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Abstract

Zinc (Zn) deficiency affects over 30% of the global population, with the highest burdens in
developing countries reliant on cereal-based diets. As a major dietary staple in regions such
as Sub-Saharan Africa and Latin America, common bean (Phaseolus vulgaris L.) represents
a promising vehicle for addressing hidden hunger. This review critically evaluates the
efficacy of various strategies to enhance Zn concentration in common bean, ranging from
agronomic to genetic manipulation, and proposes promising strategies for biofortifying
common bean in developing countries that are resource- and technology-limited. Bio-
fortification strategies include agronomic practices, conventional breeding, and genetic
engineering, each with distinct strengths and limitations. Agronomic methods such as
soil and foliar fertilization can rapidly increase micronutrient content, but they require
recurrent costs and may not be sustainable for smallholders without subsidies. Genetic
engineering, particularly transgenic approaches, can significantly boost Zn levels; however,
regulatory hurdles, cost of production, and public acceptance remain significant obstacles
to widespread adoption. Conventional breeding is secure and widely adopted, but is time-
consuming and limited by genetic diversity, making it less precise and slower than genetic
engineering. We argue for a context-specific and integrated biofortification framework that
prioritizes agronomic interventions such as biofertilizer, seed priming, soil Zn application,
and foliar Zn application as approaches for quick results. Moderate- to long-term progress
towards a biofortified common bean can be achieved using conventional breeding methods
by selecting for local germplasm that accumulates higher Zn amounts in grain. On the
other hand, genetic engineering is best for rapid, targeted nutrient enhancement where
genetic diversity is lacking, but faces regulatory and acceptance challenges. We recommend
that policymakers prioritize frameworks that harmonize these approaches, improve com-
munication and education regarding the benefits of biofortified crop produce, subsidize
and strengthen biofortified seed systems, and promote soil health initiatives.

Keywords: hidden hunger; agronomic biofortification; genetic biofortification; human
health
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1. Introduction

Common bean (Phaseolus vulgaris L.) is a key agronomic crop cultivated globally and
plays a critical role in ensuring food security, improving nutrition, and reducing poverty [1].
This is particularly true in developing countries like Malawi, where beans are a staple
food, with daily consumption reaching up to 107 g [2—4]. Therefore, the composition and
nutritional concentrations of common bean have a substantial impact on human health [5,6].
Zinc content in the edible parts of the crop mainly depends on plant acquisition efficiency,
Zn availability in the soil, and internal remobilization [7-9]. Zinc deficiency in agricultural
soils is considered to be the most geographically widespread micronutrient deficiency.
Consequently, low Zn in edible parts in extreme cases leads to manifestations of hidden
hunger [10,11]. As the population of developing countries is increasing alarmingly, the
condition will be even more serious than expected in the near future if no urgent remedial
options are deployed to address hidden hunger. Some of the effective options to solve
the current predicament are supplementation, dietary diversification, fortification, and
biofortification [12]. We also acknowledge that a problem so widespread needs more
than just one set of solutions or interventions to have an appreciable impact. Figure 1
summarizes the need for biofortification as a viable alternative to tackling Zn deficiency in
developing countries.

Need for Common Bean Biofortification in Developing countries

ficiency affects ~2 billion people globally.
beans are a staple food in Sub-Saharan
Africa and South Asia
Regular varieties . :
have 18-25 mg/kg Biofortified beans
Zn, often below {e.g., NUA4S) show
50-60% more Zn.

dietary needs.

Benefits:

- Better child/maternal nutrition.

- 7-9% stunting reduction .

- Low-cost and adaptable via local seed systems.

Figure 1. The need for common bean biofortification in developing countries.

Copenhagen Consensus in 2008 ranked biofortification among the top five most cost-
effective interventions to combat hidden hunger [13]. The underlying rationale is that
millions of people in resource-poor settings cannot afford a varied diet rich in micronu-
trients. Biofortification involves enhancing the nutritional quality of food crops through
biological means in a cost-effective and sustainable manner [14,15]. This can be achieved
through either genetic (conventional plant breeding, genetic modification, and omics-
driven) or agronomic approaches, which involve the use of micronutrient fertilizers and
nutrient priming.

