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 A B S T R A C T

This study presents a comprehensive synthesis of machine learning (ML) techniques applied to groundwater 
level (GWL) prediction, focusing on model architectures, feature selection methods, hyperparameter tuning, 
optimization algorithms, and clustering techniques. A total of 223 peer-reviewed articles were systematically 
reviewed using the PRISMA framework to guide study identification, inclusion, and exclusion. Widely used 
models include artificial neural networks (ANN), support vector machines (SVM), long short-term memory 
networks (LSTM), and random forests (RF). More recent studies increasingly employ hybrid approaches 
that integrate wavelet transforms, signal decomposition, and optimization techniques such as particle swarm 
optimization (PSO), genetic algorithms (GA), and ant colony optimization (ACO). Transformer-based models 
have also begun to emerge as promising tools in this domain. A central focus of this review is feature selection, 
which remains one of the most underdeveloped areas in GWL modeling. Most studies rely on simple filter 
methods like autocorrelation and mutual information. While SHapley Additive exPlanations (SHAP) has gained 
some traction, more advanced techniques, such as recursive feature elimination (RFE), forward feature selection 
(FFS), factor analysis (FA), and self-organizing maps (SOM), are rarely used. Notably, no study systematically 
compared multiple feature selection strategies, limiting insights into their impact on model performance. 
Scientometric analysis shows that Iran, China, India, and the United States contribute the most impactful 
research. Despite strong predictive outcomes, trial-and-error remains the dominant approach to hyperparameter 
tuning. The review emphasizes the need for more systematic, interpretable, and generalizable ML approaches 
to support robust groundwater level (GWL) forecasting.
1. Introduction

Groundwater is a critical global resource that supplies clean water 
to more than two billion people (Famiglietti, 2014). However, increas-
ing demand and unsustainable exploitation, particularly in developing 
regions, have strained aquifers, with projections indicating that nearly 
20% are already overexploited and most could face the same fate by 
2050 (Piesse, 2020). Groundwater levels (GWL), the depth from the 
surface to the saturated zone, are vital indicators of aquifer health and 
are measured through monitoring wells. Analyzing GWL fluctuations is 
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crucial for managing groundwater resources amidst growing demand 
and climate change impacts (Butler et al., 2013). 

Traditional groundwater modeling often relies on conceptual or 
physically based models such as MODFLOW and HydroGeoSphere
(Brunner and Simmons, 2012; Chakraborty et al., 2020; Dehghani 
et al., 2022). These physically based models require extensive data 
on aquifer properties like transmissivity, hydraulic conductivity, and 
recharge rates, datasets that are frequently unavailable in data-scarce or 
poorly instrumented regions. Machine learning (ML) has emerged as a 
robust alternative for modeling GWL dynamics due to its ability to learn 
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complex, non-linear relationships directly from observed data (Nourani 
et al., 2011; Kalu et al., 2022; Maiti and Tiwari, 2014). A wide 
array of ML techniques, ranging from traditional methods like Support 
Vector Machines (SVMs) and Artificial Neural Networks (ANNs) to 
deep learning architectures such as Long Short-Term Memory (LSTM) 
and Deep Belief Networks (DBNs), have been deployed with promising 
results. For instance, Nourani et al. (2011) used a hybrid ANN model to 
predict GWLs in East Azerbaijan, Iran, while Kalu et al. (2022) applied 
a DBN to model groundwater fluctuations in southern Africa.

While our focus is on ML for GWL forecasting, ML has also been 
increasingly applied in related domains such as groundwater poten-
tial mapping and vulnerability assessment (e.g., delineating recharge 
zones using ML-MCDM models (Kanji and Das, 2025) and improving 
DRASTIC-based vulnerability indices (Dasgupta et al., 2024)). In paral-
lel, non-ML statistical and GIS-based methods have also been employed 
for groundwater stress mapping, such as the GIS-statistical workflows 
presented by John and Das (2020) and John et al. (2023). Together, 
these applications highlight the breadth of data-driven approaches 
being explored in hydrogeology.

However, despite these advances, ML applications in GWL mod-
eling still face critical limitations. Overfitting, underfitting, and poor 
generalization, particularly in deep learning frameworks, remain recur-
ring issues, often exacerbated by the inclusion of noisy or irrelevant 
input features (Kuhn et al., 2013a; Sharghi et al., 2022). This high-
lights the vital role of feature selection: identifying a minimal yet 
informative subset of input variables that preserves predictive perfor-
mance while reducing model complexity. Inadequate feature selection 
not only inflates computational costs, but can also obscure physical 
interpretability and worsen generalization in unseen conditions.

In other scientific fields such as genomics, remote sensing, and 
finance, systematic feature selection has been shown to substantially 
improve model performance and transparency (Pudjihartono et al., 
2022; Dokeroglu et al., 2022; Iranzad and Liu, 2024). However, in 
GWL modeling, no prior review has comprehensively examined the 
methodologies and implications of feature selection despite its proven 
importance. Existing reviews in hydrology and groundwater model-
ing (Solomatine, 2006; Wu et al., 2014; Rajaee et al., 2019; Tao et al., 
2022; Boo et al., 2024) tend to provide broad overviews of machine 
learning applications but often overlook critical methodological as-
pects. Specifically, they do not categorize or analyze feature selection 
methods, rarely discuss how time lags are determined, and do not 
distinguish between filter, wrapper, and embedded feature selection 
approaches.

To address this critical gap, this review provides a systematic and 
detailed assessment of ML-based groundwater level modeling, with a 
specific emphasis on the role of feature selection, model architecture, 
optimization strategies, and hyperparameter tuning. Using the PRISMA 
framework, we analyze recent peer-reviewed studies to identify trends, 
innovations, and research gaps.

This review is guided by the following core inquiries:

1. What are the most commonly employed ML models in GWL 
modeling?

2. What strategies are used for feature selection, and how do they 
affect model performance?

3. How are model architectures structured and optimized in current 
research?

4. How are hyperparameters selected and tuned across different ML 
models?

By focusing on these aspects, our review not only synthesizes exist-
ing knowledge but also provides actionable insights into constructing 
more reliable, interpretable, and efficient models for GWL prediction. 
Unlike prior reviews that focus broadly on ML adoption in hydrology, 
our work uniquely foregrounds feature selection as a methodological 
pillar, setting a new benchmark for future research in this domain. We 
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do not delve into the mathematical derivations of the models; instead, 
we focus on their design principles, input structuring, optimization 
strategies, and performance implications, offering practical value to 
both researchers and practitioners.

2. Methodology

This systematic review adopts the PRISMA framework (Liberati 
et al., 2009; Page et al., 2021) to ensure a comprehensive, unbiased 
evaluation of the research literature. Following the PRISMA flow dia-
gram, we minimized researcher bias and maintained a traceable review 
process.

The review aimed to identify the most common ML models used 
for GWL prediction, methods to determine optimal input variables, 
and techniques to fine-tune key hyperparameters to enhance model 
performance. Through this exploration, we sought to provide insights 
into factors influencing the accuracy of GWL predictions.

Key stages of the systematic review process included identification, 
screening, eligibility assessment, and full-text evaluation, as outlined 
in Fig.  1. By adhering to the PRISMA methodology, we ensured trans-
parency, rigor, and replicability, enabling a thorough analysis of the 
existing literature and meaningful conclusions.

