class imbalance issue (Guo et al 2008): the
number of true negatives is much larger compared to the
number of true positives , meaning that almost all target
cells (97%) do not contain earthquakes. This indicates
that the accuracy metric is not very informative on the
likelihood of true positives alone. The large number of
true negatives significantly influences the score, resulting
in high accuracy values regardless of the model’s ability
to identify positive class events. For this reason, we also
calculate the CSI, which gives a similar indication of the
model’s performance without taking into account the
true negatives. The ROC curve is also greatly influenced
by the large number of true negatives, therefore the Pre-
cision-Recall curve, which looks at the percentage of true
positives in comparison to the percentage of predicted
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positives, is a more informative measure of model perfor-
mance in this regard (Saito and Rehmsmeier 2015).

3.5.3 CSEP metrics

The Collaboratory for the Study of Earthquake Predict-
ability (CSEP) is an international community aiming to
support earthquake predictability research by defining
the objectives of earthquake forecasting experiments
and developing metrics that are suitable for their evalu-
ation (Zechar et al 2010b). Our forecasts are grid-based,
therefore the testing region R consists of the combination
of magnitude bins M and spatial bins S:

In this study we don’t include information about the
magnitude in the model output, therefore we can assume
that there is only one magnitude bin covering the whole
magnitude range. The earthquake forecast can be seen as
the expected number of events in each magnitude-space
bin:

A ={iG )i e M,jeS}={i()j €S} (11)

where A(i, ) is the forecast number of earthquakes in a
specific magnitude-space bin (i, j). Similarly, the observed
data can be written as

Q= {w@jlieM,jeS}={w(leS} (12)

where w (i, ) is the observed number of earthquakes in a
specific magnitude-space bin (i, /).

We employ the number test (N-test), which can be used
to draw conclusions as to whether the number of forecast
earthquakes is consistent with the number of observed
earthquakes. The total number of forecast events can be
written as the sum of (i, j) over all spatial bins:

Table 4 Training and fine-tuning CNNs and transformers: Model parameters, training time on a single NVIDIA Quadro RTX 4000 GPU,
number of epochs and learning rate at the start of the training process. In the case of SmaAt-UNet+ and Earthformer+, the times and
epochs reported are the additional ones after training on the standard catalogues. BGSOUKRI 2025

Model # parameters Training time (min) # epochs Learning rate
SmaAt-UNet 4032205 27.82 28 0.001
SmaAt-UNet+ 4032205 2.50 103 0.00001
Earthformer 106573193 776.86 41 0.00001
Earthformer+ 106573193 38.20 171 0.00001
Persistence (day before) 0 0 0 -

Persistence (7-day avg.) 0 0 0 -

ETAS* 10 172.00 22 -

*In the case of ETAS, the time and number of epochs needed to estimate the initial global parameters are reported. However, we note that for each forecast, additional
computational time is required for parameter calibration and simulations. The additional time ranges from a few minutes to several hours or even days in cases of high
seismicity. On the other hand, the trained ML models and the persistence baseline are able to generate forecasts within seconds
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Npe = D Hirj) =D -

13
(i)eR jes (13)

Similarly, the number of observed events can be written
as the sum of w (i, j) over all bins:

Y w0l =) o).

(ij)eR jes

NObS = (14)

We aim to understand if the number of observed earth-
quakes is consistent with the number of forecast earth-
quakes. In other words, assuming that the forecast rate
distribution is correct, we need to determine where the
number of observed events falls within this distribution.
Initially, this was approached by generating a set of simu-
lated rates and calculating the probabilities of observing
at most and at least N, events (Kagan and Jackson 1995;
Schorlemmer et al 2007). However, if an analytical form
of forecast uncertainty is available, the corresponding
cumulative distribution can be used instead. The N-test
metrics, which are the probabilities of observing at least
and at most N, earthquakes given that Nj,, earth-
quakes are expected, can then be written as

81 =1 — F((Nops — l)u\/}ore)! (15)

and

8 = F(Nobs|Nfore)’ (16)

where F(x|u) is a Poisson cumulative distribution with
F(x|u) = 0 for x < 0. This is a one-sided test, in which
case the alternative hypothesis (the hypothesis we want
to prove) states that the parameter value is either bigger
or smaller compared to the parameter value specified in
the null hypothesis (the hypothesis we want to disprove).
To decide whether a forecast is considered consistent
with the observation, we need to specify a significance
level «. This indicates the risk of making a Type I error,
i.e. the risk of rejecting the null hypothesis when it is
in fact true. For an intended significance level o, i.e. for
maintaining a Type I error rate of «, a forecast is consid-
ered consistent if both §; and 8, are greater than the effec-
tive significance value a,y = . Therefore, if &« = 5% then
agr = 0.025, hence a forecast is consistent if §; > 0.025
and &y > 0.025. Too small §; values signify underpredic-
tion, which means that the forecast rate is too low to be
consistent with the observation, whereas too small
values signify overprediction, which means that the fore-
cast rate is too high to be consistent with the observa-
tion (Zechar et al 2010a).

3.5.4 Epidemic-type aftershock sequence model
The Epidemic-Type Aftershock Sequence (ETAS) model,
introduced by Ogata (1988) , is now considered to be the
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state-of-the-art seismicity forecasting model. It is used
for operational forecasting in the United States, New
Zealand and Italy (Mizrahi et al 2024). The ETAS model
treats seismicity as an epidemic, where earthquakes trig-
ger subsequent earthquakes. It divides earthquakes into
two categories: background events, which are those
that are not triggered by previous events and occur uni-
formly, and triggered events. The expected number of
aftershocks is determined by empirical laws related to
aftershock productivity based on the magnitude of the
parent event, the spatial distribution of aftershocks and
the decrease of aftershock rate over time. This approach
allows the ETAS model to capture the space-time cluster-
ing of aftershocks immediately following an initial event
and to reflect the Omori-Utsu aftershock decay (Omori
1894; Utsu 1961). However, the ETAS approach is com-
putationally expensive due to the fact that it requires an
inversion procedure to estimate the parameters and a
large number of simulations to generate each forecast
(Harte 2017; Kamranzad et al 2025).