Zinc plays crucial biological roles, functioning as a catalyst, a structural component,
and a regulatory ion [16]. The recommended daily intake of Zn ranges from 8 to 11 mg/day
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for adults and 5 mg/day to 8 mg/day for children, depending on age and gender [17].
However, in many developing countries, this recommendation is often unmet due to diets
that contain lower Zn content [18]. This has led to acute Zn deficiency in many populations.
For instance, while the global Zn deficiency rate is 33%, the prevalence in developing
countries like Malawi and Ethiopia is as high as 62% and 81%, respectively [19,20]. Inade-
quate Zn intake results in physiological disorders impacting the immune, gastrointestinal,
epidermal, central nervous, skeletal, and reproductive systems [21,22]. It is, therefore, vital
that Zn levels in foods are increased to improve human and animal health. Some studies
indicate that Zn enrichment is possible through Zn fertilization, and the magnitude of this
boost depends on the time of application, crop, and the cultivar grown [23,24]. Researchers
around the world have already shown that vitamin A, Fe, and Zn deficiencies may be
overcome through biofortification of staple food crops [15,18,25-31].

Despite the growing literature on Zn biofortification, most reviews treat agronomic
and genetic approaches as distinct or competing strategies. This review addresses a critical
and under-explored gap by presenting a novel, integrative analysis of Zn biofortification
strategies in common beans, evaluating both agronomic and genetic methods within a
unified comparative framework. It assesses their relative effectiveness, scalability, and
alignment with sustainability pillars such as equity, environmental impact, and long-
term nutritional outcomes, particularly in resource-constrained settings where soil and
dietary Zn deficiencies intersect. Specifically, it addresses the following research questions:
(i) Which biofortification approaches are most effective for increasing Zn content in com-
mon beans? and (ii) How do these approaches compare in terms of feasibility in developing
countries? By filling this critical gap, the review offers practical insights for breeding
programs, policy development, and research targeting micronutrient malnutrition in vul-
nerable populations.

The remainder of this review is structured as follows: Section 2 details the biofortifica-
tion methods; Section 3 presents a comparative evaluation of biofortification approaches;
Section 4 discusses the status of biofortification in developing countries; Section 5 pro-
poses promising implementation strategies to enhance biofortification of common bean in
developing countries; and Section 6 concludes with research gaps and policy implications.

2. Biofortification Methods

Biofortification, which is the process of enhancing micronutrient content and availabil-
ity in edible parts of crops during crop cultivation, is a more sustainable approach that is
producing promising results when used alongside nutrition programs [15]. Biofortification
strategies include agronomic practices, conventional breeding, genetic engineering, and
Omics-driven approaches. While biofortification and other approaches are valuable tools
in addressing hidden hunger, no single solution can fully resolve the issue on its own.

2.1. Agronomic Biofortification

Agronomic biofortification utilizes farming practices that increase Zn bioavailability
and uptake in plants and specifically in edible parts of food crops [29,32]. This method is
particularly important in regions where soil conditions, either chemical or physical, do not
restrict Zn availability to plants [14]. The loading to the edible parts takes place either by
direct uptake from the soil or by remobilization within the plant. Various agronomic biofor-
tification techniques have been extensively tested for their effectiveness on common bean
across different regions worldwide [14,18,29,31,33-35]. Among these, the most prominent
methods include soil application, foliar application, and seed priming (Table 1).
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Table 1. Effect of agronomic biofortification methods on Zn concentration (%) in common beans
across countries.

Zinc

Alla\;[)glait%agfjon AppIiiaCtiﬁon Fe[rjt;leiéer (gagsiléll% ( mgiﬂgl_l) % Increase Country Reference
applsi‘gialﬁ on  8kg/ha  Zincsulphate 07 464 8.7 Brazil [36]
applsi(c);lti on 15 kg/ha Zinc sulphate 36.6 58.2 59.0 Tanzania [37]
applsi(c)ialti on 20 kg/ha Zinc sulphate 23.0 28.7 24.8 Kenya [38]
applsigialti on 7.5kg/ha Zinc sulphate 27.0 43.0 59.3 Kenya [27]
ap}fﬁg;éon 12kg/ha  Zinc sulphate 153 20.7 35.3 Brazil [34]
apgl(i)g;tli on 4kg/ha Zinc sulphate 68 78 15 (;Llén%,a Irrrlgiil [39]
apgﬁii;ltli on 0.6 kg/ha Zinc sulphate 11.6 29.0 150 Brazil [40]