1. Identification: Following the PRISMA conceptual framework, 
our systematic review utilized a comprehensive search strategy 
to capture relevant articles from prominent electronic databases, 
including Scopus, Science Direct, and Google Scholar. The search 
was limited to English-language publications between 2010 and 
2024, aiming to examine the contemporary applications of ML 
models in predicting groundwater levels and availability. The 
search strategy employed a carefully designed search string, 
incorporating specific terms such as (‘‘groundwater level pre-
diction’’ OR ‘‘water table prediction’’) AND (‘‘machine learning’’ 
OR ‘‘artificial intelligence’’ OR ‘‘AI’’) AND (forecasting OR mod-
eling). In total, our search yielded 426 articles in all selected 
databases, demonstrating the wide scope of literature available 
on this topic. The details of the search string can be found in 
Table  1.

2. Screening: Following the identification of relevant publications, 
key metadata, including title, keywords, abstract, DOI, publi-
cation year, and author names, was extracted and recorded in 
a Microsoft Excel spreadsheet. All articles were imported into 
Mendeley, a reference management software used to streamline 
literature organization and deduplication (Mendeley, 2022). Af-
ter removing 68 duplicate records, 358 articles were retained 
for screening. These articles were evaluated against predefined 
inclusion and exclusion criteria, resulting in the exclusion of 
62 papers whose titles or abstracts were determined to be out 
of scope. To ensure objectivity and consistency, two indepen-
dent reviewers assessed the eligibility of the remaining articles. 
In cases of disagreement or ambiguity, article titles were dis-
cussed with external experts in groundwater or machine learning 
research. Final inclusion decisions were based on consensus 
between reviewers or expert resolution when needed.

3. Eligibility criteria
Studies were included if they:

(a) Focused on the application of machine learning algo-
rithms for simulating groundwater levels and availability.

(b) Employed meteorological parameters as inputs in the 
models.

(c) Reported original research (e.g., case studies, simulations, 
empirical analyses) with sufficient methodological detail 
and performance metrics.

(d) Were published in peer-reviewed journals in English be-
tween 2010 and 2024.
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Fig. 1. The PRISMA workflow diagram.
Studies were excluded if they:

(a) Relied solely on traditional statistical or physically based 
models without ML components.

(b) Were secondary sources (reviews, editorials, opinions, 
conference abstracts, or book chapters).

(c) Did not provide sufficient methodological or results infor-
mation to assess model development and performance.

3. Results and discussion

3.1. Publication trends

As shown in Fig.  2, the application of ML for GWL prediction has 
seen a marked upward trend, particularly after 2019. Between 2010 
3 
and 2018, annual publication counts remained relatively modest, fluc-
tuating between 2 and 13 papers per year and collectively accounting 
for less than 30% of the total reviewed studies. However, from 2020, 
research activity intensified significantly. In 2022 alone, 34 studies 
were published, representing approximately 15.1% of all 223 studies 
reviewed, while 2023 saw a comparable count of 39 papers (17.5%), 
and 2024 (year-to-date) currently leads with 43 publications (19.3%). 
This steady growth reflects a growing academic and practical interest 
in leveraging ML techniques to address groundwater-related challenges. 
These findings align with recent bibliometric reviews (Afrifa et al., 
2022; Tao et al., 2022; Ahmadi et al., 2022; Boo et al., 2024), which 
also report a sharp increase after 2020 in data-driven groundwater 
modeling studies. Fig.  3 presents the distribution of total and average 
citations among the top academic publishers that contribute to the 
groundwater level (GWL) modeling literature. Elsevier emerged as the 
most influential publisher, with a total of 3191 citations, resulting in 
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Table 1
The detailed search query.
 Search query
 TITLE-ABS-KEY (‘‘roundwater AND level AND prediction’’ OR ‘‘groundwater AND level AND forecasting’’ AND ‘‘machine AND learning’’) AND PUBYEAR > 2009 AND 
PUBYEAR ≤ 2024 AND (EXCLUDE (LANGUAGE, ‘‘Chinese’’) OR EXCLUDE (LANGUAGE, ‘‘Korean’’)) AND (LIMIT-TO (EXACTKEYWORD, ‘‘Forecasting’’) OR LIMIT-TO 
(EXACTKEYWORD, ‘‘Groundwater’’) OR LIMIT-TO (EXACTKEYWORD, ‘‘Machine Learning’’) OR LIMIT-TO (EXACTKEYWORD, ‘‘Groundwater Resources’’) OR LIMIT-TO 
(EXACTKEYWORD, ‘‘Artificial Neural Network’’) OR LIMIT-TO (EXACTKEYWORD, ‘‘Rain’’) OR LIMIT-TO (EXACTKEYWORD, ‘‘Hydrology’’) OR LIMIT-TO (EXACTKEYWORD, 
‘‘Evapotranspiration’’) OR LIMIT-TO (EXACTKEYWORD, ‘‘Temperature’’) OR LIMIT-TO (EXACTKEYWORD, ‘‘Groundwater Level Fluctuation’’) OR LIMIT-TO (EXACTKEYWORD, 
‘‘Aquifer’’) OR LIMIT-TO (EXACTKEYWORD, ‘‘Evaporation’’))

 

Fig. 2. Trends in publications within the reviewed articles from 2010 to 2024.
Fig. 3. Publication outlet average normal citations.
an average of approximately 66.5 citations per study. Springer accumu-
lated 2192 citations with an average of 39.9 citations per article. MDPI 
followed with 1045 total citations (41.8 average citations per study). 
Wiley Online Library, while contributing fewer studies (6), achieved 
a higher average impact with 78.3 citations per article, indicating a 
strong influence relative to volume. Taylor & Francis, IWA Publishing 
(iwaponline.com), and Nature also demonstrated moderate to high 
average citation metrics. Notably, some specialized or lower-volume 
platforms such as Copernicus (hess.copernicus.org) and EBSCOhost 
showcased high average citations per article, although based on limited 
publication counts.

Our systematic review analyzed 223 articles, revealing distinct au-
thorship patterns and geographic distribution. Iran led with 39% of 
4 
publications, followed by China (24%) and the United States (13%), 
as shown in Fig.  4. Many studies in Iran address its dependence 
on groundwater due to limited surface water resources, highlighting 
concerns about the depletion of aquifers (Sharafati et al., 2020; Motagh 
et al., 2017; Milan et al., 2023; Arabameri et al., 2019; Moravej et al., 
2020). In general, Asia dominated the research landscape, contributing 
81.24% of the studies. In contrast, the use of ML for groundwater 
modeling in Africa remains underrepresented, with little literature 
highlighting a significant research gap in applying ML techniques to 
groundwater dynamics on the continent. Fig.  4 summarizes the geo-
graphical distribution. Fig.  5 presents a country-level co-authorship and 
a normalized citation network derived from VOSviewer. The graph re-
veals clear regional and international collaboration clusters, with India, 
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Fig. 4. Distribution of the reviewed papers based on the country of origin.
Fig. 5. Country-level co-authorship and normalized citation network for studies on machine learning-based groundwater level modeling, generated using 
VOSviewer.
Iran, and Malaysia serving as major hubs. In particular, India forms a 
distinct cluster of cooperation with countries such as Portugal, Yemen, 
and Bangladesh, while Iran exhibits strong ties within the Middle East 
and Central Asia. The United States and China are central to a western 
collaboration cluster, linking with Germany, Sweden, and Algeria. The 
size of the node reflects the strength of the citation, indicating that 
countries such as the United States, Iran, China, and India not only 
publish frequently, but also produce highly cited research in GWL 
modeling.