As the ML models were trained on a bulk catalogue
dataset and are not optimised for specific regions, we
estimate some initial global ETAS parameters based
on the training part of the bulk catalogue dataset using
events above the completeness threshold. To ensure a
fair comparison against ML models, we then calibrate
the ETAS parameters for each test instance using the
events of magnitude 2 and above that occurred within
the first seven days of the spatiotemporal sequence. This
is done in order for the ETAS forecasts to include events
of magnitude 2 and above, which is consistent with the
threshold used in the ML forecasts. We use the ETAS
implementation from the GitHub repository by Mizrahi
et al (2023) and estimate the ETAS parameters based
on the expectation maximisation (EM) algorithm (Miz-
rahi et al 2021b). It is worth noting that the EM algo-
rithm relies on a complete dataset for training, hence
the resulting ETAS parameters may be biased due to the
use of incomplete data in the parameter calibration step.
Once the final parameters have been estimated, we gen-
erate M2+ forecasts for the eighth day by performing
100 simulations and calculating the mode of the number
of events per grid cell across all simulations. Using the
mode results in more reliable forecasts compared to the
mean value, as the mean is highly influenced by outliers.

3.5.5 Persistence model

A common benchmark that is used for evaluating fore-
casting approaches is the persistence model (Hewamal-
age et al 2023). This is a simple baseline that doesn’t
require any computations, as it assumes that no change
occurs between consecutive time steps. It therefore uses
the previous day’s map as the next day’s forecast, which
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Fig. 3 Randomly selected examples of data-driven deep learning-based forecasts for datapoints that belong to the bulk catalogue data test set.
Comparison between ground truth and the forecasts generated by SmaAt-UNet, SmaAt-UNet+, Earthformer, Earthformer+, persistence (day before)
and persistence (average of previous 7 days). The columns correspond to the following events: (i) 13/11/2016, M4.2, New Zealand, (i) 14/11/2016,

M4.1, Italy, (i) 26/10/2018, M4.1, Greece, (iv) 06/07/2019, M4.2, Southern California. BGSOUKRI 2025
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Fig. 4 Evaluation metrics (accuracy, precision, recall, F1 score, CSI, FAR, ROC AUC, PRC AUC, MAE and RMSE) on the bulk catalogue and fine-tuning
data test sets. Comparison between SmaAt-UNet, SmaAt-UNet+, Earthformer, Earthformer+, persistence (day before) and persistence (average
of previous 7 days). BGSOUKRI 2025
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Table 5 Training and fine-tuning CNNs and transformers using a temporal data split: Classification and regression evaluation metrics
(bulk catalogue data test set). For regression metrics (MAE and RMSE), the mean and the standard deviation of the errors are reported.

BGSOUKRI 2025

Evaluation metric SmaAt-UNet SmaAt-UNet+ Earthformer Earthformer+ Persistence Persistence
(day before) (7-day avg.)

Accuracy 1 0.990 0.986 0.990 0.985 0971 0973

Precision 4 0.710 0.823 0.718 0.758 0.637 0.710

Recall ¢ 0.721 0.268 0679 0214 0612 0.526

F1 score 0.715 0.405 0.698 0333 0.624 0.604

csip 0.557 0.254 0.536 0.200 0454 0433

FAR | 0.290 0177 0.282 0.242 0.363 0.290

ROC AUC ¢ 0.858 0.634 0.837 0.606 0.799 0.759

PRC AUC 4 0.718 0.552 0.701 0492 0.632 0627

MAE (1, 0) | 0.330,1.206 0.296,0.980 0.244,0.568 0.274,0.719 0.232,0.599 0.283,0.693

RMSE (u, o) | 2.933,12.331 2430,9.950 1.822,4427 2.137,6.265 1.666,5.409 2.016,6.058

Table 6 Training and fine-tuning CNNs and transformers using a temporal data split: Classification and regression evaluation metrics
(high-resolution catalogue test set). For regression metrics (MAE and RMSE), the mean and the standard deviation of the errors are

reported. BGSOUKRI 2025

Evaluation metric SmaAt-UNet SmaAt-UNet+ Earthformer Earthformer+ Persistence Persistence
(day before) (7-day avg.)

Accuracy 1 0.988 0.991 0.987 0.990 0.963 0.963

Precision 4 0.773 0.879 0.710 0.856 0676 0816

Recall t 0.671 0.716 0.723 0.672 0514 0.333

F1 score 0.718 0.789 0.716 0.753 0.584 0473

csip 0.561 0.727 0.558 0.604 0413 0310

FAR | 0.227 0.121 0.290 0.144 0324 0.184

ROC AUC ¢ 0.833 0.857 0.858 0.835 0.750 0.665

PRC AUCH 0.726 0.801 0.719 0.768 0.607 0.592

MAE (i, ) | 0.490,0.641 0.373,0.504 0.510,0.682 0.543,0.724 0.533,0.752 0.621,0.868

RMSE (u, o) | 44555754 3.532,4.691 4.131,5.500 4.762,5.850 4.203,5.569 4.752,6.139

is often a highly accurate estimate due to the fact that
the maps of consecutive days are usually highly corre-
lated (Armstrong 2001). While the use of persistence as
a baseline is common in other fields, like for example
weather forecasting (Mittermaier 2008), it is not part of
current practice in earthquake forecasting. Nevertheless,
it may be a suitable null hypothesis that is not yet part of
the CSEP protocols. In the context of seismicity forecast-
ing, persistence is able to capture spatiotemporal cluster-
ing once it has started since the input data is from one or
several days of prior seismicity in the target area, which
is already clustered spatially and in time during a seismic
sequence. However, it is not expected to be able to fore-
cast the onset of a mainshock at the start of a sequence
(also a property of the ETAS model) or the Omori-Utsu
law decay in longer time windows (Omori 1894; Utsu
1961), which can be captured by the ETAS model. In
this study, we use two different versions of persistence
against which we compare our models: the previous day’s

map and the average of the daily maps of the previous
7 days. The first version is the standard baseline that is
commonly used in forecasting, whereas the second ver-
sion is a variation that incorporates information from the
whole data sequence used as input to the ML forecasting
models.