Seed priming 0.7 mg/mL %}r} ﬁﬂﬂg&iﬂ 16.4 45.1 175 Iran [41]

Soil application of micronutrients, considered one of the simplest biofortification
techniques, is more common in cereal crops than in pulses [42]. Zn soil application is one
of the viable alternatives that can be deployed to boost Zn assimilation in plant tissues
and grains, especially in Zn-deficient soils. In addition, soil Zn application improves
different physiological functions and results in better growth and high productivity [43].
The practice of adding fertilizers directly to the soil is both one of the oldest and the most
common methods of enriching soils with essential nutrients. Today, it remains the most
widely adopted approach for enriching crops, with an estimated 30-40% of farmers globally
employing some form of soil enrichment, such as micronutrient fertilization with Zn and
Fe, though adoption rates vary by region [44]. The popularity of soil application is due to
its simplicity, cost-effectiveness, and scalability, making it the go-to solution for addressing
nutrient deficiencies in crops [45]. We are cognizant that there are still some gaps in the
efficacy of this approach in different conditions, such as the contribution of soil properties,
root system architecture, method and rate of application, and time of application to the
response of crops, especially Zn accumulation in edible parts. There is a need to address
these gaps, and we anticipate that if these gaps can be addressed, it will provide guidance
for enriching common bean grain Zn and optimizing Zn fertilization practices in common
bean production, thereby addressing Zn hidden hunger in populations relying on common
bean-based diets.

Foliar application of micronutrients involves directly applying nutrient solutions to
the leaves, where they are absorbed and translocated to edible parts such as grains, fruits,
and leaves [46]. This method is particularly effective for delivering micronutrients like
Zn by bypassing soil-related limitations such as poor nutrient availability or adverse pH
conditions [35]. Applications are typically carried out using techniques such as spray
booms, mist sprayers, or aerial spraying. The success of foliar application, however,
depends on factors including plant age, timing of application, weather conditions, and the
crop’s absorption efficiency [47]. In wheat, for instance, applying Zn later than the early
milking stage reduced maximum grain Zn concentrations by 45% [48]. Although foliar
application can rapidly correct nutrient deficiencies, it also presents challenges such as
the need for multiple applications during the growing season and the risk of leaf burn if
improperly applied [49,50].



Sustainability 2025, 17, 8510

50f 16

Zinc seed priming, which involves soaking seeds in Zn-containing solutions like zinc
sulfate (ZnSOy) before planting, is an effective technique for improving seed germination,
seedling vigor, root development, and crop Zn content [51,52]. It offers a cost-effective
and easily adoptable option for smallholder farmers, requiring fewer inputs than foliar or
soil fertilization [53]. The effectiveness of seed priming, however, depends on optimizing
factors such as Zn concentration and soaking duration, as improper application can damage
seeds or reduce nutrient uptake [54]. When properly managed, Zn seed priming provides a
scalable solution for enhancing both crop productivity and nutritional quality, particularly
in Zn-deficient regions. Recent advances indicate that seed priming with Zn oxide nanopar-
ticles (ZnO NPs) offers superior biofortification benefits due to their enhanced solubility
and bioavailability compared to conventional Zn sources. This approach has demonstrated
notable potential in improving Zn uptake and overall plant performance. Functional-
ized ZnO NPs significantly increased Zn accumulation and biomass in wheat seedlings
without compromising germination [55]. In rice, ZnO NPs enhanced Zn translocation,
yield, and tolerance to moisture stress [56]. Similarly, ZnO NPs applied as nano-fertilizers
elevated grain Zn concentrations, highlighting their value in micronutrient enrichment
strategies [57]. Seed priming, when properly implemented, could be a scalable and low-cost
agronomic biofortification strategy, particularly effective for smallholder farming systems
in low-resource contexts.