3.2. Algorithms used in groundwater level prediction

This review explores techniques for predicting GWL, with a focus 
on the most widely applied machine learning algorithms. As illustrated 
in Fig.  6, five dominant models: ANN (51%), SVM (13%), LSTM (12%), 
tree-based ensembles (8%) and ANFIS (5%) collectively account for 
89% of the models reviewed. These approaches have been used in-
dependently and in hybrid configurations in diverse case studies. The 
5 
following sections critically examine methodological elements includ-
ing feature selection, model design, data pre-processing, and parameter 
tuning.

3.3. ANN (Standalone and hybrid) models

3.3.1. Bibliographic review
Experts worldwide have conducted numerous studies on groundwa-

ter level prediction across various geographical regions using ANNs, 
and these studies have consistently reported the efficacy of these mod-
els. For example, Dash et al. (2010) developed a hybrid ANN-GA (Ge-
netic Algorithm) model to predict GWLs in the Mahanadi River Basin, 
India, outperforming standalone ANN models trained with Levenberg–
Marquardt (LM), gradient descent, and Bayesian Regularization (BR) 
algorithms. Hyperparameters and activation functions were optimized 
via trial and error, with the hybrid model demonstrating superior 
predictive performance. Chen et al. (2010) employed self-organizing 
maps (SOM) to predict GWLs in the Zhuoshuixi River Basin, Taiwan, 
using single-site and multisite models. ACF and PACF determined input 
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Fig. 6. ML models utilized in GWL modeling.
features, and the multisite model outperformed single-site configu-
rations. Building on this, Chen et al. (2011) combined SOM with 
backpropagation networks (BPN), developing six models. The improved 
multisite SOM-BPN model outperformed ARIMA and single-site ANN 
models. Rakhshandehroo et al. (2012) compared FFNN, Radial Ba-
sis Function (RBF), Elman (ELNN), and generalized regression neural 
networks (GRNN) for monthly GWL prediction in the Shiraz plain, 
Iran. All models performed effectively, with FFNN achieving the best 
results. Adamowski and Chan (2011) integrated ANN with discrete 
wavelet transform (DWT) for GWL forecasting in the Chateauguay 
watershed, Quebec. DWT decomposed time series data, and the WA-
ANN model, trained with the LM algorithm, outperformed standalone 
ANN and ARIMA models.

Nourani et al. (2011) integrated ANN and geostatistics to predict 
GWL in eastern Azerbaijan, Iran. Sensitivity analysis guided input 
selection, and FFNNs with optimized hidden neurons, trained using the 
LM algorithm, achieved superior performance. Taormina et al. (2012) 
applied FFNNs for hourly GWL simulations in the Lagoon of Venice, 
Italy, utilizing AutoRegressive with eXogenous inputs (ARX) models 
and the Akaike Information Criterion for input selection. Optimized via 
trial and error, the models effectively simulated GWL over extended 
periods.

A few years after Chen et al. (2010) used SOM for determining 
hidden layer neurons in RBFN models, Nourani et al. (2015) combined 
SOM-based clustering and wavelet transform (WT) to model one- and 
multi-step-ahead GWLs in the Aradabil plain, Iran. SOM identified 
homogeneous clusters, and WT extracted multi-scale features from non-
stationary GWL, runoff, and rainfall time series. The FFNN model, 
trained via backpropagation with feature selection and lagged values 
guided by mutual information (MI), demonstrated improved accuracy 
and reduced model complexity. Bahaa et al. (2015) compared MLR, 
ANN, wavelet MLR, wavelet ANN, and a wavelet ensemble ANN for 
GWL forecasting in Quebec, Canada. The ‘‘à Trous’’ wavelet transform 
was used for de-noising, and MI guided feature selection. The wavelet 
ensemble ANN consistently outperformed other models across all lead 
6 
times. Chang et al. (2015) developed ANN models to simulate supra-
permafrost GWLs in the Qinghai-Tibet Plateau, China, using two and 
three input variable configurations. A three-layer feedforward network 
trained with the LM algorithm showed higher accuracy with three 
inputs, while the two-input model performed reasonably well without 
field GWL data.

Gholami et al. (2015) used a multilayer perceptron (MLP) net-
work with dendrochronology and precipitation data to simulate GWLs 
in the Caspian Sea’s alluvial aquifer (1912–2013). A standard three-
layer feedforward neural network, trained using LM backpropagation, 
showed that the sigmoid transfer function provided the best results 
during the growing season.

Sun et al. (2016) employed a standard FFNN with a quasi-Newton 
training algorithm to predict GWLs in a swamp forest in Singapore. In-
puts included reservoir levels and rainfall. Using logistic and threshold 
activation functions, the ANN achieved accurate forecasts up to 7 days 
ahead, though performance decreased with longer lead times.

Choubin and Malekian (2017) compared ANN and ARIMA models 
for simulating GWLs in Iran’s Shiraz basin using precipitation, stream-
flow, temperature, evaporation, and GWL data. The LM algorithm 
trained the ANN with logistic-sigmoid and purelinear activation func-
tions. ARIMA outperformed ANN based on the evaluation metrics. Wen 
et al. (2017) also compared a wavelet analysis-based ANN (WA-ANN) 
with a traditional ANN model for forecasting GWLs in an arid inland 
river basin in northwestern China. Input variables included GWLs, total 
precipitation, evaporation, and average temperature. Both models used 
a three-layer architecture with a single-neuron output layer, sigmoid 
activation for hidden layers, and a linear activation for the output layer. 
The WA-ANN consistently outperformed the traditional ANN model 
across all evaluation metrics.

Sahoo et al. (2017) developed a hybrid artificial neural network 
(HANN) model for GWL prediction, incorporating innovative covariate 
processing methods. Singular spectrum analysis decomposed time series 
data, while mutual information and genetic algorithms identified key 
components. The model used logistic sigmoid and linear activation 
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functions in a single hidden layer, optimized through trial and error, 
and trained with the LM algorithm. HANN outperformed hybrid linear 
and nonlinear regression models. Similarly, El Ibrahimi et al. (2017) 
integrated DWT with ANN-PMC for GWL prediction in Morocco, using 
a three-layer architecture with precipitation, temperature, and GWLs 
as covariates. Systematic parameter optimization showed the DWT-
ANN-PMC model exceeded standalone ANN-PMC and MLR models in 
accuracy.

Guzman et al. (2017) used the Nonlinear autoregressive exogenous 
model (NARX) network to predict daily groundwater levels (GWLs) in 
the Mississippi River Valley Alluvial (MRVA) aquifer in the southeast-
ern United States. The model, trained with both LM and BR algorithms, 
used precipitation and GWL as covariates. Sensitivity analysis identified 
historical GWL and precipitation as key variables. The optimal network 
consisted of two hidden nodes with sigmoid transfer functions and one 
output node with a linear function. The NARX-BR model achieved the 
highest predictive accuracy among the tested models. Wunsch et al. 
(2018) employed the NARX model for GWL prediction in southwest 
Germany, identifying influential time lags using STL decomposition 
and auto/cross-correlation. The study demonstrated NARX’s accuracy 
and adaptability for GWL modeling. Similarly, Kouziokas et al. (2018) 
implemented multilayer FFNN models with varying architectures to 
forecast GWLs in Montgomery County, Pennsylvania. Using the LM 
algorithm with Tanh-Sigmoid transfer functions in hidden layers, the 
models achieved optimal predictive performance compared to other 
training algorithms and transfer functions.

