
Dervisi et al. Earth, Planets and Space          (2025) 77:185  
https://doi.org/10.1186/s40623-025-02241-6

FULL PAPER Open Access

© United Kingdom Research and Innovation as represented by the British Geological Survey and Piero Poli, Ian Main, Andrew Curtis  
2025. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​
mmons.​org/​licen​ses/​by/4.​0/.

Earth, Planets and Space

Towards a deep learning approach 
for short‑term data‑driven spatiotemporal 
seismicity rate forecasting
Foteini Dervisi1,2*   , Margarita Segou1   , Piero Poli3   , Brian Baptie1   , Ian Main2    and Andrew Curtis2    

Abstract 

Recent advances in earthquake monitoring have led to the development of methods for the automatic generation 
of high-resolution catalogues. These catalogues are created at considerably reduced processing times and contain 
significantly larger volumes of data concerning seismic activity compared to standard catalogues created by human 
analysts. Disciplinary statistics and physics-based earthquake forecasting models have shown improved perfor-
mance when rich catalogues are used. The use of high-resolution catalogues paired with machine learning algo-
rithms, which have recently evolved due to the rise in the availability of data and computational power, is therefore 
a promising approach to uncovering underlying patterns and hidden laws within earthquake sequences. This study 
focuses on the development of short-term data-driven spatiotemporal seismicity forecasting models with the help 
of deep learning and tests the hypothesis that deep neural networks can uncover complex patterns within earth-
quake catalogues. The performance of the forecasting models is assessed using metrics from the data science 
and earthquake forecasting communities. The results show that deep learning algorithms are a promising solution 
for generating short-term seismicity forecasts, provided that they are trained on a representative dataset that accu-
rately captures the properties of earthquake sequences. Comparisons of machine learning-based forecasting models 
with an epidemic-type aftershock sequence benchmark show that both types of models outperform the persistence 
null hypothesis commonly used as a benchmark in forecasting the behaviour of other types of non-linear systems. 
Machine learning forecasting models achieve similar performance to that of an epidemic-type aftershock sequence 
benchmark on the Southern California and Italy test datasets at significantly reduced processing times - a major 
advantage in applications to short-term operational earthquake forecasting.
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Graphical Abstract

1  Introduction
The rising volumes of available data and computational 
power have recently led to the rapid development of 
the field of machine learning (ML) and the use of its 
power to address computational challenges in various 
scientific fields including seismology, where ML mod-
els are used to tackle different tasks, from Earth model 
inversions to seismic phase picking and event discrimi-
nation  (Mousavi and Beroza 2022, 2023). The use of 
ML tools is also a promising development in the field 
of earthquake forecasting. Within this scope, Beroza 
et  al (2021) described how multi-object deep learning 
catalogues will revolutionise earthquake forecasts and 
triggering studies. Segou (2020) posed the question of 
whether standard forecasts using catalogues generated 
with the help of ML or data-driven ML-based forecast 
models will present higher predictability. Mancini et al 
(2022) explored the predictability of physics-based and 
statistical models using standard and ML catalogues 
to find that forecasting models benefit from the use of 
high-resolution catalogues when advanced experimen-
tal setups, such as fine spatial grids, are adopted. In this 
paper, we investigate whether data-driven models using 
standard and high-resolution catalogues can robustly 
forecast short-term seismicity. The rapid evolution of 

artificial intelligence has revolutionized data assimila-
tion to the point that ML-based catalogues include a 
factor of ten more events compared to standard cata-
logues produced by human analysts (e.g. Tan et  al 
(2021)). The community is now starting to explore 
how data-driven ML models can contribute towards 
improving predictability and, perhaps, discovering cur-
rently unknown physical laws that govern earthquake 
occurrence (Mizrahi et al 2024).

Zlydenko et  al (2023) introduced FERN, a neural 
encoder-decoder model for spatiotemporal earthquake 
rate forecasting using a point-process framework based 
on a multilayer perceptron, a simple neural network that 
consists of multiple layers of neurons, with each neu-
ron using a non-linear activation function. FERN learns 
spatial and temporal embeddings that are able to cap-
ture complex correlations, thus succeeding in producing 
accurate spatiotemporal rate forecasts based on stand-
ard ML evaluation metrics (log-likelihood score, area 
under Receiver Operating Characteristic curve) as well 
as metrics that are specific to earthquake forecast evalu-
ation (Average Information Gain Per Earthquake (IGPE), 
S-test). FERN is applied to the region of Japan, using 
data from the JMA catalogue  (Japan Meteorological 
Agency 2024). Stockman et al (2023) developed a highly 
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flexible neural point process for short-term seismicity 
forecasting, which proved to be fast to train and robust 
to missing data. This is an important asset as earthquake 
catalogues are incomplete due to the fact that when large 
events occur, seismic stations receive waveforms that 
correspond to many events simultaneously. Many of 
these events are relatively small magnitude aftershocks 
whose waveforms overlap with the waveforms of larger 
events and are therefore not detected. This phenom-
enon is known as short-term aftershock incompleteness 
(STAI). Stockman et  al (2023) tested their approach on 
the 2016–2017 Central Apennines high-resolution cata-
logue by Tan et  al (2021) using the log-likelihood score 
and the Cumulative Information Gain (CIG) as evalu-
ation metrics, leading to the conclusion that the model 
is able to make use of the wealth of information present 
in high-resolution catalogues due to its ability to han-
dle incomplete data , i.e. to constrain the likelihood of 
future triggered events based on the information pro-
vided in incomplete catalogues. This is a major advance 
over physical and statistical models, which generally 
require complete data above a given magnitude thresh-
old. Dascher-Cousineau et al (2023) introduced RECAST, 
a flexible recurrent neural network-based point pro-
cess model, which was tested on Southern California 
earthquake catalogues using the log-likelihood score 
and proved to be efficient on large datasets, showing 
improved performance when provided with more train-
ing data. All of these approaches are based on point 
processes, which are the basis of statistical forecasting 
models. A different approach is to represent the seismic-
ity recorded in earthquake catalogues using spatiotempo-
ral series of seismic maps. Within this scope, Zhang and 
Wang (2023) used a convolutional long short-term mem-
ory (ConvLSTM) neural network to learn temporal and 
spatial correlations of global-scale seismicity data. They 
evaluated model performance using the precision, recall, 
accuracy, Critical Success Index (CSI), False Alarm Ratio 
(FAR) and R-score metrics. Their model achieves good 
performance at forecasting earthquakes with moment 
magnitude above 4, but struggles to forecast larger events 
(with magnitudes greater than 6) due to the fact that the 
amount of larger magnitude data available for training 
is very limited, therefore the magnitude distribution of 
examples is highly skewed (class imbalance).

In this study, we develop ML -based seismicity forecast-
ing models based on architectures that have been shown 
to successfully address spatiotemporal time series  (Yu 
et al 2024). We focus on building models that are able to 
produce spatiotemporal next-day forecasts of aftershocks 
following events of magnitude 4 and above. We address 
the challenging question of whether a larger magnitude 
earthquake is likely to follow a moderate-sized event, 

which is something that current statistics and physics-
based forecasting methods struggle with. We explore 
whether recent advances in the fields of seismology and 
artificial intelligence, including high-resolution cata-
logues and machine learning techniques, can effectively 
model seismicity rates following an event of magnitude 
4 and above based on recent preceding seismicity. This 
forms the basis of our testing strategy in this work. We 
focus on building ML forecasting models that are trained 
on a bulk seismic catalogue dataset that consists of cata-
logues from different tectonic regions, aiming to cre-
ate models that are able to generalise well in a variety of 
different scenarios. We follow different paths to training 
those models in order to understand how existing seis-
mic catalogues, standard and high-resolution, could play 
a critical role in predictability and influence the models’ 
generalisability. Considering that earthquake forecasting 
research now involves both data scientists and seismolo-
gists, we evaluate the models using performance metrics 
from both communities. We find that ML models are a 
promising solution for producing short-term seismicity 

Fig. 1  Frequency-magnitude distributions of the catalogues used 
in this study

Table 1  Temporal extent and magnitude of completeness ( Mc ) 
of earthquake catalogues. The Mc was estimated based on the 
method described in Mizrahi et al (2021a)

Catalogue Dates # days Mc

Southern California 01/01/1980-30/09/2023 15979 3.8

Northern California 01/01/1980-30/09/2023 15979 3.3

New Zealand 01/01/1980-30/09/2023 15979 4.0

Italy 02/01/1985-30/09/2023 14151 3.1

Greece 01/01/1980-30/09/2023 15979 4.0

Japan 01/10/2000-31/12/2012 4475 2.5

Southern California (QTM) 01/01/2008-31/12/2017 3653 2.4

Italy (ML) 15/08/2016-15/08/2017 366 2.8
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forecasts given that they are exposed to a large enough 
high-quality dataset during training.