The discovery of nanotechnology brings new prospects to increase food quality and
safety through nano-enabled delivery systems. The utilization of nano-based fertilizers
to improve biofortification has gained much attention in the last five years, offering a
hopeful and optimistic outlook. Using nano-fertilizers for the biofortification of crops can
be considered a promising method to deliver micronutrients for plants, surpassing the
constraints of classic breeding. However, we are proposing comprehensive research on the
use of nano-fertilizers in the agronomic biofortification of common bean and analyzing
the beneficial impact of the use of nano-fertilizers in developing countries where this
technology is currently nonexistent.

2.2. Genetic Biofortification

The genetic biofortification directly involves improving the genetic makeup of crops
to produce desired nutritional profiles [58]. The principle behind genetic biofortification
lies in modifying or selecting plant varieties that possess a natural or enhanced ability to
take up, translocate, and store nutrients [29,56]. This is achieved through conventional
breeding and various genetic engineering tools, such as transgenic crops or gene editing.

Conventional breeding focuses on combining desirable traits from different plants
within the same or related species to create new cultivars with improved characteristics.
This method primarily harnesses naturally occurring genetic variation to increase Zn
content in crops by crossbreeding or selecting bean varieties that naturally accumulate
higher levels of Zn [14]. This approach has been widely used to develop high-Zn common
bean varieties taking advantage of the natural Zn variation within the genus, which ranges
from 25 to 60 mg kg ! [59]. Researchers have successfully bred Zn-biofortified beans that
can provide up to 70% of the recommended daily allowance (RDA) for Zn when consumed
regularly [60]. These biofortified beans have been released in countries including Rwanda,
Malawi, and the Democratic Republic of Congo, where beans are a staple food and Zn
deficiency is a significant public health issue (Table 2).
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Table 2. Zinc-biofortified common bean varieties and their countries of release.

Variety Countries of Release Zn Content (mg kg—1) References

Rwanda, Colombia, Democratic
NUA35 Republic of Congo, Malawi 31-41 [61]

Rwanda, Democratic Republic of

NUA45 Congq, Kenya, Malawi, Zambia, 10-40 [62]
Eswatini, Mauritius,
Mozambique, and Zimbabwe

RWR 2245 gzvsgiaﬁlgaerr:i(;cratic Republic of 34 [63]
CODMLB 001 Democratic Republic of Congo * [64]
MAC 44 Burundi 32 [65]
RWR 1129 Burundi * [65]

* Data not available.

Marker-assisted selection (MAS) improves the efficiency and precision of conventional
breeding by allowing breeders to identify and select plants that carry genes associated
with higher Zn accumulation, significantly accelerating the breeding process [66]. For Zn
biofortification in common beans, several key genes involved in Zn uptake, transport, and
accumulation have been identified and are now being utilized in marker-assisted selection
(MAS) to accelerate the development of high-Zn genotypes. By leveraging genetic insights
through marker-assisted selection (MAS), breeders have significantly shortened the time
required to develop Zn-biofortified bean varieties from 8 to 10 years in conventional breed-
ing programs to approximately 4-5 years while achieving substantially higher grain Zn
concentrations [67]. However, MAS requires significant investment in molecular research
and identifying quantitative trait loci (QTLs), which can be a challenge in resource-poor
regions [68].

Genetic engineering focuses on introducing or modifying specific genes in a plant’s
genome to enhance Zn absorption from the soil, its transport within the plant, and accumu-
lation in edible parts such as seeds [69]. Unlike conventional breeding and marker-assisted
selection, which rely on natural genetic variability, genetic engineering enables the introduc-
tion of novel traits from other organisms, including bacteria and plants [70]. It often targets
genes from the Zn/Fe-regulated transporter-like Protein (ZIP) family to improve Zn up-
take and transport [69]. Overexpressing these transporters aims to increase Zn movement
into seeds. Although genetic engineering offers considerable potential for micronutri-
ent enhancement, there are currently no commercially released Zn-biofortified common
bean varieties developed through genetic engineering. This is primarily due to challenges
associated with reproducibility and limited success in achieving efficient in vitro regenera-
tion. However, key genes regulating Zn uptake and transport, such as Phvul.011G035700
(bZ1P23-like) and Phvul.003G086500 (OPT3-like), have been identified [71]. While the
approach requires substantial investment, it offers a faster route to developing high-Zn
bean varieties compared to traditional methods [72].