A year later, Lee et al. (2019) developed FFNN models to pre-
dict GWLs in South Korea’s Yangpyeong riverside area. Correlation 
analysis identified surface water level as the most influential covari-
ate. The models used logistic-sigmoid and linear activation functions 
in the hidden and output layers, respectively, and were trained us-
ing backpropagation, achieving strong predictive performance. Chen 
et al. (2020) compared MLP, RBF, MODFLOW, and SVM models for 
GWL prediction in the Heihe River Basin. The MLP employed a sin-
gle hidden layer with optimized neurons, using backpropagation and 
gradient descent. Results showed that SVM and RBF outperformed 
MODFLOW in accuracy. Banadkooki et al. (2020) assessed RBF neural 
networks with Whale Algorithm (WA), MLP-WA, and GP models for 
GWL prediction in Yazd–Ardakan, Iran. Cross-correlation and partial 
autocorrelation guided feature selection, with MLP-WA demonstrat-
ing superior predictive performance. Similarly, Yadav et al. (2020) 
combined singular spectrum analysis (SSA), MI, GA, ANN, and SVM 
models to analyze groundwater fluctuations in India, considering cli-
matic and non-climatic factors. Hybrid models (SSA-MI-GA-ANN and 
SSA-MI-GA-SVM) consistently outperformed standalone models.

Müller et al. (2021) compared LSTM, MLP, RNN, and CNN mod-
els for GWL prediction in Butte County, California, using surrogate-
based algorithms and random sampling for hyperparameter tuning. 
MLP, optimized with ADAM and ReLU activation, outperformed the 
other models, emphasizing the importance of precise hyperparame-
ter tuning. Sharghi et al. (2022) evaluated FFNN, ANFIS, LSTM, and 
GMDH models for multi-step GWL forecasting in Iran. Pre- and post-
processing techniques like COMUSA and NAE improved accuracy, with 
GMDH outperforming others, highlighting the benefits of clustering 
and ensemble approaches. Yin et al. (2021) introduced a Bayesian 
ensemble model integrating ANN, SVM, and Response Surface Re-
gression (RSR) to predict groundwater storage fluctuations. The ANN 
model, trained with the LM algorithm, demonstrated low uncertainty, 
particularly at sub-regional scales. Bayesian model averaging provided 
the most accurate predictions. Kalu et al. (2022) utilized a Deep Belief 
Network (DBN) to simulate monthly GWLs in southern Africa, using 
hydrological variables and global climate indices. Variable selection 
employed correlation analysis, and the architecture was optimized 
through trial and error. Results highlighted DBN’s efficacy in GWL 
prediction. Collados-Lara et al. (2023) applied NAR, NARX, and Elman 
Neural Networks for short-term GWL prediction in Spain. Effective 
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precipitation emerged as a key predictor, with NARX and Elman Neural 
Networks outperforming others. Van Thieu et al. (2023) proposed 
the Augmented Artificial Ecosystem Optimization-based Multi-Layer 
Perceptron (AAEO-MLP) model for monthly GWL prediction in India, 
using ELU activation and mutual information for input selection. The 
AAEO-MLP consistently outperformed other MLP models. Panahi et al. 
(2023) compared Radial Basis Function Neural Network (RBF), ANFIS, 
SVM, and MLP for GWL prediction under future climate conditions 
in Iran. RBFNN exhibited superior performance, proving reliable for 
climate-related GWL forecasts. Wei et al. (2023a) proposed a hybrid 
WT-PSR-ANN model for GWL forecasting by combining wavelet decom-
position, phase space reconstruction (PSR), and ANN. GWL time series 
were decomposed using three types of mother wavelets, and PSR was 
applied to select relevant sub-series as input. Lyapunov exponent analy-
sis confirmed chaotic behavior in the data. The WT-ANN outperformed 
standard ANN, while WT-PSR-ANN yielded the best results overall. The 
study highlighted PSR as a valuable enhancement to wavelet-based 
preprocessing for improving model accuracy. Ghafoor et al. (2024) 
applied autoregressive moving average (ARIMA) and ANN models to 
predict GWLs across four wells in Cheyenne and Delta counties, Col-
orado, USA. Monthly GWL data were preprocessed via interpolation 
and up-sampling to enhance model training. The ANN employed a 
feedforward architecture with rectified linear unit (ReLU) and linear 
activation functions. Model evaluation revealed that ANN consistently 
outperformed ARIMA in accuracy across all sites. This result was at-
tributed to ANN’s robustness against nonlinearity and noise, making it 
more adaptable to the irregular GWL fluctuations observed. Fahim et al. 
(2024) evaluated MLR, SVM, Gaussian process regression (GPR), regres-
sion trees, bagged and boosted ensembles, and ANN models for GWL 
prediction in Bangladesh. Weekly GWL observations, with missing val-
ues addressed using cubic spline interpolation. Inputs included Global 
Land Data Assimilation System (GLDAS) groundwater storage, rainfall, 
temperature, elevation, irrigation, population, and GRACE-based water 
storage variability. ANN performed best, effectively modeling spatial 
groundwater variability. Seifi et al. (2024) proposed a hybrid BFSA-
MVMD-GRU-RVM model for GWL prediction in Iran’s Bastam Plain. 
Boruta was used for feature selection, multivariate variational mode 
decomposition (MVMD) for decomposition, gated recurrent unit (GRU) 
for sequence learning, and relevance vector machine (RVM) for predic-
tion. Inputs included lagged rainfall, temperature, pumping, irrigation 
return flow, and humidity. The model outperformed other MVMD-
based models and showed reduced prediction uncertainty across short- 
to long-term forecasts. Moradi et al. (2023) compared a numerical 
model (GMS) with AI models including GA-ANN, ICA-ANN, Extreme 
Learning Machine (ELM), Outlier Robust ELM (ORELM), and Group 
Method of Data Handling (GMDH) for predicting GWL in the Lur Plain, 
Iran. Initial inputs were GWL, rainfall, temperature, and evaporation, 
but only GWL was retained due to stronger correlations. ORELM outper-
formed all other models and the numerical approach. Model evaluation 
used RMSE, NRMSE, NASH, R, and a Taylor diagram. Abdi et al. 
(2024) applied CNN and DNN models for GWL prediction in Iran, 
using 34 wells. Missing data were handled via interpolation (Kriging, 
SVM, M5P), with M5P proving most accurate. Inputs included spatial 
coordinates and groundwater levels. CNN outperformed DNN across 
scenarios, especially when interpolated data were used to expand input 
coverage. Ghafoor et al. (2024) applied ARIMA and ANN models to 
forecast GWL at four wells in Colorado, USA. Auto-ARIMA identified 
optimal parameters for ARIMA. A feedforward ANN with one hidden 
layer used Adam optimizer and ReLU activation. ANN consistently 
outperformed ARIMA across all wells. Despite data limitations and a 
small number of wells, both models showed effectiveness for GWL 
prediction. Seidu et al. (2023) evaluated four ANN models (BPNN, 
RBFNN, GRNN, GMDH) for groundwater level prediction using data 
from 13 boreholes in Ghana. Input features included rainfall, evap-
oration, and temperature. Min–Max normalization was applied, and 
model performance was assessed across five train–test splits (90–10 
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to 50–50). The 70–30 and 80–20 splits produced the most accurate 
predictions. RBFNN performed best in six out of thirteen boreholes. Ak-
bari Majd et al. (2024) developed ANN-based models hybridized with 
three metaheuristic algorithms (Particle Swarm Optimization (PSO), 
Genetic Algorithm (GA), Ant Colony Optimization (ACO)) to predict 
GWL in Iran’s Ardabil Plain. Unlike most studies, historical GWL was 
not used. Inputs included rainfall, temperature, runoff, and discharges. 
Three preprocessing stages were tested, with Stage 3 involving time 
series decomposition (trend, seasonality removal) showing the best 
performance. ANN-GA performed best for some wells, ANN-PSO for 
others. Overall, Stage 3 improved prediction accuracy by 76%, making 
the method suitable for data-scarce basins. Feng et al. (2024) evaluated 
decision tree (DT), RF, SVM, convolutional neural network (CNN), 
recurrent neural network (RNN), and generative adversarial network 
(GAN) models for GWL prediction in Izeh City, Iran. The study used 
extraction rate, rainfall, and river flow as inputs. Feature importance 
was assessed using Pearson and Spearman correlation, revealing that 
river flow and extraction had stronger associations with GWL than 
rainfall. CNN outperformed other models, demonstrating robustness 
and high accuracy in capturing groundwater fluctuations.