2 � Data
We assemble a dataset containing publicly available 
earthquake catalogues from diverse tectonic regions: 
Southern California  (SCEDC 2013), Northern Califor-
nia  (NCEDC 2014), New Zealand  (GNS Science 1970), 
Italy  (ISIDe Working Group 2007), Greece  (NOAIG-
CATALOGUE 2024) and Japan  (Yano et  al 2017). The 
frequency-magnitude distributions of the catalogues can 
be seen in Fig. 1. Using the method described in Mizrahi 

et al (2021a) , we estimate the magnitude of completeness 
( Mc ) of the catalogues, which can be seen in Table 1. As 
our target is to forecast what happens immediately fol-
lowing events of magnitude 4 and above, we only take 
into account events with a minimum magnitude ( Mmin ) 
of two orders below that, i.e. events of magnitude 2 and 
above. Although this allows us to take into account all 
events that are felt by humans and have the potential to 
cause damage, it also means that our models inevitably 
learn the incompleteness of the catalogues. This is not a 
problem in our case, as ML models have been shown to 
perform well in incomplete data settings (Stockman et al 

Table 2  Number of events in earthquake catalogues

Catalogue # earthquakes # M2+ earthquakes
(depth ≤ 40 km)

# M4+ earthquakes
(depth ≤ 40 km)

Southern California 820787 137975 1300

Northern California 1094185 143327 2338

New Zealand 559221 272183 8892

Italy 446702 104100 866

Greece 359031 202056 5574

Japan 1091640 108030 1921

Southern California (QTM) 1811362 28187 303

Italy (ML) 900058 10128 65

Fig. 2  Spatiotemporal rate, maximum magnitude and average depth sequences used to produce next-day rate forecasts. We identify events 
with magnitude 4 and above, create a square spatial grid around them and produce deep learning-based next-day rate forecasts using the rate, 
maximum magnitude and average depth maps of the previous 7 days as input. The neural network visualisation was created using http://​alexl​enail.​
me/​NN-​SVG/. BGS©UKRI 2025

http://alexlenail.me/NN-SVG/
http://alexlenail.me/NN-SVG/
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2023). For example, a cluster of small earthquakes, even 
of magnitude below the completeness threshold, could 
indicate a raised probability of a larger event at that loca-
tion. We consider shallow crustal events with depths up 
to 40km , as these tend to be the most destructive events. 
Further details about the catalogues can be seen in 
Tables 1 and 2. We use 80% of the data for training, 10% 
for validation and 10% for testing and follow a temporal 
data splitting strategy, with older data used for training 
and newer data used for testing. We perform an itera-
tive training procedure in order to select an appropriate 
set of hyperparameters, which are various configuration 
variables that are manually set and used to manage ML 
model training. Once the hyperparameter tuning process 
is complete, we retrain the ML models on the training 
and validation data and evaluate using the independent 
test set, which has been kept out of the whole process up 
to that point.

Motivated by the fact that the training process of deep 
learning models requires the use of large volumes of data, 
we also employ high-resolution catalogues to further 
train the models and improve their performance. For this 
purpose, we use the Southern California quake template 
matching (QTM) catalogue (Ross et al 2019), a long-term 
catalogue containing events that occurred in the 10 years 
between 2008 and 2017, and the short-term -based cat-
alogue introduced by Tan et  al (2021), a localised high-
resolution catalogue covering the year-long 2016–2017 
Central Italy earthquake sequence. The Southern Cali-
fornia QTM catalogue reduces the minimum magnitude 
of completeness by more than a full magnitude unit over 
the 10-year period covered, whereas the Italy ML cata-
logue also contains considerably more events compared 
to the standard Italy catalogue for the same year.

3 � Methods
3.1 � Goal
The aim of this study is to model next-day seismicity 
following events with a magnitude of 4 and above. The 
spatial area that we consider is a square centred at the 
M4+ event, with sides equal to 2 longitude and latitude 
degrees. This is essentially an aftershock forecasting sce-
nario and is highly relevant to local communities. Such 
information can aid authorities in decision-making and 
resource allocation during the earthquake response and 
recovery process, contribute to infrastructure risk assess-
ment and guide the general public towards safety meas-
ures (Hardebeck et al 2024).

3.2 � Features
We create daily maps of key metrics by splitting the spa-
tial area covered by the catalogues into bins of 0.1 degrees 

of longitude and latitude. Three types of two-dimensional 
daily maps are used, containing: (i) the number of events 
(rate per unit time) in each grid cell, (ii) the maximum 
magnitude of events in each grid cell and iii) the average 
depth of events in each grid cell. We identify events with 
magnitude ≥ 4 and aim to forecast the next day’s seis-
micity (rate) in the spatial area where those events have 
occurred. For each one of the M4+ earthquakes, we use 
the M2+ events in the catalogues to create 7-day rate, 
magnitude and depth spatiotemporal training sequences. 
These training sequences cover the seven non-overlap-
ping 24-hour time intervals that end with and include 
the M4+ event that triggered their creation, whereas the 
target map covers the 24-hour period that starts directly 
after the M4+ event. We pass these 7-day sequences 
through a deep learning model and produce localised 
next-day spatiotemporal rate forecasts with a grid resolu-
tion of 0.1 longitude and latitude degrees. The developed 
forecasting models are testable following the guidelines 
and principles of Jordan et al (2011) for earthquake fore-
casting research. The whole workflow is shown in Fig. 2.

3.3 � Models
3.3.1 � Small attention UNet (SmaAt‑UNet)
The first deep learning model used is a convolutional neu-
ral network (CNN) called UNet (Ronneberger et al 2015). 
UNets were first designed for biomedical image segmen-
tation but have been shown to perform well in various 
tasks involving two-dimensional data, which makes them 
an appropriate choice for our task. They consist of two 
parts: the encoder and the decoder. The encoder consists 
of a series of convolutional operations followed by recti-
fied linear unit (ReLU) activations and maximum pooling 
(MaxPool) operations used for downsampling. At each 
downsampling step, the number of feature channels is 
doubled. The decoder consists of consecutive upsampling 
steps, each of which halves the number of feature chan-
nels, and a series of convolutional operations followed 
by ReLU activations. UNets also include skip connec-
tions, which are shortcuts used to connect the output of 
each encoder layer to the corresponding decoder layer in 
order to minimise the loss of spatial information due to 
downsampling.

The small attention UNet used in this study was 
first introduced by Trebing et  al (2021) for the task of 
precipitation nowcasting, yielding promising results 
despite its compact size. This neural network is a UNet 
that includes convolutional block attention modules 
(CBAM)  (Woo et  al 2018), which are mechanisms that 
apply attention to the channels and spatial dimensions 
of two-dimensional data. It also uses depthwise-sep-
arable convolutions (DSC)  (Chollet 2017) instead of 
regular convolutions in order to reduce the number of 
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parameters without compromising on the network’s per-
formance. The SmaAt-UNet is therefore a high-perform-
ing convolutional neural network that can be trained in 
a relatively short amount of time, which is important for 
operational forecasting models.

3.3.2 � Earthformer
This is an example of a sequence-to-sequence model (Sut-
skever et  al 2014), a neural network that can be used 
to convert an input sequence into a target sequence. 
Sequence-to-sequence models have been introduced 
to tackle problems with a sequential nature, such as 
machine translation or time series forecasting, and are 
therefore a reasonable framework choice for our prob-
lem. Like UNets, these networks consist of two parts: the 
encoder and the decoder. The encoder is responsible for 
creating a representation to encode information about 
the source sequence, producing a final hidden state. The 
decoder then receives the encoder’s final hidden state as 
input and uses it to generate the target sequence. These 
models were initially implemented with the use of recur-
rent neural networks (RNNs), but the emergence of the 
mechanism of attention and the transformer neural net-
work architecture largely changed sequence-to-sequence 
model design.

The attention mechanism  (Bahdanau et  al 2014) was 
introduced to address a bottleneck in sequence-to-
sequence encoder-decoder models. Up until that point, 
the whole input sequence was represented by a single 
hidden state, the encoder’s final hidden state. This meant 
that the decoder often wasn’t provided with sufficient 
information to generate the target sequence. The intro-
duction of attention allows the decoder to select mul-
tiple hidden states of the encoder instead of only using 

the final hidden state. In other words, attention enables 
the decoder to pay attention to the most important ele-
ments of the input sequence. This is achieved by calcu-
lating the attention scores, which are based on matching 
each encoder’s hidden state to every hidden state of the 
decoder. Each score is proportional to the relevance of 
each encoder’s hidden state to the decoder, with higher 
scores indicating higher relevance. These scores add up 
to one, and can therefore be used to calculate a weighted 
average of the encoder’s hidden states, which can be used 
as the decoder’s input.

Transformers  (Vaswani et  al 2017) are sequence-
to-sequence models that offer an alternative to CNNs 
and RNNs. They use an encoder neural network that is 
responsible for creating intermediate representations of 
input sequences and a decoder neural network that pre-
dicts output sequences based on the source sequences 
and the intermediate steps generated by the encoder. 
Transformers use the mechanism of self-attention to 
decide which parts of the input sequence are more rel-
evant for generating the output sequence by projecting 
the inputs to three weight matrices, which are initialised 
randomly and optimised during the training process. 
Multiple parallel self-attention mechanisms called heads 
are often used to help with capturing different aspects 
of the inputs. Models that are based on this idea are 
becoming increasingly popular for tasks in the fields of 
natural language processing, computer vision and time 
series forecasting, as they can easily be parallelised and 
require considerably less computational power compared 
to CNNs and RNNs of similar size  (Kamath et al 2022). 
The downside is that transformer-based models often 
need larger datasets to be effectively trained, as they do 
not have an inductive bias and thus tend to overfit small 
datasets more easily than CNNs and RNNs (Dosovitskiy 
2020).

Earthformer (Gao et al 2022), the second deep learning 
model used in this study, is a space-time transformer for 
Earth system forecasting. In this case, the input data have 
both a spatial and a temporal dimension and can there-
fore be seen as cubes. These cubes are split into non-
overlapping cuboids. The cuboid attention mechanism, 
an extension of the attention mechanism to spatiotem-
poral data, is then employed. Self-attention is applied to 
each cuboid, a calculation that can be done in parallel to 
speed up the process. A set of global vectors is also used, 
which attends to all cuboids and can therefore transmit 
information about the overall state of the cube to them. 
The Earthformer is an excellent architecture choice in 
our case, as it is a space-time transformer model specifi-
cally designed to handle spatiotemporal sequences with 
a particular focus on applications involving Earth system 
data.