4 Experiments

4.1 Training and fine-tuning CNNs and transformers

We aim to assess different deep learning models’ ability
to produce data-driven earthquake forecasts using earth-
quake catalogue data. To do this, we train different mod-
els using a bulk catalogue training set mostly comprised
of standard manually-derived catalogues.We then use the
trained weights and fine-tune the models with the use of
high-resolution catalogues. Specifically, we train the two
deep learning models described above, the SmaAt-UNet
and the Earthformer, using a bulk catalogue training
set that consists of training examples from the standard
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catalogues of Southern California, Northern California,
New Zealand, Italy and Greece and the unified high-res-
olution relocated catalogue for Japan. The data used are
split sequentially, with older data used for training and
newer data used for testing, in line with the guidelines
for pseudo-prospective testing (Mizrahi et al 2024). We
use 80% of the data used for training, 10% for validation
and 10% for testing. We then use the initial trained model
weights and continue training the models with a new
training set built solely from high-resolution catalogues:
the Southern California QTM catalogue and the Italy
ML catalogue. To avoid data leakage, we don't use the
parts of the Southern California and Italy standard cata-
logues that cover the same time interval as the Southern
California QTM catalogue and the Italy ML catalogue for
training. The fine-tuned models are henceforth referred
to as SmaAt-UNet+ and Earthformer+. We explored the
option of freezing part of the trained network and updat-
ing the last few layers based on the new data, a practice
commonly used in fine-tuning. However, this did not
improve performance; hence the results reported here
correspond to the case where all weights are updated.
The number of parameters, the training time on a single
NVIDIA Quadro RTX 4000 GPU, the learning rate at the
start of the training process and the number of epochs
each model was trained for can be seen in Table 4.

4.2 Comparison between ML-based and ETAS forecasts

In order to assess the forecasting potential of ML mod-
els, we need to compare them in terms of performance
against an ETAS model, the most widely-used seismicity
forecasting model. We quantitatively compare the fore-
casts generated by SmaAt-UNet and Earthformer against
those generated by a baseline ETAS model (Mizrahi et al
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2023) with initial global parameters estimated by the
EM algorithm using the training part of our bulk cata-
logue dataset, taking into account events above catalogue
completeness. The ETAS parameters were calibrated
for each test instance based on the M2+ events that
occurred within the first seven days of the spatiotem-
poral sequence, which is the part that is given as input
to the ML models. We use two study regions, Southern
California and Italy, as our testing ground. This was done
due to the high computational cost of generating ETAS
forecasts, which meant that performing a comparative
study for all the catalogues in the bulk catalogue data-
set was not feasible within a reasonable timeframe with
the computational infrastructure that was used for ML
model training and inference. We calculate the classifi-
cation, regression and CSEP metrics for all three mod-
els (SmaAt-UNet, Earthformer and ETAS) and compare
them against each other as well as against the persistence
baseline.

4.3 Investigating the impact of individual catalogues
and different data splitting strategies

We seek to understand the impact of individual cata-
logues and different train-test splitting strategies in the
training process. We therefore investigate the possibil-
ity of train ing SmaAt-UNet and Earthformer on the
bulk catalogue dataset using randomly selected training,
validation and test instances. This means that instances
across the whole time interval that we use in this study
are used both for training and testing, which intro-
duces look-ahead bias (Peixeiro 2022) but also allows
the model to be trained on more recent catalogue data,
which generally have lower magnitudes of completeness
compared to older parts of the catalogues. We also train
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Fig. 5 Percentage of underpredictions (rejected §;values) and overpredictions (rejected 8, values). Comparison between SmaAt-UNet,
SmaAt-UNet+, Earthformer, Earthformer+, persistence (day before) and persistence (average of previous 7 days): (i) bulk catalogue data test set, (ii)

fine-tuning data test set. BGSOUKRI 2025
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Fig. 7 N-test results on bulk catalogue data test set: underforecasting and overforecasting. (i) Observed versus forecast number of events. Points
on or close to the y = x line represent forecasts that are consistent with the observations. (ii) N-test §;and 8, values. Forecasts with §; > 0.025
and 8, > 0.025 are consistent with the observations. BGSOUKRI 2025
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Fig. 8 N-test results on fine-tuning data test set: underforecasting and overforecasting. i) Observed versus forecast number of events. Points
on or close to the y = x line represent forecasts that are consistent with the observations. i) N-test §;and &, values. Forecasts with §; > 0.025
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Fig. 9 Cumulative distributions of §;and §; values (bulk catalogue data test set). The uniform distribution, which corresponds to a perfectly

calibrated model, is shown with a dashed line. In our case, most of the cumulative distributions of the quantile scores show underdispersion, which
means that the observed data have less variation than the forecasts. Figures b.(ii) and d.(ii) indicate underprediction, as the cumulative distribution
plot is almost constantly below the uniform distribution (Savran et al 2020). BGSOUKRI 2025
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Fig. 10 Cumulative distributions of §;and 8, values (fine-tuning data test set). The uniform distribution, which corresponds to a perfectly
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Table 7 Training and fine-tuning CNNs and transformers using a temporal data split: Percentage of underpredictions (rejected §;
values) and overpredictions (rejected §; values) (bulk catalogue data test set). BGSOUKRI 2025

SmaAt-UNet SmaAt-UNet+ Earthformer Earthformer+
All Rejected &, 31.87% 55.60% 29.65% 56.49%
Rejected é; 23.04% 5.03% 25.46% 3.89%
Southern California Rejected &, 20.00% 34.62% 2231% 74.62%
Rejected 82 56.92% 39.23% 50.00% 231%
Northern California Rejected &, 21.90% 34.39% 26.67% 46.35%
Rejected é; 31.75% 18.10% 21.27% 11.75%
New Zealand Rejected &, 26.56% 49.59% 27.38% 46.66%
Rejected &3 23.11% 0.23% 19.13% 2.93%
[taly Rejected 6, 36.68% 4891% 36.68% 46.29%
Rejected 83 16.59% 5.24% 14.41% 7.86%
Greece Rejected &, 37.86% 57.01% 39.97% 58.22%
Rejected é8; 16.89% 6.18% 19.76% 4.22%
Japan Rejected &, 41.82% 82.44% 24.40% 79.02%
Rejected 683 20.54% 0.60% 44.64% 0.74%