Omics-driven biofortification has emerged as a powerful approach to enhance the mi-
cronutrient density of common bean, a key dietary source of protein and minerals in many
developing countries. Advances in genomics have enabled the identification of quantitative
trait loci (QTLs) and candidate genes, such as members of the PvZIP transporter family, that
regulate Zn and Fe accumulation in seeds [73]. Transcriptomic studies, using RNA sequenc-
ing, have revealed differential expression patterns of genes involved in metal transport and
chelation [74] while proteomic analyses have identified metal-binding proteins and trans-
porters that influence nutrient mobilization during seed development [75]. Metabolomics
has provided insights into the composition of organic acids, phenolics, and antinutrients
such as phytates, informing strategies to improve mineral bioavailability. Complementary
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ionomic profiling enables simultaneous quantification of multiple elements, facilitating
multi-nutrient breeding without compromising yield. Integrating these omics platforms
allows for precise, data-driven selection of nutrient-dense genotypes and accelerates breed-
ing cycles, offering a sustainable pathway to combat micronutrient deficiencies through
biofortified common bean varieties.

3. Comparative Evaluation of Biofortification Approaches

Biofortification approaches to enhance crop nutrition include agronomic practices,
conventional breeding, and genetic engineering, each with distinct strengths and limitations.
Each approach has its merits and can be applied based on the nutrient target and local
context. Table 3 provides a comparative overview of the biofortification approaches,
highlighting their unique characteristics, advantages, and limitations.

Table 3. Advantages and constraints of transgenic, conventional breeding, and inorganic fertilizer
approaches for zinc biofortification.

Transgenic Breeding

Conventional Breeding

Agronomic Biofortification

Consideration - — - — - ——
Benefit Limitation Benefit Limitation Benefit Limitation
Works where Works where the
Geographical soils inherently soils are Works even
A : . where soils are
applicability have Zn inherently rich Zn-deficient
minerals in zinc
Relatively Cheaper
Cost of Relativel cheaper compared to
developing ox o compared to genetic and
pensive ¢ a
technology genetic conventional
biofortification breeding
Application cost ~ Cheaper Cheaper Costly
e Mostly not . .
Acceptability acceptable Easily acceptable Easily acceptable
Slower process,
Takes several requiring
Farmers’ years before a multiple Less
Accessibility cultivar is generations to time-consuming
Time developed and achieve approach
assessed significant zinc
biofortification
Very sustainable,
as the same
Sustainability genetic material Sustainable Not sustainable

can be used for

years

The pros and cons of using agronomic and genetic biofortification are summarized in
Table 3. In the context of adopting agronomic and genetic biofortification, it is important to
realize that farmers cultivate crops for two primary reasons: personal consumption and
sale. When farmers are well-informed about the advantages of Zn biofortification, or any
biofortification, they might opt to grow biofortified varieties or consider using Zn fertilizer
if they are cultivating for home consumption. However, when production is intended for
sale, the preference is for a popular biofortified variety in high demand in the market, given
that Zn fortifications are not physically detectable or discernible by taste [76]. This lack
of physical verification or taste distinction provides little incentive for biofortification, as
buyers cannot ascertain whether the crop has been fortified. It is for this reason that in many
countries, prices for biofortified varieties are at par with non-biofortified varieties [77,78]. In
such a case, farmers are more likely to choose agronomic biofortification if Zn boosts yield
or opt for genetic biofortification if the variety has better yield or other superior attributes.
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Integrating high-yield potential with improved nutritional quality, especially through
conventional breeding methods, poses a significant challenge [79,80]. The complexity arises
from Zn concentration in grains, which is a multifaceted polygenic trait with numerous
component traits. This complexity is further compounded by the fact that elevating mineral
concentrations may sometimes result in a reduction in other desirable traits [81].