Table 3  Hyperparameters used for training the SmaAt-UNet and 
Earthformer neural networks. BGS©UKRI 2025

Hyperparameter SmaAt-UNet Earthformer

optimizer Adam Adam

Adam β1 0.9 0.9

Adam β2 0.99 0.99

starting learning rate 0.001 0.00001

learning rate scheduler PyTorch StepLR PyTorch StepLR

StepLR step size 30 30

StepLR gamma 0.1 0.1

early stopping Yes Yes

early stopping patience 20 epochs 20 epochs

maximum number of epochs 500 500

batch size 64 8

input map concatenation True False

logarithmic rate maps True True
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3.4 � Training
We use an adaptive moment estimation (Adam) opti-
mizer  (Kingma and Ba 2014) with initial decay rates 
β1 = 0.9 and β2 = 0.99 and a step learning rate scheduler 
that reduces the learning rate by a factor of 10 every 30 
iterations (epochs). We also use an early stopping mecha-
nism, which monitors the validation loss, i.e. the misfit 
between the ground truth and the forecasts in the valida-
tion set, and stops training in case there is no improve-
ment for a period of 20 epochs. The maximum number 
of epochs a model can be trained for is set to 500. In the 
case of the SmaAt-UNet model, we merge the weekly 
rate, magnitude and depth sequences into 3 single maps 
by calculating the pixel-wise sum of the 7 rate maps, 
the pixel-wise maximum of the 7 magnitude maps and 
the pixel-wise average of the 7 depth maps. In the case 
of the Earthformer model, each of the 7 rate, magnitude 
and depth maps in the sequence is used separately in the 
input data cube. In order to reduce the range of the rate 
data and ensure greater stability in the input time series, 
we use logarithmic rate maps, which leads to improved 
learning performance. The hyperparameters used were 
selected through a trial-and-error process and are sum-
marised in Table  3. We use the mean squared error 
(MSE) between the ground truth, i.e. the true next-day 
rate maps, and the model output rate maps (or forecasts) 
as a loss function, which is given by

where n is the number of cells in target rate maps, yi is 
the ith cell of the ground truth rate map and ŷi is the ith 
cell of the output or forecast rate map.

3.5 � Evaluation
The model performance is evaluated by calculating a col-
lection of metrics from the data science  (Hewamalage 
et  al 2023; Rainio et  al 2024) and earthquake forecast-
ing (Zechar et al 2010a; Schorlemmer et al 2018; Savran 
et al 2022a) communities.

3.5.1 � Regression metrics
The problem that our models are addressing is a regres-
sion problem, as the output is a two-dimensional map 
of continuous values. We therefore calculate the mean 
absolute error (MAE) and the root mean squared error 
(RMSE), which show the difference between the forecast 
number of events and the observed number of events per 
spatial bin. The mean absolute error is given by

(1)MSE =
1

n

n
∑

i=1

(yi − ŷi)
2

and the root mean squared error is given by

with n representing the number of cells in target rate 
maps, yi the ith cell of the ground truth rate map and ŷi 
the ith cell of the output or forecast rate map.

3.5.2 � Classification metrics
In addition, we calculate a collection of metrics that are 
used in classification tasks. To do this, we convert the 
forecast and ground truth maps to binary maps, with 0 
representing grid cells where no events have occurred 
and 1 representing grid cells where at least one event 
has occurred. As the rate values in the forecast maps are 
continuous, we use a threshold of 0.5 events per day to 
distinguish grid cells that belong to the 0 and 1 classes. 
In our case, these metrics essentially show whether the 
models are able to forecast events in the correct spatial 
bins. We calculate the number of true positives (TP), 
false positives (FP), true negatives (TN) and false nega-
tives (FN) in rate maps that belong to the test set . We 
then calculate the accuracy, which measures how many 
observations were correctly classified and is given by

the precision, which measures the proportion of pre-
dicted positives that were actual positives and is given by

the recall, which measures the proportion of actual posi-
tives that were classified correctly and is given by

the F1 score, which is the harmonic mean of precision 
and recall given by

the critical success index (CSI), which is often used in 
binary forecasting and measures how well the predicted 
positives correspond to the actual positives  (Ebert and 
Milne 2022), given by

(2)MAE =
1

n

n
∑

i=1

|yi − ŷi|,

(3)RMSE =

√

√

√

√

1

n

n
∑

i=1

(yi − ŷi)2

(4)Accuracy =
TP + TN

TP + FP + TN + FN
,

(5)Precision =
TP

TP + FP
,

(6)Recall =
TP

TP + FN
,

(7)F1 = 2
Precision · Recall

Precision+ Recall
=

2TP

2TP + FP + FN
,
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and the false alarm ratio (FAR), also frequently used in 
binary forecasting and showing the number of false 
alarms per the total number of alarms, given by

Furthermore, we use the receiver operating characteristic 
(ROC) curve, which shows the trade-off between the true 
positive rate ( TPR = TP

TP+FN  ) and the false positive rate 
( FPR = FP

FP+TN  ) for different cutoff thresholds. We calcu-
late the area under the ROC curve (ROC AUC), which is 
a measure of the model’s performance across all possible 
classification thresholds. We also calculate the area under 
the Precision-Recall curve (PRC AUC), which measures 
performance based on the combination of precision and 
recall scores for different classification thresholds.

As earthquakes show clustering in time and space, 
we observe a class imbalance issue (Guo et al 2008): the 
number of true negatives is much larger compared to the 
number of true positives , meaning that almost all target 
cells ( 97% ) do not contain earthquakes. This indicates 
that the accuracy metric is not very informative on the 
likelihood of true positives alone. The large number of 
true negatives significantly influences the score, resulting 
in high accuracy values regardless of the model’s ability 
to identify positive class events. For this reason, we also 
calculate the CSI, which gives a similar indication of the 
model’s performance without taking into account the 
true negatives. The ROC curve is also greatly influenced 
by the large number of true negatives, therefore the Pre-
cision-Recall curve, which looks at the percentage of true 
positives in comparison to the percentage of predicted 

(8)CSI =
TP

TP + FP + FN

(9)FAR =
FP

TP + FP
.

positives, is a more informative measure of model perfor-
mance in this regard (Saito and Rehmsmeier 2015).

3.5.3 � CSEP metrics
The Collaboratory for the Study of Earthquake Predict-
ability (CSEP) is an international community aiming to 
support earthquake predictability research by defining 
the objectives of earthquake forecasting experiments 
and developing metrics that are suitable for their evalu-
ation (Zechar et al 2010b). Our forecasts are grid-based, 
therefore the testing region R consists of the combination 
of magnitude bins M and spatial bins S:

In this study we don’t include information about the 
magnitude in the model output, therefore we can assume 
that there is only one magnitude bin covering the whole 
magnitude range. The earthquake forecast can be seen as 
the expected number of events in each magnitude-space 
bin:

where �(i, j) is the forecast number of earthquakes in a 
specific magnitude-space bin (i, j). Similarly, the observed 
data can be written as

where ω(i, j) is the observed number of earthquakes in a 
specific magnitude-space bin (i, j).

We employ the number test (N-test), which can be used 
to draw conclusions as to whether the number of forecast 
earthquakes is consistent with the number of observed 
earthquakes. The total number of forecast events can be 
written as the sum of �(i, j) over all spatial bins:

(10)R = M × S.

(11)� = {�(i, j)|i ∈ M, j ∈ S} = {�(j)|j ∈ S},

(12)� = {ω(i, j)|i ∈ M, j ∈ S} = {ω(j)|j ∈ S},

Table 4  Training and fine-tuning CNNs and transformers: Model parameters, training time on a single NVIDIA Quadro RTX 4000 GPU, 
number of epochs and learning rate at the start of the training process. In the case of SmaAt-UNet+ and Earthformer+, the times and 
epochs reported are the additional ones after training on the standard catalogues. BGS©UKRI 2025

*In the case of ETAS, the time and number of epochs needed to estimate the initial global parameters are reported. However, we note that for each forecast, additional 
computational time is required for parameter calibration and simulations. The additional time ranges from a few minutes to several hours or even days in cases of high 
seismicity. On the other hand, the trained ML models and the persistence baseline are able to generate forecasts within seconds

Model # parameters Training time (min) # epochs Learning rate

SmaAt-UNet 4032205 27.82 28 0.001

SmaAt-UNet+ 4032205 2.50 103 0.00001

Earthformer 106573193 776.86 41 0.00001

Earthformer+ 106573193 38.20 171 0.00001

Persistence (day before) 0 0 0 -

Persistence (7-day avg.) 0 0 0 -

ETAS* 10 172.00 22 -
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Similarly, the number of observed events can be written 
as the sum of ω(i, j) over all bins:

We aim to understand if the number of observed earth-
quakes is consistent with the number of forecast earth-
quakes. In other words, assuming that the forecast rate 
distribution is correct, we need to determine where the 
number of observed events falls within this distribution. 
Initially, this was approached by generating a set of simu-
lated rates and calculating the probabilities of observing 
at most and at least Nobs events (Kagan and Jackson 1995; 
Schorlemmer et al 2007). However, if an analytical form 
of forecast uncertainty is available, the corresponding 
cumulative distribution can be used instead. The N-test 
metrics, which are the probabilities of observing at least 
and at most Nobs earthquakes given that Nfore earth-
quakes are expected, can then be written as

and

where F(x|µ) is a Poisson cumulative distribution with 
F(x|µ) = 0 for x < 0 . This is a one-sided test, in which 
case the alternative hypothesis (the hypothesis we want 
to prove) states that the parameter value is either bigger 
or smaller compared to the parameter value specified in 
the null hypothesis (the hypothesis we want to disprove). 
To decide whether a forecast is considered consistent 
with the observation, we need to specify a significance 
level α . This indicates the risk of making a Type I error, 
i.e. the risk of rejecting the null hypothesis when it is 
in fact true. For an intended significance level α , i.e. for 
maintaining a Type I error rate of α , a forecast is consid-
ered consistent if both δ1 and δ2 are greater than the effec-
tive significance value αeff = α

2
 . Therefore, if α = 5% then 

αeff = 0.025 , hence a forecast is consistent if δ1 > 0.025 
and δ2 > 0.025 . Too small δ1 values signify underpredic-
tion, which means that the forecast rate is too low to be 
consistent with the observation, whereas too small δ2 
values signify overprediction, which means that the fore-
cast rate is too high to be consistent with the observa-
tion (Zechar et al 2010a).