Table 8 Training and fine-tuning CNNs and transformers using a temporal data split: Percentage of underpredictions (rejected §;
values) and overpredictions (rejected §; values) (fine-tuning data test set). BGSOUKRI 2025

SmaAt-UNet SmaAt-UNet+ Earthformer Earthformer+
All Rejected &, 48.61% 55.56% 36.11% 77.78%
Rejected 83 22.22% 11.11% 29.17% 2.78%
Southern California Rejected 81 45.76% 54.24% 33.90% 76.27%
Q™) Rejected 6, 20.34% 10.17% 25.42% 0.00%
Italy (ML) Rejected 81 61.54% 61.54% 46.15% 84.62%
Rejected 83 30.77% 15.38% 46.15% 15.38%

SmaAt-UNet on the Southern California and New Zea-
land catalogues separately. The Southern California cata-
logue is one of the most detailed catalogues that we have
available, whereas the New Zealand catalogue contains
the highest number of M4+ events and hence makes up
the largest part of the training data. We investigate the
use of a sequential data split, i.e. using older data for
training and newer data for testing, as well as a random
data split, where we randomly select the training and test
examples.

4.4 Exploring how the use of different types of input maps
influences performance
We also wish to explore how different types of input
maps (rate, maximum magnitude and average depth)
contribute to the overall performance. We therefore
employ the same bulk catalogue dataset to train the
SmaAt-UNet model first using only the rate maps and
then using the rate and maximum magnitude maps as
inputs. We compare the performance of the two trained

models with each other as well as with the SmaAt-UNet
model that uses all three types of maps. A random data
splitting strategy is used in this case as well, hence look-
ahead bias has been introduced here too. Nonetheless,
this comparison still shows the difference in performance
when different types of input maps are used.

5 Results and discussion

5.1 Behaviour of different deep learning architectures

As seen in Table 4, SmaAt-UNet is a much more compact
model and the time needed for training it is significantly
lower compared to the time needed to train the Earth-
former. SmaAt-UNet is therefore more suitable for opera-
tional applications, as fast training times allow for further
training at regular time intervals to continuously incor-
porate new data. In terms of performance, the SmaAt-
UNet and the Earthfomer do similarly according to our
evaluation metrics, leading to the conclusion that a larger
number of parameters does not necessarily improve per-
formance when the training dataset is relatively small, as
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Fig. 11 Comparison between ML, ETAS and persistence forecasts following events that occurred within the 2019 Ridgecrest sequence in Southern
California. The columns correspond to the following events: (i) 07/07/2019, M4.5, (ii) 10/07/2019, M4.2, (iii) 11/07/2019, M4.5, (iv) 12/07/2019, M4.9,

(v) 26/07/2019, M4.7. BGSOUKRI 2025

in such cases the models are prone to overfitting (Lever
et al 2016; Brigato and Iocchi 2021). The availability of
earthquake catalogues is limited in duration, restricting
the amount of data that can be used to train the models
in this study. In such cases, the diversity and quality of
the dataset play an important role in the success of the
training process, as it is essential to expose the models
to a dataset that is representative of as many different

situations as possible in order to achieve generalisation.
Furthermore, the Earthformer’s inability to surpass the
forecasting skill of the SmaAt-UNet model is indica-
tive of the fact that transformer-based models need to
be exposed to larger training datasets, as they lack the
inductive bias that is inherent in convolutional neural
networks (Dosovitskiy 2020; Gao et al 2022).
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5.2 Qualitative and quantitative evaluation of forecasts
in terms of rate and spatial distribution

Randomly selected examples of next-day forecasts pro-
duced for datapoints that belong to the bulk catalogue
data test set can be seen in Fig. 3, where we qualitatively
observe that the model outputs are generally consistent
with the ground truth maps. Fig. 4 shows the model per-
formance on both the bulk cataloguestandard and fine-
tuning data test sets. The trained ML models seem to be
able to produce forecasts that are relatively consistent
with the observations in terms of number of events and
spatial locations. This is evidenced by the values of the
precision (0.710—0.718), the recall (0.679—0.721), the F1
score (0.698—0.715), the CSI (0.536—0.557) and the PRC
AUC (0.701—0.718), which can be seen in Table 5. The
FAR is low for both models (0.282-—0.290), which is also
a positive result, as generating a large number of false
alarms decreases the robustness of forecasting models.

The MAE is equal to 0.330+1.206 for SmaAt-UNet and
0.244+0.568 for Earthformer, whereas the RMSE is
2.933+12.331 for SmaAt-UNet and 1.822+4.427 for
Earthformer. SmaAt-UNet and Earthformer have similar
performance, with SmaAt-UNet being slightly superior in
terms of F1 score, CSI and PRC AUC and Earthformer
having lower MAE and RMSE.. The fine-tuned models
perform worse on the bulk catalogue data test set and
have low recall and CSI scores, which indicates a low pro-
portion of correctly classified actual positives and a large
number of false negatives.