Refer to supplementary information for a detailed description of 
ANN.

3.3.2. Results
Based on the reviewed papers, we found that

1. The Levenberg–Marquardt (LM) algorithm emerged as the pri-
mary optimization method for training ANN models, often en-
hanced with Bayesian Regularization to improve generalization. 
The Backpropagation algorithm was utilized to compute gradi-
ents for weight updates. The LM algorithm is recognized for 
its computational efficiency, balancing Newton’s method, which 
converges rapidly near minima but risks divergence, with gradi-
ent descent, which ensures convergence but at a slower rate if 
step sizes are chosen carefully (Tyagi et al., 2022). Researchers 
have highlighted the LM method’s computational advantages 
and its reduced likelihood of becoming trapped in local min-
ima, making it a robust and effective choice for training ANN 
models (Daliakopoulos et al., 2005).

2. A typical ANN structure consists of three layers, incorporating 
the sigmoid activation function in the hidden layer and a lin-
ear activation function in the output layer. Some studies also 
employed ReLU and ELU. Notably, in most of the reviewed 
papers, the determination of the ANN structure, the number 
of hidden neurons, and hyper-parameter tuning were achieved 
using a trial-and-error approach. However, genetic programming 
(GP) was used for hyperparameter optimization in specific cases. 
The reported learning rates mainly ranged between 0.001 and 
0.009, with the highest recorded as 0.01 (Emamgholizadeh et al., 
2014).
Activation function plays a crucial role in the successful training 
of deep neural networks. It introduces non-linearity into the 
neural network model, enabling the network to learn more 
effectively by capturing and understanding the intricate non-
linear patterns present in input datasets. Table  2 summarizes 
the general output range, along with some advantages and dis-
advantages of the various activation functions used in GWL 
modeling. Further details on these functions can be in the works 
of LeCun et al. (2015), Banerjee et al. (2019), Ramachandran 
et al. (2017), Jamel and Khammas (2012), Narayan (1997), 
Kalaiselvi et al. (2022), Ding et al. (2018), Nwankpa et al. (2018) 
and Rasamoelina et al. (2020)

3. The selection of optimal input variables primarily relied on 
correlation analyses, including Partial Auto-correlation, Auto-
correlation, and Cross-Correlation function. In some cases, MI 
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Table 2
Comparison of activation functions (LeCun et al., 2015; Banerjee et al., 2019; 
Ramachandran et al., 2017; Jamel and Khammas, 2012; Narayan, 1997; 
Kalaiselvi et al., 2022; Ding et al., 2018; Nwankpa et al., 2018; Rasamoelina 
et al., 2020).
 Activation function Sigmoid Tanh ReLU ELU  
 Output range (0, 1) (−1, 1) [0, ∞) [−1, ∞) 
 Smooth gradient Yes Yes No No  
 Vanishing gradient issue Yes Yes Yes (for negative 

inputs) 
Reduced 

 Zero-centered output No Yes No Yes  
 Computational efficiency Yes No Yes No  
 Dying neurons problem No No Yes Reduced 

was used to improve model performance through enhanced 
feature selection.
Auto-correlation gauges how similar a time series is to a lagged 
version of itself, helping spot repeating patterns or trends at 
different time points in the same series. Partial Auto-correlation 
is similar but removes the influence of intermediate lagged 
values.
Cross-correlation compares two different time series at the same 
time points, identifying relationships and potential lead–lag pat-
terns between them.
MI quantifies the mutual information shared between two vari-
ables, offering an indirect means to identify pertinent time 
lags by evaluating information content across various temporal 
shifts (Van Thieu et al., 2023). Table  3 provides a summary of 
the formulas, advantages, and disadvantages of the feature selec-
tion methods employed. Further details on these methods can be 
found in the works (Kraskov et al., 2004; Veyrat-Charvillon and 
Standaert, 2009; Batina et al., 2011; Latham and Roudi, 2009; 
Bourke, 1996; Yoo and Han, 2009; Ramsey, 1974)

4. Among the hybrid models, the combinations consistently yield 
optimal performance involving ANN coupled with WT.

3.4. ANFIS (Standalone and hybrid) models

3.4.1. Bibliographic review
When it comes to GWL modeling with Adaptive Neural Networks 

Fuzzy Inference Systems (ANFIS), Jalalkamali et al. (2011) evaluated 
the predictive performance of ANFIS and ANN models for groundwater 
level (GWL) prediction in two neighboring wells in Kerman Plain, Iran. 
Input variables included rainfall, air temperature, and GWLs. Hyper-
parameters for both models were optimized through trial and error, 
with the ANFIS model utilizing the Gaussian membership function 
(gaussmf). Performance evaluations indicated that ANFIS outperformed 
ANN in accuracy. Emamgholizadeh et al. (2014) compared ANFIS and 
ANN for GWL prediction in Bastam Plain, Iran, concluding that ANFIS, 
with trapezoidal input membership functions and a hybrid learning 
algorithm, consistently outperformed ANN. Similarly, Maiti and Tiwari 
(2014) evaluated ANN, Bayesian Neural Network (BNN), and ANFIS 
for modeling GWL fluctuations in Dindigul, Southern India. The study 
found ANFIS excelled with noise-free data, while BNN was more ef-
fective for noisy hydrological series. The following year, Mirzavand 
et al. (2015) evaluated the ANFIS model against the support vector 
regression (SVR) model for predicting monthly GWL fluctuations in 
the Kashan plain, Iran, concluding that ANFIS with a Bell-shaped MF 
outperformed SVR. Similarly, Gong et al. (2016) compared ANFIS to 
ANN and support vector machine (SVM) for forecasting GWLs near 
Lake Okeechobee, Florida. Input factors were selected using partial and 
autocorrelation coefficients, and models were tuned via trial-and-error. 
Results indicated that ANFIS and SVM consistently outperformed ANN.

Seifi et al. (2020) combined six meta-heuristic methods (e.g.,
grasshopper optimization algorithm (GOA), cat swarm optimization 
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Table 3
Comparison of feature selection methods employed for ANN (Kraskov et al., 2004; Veyrat-Charvillon and Standaert, 2009; Batina et al., 2011; Latham and Roudi, 
2009; Bourke, 1996; Yoo and Han, 2009; Ramsey, 1974).
 Method Formula Advantages Disadvantages  
 Partial Autocorrelation (PACF) PACF(𝑘) = 𝜙𝑘𝑘 - Measures the direct effect of a lagged variable 

- Helps determine appropriate lag in time series 
models

- Assumes linearity 
- Sensitive to noise and outliers

 

 Autocorrelation (ACF) 𝜌𝑘 = Cov(𝑋𝑡 ,𝑋𝑡+𝑘 )
Var(𝑋𝑡 )

- Detects repeating patterns and serial correlation 
- Easy to compute and interpret

- Only captures linear dependence 
- Can be misleading for non-stationary 
or non-linear data

 