3.5.4 � Epidemic‑type aftershock sequence model
The Epidemic-Type Aftershock Sequence (ETAS) model, 
introduced by Ogata (1988) , is now considered to be the 

(13)Nfore =
∑

(i,j)∈R

�(i, j) =
∑

j∈S

�(j).

(14)Nobs =
∑

(i,j)∈R

ω(i, j) =
∑

j∈S

ω(j).

(15)δ1 = 1− F((Nobs − 1)|Nfore),

(16)δ2 = F(Nobs|Nfore),

state-of-the-art seismicity forecasting model. It is used 
for operational forecasting in the United States, New 
Zealand and Italy (Mizrahi et al 2024). The ETAS model 
treats seismicity as an epidemic, where earthquakes trig-
ger subsequent earthquakes. It divides earthquakes into 
two categories: background events, which are those 
that are not triggered by previous events and occur uni-
formly, and triggered events. The expected number of 
aftershocks is determined by empirical laws related to 
aftershock productivity based on the magnitude of the 
parent event, the spatial distribution of aftershocks and 
the decrease of aftershock rate over time. This approach 
allows the ETAS model to capture the space-time cluster-
ing of aftershocks immediately following an initial event 
and to reflect the Omori-Utsu aftershock decay  (Omori 
1894; Utsu 1961). However, the ETAS approach is com-
putationally expensive due to the fact that it requires an 
inversion procedure to estimate the parameters and a 
large number of simulations to generate each forecast 
(Harte 2017; Kamranzad et al 2025).

As the ML models were trained on a bulk catalogue 
dataset and are not optimised for specific regions, we 
estimate some initial global ETAS parameters based 
on the training part of the bulk catalogue dataset using 
events above the completeness threshold. To ensure a 
fair comparison against ML models, we then calibrate 
the ETAS parameters for each test instance using the 
events of magnitude 2 and above that occurred within 
the first seven days of the spatiotemporal sequence. This 
is done in order for the ETAS forecasts to include events 
of magnitude 2 and above, which is consistent with the 
threshold used in the ML forecasts. We use the ETAS 
implementation from the GitHub repository by Mizrahi 
et  al (2023) and estimate the ETAS parameters based 
on the expectation maximisation (EM) algorithm (Miz-
rahi et  al 2021b). It is worth noting that the EM algo-
rithm relies on a complete dataset for training, hence 
the resulting ETAS parameters may be biased due to the 
use of incomplete data in the parameter calibration step. 
Once the final parameters have been estimated, we gen-
erate M2+ forecasts for the eighth day by performing 
100 simulations and calculating the mode of the number 
of events per grid cell across all simulations. Using the 
mode results in more reliable forecasts compared to the 
mean value, as the mean is highly influenced by outliers.

3.5.5 � Persistence model
A common benchmark that is used for evaluating fore-
casting approaches is the persistence model  (Hewamal-
age et  al 2023). This is a simple baseline that doesn’t 
require any computations, as it assumes that no change 
occurs between consecutive time steps. It therefore uses 
the previous day’s map as the next day’s forecast, which 
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Fig. 3  Randomly selected examples of data-driven deep learning-based forecasts for datapoints that belong to the bulk catalogue data test set. 
Comparison between ground truth and the forecasts generated by SmaAt-UNet, SmaAt-UNet+, Earthformer, Earthformer+, persistence (day before) 
and persistence (average of previous 7 days). The columns correspond to the following events: (i) 13/11/2016, M4.2, New Zealand, (ii) 14/11/2016, 
M4.1, Italy, (iii) 26/10/2018, M4.1, Greece, (iv) 06/07/2019, M4.2, Southern California. BGS©UKRI 2025
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(ii)(i)

(iv)(iii)

(vi)(v)

(viii)(vii)

(x)(ix)
Fig. 4  Evaluation metrics (accuracy, precision, recall, F1 score, CSI, FAR, ROC AUC, PRC AUC, MAE and RMSE) on the bulk catalogue and fine-tuning 
data test sets. Comparison between SmaAt-UNet, SmaAt-UNet+, Earthformer, Earthformer+, persistence (day before) and persistence (average 
of previous 7 days). BGS©UKRI 2025
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is often a highly accurate estimate due to the fact that 
the maps of consecutive days are usually highly corre-
lated  (Armstrong 2001). While the use of persistence as 
a baseline is common in other fields, like for example 
weather forecasting  (Mittermaier 2008), it is not part of 
current practice in earthquake forecasting. Nevertheless, 
it may be a suitable null hypothesis that is not yet part of 
the CSEP protocols. In the context of seismicity forecast-
ing, persistence is able to capture spatiotemporal cluster-
ing once it has started since the input data is from one or 
several days of prior seismicity in the target area, which 
is already clustered spatially and in time during a seismic 
sequence. However, it is not expected to be able to fore-
cast the onset of a mainshock at the start of a sequence 
(also a property of the ETAS model) or the Omori-Utsu 
law decay in longer time windows  (Omori 1894; Utsu 
1961), which can be captured by the ETAS model. In 
this study, we use two different versions of persistence 
against which we compare our models: the previous day’s 

map and the average of the daily maps of the previous 
7 days. The first version is the standard baseline that is 
commonly used in forecasting, whereas the second ver-
sion is a variation that incorporates information from the 
whole data sequence used as input to the ML forecasting 
models.

4 � Experiments
4.1 � Training and fine‑tuning CNNs and transformers
We aim to assess different deep learning models’ ability 
to produce data-driven earthquake forecasts using earth-
quake catalogue data. To do this, we train different mod-
els using a bulk catalogue training set mostly comprised 
of standard manually-derived catalogues.We then use the 
trained weights and fine-tune the models with the use of 
high-resolution catalogues. Specifically, we train the two 
deep learning models described above, the SmaAt-UNet 
and the Earthformer, using a bulk catalogue training 
set that consists of training examples from the standard 

Table 5  Training and fine-tuning CNNs and transformers using a temporal data split: Classification and regression evaluation metrics 
(bulk catalogue data test set). For regression metrics (MAE and RMSE), the mean and the standard deviation of the errors are reported. 
BGS©UKRI 2025

Evaluation metric SmaAt-UNet SmaAt-UNet+ Earthformer Earthformer+ Persistence
(day before)

Persistence
(7-day avg.)

Accuracy ↑ 0.990 0.986 0.990 0.985 0.971 0.973

Precision ↑ 0.710 0.823 0.718 0.758 0.637 0.710

Recall ↑ 0.721 0.268 0.679 0.214 0.612 0.526

F1 score ↑ 0.715 0.405 0.698 0.333 0.624 0.604

CSI ↑ 0.557 0.254 0.536 0.200 0.454 0.433

FAR ↓ 0.290 0.177 0.282 0.242 0.363 0.290

ROC AUC ↑ 0.858 0.634 0.837 0.606 0.799 0.759

PRC AUC ↑ 0.718 0.552 0.701 0.492 0.632 0.627

MAE ( µ , σ ) ↓ 0.330,1.206 0.296,0.980 0.244,0.568 0.274, 0.719 0.232,0.599 0.283,0.693

RMSE ( µ , σ ) ↓ 2.933, 12.331 2.430,9.950 1.822,4.427 2.137,6.265 1.666,5.409 2.016,6.058

Table 6  Training and fine-tuning CNNs and transformers using a temporal data split: Classification and regression evaluation metrics 
(high-resolution catalogue test set). For regression metrics (MAE and RMSE), the mean and the standard deviation of the errors are 
reported. BGS©UKRI 2025

Evaluation metric SmaAt-UNet SmaAt-UNet+ Earthformer Earthformer+ Persistence
(day before)

Persistence
(7-day avg.)

Accuracy ↑ 0.988 0.991 0.987 0.990 0.963 0.963

Precision ↑ 0.773 0.879 0.710 0.856 0.676 0.816

Recall ↑ 0.671 0.716 0.723 0.672 0.514 0.333

F1 score ↑ 0.718 0.789 0.716 0.753 0.584 0.473

CSI ↑ 0.561 0.727 0.558 0.604 0.413 0.310

FAR ↓ 0.227 0.121 0.290 0.144 0.324 0.184

ROC AUC ↑ 0.833 0.857 0.858 0.835 0.750 0.665

PRC AUC ↑ 0.726 0.801 0.719 0.768 0.607 0.592

MAE ( µ , σ ) ↓ 0.490,0.641 0.373,0.504 0.510,0.682 0.543, 0.724 0.533,0.752 0.621, 0.868

RMSE ( µ , σ ) ↓ 4.455,5.754 3.532,4.691 4.131,5.500 4.762, 5.850 4.203,5.569 4.752,6.139
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catalogues of Southern California, Northern California, 
New Zealand, Italy and Greece and the unified high-res-
olution relocated catalogue for Japan. The data used are 
split sequentially, with older data used for training and 
newer data used for testing, in line with the guidelines 
for pseudo-prospective testing  (Mizrahi et al 2024). We 
use 80% of the data used for training, 10% for validation 
and 10% for testing. We then use the initial trained model 
weights and continue training the models with a new 
training set built solely from high-resolution catalogues: 
the Southern California QTM catalogue and the Italy 
ML catalogue. To avoid data leakage, we don’t use the 
parts of the Southern California and Italy standard cata-
logues that cover the same time interval as the Southern 
California QTM catalogue and the Italy ML catalogue for 
training. The fine-tuned models are henceforth referred 
to as SmaAt-UNet+ and Earthformer+. We explored the 
option of freezing part of the trained network and updat-
ing the last few layers based on the new data, a practice 
commonly used in fine-tuning. However, this did not 
improve performance; hence the results reported here 
correspond to the case where all weights are updated. 
The number of parameters, the training time on a single 
NVIDIA Quadro RTX 4000 GPU , the learning rate at the 
start of the training process and the number of epochs 
each model was trained for can be seen in Table 4.