Consumer preferences encompass various factors, including safety, taste, visual appeal,
and nutritional aspects. Currently, only a limited number of Zn-biofortified varieties
have been developed and released [12], leading to a scarcity of choices for consumers.
This scarcity may omit traits valued by consumers, such as yield. While there is limited
scientific evidence suggesting that foods developed through transgenic biotechnology
may have detrimental effects on human health, the majority of criticism revolves around
concerns related to the safety and ethics of the approach [82]. In some countries, consumers
were only inclined to buy transgenic foods when offered at a discounted price [83]. This
underscores the specific value that customers associate with a transgenic crop. In contrast,
agronomic biofortification presents a different option. This approach effectively bridges
the gap between consumer preferences and the pressing need for improved nutrition. It
accommodates consumers’ desires for their favored crop varieties while simultaneously
addressing the imperative of advancing nutrition, thus providing a promising path toward
the wider acceptance and adoption of biofortified crops within agricultural practices.

The cost of implementing agronomic and genetic biofortification can be examined from
both research and farmer perspectives. At the research level, genetic biofortification can be
expensive compared to agronomic biofortification due to the complex processes involved
and the number of years that a single genotype is evaluated before release. Research costs
associated with transgenic biofortification, for example, can range from USD 1 million to
USD 10 million per variety compared to only USD 50,000 to USD 500,000 per nutrient in
agronomic biofortification [84]. A large upfront investment is therefore required for genetic
biofortification, but once germplasm has been developed, benefits can be realized across
countries with only limited additional costs and very little or even no added cost compared
to non-biofortified material on the part of farmers [85].

In contrast, agronomic biofortification differs in that profit-making organizations
are generally responsible for producing the essential fertilizers. Consequently, farmers
shoulder the overhead costs incurred by the manufacturing companies. This may further
be compounded by additional application costs if Zn fertilizers are not integrated with the
fertilizers commonly used to enhance crop productivity. In the long term, the utilization
of fertilizers for crop biofortification proves to be a costly endeavor. However, multiple
studies have highlighted the residual effect of Zn fertilizer in soil for up to 10 years, and
that application is not needed every year [86]. This implies that farmers may not need
to apply Zn fertilizer to their soil each year if their goal is to biofortify their crops. This
approach can be both cost-effective and environmentally conscious, lessening the annual
financial burden on farmers and reducing overall fertilizer usage.

Successful breeding programs aimed at biofortifying food crops with Zn are dependent
on the availability of Zn in the soil. Genetic biofortification assumes that the soil has
sufficient soil Zn for mineral-rich crop growth, as it focuses on enhancing plant absorption,
like modifying root architecture [30]. However, nearly 50% of global cereal-growing areas
have low plant-available Zn in their soils [45]. In such regions, achieving desired grain Zn
accumulation may be unfeasible, necessitating Zn supplementation through fertilizer. In
Pakistan, a biofortified Zn wheat variety, Zincol-2016, when grown alongside a reference
variety in Zn-deficient soil at two sites, did not show a higher grain Zn concentration
compared to the reference variety. Nevertheless, the application of Zn-rich fertilizers
resulted in a significant increase in grain Zn concentration for all varieties at all sites [87].
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Conversely, soil factors like pH, organic matter, and nutrient concentrations, as well as
microbial activity, can hinder Zn availability even in Zn-rich soils [88]. In these cases, relying
solely on fertilizer may not be suitable, and farmers can explore alternative agronomic
biofortification methods like manure or beneficial microorganism applications to address
complex challenges in effective Zn biofortification.