 Cross-Correlation (CCF) CCF(𝑘) = Cov(𝑋𝑡 ,𝑌𝑡+𝑘 )
𝜎𝑋𝜎𝑌

- Identifies lead–lag relationships across variables 
- Useful in multivariate time series

- Does not account for indirect effects 
- Assumes stationarity and linearity

 

 Mutual Information (MI) 𝐼(𝑋; 𝑌 ) =
∑

𝑥,𝑦 𝑝(𝑥, 𝑦) log
(

𝑝(𝑥,𝑦)
𝑝(𝑥)𝑝(𝑦)

)

- Captures non-linear dependencies 
- More general than correlation 
- Model-agnostic

- Computationally expensive 
- Hard to interpret for high-dimensional 
data

 

Notes:
𝑋𝑡, 𝑌𝑡 represent time series variables at time 𝑡; 𝑘 is the lag; Cov(⋅) is covariance; Var(⋅) is variance; 𝜎𝑋 , 𝜎𝑌  are standard deviations of 𝑋 and 𝑌 ; 𝜙𝑘𝑘 is the 𝑘th lag partial 
autocorrelation coefficient.
𝑝(𝑥) and 𝑝(𝑦) are marginal probabilities; 𝑝(𝑥, 𝑦) is the joint probability distribution.
(CSO), and genetic algorithm (GA)) with ANN, ANFIS, and SVM for 
monthly GWL predictions. Principal component analysis (PCA) re-
duced time series data, and the Taguchi model optimized parameters. 
ANFIS-GOA achieved the best accuracy, while SVM was less effec-
tive. Kayhomayoon et al. (2022) applied ANFIS with meta-heuristic 
algorithms (e.g., Genetic Algorithm (GA) and Ant Colony Optimization 
(ACO)) to predict GWLs in the Urmia aquifer. Using a Sugeno-type 
function with Gaussian membership functions, ANFIS-ACOR outper-
formed the base model and other hybrids. Roy et al. (2023) developed a 
Bayesian model averaging (BMA)-based ensemble model for GWL fore-
casting in Bangladesh, combining seven ML models including ANFIS, 
RF, GPR, Bi-LSTM, and SVR. Past GWL values were used as inputs, 
with Minimum Redundancy Maximum Relevance (MRMR) applied 
for lag selection. Lag-1 was most predictive. MARS and RF handled 
feature selection internally. The ensemble consistently outperformed 
standalone models across all wells and forecast horizons.

Refer to supplementary information for a detailed description of 
ANFIS.

3.4.2. Results
Based on the reviewed papers, we found that

1. Gaussian Membership Functions (MF) were the most frequently 
employed, followed by Trapezoidal MF. Membership functions 
are a fundamental component of fuzzy logic systems, and they 
define how each input variable’s value is associated with dif-
ferent fuzzy sets. These functions are essential to ANFIS’s fuzzy 
inference procedure. In a study by Talpur et al. (2017), the 
influence of four common membership function shapes on the 
effectiveness of ANFIS in tackling diverse classification tasks 
was investigated. Their findings indicated that the Gaussian 
membership function, due to its superior accuracy and lower 
computational demands, emerged as the most promising choice. 
It is worth noting that several reviewed papers did not specify 
the MF utilized.

2. Hyperparameter tuning was performed primarily using a trial-
and-error approach. However, in select cases, algorithms such as 
ACOR, GOA, CSO, WA, GA, KA, and PSO were employed, pro-
ducing favorable results. Section 5.1, provides more information 
about these algorithms.

3. Partial Autocorrelation and Autocorrelation analyses were the 
prevalent methods for selecting optimal features for model in-
puts.

4. Both standalone ANFIS models and hybrid ANFIS models con-
sistently outperformed ANN models. This superior performance 
can likely be attributed to ANFIS models integrating both neural 
networks and fuzzy logic, making them more adept at handling 
non-stationary time series data.
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3.5. SVM/SVR (Standalone and hybrid) models

3.5.1. Bibliographic review
Behzad et al. (2010) compared SVM and ANN for simulating and 

forecasting GWLs in the Towaco aquifer, Morris County, N.J., across 
multiple timeframes (daily to bimonthly). The study employed the 
radial basis function kernel for SVM and concluded that SVM out-
performed ANN in both training and testing phases, showcasing its 
reliability for GWL prediction. In a similar study, Yoon et al. (2011) 
evaluated the performance of SVM and ANN models in predicting GWL 
fluctuations in a coastal aquifer in Korea. The study employed the 
cross-correlation analysis to identify the most influential features. The 
SVM model was trained using the Sequential Minimal Optimization 
(SMO) algorithm, and parameters were fine-tuned through trial and 
error. Results showed that the SVM model outperformed the ANN 
model in forecasting GWL fluctuations. Suryanarayana et al. (2014) 
introduced an integrated wavelet-SVR (WA-SVR) model with an RBF 
kernel for predicting monthly GWL fluctuations in Visakhapatnam, 
India. Optimized through trial and error, the WA-SVR outperformed 
SVR, ANN, and ARIMA models. Zhou et al. (2017) combined discrete 
wavelet transform (DWT) with SVM (WSVM) for GWL forecasting in the 
Huai River Basin, China. Using PSO-based hyperparameter tuning and 
lag optimization via Partial Autocorrelation Function, WSVM achieved 
superior performance over standard ANN, SVM, and Wavelet Prepro-
cessed ANN (WANN) models. In the same year, Ebrahimi and Rajaee 
(2017) evaluated the impact of wavelet analysis on SVR, MLR, and ANN 
models for one-month-ahead GWL predictions in the Qom Plain, Iran. 
Using auto-correlation analysis for feature selection, wavelet-enhanced 
models (WNN, WLR, WSVR) outperformed standalone counterparts. 
The RBF kernel was used for SVR with trial-and-error optimization. Nie 
et al. (2017) applied SVM and RBF-ANN models to forecast monthly 
GWL in Jilin province, China, concluding that SVM effectively pre-
dicts GWL while analyzing uncertainties through confidence inter-
vals. Huang et al. (2017) employed chaos theory for variable selection, 
bypassing linear correlation analyses. They developed SVM and BP-
ANN models for predicting GWLs in China’s Three Gorges Reservoir 
Area. The chaotic PSO-SVM model, optimized with RBF kernel and 
PSO, achieved superior accuracy over its linear counterpart and chaotic 
BP-ANN models. Mukherjee and Ramachandran (2018) explored the re-
lationship between terrestrial water changes from GRACE data (𝛥TWS) 
and GWLs in India using SVR, ANN, and linear regression models. SVR 
outperformed the others, highlighting 𝛥TWS as a valuable input for 
modeling irregular GWL time series. Hussein et al. (2020) compared 
SVR with MLR, MLP, RF, and XGB for GWL prediction, with XGB 
also used for feature selection. Feature engineering was performed 
using the Gaussian Mixture Model on GRACE data. SVR consistently 
outperformed all other models. Yadav et al. (2020) integrated MI 
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theory, SSA, and GA with SVM and ANN models to analyze climatic and 
non-climatic impacts on GWL fluctuations in India. Using the Kernel 
Basis Function, hybrid models (SSA-MI-GA-ANN and SSA-MI-GA-SVM) 
outperformed standalone models after hyperparameter fine-tuning. Yin 
et al. (2021) developed a Bayesian ensemble modeling approach using 
SVM, ANN, and Response Surface Regression to predict groundwater 
storage fluctuations. The SVM model, employing a Gaussian kernel, 
demonstrated low uncertainty and strong regional-scale predictions. Yu 
et al. (2021) combined Grey Relational Analysis (GRA) and Factor 
Analysis (FA) with SVM to predict GWL in Minqin County, China. 
The GRA-FA-SVM, utilizing an RBF kernel, outperformed standalone 
SVM, BPNN, and RBFNN models. Liu et al. (2021) compared stan-
dalone SVM and SVM with data assimilation (SVM-DA) for predicting 
short- to medium-term GWL changes (1–3 months) in the northeast-
ern United States. Using correlation analysis for feature selection and 
the RBF kernel with fine-tuned hyperparameters, SVM-DA achieved 
higher accuracy than standalone SVM. Dehghani et al. (2022) evalu-
ated hybrid models (BWO–SVR, WSVR, and AIG–SVR) for predicting 
GWL changes under the RCP8.5 scenario in Iran’s Khorramabad plain. 
Parameter tuning employed black widow and rifile algorithms, with 
WSVR consistently outperforming other models. Kajewska-Szkudlarek 
et al. (2022) compared SVR and MLP for monthly GWL prediction in 
northern Poland, using the Hellwig method for predictor selection. The 
RBF kernel in SVR slightly outperformed MLP. Sarkar et al. (2024) 
evaluated five nonlinear ML models: Polynomial Regression, Random 
Forest, XGBoost, KNN, and SVM-RBF for GWL prediction at a well 
in IIT Roorkee, India. Cross-validation was used for hyperparameter 
tuning. XGBoost achieved the highest accuracy and was best suited for 
capturing GWL changes linked to gravity variations. Niu et al. (2023) 
used a SVM model to predict GWL in the North China Plain, focusing 
on regions with varying human activity. Cross-correlation analysis and 
SHapley Additive exPlanations (SHAP) analysis were used to select 
input variables (e.g., precipitation, temperature, population, GDP) and 
determine time lags. Bayesian optimization tuned SVM parameters. 
The model had a commendable overall performance. Kayhomayoon 
et al. (2023) evaluated GWL prediction in Iran’s Dehgolan aquifer 
using MODFLOW and machine learning models—SVR, least-square 
SVR (LSSVR), and a hybrid SVR–WOA. Inputs included past GWL and 
monthly recharge/withdrawal. LSSVR outperformed other ML models, 
and the combined LSSVR-MODFLOW model gave the best results. Wu 
et al. (2023) compared SVM, Long-Short Term Memory (LSTM), MLP, 
and Gated Recurrent Units (GRU) models for GWL prediction in China’s 
Hebei Plain using data from six monitoring stations (2018–2020). RBF 
kernel function selected for SVM. GRU showed the highest accuracy, 
especially for fluctuating or increasing trends. SVM had the weakest 
performance.