4.2 � Comparison between ML‑based and ETAS forecasts
In order to assess the forecasting potential of ML mod-
els, we need to compare them in terms of performance 
against an ETAS model, the most widely-used seismicity 
forecasting model. We quantitatively compare the fore-
casts generated by SmaAt-UNet and Earthformer against 
those generated by a baseline ETAS model (Mizrahi et al 

2023) with initial global parameters estimated by the 
EM algorithm using the training part of our bulk cata-
logue dataset, taking into account events above catalogue 
completeness. The ETAS parameters were calibrated 
for each test instance based on the M2+ events that 
occurred within the first seven days of the spatiotem-
poral sequence, which is the part that is given as input 
to the ML models. We use two study regions, Southern 
California and Italy, as our testing ground. This was done 
due to the high computational cost of generating ETAS 
forecasts, which meant that performing a comparative 
study for all the catalogues in the bulk catalogue data-
set was not feasible within a reasonable timeframe with 
the computational infrastructure that was used for ML 
model training and inference. We calculate the classifi-
cation, regression and CSEP metrics for all three mod-
els (SmaAt-UNet, Earthformer and ETAS) and compare 
them against each other as well as against the persistence 
baseline.

4.3 � Investigating the impact of individual catalogues 
and different data splitting strategies

We seek to understand the impact of individual cata-
logues and different train-test splitting strategies in the 
training process. We therefore investigate the possibil-
ity of train ing SmaAt-UNet and Earthformer on the 
bulk catalogue dataset using randomly selected training, 
validation and test instances. This means that instances 
across the whole time interval that we use in this study 
are used both for training and testing, which intro-
duces look-ahead bias  (Peixeiro 2022) but also allows 
the model to be trained on more recent catalogue data, 
which generally have lower magnitudes of completeness 
compared to older parts of the catalogues. We also train 

(ii)(i)
Fig. 5  Percentage of underpredictions (rejected δ1 values) and overpredictions (rejected δ2 values). Comparison between SmaAt-UNet, 
SmaAt-UNet+, Earthformer, Earthformer+, persistence (day before) and persistence (average of previous 7 days): (i) bulk catalogue data test set, (ii) 
fine-tuning data test set. BGS©UKRI 2025
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(ii)(i)

(iv)(iii)

(vi)(v)

(viii)(vii)
Fig. 6  Percentage of underpredictions (rejected δ1 values) and overpredictions (rejected δ2 values). Comparison between SmaAt-UNet, 
SmaAt-UNet+, Earthformer and Earthformer+: (i) Southern California catalogue, (ii) Northern California catalogue, (iii) New Zealand catalogue, (iv) 
Italy catalogue, (v) Greece catalogue, (vi) Japan catalogue, (vii) Southern California QTM catalogue, (viii) Italy ML catalogue. BGS©UKRI 2025
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Fig. 7  N-test results on bulk catalogue data test set: underforecasting and overforecasting. (i) Observed versus forecast number of events. Points 
on or close to the y = x line represent forecasts that are consistent with the observations. (ii) N-test δ1 and δ2 values. Forecasts with δ1 > 0.025 
and δ2 > 0.025 are consistent with the observations. BGS©UKRI 2025
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Fig. 8  N-test results on fine-tuning data test set: underforecasting and overforecasting. i) Observed versus forecast number of events. Points 
on or close to the y = x line represent forecasts that are consistent with the observations. ii) N-test δ1 and δ2 values. Forecasts with δ1 > 0.025 
and δ2 > 0.025 are consistent with the observations. BGS©UKRI 2025
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Fig. 9  Cumulative distributions of δ1 and δ2 values (bulk catalogue data test set). The uniform distribution, which corresponds to a perfectly 
calibrated model, is shown with a dashed line. In our case, most of the cumulative distributions of the quantile scores show underdispersion, which 
means that the observed data have less variation than the forecasts. Figures b.(ii) and d.(ii) indicate underprediction, as the cumulative distribution 
plot is almost constantly below the uniform distribution (Savran et al 2020). BGS©UKRI 2025



Page 18 of 35Dervisi et al. Earth, Planets and Space          (2025) 77:185 

Ea
rt

hf
or

m
er

(a.i.) (a.ii.)

(b.i.) (b.ii.)

(c.i.) (c.ii.)

(d.i.) (d.ii.)

Sm
aA

t -
 U

N
et

Sm
aA

t -
 U

N
et

+
Ea

rt
hf

or
m

er
+ 

Fig. 10  Cumulative distributions of δ1 and δ2 values (fine-tuning data test set). The uniform distribution, which corresponds to a perfectly 
calibrated model, is shown with a dashed line. In our case, the cumulative distributions of the quantile scores show underdispersion, which means 
that the observed data have less variation than the forecasts. Figures b.ii) and d.ii) indicate underprediction, as the cumulative distribution plot 
is almost constantly below the uniform distribution (Savran et al 2020). BGS©UKRI 2025
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SmaAt-UNet on the Southern California and New Zea-
land catalogues separately. The Southern California cata-
logue is one of the most detailed catalogues that we have 
available, whereas the New Zealand catalogue contains 
the highest number of M4+ events and hence makes up 
the largest part of the training data. We investigate the 
use of a sequential data split, i.e. using older data for 
training and newer data for testing, as well as a random 
data split, where we randomly select the training and test 
examples.

4.4 � Exploring how the use of different types of input maps 
influences performance

We also wish to explore how different types of input 
maps (rate, maximum magnitude and average depth) 
contribute to the overall performance. We therefore 
employ the same bulk catalogue dataset to train the 
SmaAt-UNet model first using only the rate maps and 
then using the rate and maximum magnitude maps as 
inputs. We compare the performance of the two trained 

models with each other as well as with the SmaAt-UNet 
model that uses all three types of maps. A random data 
splitting strategy is used in this case as well, hence look-
ahead bias has been introduced here too. Nonetheless, 
this comparison still shows the difference in performance 
when different types of input maps are used.

5 � Results and discussion
5.1 � Behaviour of different deep learning architectures
As seen in Table 4, SmaAt-UNet is a much more compact 
model and the time needed for training it is significantly 
lower compared to the time needed to train the Earth-
former. SmaAt-UNet is therefore more suitable for opera-
tional applications, as fast training times allow for further 
training at regular time intervals to continuously incor-
porate new data. In terms of performance, the SmaAt-
UNet and the Earthfomer do similarly according to our 
evaluation metrics, leading to the conclusion that a larger 
number of parameters does not necessarily improve per-
formance when the training dataset is relatively small, as 

Table 7  Training and fine-tuning CNNs and transformers using a temporal data split: Percentage of underpredictions (rejected δ1 
values) and overpredictions (rejected δ2 values) (bulk catalogue data test set). BGS©UKRI 2025

SmaAt-UNet SmaAt-UNet+ Earthformer Earthformer+

All Rejected δ1 31.87% 55.60% 29.65% 56.49%

Rejected δ2 23.04% 5.03% 25.46% 3.89%

Southern California Rejected δ1 20.00% 34.62% 22.31% 74.62%

Rejected δ2 56.92% 39.23% 50.00% 2.31%

Northern California Rejected δ1 21.90% 34.39% 26.67% 46.35%

Rejected δ2 31.75% 18.10% 21.27% 11.75%

New Zealand Rejected δ1 26.56% 49.59% 27.38% 46.66%

Rejected δ2 23.11% 0.23% 19.13% 2.93%

Italy Rejected δ1 36.68% 48.91% 36.68% 46.29%

Rejected δ2 16.59% 5.24% 14.41% 7.86%

Greece Rejected δ1 37.86% 57.01% 39.97% 58.22%

Rejected δ2 16.89% 6.18% 19.76% 4.22%

Japan Rejected δ1 41.82% 82.44% 24.40% 79.02%

Rejected δ2 20.54% 0.60% 44.64% 0.74%

Table 8  Training and fine-tuning CNNs and transformers using a temporal data split: Percentage of underpredictions (rejected δ1 
values) and overpredictions (rejected δ2 values) (fine-tuning data test set). BGS©UKRI 2025

SmaAt-UNet SmaAt-UNet+ Earthformer Earthformer+

All Rejected δ1 48.61% 55.56% 36.11% 77.78%

Rejected δ2 22.22% 11.11% 29.17% 2.78%

Southern California 
(QTM)

Rejected δ1 45.76% 54.24% 33.90% 76.27%

Rejected δ2 20.34% 10.17% 25.42% 0.00%

Italy (ML) Rejected δ1 61.54% 61.54% 46.15% 84.62%

Rejected δ2 30.77% 15.38% 46.15% 15.38%
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in such cases the models are prone to overfitting (Lever 
et  al 2016; Brigato and Iocchi 2021). The availability of 
earthquake catalogues is limited in duration, restricting 
the amount of data that can be used to train the models 
in this study. In such cases, the diversity and quality of 
the dataset play an important role in the success of the 
training process, as it is essential to expose the models 
to a dataset that is representative of as many different 

situations as possible in order to achieve generalisation. 
Furthermore, the Earthformer’s inability to surpass the 
forecasting skill of the SmaAt-UNet model is indica-
tive of the fact that transformer-based models need to 
be exposed to larger training datasets, as they lack the 
inductive bias that is inherent in convolutional neural 
networks (Dosovitskiy 2020; Gao et al 2022).