4. Status of Biofortification in Developing Countries: Case of Common
Bean in Malawi

Biofortification of common bean in Malawi has progressed from early germplasm
releases to broader value-chain integration, though challenges remain in awareness and
seed systems (Figure 2). High Fe and Zn bean varieties (e.g., NUA45, NUA59) were
first introduced and released in 2009, and additional varieties have been added to the
national pipeline, anchoring genetic biofortification efforts. Programmatic scale-up acceler-
ated through partnerships between national research (DARS), HarvestPlus programme,
PABRA /CGIAR partners, and donor projects, which have supported seed multiplication,
demonstration plots, and incorporation of high Fe and Zn beans into home-grown school
feeding and other institutional procurement models [89]. Recent delivery models report
hundreds of thousands of households reached with biofortified seeds and significant in-
stitutional uptake through school feeding pilots, while aggregated regional initiatives
under PABRA / Alliance and partners documented rapid expansion of high-iron bean dis-
tribution across several African countries, including Malawi. Remaining barriers to full
impact include low consumer and farmer awareness of the nutritional benefits, limited
early-generation seed availability, behavior-change needs for utilization, and the need
to strengthen commercial seed and processing markets to ensure sustainable demand.
Together, these advances show that Malawi has moved from proof-of-concept to scaling,
but continued investment in seed systems, demand creation, and institutional procurement
is needed to realize the full nutritional impact of biofortified beans nationally. On the
other hand, agronomic biofortification is rarely practiced, as most farmers apply manure
or mineral fertilizers primarily to boost crop yields rather than to improve grain micronu-
trient concentrations. The most commonly used fertilizers are NPK formulations such as
23:10:5+65+1Zn, along with urea and calcium ammonium nitrate (CAN). Even when the
NPK formulation contains 1% Zn, the focus remains on yield improvement rather than
enhancing grain Zn content. In general, the current status of biofortification in developing
countries shows predominant reliance on conventional breeding, with minimal adoption
of genetic engineering and omics-based strategies due to technological, regulatory, and
infrastructural constraints (Figure 2).

Conventional
breeding

Figure 2. Current status of biofortification approaches in developing countries, showing predominant
reliance on conventional breeding, with minimal adoption of genetic engineering and omics-based
strategies due to technological, regulatory, and infrastructural constraints.
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5. Promising Implementation Strategies to Enhance Biofortification of
Common Bean in Developing Countries

Promising implementation strategies to enhance biofortification of common bean in
developing countries require a multi-pronged approach that bridges agricultural inno-
vation with nutrition-sensitive interventions (Figure 3). Strengthening the seed supply
chain, development and deployment of biofertilizers for Zn biofortification, selecting lo-
cal germplasm of beans for Zn biofortification, and seed priming, are being proposed
as promising and well-suited to developing countries because are low-cost, simple, and
effective technique that require minimal infrastructure and equipment.

[ Need for Bean in ]

m ~2 billion people globally.
beans are a staple food in Sub-Saharan

Africa and South Asia

&5 >

Regular varieties
Rave 1628 me/kg Biofortified beans
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engineering  developed faster costly to develop . Strengthen seed systems
Omics- Highly precise and target
driven specific nutrient pathaways

Figure 3. Overview of the need, current status, comparison of approaches, and promising strategies
for common bean biofortification in developing countries.

Strengthening the seed supply chain of biofortified seed: The major drawback to the
adoption of conventionally bred varieties in developing countries is weak seed systems,
especially the lack of early generation seed (EGS). Strengthening early seed generation pro-
duction is a critical step for scaling biofortification initiatives and ensuring the sustainable
delivery of nutrient-rich crop varieties to farming communities. Early generation seed,,
comprising breeder and foundation seed, forms the backbone of the seed system. However,
in many developing countries, production is constrained by inadequate capacity, limited
infrastructure, and weak linkages between research institutions and seed multipliers. For
biofortified varieties such as zinc-rich common beans, delays or bottlenecks in EGS produc-
tion lead to shortages of certified seed, slowing adoption rates among farmers. Strategic
interventions are needed to enhance EGS systems, including investment in modern seed
production facilities, strengthening breeder—foundation seed pipelines, training seed pro-
ducers on quality standards, and developing public—private partnerships that incentivize
commercial seed companies to participate in biofortified seed multiplication. Policy sup-
port and targeted funding mechanisms can further stabilize EGS supply, ensuring timely
and sufficient availability of planting material to meet growing demand for biofortified
crops and, ultimately, improve nutritional outcomes at scale [90,91].