Refer to supplementary information for a detailed description of 
SVM/SVR

3.5.2. Results
Based on the reviewed papers, we found that

1. The RBF that is the Radial Basis Function kernel was the most 
frequently employed, followed by the Polynomial and Linear 
kernels. The RBF kernel formulated by Broomhead and Lowe 
(1988) in 1988 is a mathematical function commonly used in 
machine learning, particularly in SVM and other kernel-based 
algorithms. It is a type of kernel function that helps transform 
data into a higher-dimensional space, making it easier to classify 
or separate non-linear data. it is important to note that there is 
no one-size-fits-all kernel function. The choice of kernel relies on 
the particular problem, dataset, and its inherent characteristics. 
In some cases, other kernels like linear, polynomial, or sigmoid 
kernels may perform better. Table  4 provides a comparison 
between these kernels.
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2. Hyper-parameters were predominantly fine-tuned through a
trial-and-error approach. However, in specific instances, alter-
native methods such as the Creative Rifle and Black Widow (De-
hghani et al., 2022), and the Taguchi Model (Seifi et al., 2020) 
were utilized to optimize the tuning process.

3. In addition to correlation analysis, Principal Component Analysis 
(PCA), Chaos theory, Grey Relational Analysis (GRA), Factor 
Analysis (FA), and the Hellwig method were utilized to facilitate 
optimal feature selection. Table  5 provides a general overview as 
well as some advantages and disadvantages.

4. SVMs, when tuned to optimal hyperparameters, consistently 
outperformed ANN and ANFIS models.

3.6. LSTM (Standalone and hybrid) models

3.6.1. Bibliographic review
Zhang et al. (2018) assessed the LSTM model’s performance in 

five sub-areas of the Hetao Irrigation District in arid northwestern 
China, comparing it with a traditional FFNN and a double-layered 
LSTM model. Monthly data on evaporation, temperature, precipitation, 
water diversion, and time were used as inputs. Key hyperparameters 
were fine-tuned through trial and error. The results indicated that 
the LSTM model outperformed both the FFNN and the double-layered 
LSTM model. A few years later, Solgi et al. (2021) employed the LSTM-
NN model to predict GWLs using historical GWL data as the only 
input. The study compared its performance with a basic neural network 
(NN) for predicting short- and long-term GWLs in the Edwards aquifer, 
Texas. The LSTM-NN model was trained with the Adam optimizer, and 
input variable selection was refined through trial and error. Results 
consistently demonstrated that the LSTM-NN outperformed the basic 
NN across all evaluation scenarios. In that same year, Haq et al. 
(2021) applied LSTM networks for real-time tracking and prediction 
of Terrestrial Water Storage Change (TWSC) and Groundwater Stor-
age Change (GWSC) across five Saudi Arabian basins using GRACE 
datasets from 2003 to 2025. Correlation analysis was employed to 
evaluate the influence of input variables. The LSTM model, trained 
with the ADAM optimizer, outperformed the autoregression model in 
accuracy and computational efficiency. Wu et al. (2021a) proposed 
the WT-multivariate LSTM (WT-MLSTM) method for simulating and 
predicting GWLs, tested in the Liangshui River Basin, China, and the 
Cibola National Wildlife Refuge, USA. The model, trained using the 
Adam optimizer, demonstrated superior prediction accuracy compared 
to standard LSTM, MLSTM, and WT-LSTM models. Ao et al. (2021) 
compared the LSTM model, the kernel-based nonlinear extension of 
the Arps decline model (KNEA), and the GRU model for estimating 
GWL in the Hetao Irrigation District, China. Hyperparameters were 
optimized using grid search, and the study concluded that the LSTM 
model outperformed the other methods.

In some of the more recent studies, Vu et al. (2023) utilized the 
Bidirectional LSTM (BiLSTM) model to predict GWL dynamics in a 
Normandy karst massif in eastern France. Feature relevance was de-
termined through correlation analysis, and the ADAM optimizer was 
used for training. The study concluded that the BiLSTM model outper-
formed the standard LSTM model. Manna and Anitha (2023) developed 
the Double-Edge Bi-Directed Long Short-Term Memory (DEBi-LSTM) 
model, a deep ensemble learning approach for simulating and fore-
casting groundwater levels in India. The model was enhanced using 
the Randomized Low-Ranked Approximation (RLRA) algorithm, with 
feature selection guided by the Variance Inflation Factor (VIF) and 
Multi-Collinearity Test. The study concluded that the DEBi-LSTM model 
outperformed existing models, including LSTM, bagging ensemble, and 
general ensemble models. Foroumandi et al. (2023) employed Con-
vLSTM, FFNN, and RF models to downscale monthly GRACE-derived 
Terrestrial Water Storage Anomaly (TWSA) to a 10 km resolution over 
Iran using remote sensing images. The Growing Neural Gas (GNG) 
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Table 4
Comparison of the SVM kernels (Rahmadani and Lee, 2020; Scholkopf et al., 1997; Panja et al., 2019; Patle and Chouhan, 2013).
 Kernel Description Formula Advantages Disadvantages  
 RBF 
(Gaussian)

The RBF kernel maps input vectors 
into an infinite-dimensional space 
and is effective for capturing 
complex non-linear relationships.