Fig. 11  Comparison between ML, ETAS and persistence forecasts following events that occurred within the 2019 Ridgecrest sequence in Southern 
California. The columns correspond to the following events: (i) 07/07/2019, M4.5, (ii) 10/07/2019, M4.2, (iii) 11/07/2019, M4.5, (iv) 12/07/2019, M4.9, 
(v) 26/07/2019, M4.7. BGS©UKRI 2025
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5.2 � Qualitative and quantitative evaluation of forecasts 
in terms of rate and spatial distribution

Randomly selected examples of next-day forecasts pro-
duced for datapoints that belong to the bulk catalogue 
data test set can be seen in Fig. 3, where we qualitatively 
observe that the model outputs are generally consistent 
with the ground truth maps. Fig. 4 shows the model per-
formance on both the bulk cataloguestandard and fine-
tuning data test sets. The trained ML models seem to be 
able to produce forecasts that are relatively consistent 
with the observations in terms of number of events and 
spatial locations. This is evidenced by the values of the 
precision (0.710−0.718), the recall (0.679−0.721), the F1 
score (0.698−0.715), the CSI (0.536−0.557) and the PRC 
AUC (0.701−0.718), which can be seen in Table  5. The 
FAR is low for both models (0.282-−0.290), which is also 
a positive result, as generating a large number of false 
alarms decreases the robustness of forecasting models. 

The MAE is equal to 0.330±1.206 for SmaAt-UNet and 
0.244±0.568 for Earthformer, whereas the RMSE is 
2.933±12.331 for SmaAt-UNet and 1.822±4.427 for 
Earthformer. SmaAt-UNet and Earthformer have similar 
performance, with SmaAt-UNet being slightly superior in 
terms of F1 score, CSI and PRC AUC and Earthformer 
having lower MAE and RMSE.. The fine-tuned models 
perform worse on the bulk catalogue data test set and 
have low recall and CSI scores, which indicates a low pro-
portion of correctly classified actual positives and a large 
number of false negatives.

As can be seen in Table 6, the fine-tuned models per-
form better than the previous models when tested on 
data points from the fine-tuning dataset. This highlights 
the importance of fine-tuning ML models on data that 
are relevant to the application they will be used for. For 
example, if the goal is to build a model to forecast seis-
micity in a specific geographic region, it makes sense to 
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Fig. 12  Comparison between the ratios of ground truth to forecasts generated by ML, ETAS and persistence following events that occurred 
within the 2019 Ridgecrest sequence in Southern California. The columns correspond to the following events: (i) 07/07/2019, M4.5, (ii) 10/07/2019, 
M4.2, (iii) 11/07/2019, M4.5, (iv) 12/07/2019, M4.9, (v) 26/07/2019, M4.7. BGS©UKRI 2025
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first train the model on a large bulk catalogue dataset that 
consists of data from different regions and then fine-tune 
on data specific to the region in which the model will 
be tested or used operationally. This indicates that the 
model is able to learn data properties that are inherent 
to specific catalogues, such as the level of completeness. 
SmaAt-UNet+ is the best performing model on the fine-
tuning data test set but Earthformer+ also performs well, 

which again is evidenced by the evaluation metrics: preci-
sion (0.856−0.879), recall (0.672−0.716), F1 score (0.753−
0.789), CSI (0.604−0.727), PRC AUC (0.768−0.801), FAR 
(0.121−0.144), MAE (0.373±0.504−0.543±0.724) and 
RMSE (3.532±4.691−4.762±5.850). The non fine-tuned 
models are less successful at forecasting the spatial dis-
tribution and number of events of the examples in the 
fine-tuning data test set. They achieve high precision 

Fig. 13  Comparison between ML, ETAS and persistence forecasts following events that occurred within the 2016–2017 sequence in the Central 
Apennines. The columns correspond to the following events: (i) 30/10/2016, M4.0, (ii) 30/10/2016, M4.0, (iii) 31/10/2016, M4.0, (iv) 01/11/2016, M4.8, 
(v) 03/11/2016, M4.7. BGS©UKRI 2025
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values on this test set but the recall and CSI values are 
lower than those of the fine-tuned models, which means 
that when testing on the fine-tuning data test set, their 
use leads to more undetected actual positives compared 
to when the fine-tuned models are used.

The qualitative (Fig.  3) and quantitative (Fig.  4 and 
Tables 5 and 6) evaluation based on metrics such as the 
CSI and the FAR show that both neural networks are able 
to produce forecasts that are consistent with the observa-
tions in terms of error metrics and spatial distribution of 
events provided they are trained on a dataset that is rep-
resentative of the space and time they will be used in. The 
use of high-resolution catalogues (in SmaAt-UNet+ and 
Earthformer+) has not improved the performance on the 
bulk catalogue test set. This can be attributed to the fact 
that this dataset is mostly comprised of standard cata-
logues, which have larger magnitudes of completeness 
and thus contain smaller numbers of events. Introducing 

high-resolution data during fine-tuning might therefore 
have led to forecasting events that were not included 
in these initial catalogues. For similar reasons, SmaAt-
UNet+ and Earthformer+ show improved performance 
compared to SmaAt-UNet and Earthformer when evalu-
ating performance on the fine-tuning data test set.

5.3 � Comparison of trained models with persistence
We compare the trained models against the persistence 
baseline, which assumes no change between consecutive 
time steps and uses either the map of the day before or 
the average map of the previous 7 days as the forecast. 
Looking at Tables 5 and 6, it is apparent that the trained 
models perform considerably better than persistence 
in terms of precision, recall, F1 score, CSI, PRC AUC, 
MAE and RMSE. However, the persistence model per-
forms adequately considering that it is a model with zero 
parameters that can instantly produce a result without 
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Fig. 14  Comparison between the ratios of ground truth to forecasts generated by ML, ETAS and persistence following events that occurred 
within the 2016–2017 sequence in the Central Apennines. The columns correspond to the following events: (i) 30/10/2016, M4.0, (ii) 30/10/2016, 
M4.0, (iii) 31/10/2016, M4.0, (iv) 01/11/2016, M4.8, (v) 03/11/2016, M4.7. BGS©UKRI 2025
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the need for any training or computations. This is an 
expected behaviour due to the fact that seismicity shows 
clustering in time and space, making maps of consecu-
tive days likely to be similar. In this sense, persistence is 
a better null hypothesis for forecasting than a Poisson 
assumption, hence its use as such in a variety of other 
applications (Hyndman and Athanasopoulos 2021; Mit-
termaier 2008; Knaff and Landsea 1997; Kumar et  al 
2024; Trebing et  al 2021; Owens et  al 2013; Stevenson 
et al 2022; Ghimire and Krajewski 2020; Bento et al 2022; 
Koprinska et al 2018; Pombo et al 2021; Voyant and Not-
ton 2018; Chu et al 2017; Tziolis et al 2022).

5.4 � Consistency between forecast and observed rates
The N-test indicates whether the number of observed 
events is consistent with the number of forecast events, 
with δ1 values showing whether the models are under-
predicting and δ2 values showing whether the models are 
overpredicting. Tables 7 and 8 and Figures 5 and 6 show 
the percentage of underpredictions (rejected δ1 values) 
and overpredictions (rejected δ2 values). In most cases 
the percentage of rejected δ1 and δ2 values is smaller than 
the percentage of accepted values, which can be seen in 
Figs. 5, 6, 7 and 8. However, the models do not reproduce 
the distribution of events correctly, which is evidenced 
by the fact that the model is rejected more than 5% of 
the time for an α value of 0.05. This is also illustrated by 
the cumulative distributions of δ1 and δ2 values shown in 

Figs. 9 and 10, which are not uniformly distributed. The 
cumulative distributions show that we mostly have a case 
of underdispersion, which means that the variation of 
the observed data is less than that of the forecast data, 
whereas in a few cases the distribution of δ2 values indi-
cates underprediction  (Savran et  al 2020). Overall, the 
percentage of underpredictions is considerably greater 
than that of overpredictions, with the overpredictions 
usually not exceeding 10% of the test set. This can be seen 
in Figs. 5 and 6 and in column i) of Figs. 7 and 8, which 
show the number of observed events versus the num-
ber of forecast events. These figures also show that the 
introduction of high-resolution catalogues during fine-
tuning increases the percentage of underpredictions and 
reduces the percentage of overpredictions. Looking at 
the daily number of observed events in weekly sequences 
that resulted in rejected δ1 values and rejected δ2 values 
(which can be seen in the supplementary material), we 
observe that many of the weekly sequences for which we 
under– or overpredict have occurred within longer earth-
quake sequences. Looking at Fig.  5ii), we observe that 
Earthformer exhibits the most balanced performance in 
terms of underpredictions and overpredictions. How-
ever, we observe that overall underprediction remains 
the most critical issue , which is an indication of the fact 
that the models learn the incompleteness of the training 
data. The latter highlights the need for further research 
in ML-based earthquake detection to address short-term 

SmaAt - UNet ETASEarthformer

Persistence (day before) Persistence (7-day average)

(a) (b) (c)

(d) (e)

Fig. 15  Comparison between the ratios of ground truth to forecasts generated by ML, ETAS and persistence for all the examples in the Southern 
California and Italy test sets. BGS©UKRI 2025
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(ii)(i)

(iv)(iii)

(vi)(v)

(viii)(vii)

(x)(ix)
Fig. 16  Evaluation metrics on the Southern California and Italy test set. Comparison between SmaAt-UNet, Earthformer, ETAS, persistence (day 
before) and persistence (average of previous 7 days). BGS©UKRI 2025
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aftershock incompleteness in order to improve catalogue 
quality by detecting events that are currently missing.   