The development and deployment of biofertilizers for Zn biofortification in beans
offers a sustainable and cost-effective strategy to address widespread Zn deficiency in both
soils and human diets, particularly in low- and middle-income countries. Biofertilizers
containing Zn-solubilizing microorganisms, such as certain strains of Pseudomonas, Bacillus,
and arbuscular mycorrhizal fungi, enhance the bioavailability of Zn in the rhizosphere
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by converting insoluble Zn compounds into plant-accessible forms and improving root
absorption efficiency. When integrated into bean production systems, these microbial
inoculants not only contribute to increased Zn content in seeds but also support overall
plant growth, yield stability, and soil health. Recent advances in formulation technologies
and carrier materials have improved biofertilizer shelf life and field performance, making
them more viable for widespread adoption. Successful deployment requires a multi-
pronged approach, including the identification of locally adapted microbial strains, rigorous
field validation under diverse agroecological conditions, and the establishment of farmer-
friendly delivery systems. Linking biofertilizer production with national biofortification
programs can accelerate the scaling of Zn-enriched bean varieties, complementing genetic
biofortification and contributing to improved nutritional security [92,93].

Selecting local germplasm of beans for Zn biofortification is a crucial first step toward
developing varieties that are both nutrient-dense and well adapted to target production
environments. Local landraces and farmer-preferred varieties often harbor significant
genetic diversity for seed Zn concentration, as well as traits related to stress tolerance, yield
stability, and consumer acceptance. Screening such germplasm using high-throughput
phenotyping and molecular tools enables breeders to identify promising parental lines
that combine elevated Zn levels with desirable agronomic and market attributes. This
approach ensures that biofortified varieties retain the cooking quality, taste, and seed
color preferred by local communities, thereby increasing adoption potential. Moreover,
incorporating locally adapted germplasm into breeding pipelines enhances resilience to
biotic and abiotic stresses prevalent in smallholder production systems, reducing reliance
on external inputs. Integrating conventional selection with genomic-assisted breeding
accelerates the identification and pyramiding of Zn-enhancing alleles, paving the way for
more efficient and targeted biofortification programs [94].

Another promising approach is seed priming, which is particularly well-suited to
developing countries because it is a low-cost, simple, and effective technique that requires
minimal infrastructure and equipment, making it readily accessible to smallholder farmers.
Unlike full-field soil or foliar applications, seed priming uses very small quantities of Zn
fertilizers or bioinoculants, thereby reducing costs while improving nutrient use efficiency
through early uptake and minimizing losses via leaching or soil fixation. The practice
accelerates germination and promotes early seedling vigor and establishment, which is
especially advantageous in regions with short or erratic growing seasons. Moreover,
seed priming can be implemented on-farm using locally available materials, allowing for
seamless integration into existing seed systems without the need for specialized services.
When integrated with genetic biofortification and complementary agronomic practices, Zn
seed priming offers a synergistic pathway to improving both bean productivity and dietary
Zn intake in vulnerable populations.

6. Conclusions

Zinc deficiency remains a major nutritional challenge in developing countries, par-
ticularly where common beans are a primary food source. Agronomic biofortification
offers an immediate, practical, and scalable solution to increase grain Zn concentration,
especially in Zn-deficient soils, while genetic approaches have longer-term potential. How-
ever, for genetic biofortification to succeed, it must be supported by adequate soil Zn
levels, making agronomic interventions an essential precursor. Future research should aim
to optimize agronomic biofortification strategies for different agro-ecological conditions,
evaluate the cost-effectiveness of locally available Zn sources, and assess long-term impacts
on soil health. Integrating agronomic and genetic approaches, alongside understanding
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farmer adoption, economic returns, and consumer acceptance, will be critical for scaling
up interventions.

Promising implementation strategies to enhance biofortification of common bean
in developing countries include strengthening the seed supply chain, development and
deployment of biofertilizers for Zn biofortification, selecting local germplasm of beans for
Zn biofortification, and seed priming, are being proposed as promising and well-suited
to developing countries because are low-cost, simple, and effective technique that require
minimal infrastructure and equipment

While the approaches discussed in this review are focused on common beans, their
direct applicability to other crops should be interpreted with caution due to species-specific
physiological and environmental interactions. Therefore, further research across a wider
range of crops and production systems is needed to ensure broad applicability. Strength-
ening policy frameworks, extension systems, and input delivery chains will ultimately
determine the success of these biofortification strategies in combating hidden hunger and
improving nutritional security.
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