As can be seen in Table 6, the fine-tuned models per-
form better than the previous models when tested on
data points from the fine-tuning dataset. This highlights
the importance of fine-tuning ML models on data that
are relevant to the application they will be used for. For
example, if the goal is to build a model to forecast seis-
micity in a specific geographic region, it makes sense to
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Fig. 13 Comparison between ML, ETAS and persistence forecasts following events that occurred within the 2016-2017 sequence in the Central
Apennines. The columns correspond to the following events: (i) 30/10/2016, M4.0, (i) 30/10/2016, M4.0, (iii) 31/10/2016, M4.0, (iv) 01/11/2016, M4.8,

(v) 03/11/2016, M4.7. BGSOUKRI 2025

first train the model on a large bulk catalogue dataset that
consists of data from different regions and then fine-tune
on data specific to the region in which the model will
be tested or used operationally. This indicates that the
model is able to learn data properties that are inherent
to specific catalogues, such as the level of completeness.
SmaAt-UNet+ is the best performing model on the fine-
tuning data test set but Earthformer+ also performs well,

which again is evidenced by the evaluation metrics: preci-
sion (0.856—0.879), recall (0.672—0.716), F1 score (0.753—
0.789), CSI (0.604—0.727), PRC AUC (0.768—0.801), FAR
(0.121-0.144), MAE (0.373+0.504—0.543+0.724) and
RMSE (3.532+4.691—4.762+5.850). The non fine-tuned
models are less successful at forecasting the spatial dis-
tribution and number of events of the examples in the
fine-tuning data test set. They achieve high precision
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Fig. 14 Comparison between the ratios of ground truth to forecasts generated by ML, ETAS and persistence following events that occurred
within the 2016-2017 sequence in the Central Apennines. The columns correspond to the following events: (i) 30/10/2016, M4.0, (ii) 30/10/2016,
M4.0, (i) 31/10/2016, M4.0, (iv) 01/11/2016, M4.8, (v) 03/11/2016, M4.7. BGSOUKRI 2025

values on this test set but the recall and CSI values are
lower than those of the fine-tuned models, which means
that when testing on the fine-tuning data test set, their
use leads to more undetected actual positives compared
to when the fine-tuned models are used.

The qualitative (Fig. 3) and quantitative (Fig. 4 and
Tables 5 and 6) evaluation based on metrics such as the
CSI and the FAR show that both neural networks are able
to produce forecasts that are consistent with the observa-
tions in terms of error metrics and spatial distribution of
events provided they are trained on a dataset that is rep-
resentative of the space and time they will be used in. The
use of high-resolution catalogues (in SmaAt-UNet+ and
Earthformer+) has not improved the performance on the
bulk catalogue test set. This can be attributed to the fact
that this dataset is mostly comprised of standard cata-
logues, which have larger magnitudes of completeness
and thus contain smaller numbers of events. Introducing

high-resolution data during fine-tuning might therefore
have led to forecasting events that were not included
in these initial catalogues. For similar reasons, SmaAt-
UNet+ and Earthformer+ show improved performance
compared to SmaAt-UNet and Earthformer when evalu-
ating performance on the fine-tuning data test set.

5.3 Comparison of trained models with persistence

We compare the trained models against the persistence
baseline, which assumes no change between consecutive
time steps and uses either the map of the day before or
the average map of the previous 7 days as the forecast.
Looking at Tables 5 and 6, it is apparent that the trained
models perform considerably better than persistence
in terms of precision, recall, F1 score, CSI, PRC AUC,
MAE and RMSE. However, the persistence model per-
forms adequately considering that it is a model with zero
parameters that can instantly produce a result without
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Fig. 15 Comparison between the ratios of ground truth to forecasts generated by ML, ETAS and persistence for all the examples in the Southern

California and Italy test sets. BGSOUKRI 2025

the need for any training or computations. This is an
expected behaviour due to the fact that seismicity shows
clustering in time and space, making maps of consecu-
tive days likely to be similar. In this sense, persistence is
a better null hypothesis for forecasting than a Poisson
assumption, hence its use as such in a variety of other
applications (Hyndman and Athanasopoulos 2021; Mit-
termaier 2008; Knaff and Landsea 1997; Kumar et al
2024; Trebing et al 2021; Owens et al 2013; Stevenson
et al 2022; Ghimire and Krajewski 2020; Bento et al 2022;
Koprinska et al 2018; Pombo et al 2021; Voyant and Not-
ton 2018; Chu et al 2017; Tziolis et al 2022).

5.4 Consistency between forecast and observed rates

The N-test indicates whether the number of observed
events is consistent with the number of forecast events,
with §; values showing whether the models are under-
predicting and d values showing whether the models are
overpredicting. Tables 7 and 8 and Figures 5 and 6 show
the percentage of underpredictions (rejected §; values)
and overpredictions (rejected 8 values). In most cases
the percentage of rejected &1 and &3 values is smaller than
the percentage of accepted values, which can be seen in
Figs. 5, 6, 7 and 8. However, the models do not reproduce
the distribution of events correctly, which is evidenced
by the fact that the model is rejected more than 5% of
the time for an « value of 0.05. This is also illustrated by
the cumulative distributions of §; and &, values shown in

Figs. 9 and 10, which are not uniformly distributed. The
cumulative distributions show that we mostly have a case
of underdispersion, which means that the variation of
the observed data is less than that of the forecast data,
whereas in a few cases the distribution of 8, values indi-
cates underprediction (Savran et al 2020). Overall, the
percentage of underpredictions is considerably greater
than that of overpredictions, with the overpredictions
usually not exceeding 10% of the test set. This can be seen
in Figs. 5 and 6 and in column i) of Figs. 7 and 8, which
show the number of observed events versus the num-
ber of forecast events. These figures also show that the
introduction of high-resolution catalogues during fine-
tuning increases the percentage of underpredictions and
reduces the percentage of overpredictions. Looking at
the daily number of observed events in weekly sequences
that resulted in rejected §; values and rejected §, values
(which can be seen in the supplementary material), we
observe that many of the weekly sequences for which we
under— or overpredict have occurred within longer earth-
quake sequences. Looking at Fig. 5ii), we observe that
Earthformer exhibits the most balanced performance in
terms of underpredictions and overpredictions. How-
ever, we observe that overall underprediction remains
the most critical issue , which is an indication of the fact
that the models learn the incompleteness of the training
data. The latter highlights the need for further research
in ML-based earthquake detection to address short-term
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aftershock incompleteness in order to improve catalogue
quality by detecting events that are currently missing.