5.5 � Comparison between ML‑based and ETAS forecasts
Figures 11 and 12 show a comparison between forecasts 
that are generated by ML models and those generated by 
ETAS for the 2019 Ridgecrest sequence. In Fig. 11, we see 
the ground truth maps in the first row, the SmaAt-UNet 
and Earthformer forecasts in the second and third row, 
the ETAS forecasts in the fourth row and the persistence 
forecasts in the fifth and sixth row. We see forecasts 
starting from 7 July 2019 up to 26 July 2019 and observe 
that these look reasonable in terms of spatial distribution 
of events. SmaAt-UNet forecasts have the highest MAE 
values, whereas ETAS forecasts have the lowest MAE 
values. We also see that in cases of high seismicity, such 
as this one, both the ML and ETAS models are not able 
to accurately forecast the expected rates, as evidenced 
by the N-test values. Similarly, Figs. 13 and 14 show ML 
and ETAS forecasts following events that have occurred 
within the 2016–2017 Central Apennines sequence, from 
30 October 2016 to 3 November 2016. Here, we observe 
that the ML and ETAS models all have similar MAE val-
ues and that the forecast number of events are mostly not 
consistent with the observations, as shown by the N-test 
values. Nevertheless, the forecasts visually look reasona-
ble. Figure 15 shows the ratios of ground truth to forecast 
maps for all the examples in the Southern California and 
Italy test sets. We observe that both the ML and the ETAS 
forecasts are generally close to the ground truth values, as 
indicated by the peak around 1. The distributions of the 
ratios for forecasts produced by Earthformer and ETAS 
have a smaller spread than the distribution of the ratios 
in the case of SmaAt-UNet forecasts, which suggests that 
SmaAt-UNet produces forecasts with more variability 
compared to Earthformer and ETAS. The ground truth to 
forecast ratio distributions of the persistence models also 
have a peak around 1 and look relatively similar to that of 
SmaAt-UNet, indicating that persistence models are also 

able to generate forecasts that are relatively close to the 
ground truth maps.  

Tables 9 and 10 and Figs. 16, 17 and 18, 19 show a com-
parison between the two machine learning models and 
an ETAS benchmark in terms of performance for the 
Southern California and Italy test sets. The performance 
of both approaches is similar in terms of spatial distri-
bution of events, with all three models achieving decent 
performance. The two ML models are slightly supe-
rior to ETAS based on the F1 score, CSI, FAR and PRC 
AUC, but the difference is relatively small. In terms of 
the number of forecast events, SmaAt-UNet has a larger 
MAE and RMSE compared to Earthformer and ETAS, 
with ETAS having slightly lower error scores than Earth-
former. As seen in Table  10, the ML models and ETAS 
tend to underpredict the number of events. However, 
ETAS has a considerably higher number of underpredic-
tions and also a lower number of overpredictions com-
pared to the ML models, as evidenced by the percentages 
of rejected δ1 and δ2 values. This can be attributed to the 
fact that the ETAS model was trained on an incomplete 
dataset. The cumulative distributions of the δ1 and δ2 val-
ues in Fig. 20 show that, similarly to the two ML models, 
we have a case of underdispersion in the ETAS forecasts. 
The main advantage of ML models is the fact that they 
can be trained within a few hours and then, once trained, 
they can instantly generate as many forecasts as needed. 
ETAS, on the other hand, needs an inversion procedure 
to estimate the parameters, which one could argue is 
comparable to ML training in terms of computational 
cost, and then needs to perform a large number of simu-
lations in order to generate each forecast. These simula-
tions are computationally expensive and can take from 
a few minutes to several hours to complete. ML models 
can therefore be particularly effective for generating real-
time or near real-time forecasts, as well as for applica-
tions where the forecasting model needs to be regularly 
updated based on new data.      

(a) (b) (c)
Fig. 17  Percentage of underpredictions (rejected δ1 values) and overpredictions (rejected δ2 values). Comparison between SmaAt-UNet, 
Earthformer and ETAS: (a) Southern California and Italy test set, (b) Southern California test set, ( c) Italy test set. BGS©UKRI 2025
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Fig. 18  Comparison between ML and ETAS forecasts. N-test results on the Southern California test set: underforecasting and overforecasting. (i) 
Observed versus forecast number of events. Points on or close to the y = x line represent forecasts that are consistent with the observations. (ii) 
N-test δ1 and δ2 values. Forecasts with δ1 > 0.025 and δ2 > 0.025 are consistent with the observations. BGS©UKRI 2025
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5.6 � Investigating the impact of individual catalogues 
and different data splitting strategies

In Tables  11 and 12, we see the evaluation metrics for 
the two ML models when those are trained and tested 
on randomly selected examples from the bulk catalogue 

dataset. These results are not directly comparable to 
those in Tables 5 and 7, as the test set used here is differ-
ent. However, it is apparent that random splitting results 
in more similar data distributions between the train-
ing and test sets compared to a temporal split, leading 
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Fig. 19  Comparison between ML and ETAS forecasts. N-test results on the Italy test set: underforecasting and overforecasting. (i) Observed 
versus forecast number of events. Points on or close to the y = x line represent forecasts that are consistent with the observations. (ii) N-test δ1 
and δ2 values. Forecasts with δ1 > 0.025 and δ2 > 0.025 are consistent with the observations. BGS©UKRI 2025



Page 29 of 35Dervisi et al. Earth, Planets and Space          (2025) 77:185 	

to improved evaluation metric scores on the new ran-
domly selected test set. This random splitting strategy 
introduces look-ahead bias  (Peixeiro 2022), as it allows 
the model to see future data during training and then be 

tested on past data, which is not something that can be 
done in an operational scenario. Nevertheless, this high-
lights the importance of ensuring similarity between the 
data distributions used in training and inference settings 

ET
A

S

(a.i.)

(b.i.) (b.ii.)

(c.i.) (c.ii.)

Sm
aA

t -
 U

N
et

Ea
rt

hf
or

m
er

(a.ii.)

Fig. 20  Comparison between ML and ETAS forecasts. Cumulative distributions of δ1 and δ2 values (Southern California and Italy test set). The 
uniform distribution, which corresponds to a perfectly calibrated model, is shown with a dashed line. In our case, the cumulative distributions 
of the quantile scores show underdispersion, which means that the observed data have less variation than the forecasts (Savran et al 2020). 
BGS©UKRI 2025
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for optimal ML model performance. Therefore, it is cru-
cial to invest time and effort into creating training data-
sets that represent a wide range of scenarios that are 
likely to be encountered in an inference setting in order 
to train models that are capable of generalising well.

Table  13 shows the performance of SmaAt-UNet on 
the Southern California and New Zealand catalogues. 
Although the results are not directly comparable as dif-
ferent test sets have been used in each case, they offer 
valuable insights regarding the behaviour of ML forecast-
ing models. We observe that the model that is trained 
on the Southern California catalogue is able to generate 
forecasts that are spatially consistent with the observa-
tions both in the sequential and the random data splitting 
scenario. When a random splitting strategy is used, the 
model is able to reproduce the number of events much 
better than when a sequential splitting strategy is used, 
as evidenced by the MAE and RMSE values as well as 
by the percentages of rejected δ1 and δ2 values. On the 
other hand, the model that is trained on the New Zealand 
catalogue is only able to produce forecasts that are con-
sistent with the observations in terms of spatial distribu-
tion and number of events when a random data splitting 
strategy is used. This can be attributed to the fact that 

Table 9  Comparison of ML-based forecasts with ETAS forecasts: Classification and regression evaluation metrics (Southern California 
and Italy test set). BGS©UKRI 2025

Evaluation metric SmaAt-UNet Earthformer ETAS Persistence
(day before)

Persistence
(7-day avg.)

Accuracy ↑ 0.987 0.988 0.988 0.985 0.984

Precision ↑ 0.853 0.903 0.834 0.763 0.806

Recall ↑ 0.566 0.544 0.524 0.559 0.433

F1 score ↑ 0.680 0.679 0.644 0.646 0.563

CSI ↑ 0.515 0.514 0.474 0.477 0.392

FAR ↓ 0.147 0.097 0.166 0.237 0.194

ROC AUC ↑ 0.782 0.772 0.761 0.778 0.715

PRC AUC ↑ 0.714 0.729 0.684 0.667 0.626

MAE ( µ , σ ) ↓ 1.678,3.393 0.813,1.478 0.731,1.679 0.845, 1.615 0.981,1.789

RMSE ( µ , σ ) ↓ 16.903,34.751 6.687,11.744 5.800,12.007 7.946,15.027 9.151,16.457

Table 10  Comparison of ML-based forecasts with ETAS 
forecasts: Percentage of underpredictions (rejected δ1 values) and 
overpredictions (rejected δ2 values) (Southern California and Italy 
test set). BGS©UKRI 2025

SmaAt-UNet Earthformer ETAS

All Rejected δ1 41.46% 42.86% 65.90%

Rejected δ2 29.13% 25.49% 15.61%

Southern 
California

Rejected δ1 28.91% 29.69% 84.31%

Rejected δ2 56.25% 48.44% 3.92%

Italy Rejected δ1 48.47% 50.22% 58.20%

Rejected δ2 13.97% 12.66% 20.49%

Table 11  Training and fine-tuning CNNs and transformers using a random data split: Classification and regression evaluation metrics 
(standard catalogue data test set). For regression metrics (MAE and RMSE), the mean and the standard deviation of the errors are 
reported. BGS©UKRI 2025

Evaluation metric SmaAt-UNet SmaAt-UNet+ Earthformer Earthformer+ Persistence
(day before)

Persistence
(7-day avg.)

Accuracy ↑ 0.997 0.995 0.996 0.996 0.974 0.976

Precision ↑ 0.953 0.785 0.931 0.844 0.522 0.373

Recall ↑ 0.817 0.867 0.807 0.836 0.623 0.742

F1 score ↑ 0.880 0.824 0.864 0.840 0.568 0.496

CSI ↑ 0.786 0.701 0.761 0.725 0.397 0.330

FAR ↓ 0.047 0.215 0.069 0.156 0.478 0.627

ROC AUC ↑ 0.908 0.932 0.903 0.917 0.804 0.670

PRC AUC ↑ 0.886 0.827 0.870 0.841 0.578 0.534

MAE ( µ , σ ) ↓ 0.064,0.139 0.302,0.795 0.066,0.182 0.467, 1.400 0.229,0.543 0.256,0.594

RMSE ( µ , σ ) ↓ 0.596,1.432 2.516,7.725 0.561,1.614 4.617,15.784 1.670,4.811 1.832,5.046
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the Southern California catalogue covers a considerably 
smaller area compared to the New Zealand catalogue 
and is able to better capture the tectonic landscape of the 
region. This means that the distribution of older data is 
consistent with the distribution of newer data, making it 
possible to train a ML model that behaves adequately in a 
pseudo-prospective scenario. However, the model that is 
trained on the New Zealand catalogue behaves better in 
terms of number of forecast events, which is likely due to 
the fact that the training dataset built from the New Zea-
land catalogue is considerably larger in size and hence 
enables the model to learn not just the spatial distribution 

of events, but also how earthquake sequences behave in 
terms of daily rate. Overall, this experiment leads to the 
conclusion that the use of different datasets leads to dif-
ferent levels of predictability.

5.7 � Exploring how the use of different types of input maps 
influences performance

Table  14 shows that use of maximum magnitude and 
average depth maps in addition to rate maps in the model 
inputs improves the overall forecasting performance in 
terms of error metrics and spatial distribution of events. 
This could be an indication that ML models are able to 

Table 12  Training and fine-tuning CNNs and transformers using a random data split: Percentage of underpredictions (rejected δ1 
values) and overpredictions (rejected δ2 values) (bulk catalogue data test set). BGS©UKRI 2025

SmaAt-UNet SmaAt-UNet+ Earthformer Earthformer+

All Rejected δ1 29.02% 14.31% 24.85% 11.96%

Rejected δ2 3.43% 32.06% 4.41% 33.19%

Southern California Rejected δ1 47.83% 23.91% 51.09% 17.39%

Rejected δ2 8.70% 53.26% 5.43% 55.43%

Northern California Rejected δ1 32.03% 17.75% 26.41% 12.55%

Rejected δ2 5.63% 32.47% 9.96% 34.63%

New Zealand Rejected δ1 29.83% 11.53% 23.50% 9.94%

Rejected δ2 2.49% 40.68% 2.71% 42.03%

Italy Rejected δ1 25.40% 23.81% 22.22% 17.46%

Rejected δ2 6.35% 12.70% 4.76% 15.87%

Greece Rejected δ1 19.28% 12.80% 16.55% 10.58%

Rejected δ2 2.05% 13.99% 3.41% 15.53%

Japan Rejected δ1 44.26% 20.22% 43.72% 20.77%

Rejected δ2 6.01% 43.72% 8.20% 39.89%

Table 13  Investigating the impact of individual catalogues and different data splitting strategies: Evaluation of SmaAt-UNet 
performance when trained and tested on the Southern California (SC) and New Zealand (NZ) catalogues separately. The use of a 
sequential and a random data splitting strategy is explored. BGS©UKRI 2025

Evaluation metric SmaAt-UNet
SC sequential

SmaAt-UNet
SC random

SmaAt-UNet
NZ sequential

SmaAt-UNet
NZ random

Accuracy ↑ 0.991 0.997 0.992 0.997

Precision ↑ 0.858 0.962 0.873 0.978

Recall ↑ 0.820 0.891 0.401 0.923

F1 score ↑ 0.838 0.925 0.549 0.949

CSI ↑ 0.722 0.860 0.379 0.904

FAR ↓ 0.142 0.038 0.127 0.022

ROC AUC ↑ 0.908 0.945 0.700 0.961

PRC AUC ↑ 0.841 0.927 0.641 0.951

MAE ( µ , σ ) ↓ 1.160, 1.406 0.152, 0.244 0.146, 0.232 0.049, 0.085

RMSE ( µ , σ ) ↓ 11.626, 14.438 1.574, 2.882 1.062, 1.694 0.407, 0.743

Rejected δ1 ↓ 52.31% 37.40% 40.83% 15.82%

Rejected δ2 ↓ 20.77% 13.82% 2.14% 3.39%
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reproduce empirical laws of earthquake sequences. For 
example, the fact that the introduction of magnitude 
information improves performance could imply that 
ML models learn about magnitude-related productiv-
ity and hence forecast more events for larger-magnitude 
mainshocks than for mainshocks of smaller magnitudes. 
This is a known property of earthquake sequences that is 
accurately captured by ETAS models as well.

6 � Conclusions
This study introduced a data-driven ML-based short-
term spatiotemporal seismicity rate forecasting 
approach based on earthquake catalogues from differ-
ent earthquake-prone regions. Our findings show that 
both tested deep learning models, the SmaAt-UNet 
and the Earthformer, perform similarly. On the one 
hand, a more balanced performance is observed when 
employing the Earthformer architecture; however, 
on the other hand, SmaAt-UNet needs considerably 
less training time as it is a smaller model with fewer 
parameters, which is an important advantage for opera-
tional applications. Overall, both models demonstrate 
potential as their performance is superior to that of 
the persistence model, a commonly used baseline that 
assumes no change between consecutive time steps. 
The ML models achieve similar performance to that of 
an ETAS benchmark on the Southern California and 
Italy test sets and are able to generate forecasts at sig-
nificantly reduced processing times compared to ETAS. 
Once trained, ML models can instantly generate fore-
casts, whereas ETAS requires significant computational 

power to perform the large number of simulations that 
make up each forecast.

Our qualitative and quantitative analysis of the gener-
ated forecasts shows that the spatial distribution of fore-
cast events is consistent with that of observed events, as 
ML models generally forecast more events in locations 
close to the mainshock and fewer events further away. 
We also observe that the use of maximum magnitude 
maps as additional inputs to the models enhances perfor-
mance, which is indicative of the fact that the ML mod-
els learn about magnitude-related productivity. These 
are both known properties of earthquake sequences that 
are efficiently captured by disciplinary state-of-the-art 
approaches, such as the ETAS model.

The introduction of earthquake sequences built from 
high-resolution catalogues to the training process has 
had a considerable impact on the results, leading to the 
conclusion that different datasets exhibit a different level 
of predictability. This could be due to differences in data 
quality, which often influences ML performance, espe-
cially in cases where the training dataset is fairly limited 
in size. We also notice that training ML models on cata-
logues from different geographic regions leads to consid-
erable differences in the results, which could be either 
due to varying data quality or be an indication of inher-
ent differences in the tectonic landscapes of different 
geographic regions.

This study shows that the use of ML models for the 
development of data-driven short-term seismicity 
forecasting approaches shows some promise, as their 
pattern recognition ability can be used to uncover 
relationships hidden within the wealth of information 
in earthquake catalogues. However, in order for ML 
models to be efficient and achieve generalisation, they 
need to be provided with a diverse and adequately sized 
high-quality training set. Standard catalogues, which 
are available for longer terms, have relatively large mag-
nitudes of completeness and are thus missing informa-
tion that would be valuable for training ML models. 
The wealth of information that is present in high-
resolution catalogues could potentially prove useful 
for building better ML forecasting models. However, 
their limited availability currently prevents training 
ML models exclusively on high-resolution catalogues. 
To quantify the impact of such datasets on forecast-
ing performance, we need access to long-duration and 
high-accuracy ML catalogues. This will potentially 
enable the development of forecasting models that are 
capable of understanding triggering patterns of spon-
taneous events linked to cascading sequences  (Ells-
worth and Bulut 2018). The advantages for operational 
environments are important: the real- or near real-
time development of ML catalogues, coupled with 

Table 14  Exploring how the use of different types of input maps 
influences performance: Evaluation of SmaAt-UNet performance 
when trained and tested on the bulk catalogue dataset using 
rate, rate+magnitude and rate+magnitude+depth maps. 
BGS©UKRI 2025

Evaluation 
metric

SmaAt-UNet 
(rate)

SmaAt-UNet 
(rate+mag)

SmaAt-UNet 
(rate+mag+depth)

Accuracy ↑ 0.996 0.997 0.997

Precision ↑ 0.927 0.946 0.956

Recall ↑ 0.787 0.819 0.840

F1 score ↑ 0.851 0.878 0.894

CSI ↑ 0.740 0.782 0.808

FAR ↓ 0.073 0.054 0.044

ROC AUC ↑ 0.893 0.909 0.920

PRC AUC ↑ 0.858 0.884 0.899

MAE ( µ , σ ) ↓ 0.084, 0.219 0.070, 0.159 0.063, 0.137

RMSE ( µ , σ ) ↓ 0.277, 0.711 0.235, 0.537 0.214, 0.474

Rejected δ1 ↓ 22.06% 24.92% 23.67%

Rejected δ2 ↓ 7.26% 5.48% 4.67%
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computationally economical ML forecast models (such 
as SmaAt-UNet), will lead to improved understanding 
and tracking of the evolution of seismic crises.
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