5.5 Comparison between ML-based and ETAS forecasts

Figures 11 and 12 show a comparison between forecasts
that are generated by ML models and those generated by
ETAS for the 2019 Ridgecrest sequence. In Fig. 11, we see
the ground truth maps in the first row, the SmaAt-UNet
and Earthformer forecasts in the second and third row,
the ETAS forecasts in the fourth row and the persistence
forecasts in the fifth and sixth row. We see forecasts
starting from 7 July 2019 up to 26 July 2019 and observe
that these look reasonable in terms of spatial distribution
of events. SmaAt-UNet forecasts have the highest MAE
values, whereas ETAS forecasts have the lowest MAE
values. We also see that in cases of high seismicity, such
as this one, both the ML and ETAS models are not able
to accurately forecast the expected rates, as evidenced
by the N-test values. Similarly, Figs. 13 and 14 show ML
and ETAS forecasts following events that have occurred
within the 2016-2017 Central Apennines sequence, from
30 October 2016 to 3 November 2016. Here, we observe
that the ML and ETAS models all have similar MAE val-
ues and that the forecast number of events are mostly not
consistent with the observations, as shown by the N-test
values. Nevertheless, the forecasts visually look reasona-
ble. Figure 15 shows the ratios of ground truth to forecast
maps for all the examples in the Southern California and
Italy test sets. We observe that both the ML and the ETAS
forecasts are generally close to the ground truth values, as
indicated by the peak around 1. The distributions of the
ratios for forecasts produced by Earthformer and ETAS
have a smaller spread than the distribution of the ratios
in the case of SmaAt-UNet forecasts, which suggests that
SmaAt-UNet produces forecasts with more variability
compared to Earthformer and ETAS. The ground truth to
forecast ratio distributions of the persistence models also
have a peak around 1 and look relatively similar to that of
SmaAt-UNet, indicating that persistence models are also

(b)
Fig. 17 Percentage of underpredictions (rejected 8y values) and overpredictions (rejected §; values). Comparison between SmaAt-UNet,
Earthformer and ETAS: (a) Southern California and Italy test set, (b) Southern California test set, ( c) Italy test set. BGSOUKRI 2025

ETAS SmaAtUNet ETAS

(c)

able to generate forecasts that are relatively close to the
ground truth maps.

Tables 9 and 10 and Figs. 16, 17 and 18, 19 show a com-
parison between the two machine learning models and
an ETAS benchmark in terms of performance for the
Southern California and Italy test sets. The performance
of both approaches is similar in terms of spatial distri-
bution of events, with all three models achieving decent
performance. The two ML models are slightly supe-
rior to ETAS based on the F1 score, CSI, FAR and PRC
AUC, but the difference is relatively small. In terms of
the number of forecast events, SmaAt-UNet has a larger
MAE and RMSE compared to Earthformer and ETAS,
with ETAS having slightly lower error scores than Earth-
former. As seen in Table 10, the ML models and ETAS
tend to underpredict the number of events. However,
ETAS has a considerably higher number of underpredic-
tions and also a lower number of overpredictions com-
pared to the ML models, as evidenced by the percentages
of rejected &1 and J; values. This can be attributed to the
fact that the ETAS model was trained on an incomplete
dataset. The cumulative distributions of the §; and §, val-
ues in Fig. 20 show that, similarly to the two ML models,
we have a case of underdispersion in the ETAS forecasts.
The main advantage of ML models is the fact that they
can be trained within a few hours and then, once trained,
they can instantly generate as many forecasts as needed.
ETAS, on the other hand, needs an inversion procedure
to estimate the parameters, which one could argue is
comparable to ML training in terms of computational
cost, and then needs to perform a large number of simu-
lations in order to generate each forecast. These simula-
tions are computationally expensive and can take from
a few minutes to several hours to complete. ML models
can therefore be particularly effective for generating real-
time or near real-time forecasts, as well as for applica-
tions where the forecasting model needs to be regularly
updated based on new data.
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Observed versus forecast number of events. Points on or close to the y = x line represent forecasts that are consistent with the observations. (ii)
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Fig. 19 Comparison between ML and ETAS forecasts. N-test results on the ltaly test set: underforecasting and overforecasting. (i) Observed
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5.6 Investigating the impact of individual catalogues

and different data splitting strategies
In Tables 11 and 12, we see the evaluation metrics for
the two ML models when those are trained and tested
on randomly selected examples from the bulk catalogue

dataset. These results are not directly comparable to
those in Tables 5 and 7, as the test set used here is differ-
ent. However, it is apparent that random splitting results
in more similar data distributions between the train-
ing and test sets compared to a temporal split, leading
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Fig. 20 Comparison between ML and ETAS forecasts. Cumulative distributions of §1and &, values (Southern California and Italy test set). The
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of the quantile scores show underdispersion, which means that the observed data have less variation than the forecasts (Savran et al 2020).

BGSOUKRI 2025

to improved evaluation metric scores on the new ran-
domly selected test set. This random splitting strategy
introduces look-ahead bias (Peixeiro 2022), as it allows
the model to see future data during training and then be

tested on past data, which is not something that can be
done in an operational scenario. Nevertheless, this high-
lights the importance of ensuring similarity between the
data distributions used in training and inference settings
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Table 9 Comparison of ML-based forecasts with ETAS forecasts: Classification and regression evaluation metrics (Southern California

and ltaly test set). BGSOUKRI 2025

Evaluation metric SmaAt-UNet Earthformer ETAS Persistence Persistence
(day before) (7-day avg.)

Accuracy 1 0.987 0.988 0.988 0.985 0.984

Precision 4 0.853 0.903 0.834 0.763 0.806

Recall t 0.566 0.544 0.524 0.559 0433

F1 score 4 0.680 0.679 0.644 0.646 0.563

csit 0515 0514 0474 0477 0.392

FAR | 0.147 0.097 0.166 0.237 0.194

ROC AUC ¢ 0.782 0.772 0.761 0.778 0.715

PRC AUCH 0.714 0.729 0.684 0.667 0.626

MAE (n, 0) | 1.678,3.393 0.813,1478 0.731,1.679 0.845,1.615 0.981,1.789

RMSE (u, o) | 16.903,34.751 0.687,11.744 5.800,12.007 7.946,15.027 9.151,16457

Table 10 Comparison of ML-based forecasts with ETAS
forecasts: Percentage of underpredictions (rejected &, values) and
overpredictions (rejected §; values) (Southern California and Italy
test set). BGSOUKRI 2025

SmaAt-UNet Earthformer ETAS
All Rejected 84 41.46% 42.86% 65.90%
Rejected &3 29.13% 25.49% 15.61%
Southern Rejected 84 2891% 29.69% 84.31%
California  pejectedd,  56.25% 48.44% 3.92%
[taly Rejected 84 4847% 50.22% 58.20%
Rejected &3 13.97% 12.66% 20.49%

for optimal ML model performance. Therefore, it is cru-
cial to invest time and effort into creating training data-
sets that represent a wide range of scenarios that are
likely to be encountered in an inference setting in order
to train models that are capable of generalising well.

Table 13 shows the performance of SmaAt-UNet on
the Southern California and New Zealand catalogues.
Although the results are not directly comparable as dif-
ferent test sets have been used in each case, they offer
valuable insights regarding the behaviour of ML forecast-
ing models. We observe that the model that is trained
on the Southern California catalogue is able to generate
forecasts that are spatially consistent with the observa-
tions both in the sequential and the random data splitting
scenario. When a random splitting strategy is used, the
model is able to reproduce the number of events much
better than when a sequential splitting strategy is used,
as evidenced by the MAE and RMSE values as well as
by the percentages of rejected §; and §; values. On the
other hand, the model that is trained on the New Zealand
catalogue is only able to produce forecasts that are con-
sistent with the observations in terms of spatial distribu-
tion and number of events when a random data splitting
strategy is used. This can be attributed to the fact that

Table 11 Training and fine-tuning CNNs and transformers using a random data split: Classification and regression evaluation metrics
(standard catalogue data test set). For regression metrics (MAE and RMSE), the mean and the standard deviation of the errors are

reported. BGSOUKRI 2025

Evaluation metric SmaAt-UNet SmaAt-UNet+ Earthformer Earthformer+ Persistence Persistence
(day before) (7-day avg.)

Accuracy 0997 0.995 0.996 0.996 0974 0.976

Precision 1 0.953 0.785 0.931 0.844 0522 0373

Recall ¢ 0817 0.867 0.807 0.836 0.623 0.742

F1 score 0.880 0.824 0.864 0.840 0.568 0.496

csip 0.786 0.701 0.761 0.725 0.397 0.330

FAR | 0.047 0.215 0.069 0.156 0478 0627

ROC AUC ¢ 0.908 0.932 0.903 0917 0.804 0.670

PRC AUC 4 0.886 0.827 0.870 0.841 0.578 0.534

MAE (r, 0) | 0.064,0.139 0.302,0.795 0.066,0.182 0.467, 1.400 0.229,0.543 0.256,0.594

RMSE (, o) | 0.596,1.432 2.516,7.725 0.561,1.614 4.617,15.784 1.670,4.811 1.832,5.046
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Table 12 Training and fine-tuning CNNs and transformers using a random data split: Percentage of underpredictions (rejected §;
values) and overpredictions (rejected §; values) (bulk catalogue data test set). BGSOUKRI 2025

SmaAt-UNet SmaAt-UNet+ Earthformer Earthformer+
All Rejected &, 29.02% 14.31% 24.85% 11.96%
Rejected é; 3.43% 32.06% 441% 33.19%
Southern California Rejected &, 47.83% 2391% 51.09% 17.39%
Rejected &3 8.70% 53.26% 5.43% 55.43%
Northern California Rejected &, 32.03% 17.75% 2641% 12.55%
Rejected &3 5.63% 3247% 9.96% 34.63%
New Zealand Rejected &, 29.83% 11.53% 23.50% 9.94%
Rejected &3 249% 40.68% 2.71% 42.03%
[taly Rejected 6, 25.40% 23.81% 22.22% 17.46%
Rejected 83 6.35% 12.70% 4.76% 15.87%
Greece Rejected &, 19.28% 12.80% 16.55% 10.58%
Rejected é8; 2.05% 13.99% 341% 15.53%
Japan Rejected &, 44.26% 20.22% 43.72% 20.77%
Rejected 683 6.01% 43.72% 8.20% 39.89%

Table 13 Investigating the impact of individual catalogues and different data splitting strategies: Evaluation of SmaAt-UNet
performance when trained and tested on the Southern California (SC) and New Zealand (NZ) catalogues separately. The use of a
sequential and a random data splitting strategy is explored. BGSOUKRI 2025

Evaluation metric SmaAt-UNet SmaAt-UNet SmaAt-UNet SmaAt-UNet
SC sequential SC random NZ sequential NZ random

Accuracy 1 0.991 0.997 0.992 0.997

Precision 1 0.858 0.962 0.873 0.978

Recall 0.820 0.891 0401 0.923

F1 score 0.838 0.925 0.549 0.949

CsIt 0.722 0.860 0.379 0.904

FAR | 0.142 0.038 0.127 0.022

ROCAUCH 0.908 0.945 0.700 0.961

PRC AUCH 0.841 0.927 0.641 0.951

MAE (i, 0) | 1.160, 1.406 0.152,0.244 0.146,0.232 0.049, 0.085

RMSE (n, 0) | 11.626, 14438 1.574,2.882 1.062, 1.694 0.407,0.743

Rejected 81 52.31% 37.40% 40.83% 15.82%

Rejected 83 20.77% 13.82% 2.14% 3.39%

the Southern California catalogue covers a considerably
smaller area compared to the New Zealand catalogue
and is able to better capture the tectonic landscape of the
region. This means that the distribution of older data is
consistent with the distribution of newer data, making it
possible to train a ML model that behaves adequately in a
pseudo-prospective scenario. However, the model that is
trained on the New Zealand catalogue behaves better in
terms of number of forecast events, which is likely due to
the fact that the training dataset built from the New Zea-
land catalogue is considerably larger in size and hence
enables the model to learn not just the spatial distribution

of events, but also how earthquake sequences behave in
terms of daily rate. Overall, this experiment leads to the
conclusion that the use of different datasets leads to dif-
ferent levels of predictability.

5.7 Exploring how the use of different types of input maps
influences performance

Table 14 shows that use of maximum magnitude and

average depth maps in addition to rate maps in the model

inputs improves the overall forecasting performance in

terms of error metrics and spatial distribution of events.

This could be an indication that ML models are able to
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Table 14 Exploring how the use of different types of input maps
influences performance: Evaluation of SmaAt-UNet performance
when trained and tested on the bulk catalogue dataset using
rate, rate+magnitude and rate+magnitude+depth maps.
BGSOUKRI 2025

Evaluation SmaAt-UNet SmaAt-UNet SmaAt-UNet
metric (rate) (rate+mag) (rate+mag-+depth)
Accuracy 0.996 0.997 0.997
Precision 1 0.927 0.946 0.956

Recall 0.787 0.819 0.840

F1 score 0.851 0.878 0.894

CsIt 0.740 0.782 0.808

FAR 0.073 0.054 0.044

ROC AUC# 0.893 0.909 0.920
PRCAUCH 0.858 0.884 0.899

MAE (i, 0) | 0.084,0.219 0.070,0.159  0.063,0.137
RMSE (u, o) | 0.277,0.711 0.235,0537  0.214,0474
Rejected &1 22.06% 24.92% 23.67%
Rejected 83 7.26% 5.48% 4.67%

reproduce empirical laws of earthquake sequences. For
example, the fact that the introduction of magnitude
information improves performance could imply that
ML models learn about magnitude-related productiv-
ity and hence forecast more events for larger-magnitude
mainshocks than for mainshocks of smaller magnitudes.
This is a known property of earthquake sequences that is
accurately captured by ETAS models as well.

6 Conclusions

This study introduced a data-driven ML-based short-
term spatiotemporal seismicity rate forecasting
approach based on earthquake catalogues from differ-
ent earthquake-prone regions. Our findings show that
both tested deep learning models, the SmaAt-UNet
and the Earthformer, perform similarly. On the one
hand, a more balanced performance is observed when
employing the Earthformer architecture; however,
on the other hand, SmaAt-UNet needs considerably
less training time as it is a smaller model with fewer
parameters, which is an important advantage for opera-
tional applications. Overall, both models demonstrate
potential as their performance is superior to that of
the persistence model, a commonly used baseline that
assumes no change between consecutive time steps.
The ML models achieve similar performance to that of
an ETAS benchmark on the Southern California and
Italy test sets and are able to generate forecasts at sig-
nificantly reduced processing times compared to ETAS.
Once trained, ML models can instantly generate fore-
casts, whereas ETAS requires significant computational
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power to perform the large number of simulations that
make up each forecast.

Our qualitative and quantitative analysis of the gener-
ated forecasts shows that the spatial distribution of fore-
cast events is consistent with that of observed events, as
ML models generally forecast more events in locations
close to the mainshock and fewer events further away.
We also observe that the use of maximum magnitude
maps as additional inputs to the models enhances perfor-
mance, which is indicative of the fact that the ML mod-
els learn about magnitude-related productivity. These
are both known properties of earthquake sequences that
are efficiently captured by disciplinary state-of-the-art
approaches, such as the ETAS model.

The introduction of earthquake sequences built from
high-resolution catalogues to the training process has
had a considerable impact on the results, leading to the
conclusion that different datasets exhibit a different level
of predictability. This could be due to differences in data
quality, which often influences ML performance, espe-
cially in cases where the training dataset is fairly limited
in size. We also notice that training ML models on cata-
logues from different geographic regions leads to consid-
erable differences in the results, which could be either
due to varying data quality or be an indication of inher-
ent differences in the tectonic landscapes of different
geographic regions.

This study shows that the use of ML models for the
development of data-driven short-term seismicity
forecasting approaches shows some promise, as their
pattern recognition ability can be used to uncover
relationships hidden within the wealth of information
in earthquake catalogues. However, in order for ML
models to be efficient and achieve generalisation, they
need to be provided with a diverse and adequately sized
high-quality training set. Standard catalogues, which
are available for longer terms, have relatively large mag-
nitudes of completeness and are thus missing informa-
tion that would be valuable for training ML models.
The wealth of information that is present in high-
resolution catalogues could potentially prove useful
for building better ML forecasting models. However,
their limited availability currently prevents training
ML models exclusively on high-resolution catalogues.
To quantify the impact of such datasets on forecast-
ing performance, we need access to long-duration and
high-accuracy ML catalogues. This will potentially
enable the development of forecasting models that are
capable of understanding triggering patterns of spon-
taneous events linked to cascading sequences (Ells-
worth and Bulut 2018). The advantages for operational
environments are important: the real- or near real-
time development of ML catalogues, coupled with
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computationally economical ML forecast models (such
as SmaAt-UNet), will lead to improved understanding
and tracking of the evolution of seismic crises.
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(https://doi.org/10.13127/ISIDE), Greece (https://www.gein.noa.gr/en/servi
ces-products/earthquake-catalogs/), Japan (https://www.hinet.bosai.go.jp/
topics/JUICE/), Southern California QTM (https://scedc.caltech.edu/data/qtm-
catalog.html), Italy ML (http://dx.doi.org/10.5281/zenod0.4662869). The imple-
mentation of the deep learning models, the training and test processes and
the evaluation workflows rely on the use of open-source software. The basic
components that were used are the Python programming language (van
Rossum and Drake 2011), the PyTorch deep learning framework (Paszke et al
2019), the NumPy (Harris et al 2020), scikit-learn (Pedregosa et al 2011), Mat-
plotlib (Hunter 2007) and seaborn (Waskom 2021) libraries and the pyCSEP
toolkit (Savran et al 2022b). Code from the following GitHub repositories has
been used: https://github.com/HansBambel/SmaAt-UNet, https://github.
com/amazon-science/earth-forecasting-transformer, https://github.com/Imizr
ahi/etas and https://github.com/SCECcode/pycsep.
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