𝐾(𝑥, 𝑥′) = exp(−𝛾‖𝑥 − 𝑥′‖2) - Handles non-linear relationships well 
- Effective in high-dimensional spaces 
- Few parameters to tune

- Requires careful tuning of 𝛾
- May overfit with high 𝛾
- Computationally demanding for 
large datasets

 

 Polynomial 
kernel

Captures interactions of features by 
computing polynomial combinations 
of inputs. Useful when prior 
knowledge suggests polynomial 
relationships.

𝐾(𝑥, 𝑥′) = (𝑎 ⋅ 𝑥 ⋅ 𝑥′ + 𝑏)𝑑 - Models non-linear patterns 
- Adjustable via degree 𝑑
- Performs well when data is 
polynomially separable

- Computationally expensive for large 
𝑑
- Prone to overfitting 
- Requires parameter tuning (𝑎, 𝑏, 𝑑)

 

 Sigmoid 
kernel

Inspired by neural networks, this 
kernel simulates the behavior of an 
activation function.

𝐾(𝑥, 𝑥′) = tanh(𝑎 ⋅ 𝑥 ⋅ 𝑥′ + 𝑏) - Mimics neural network behavior 
- Useful for binary classification 
- Captures certain non-linearities

- Sensitive to parameter choices 
- Less robust than RBF 
- Not always positive semi-definite

 

 Linear kernel Assumes linear separability. Best 
suited for high-dimensional data with 
a clear linear margin.

𝐾(𝑥, 𝑥′) = 𝑥 ⋅ 𝑥′ - Fast and simple 
- Fewer hyperparameters 
- Works well with linearly separable 
data 
- Less prone to overfitting

- Ineffective for non-linear problems 
- Limited flexibility 
- May underfit complex patterns

 

Notes: 𝑥, 𝑥′ are input feature vectors; 𝑥 ⋅ 𝑥′ denotes their dot product; ‖𝑥 − 𝑥′‖2 is the squared Euclidean distance.
𝛾 is a kernel parameter controlling the spread in the RBF kernel; 𝑎 is a scale factor; 𝑏 is a bias term; 𝑑 is the degree of the polynomial.
tanh is the hyperbolic tangent function used in the sigmoid kernel. Proper tuning of these parameters is essential for optimal model performance.
Table 5
Comparison of feature selection methods (King and Jackson, 1999; Tang et al., 2014; Omiotek et al., 2019; Huang et al., 2017).
 Method Description Advantages Disadvantages  
 PCA PCA is a dimensionality reduction technique 

that transforms features into a set of 
linearly uncorrelated components, ordered 
by variance.

- Reduces dimensionality
- Highlights key features
- Simplifies data visualization

- May lose interpretability
- Assumes linear relationships
- Not ideal for non-linear data

 

 Chaos theory Chaos theory examines complex systems 
that appear disordered but are deterministic. 
In ML, it identifies chaotic patterns in data.

- Identifies hidden patterns
- Useful for complex systems
- Captures dynamic behaviors

- Requires complex calculations
- Interpretation can be difficult
- Sensitive to initial conditions

 

 GRA Evaluates the relationship between multiple 
criteria using grey relational grades to rank 
and select important features.

- Handles uncertainty and complex 
multi-criteria problems well
- Requires fewer data points compared to some 
methods
- Provides a clear ranking of features based on 
relational grades

- Can be complex to implement and interpret
- Sensitive to the selection of reference series
- May require normalization of data for 
accurate analysis

 

 FA A statistical method that identifies 
underlying factors that explain the 
relationships between variables, reducing 
dimensionality.

- Reduces dimensionality by identifying latent 
factors
- Helps in understanding the underlying 
structure of data
- Simplifies the feature space by focusing on 
significant factors

- Assumes linear relationships among variables
- Can be sensitive to outliers and data noise
- Interpretation of factors can be subjective and 
complex

 

 Hellwig method The Hellwig method evaluates the 
importance of features by considering their 
correlation with the target variable and 
redundancy among themselves.

- Considers both relevance and redundancy
- Facilitates selection of non-redundant features
- Provides a clear ranking of features

- May require large datasets
- Can be computationally intensive
- Relies on accurate correlation measures

 

algorithm clustered TWSA data to identify similar pixels for model 
inputs and outputs. ConvLSTM utilized the ReLU activation function, 
with layer optimization performed through trial-and-error. The re-
sults indicated that ConvLSTM outperformed RF and FFNN, effectively 
downscaling GRACE data and producing groundwater storage maps for 
Iran. Ehteram et al. (2023) developed a hybrid SATCN-LSTM model 
integrating self-attention and temporal convolution with LSTM to im-
prove GWL prediction accuracy. The model was tested using meteoro-
logical inputs and outperformed baseline SATCN, TCN, and standalone 
LSTM models. It achieved the lowest MAE (0.06) and RMSE (0.08), 
addressing limitations of vanishing gradients and redundant inputs in 
sequence forecasting. Heudorfer et al. (2023) used global LSTM models 
to predict GWL from 108 wells in Germany. Dynamic inputs included 
precipitation and temperature, while static features (e.g., land cover, 
hydrogeology) were selected via correlation and spatial relevance anal-
ysis. Feature importance was assessed using permutation feature im-
portance (PFI). Models with static features performed no better than 
random ones in-sample. Out-of-sample, the dynamic-only model gave 
the best results, highlighting the stronger role of climatic inputs. Jing 
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et al. (2023) applied six models (RF, XGBoost (XGB), GBR, Light-
GBM, Vanilla-LSTM, EnDe-LSTM) to simulate GWL in China’s North 
China Plain. Feature engineering created GWSAFE and Human_activity 
from GRACE and GLDAS datasets. Feature importance was assessed 
using GINI and Permutation Feature Importance (PFI). Human_activity 
emerged as the dominant predictor. Deep learning models, especially 
EnDe-LSTM, outperformed tree-based models in capturing groundwater 
variation across aquifer types. Zheng et al. (2024) developed a VMD-
iTransformer model to predict GWL in China’s Kubuqi Desert using 
data from nine monitoring stations. Variational Mode Decomposition 
(VMD) was used as a preprocessing step to decompose non-stationary 
time series into intrinsic components. The VMD-iTransformer model 
outperformed both classic Transformer and LSTM models. Elzain et al. 
(2024) used CBR, XGB, LGBM and LSTM, GRU, Transformer to forecast 
water table rise (WTR) in Oman. SHAP was used for feature selection. 
Data preprocessing involved lag creation, differencing, and seasonal 
aggregation. Stacked models outperformed individual ones, with GRU 
leading in one-week ahead forecasts. Sun et al. (2023) assessed GWL 



G. Jesse et al. Applied Computing and Geosciences 28 (2025) 100303 
prediction in Beijing’s Yongding River fan using Long Short-Term Mem-
ory (LSTM) models and a physics-based (PB) model (PGMS). Input 
variables included water supply, precipitation, and runoff, with lag 
times identified via correlation analysis. Improved LSTM models con-
sistently outperformed the PB model in short-term forecasts. The PB 
model remained better for long-term trends.

Refer to supplementary information for a detailed description of 
LSTM.

3.6.2. Results
1. The Adam optimizer, introduced by Kingma and Ba (2014), was 
predominantly utilized for training the LSTM model. Renowned 
for its efficiency and adaptability, Adam combines the strengths 
of RMSprop and Momentum optimizers, resulting in faster and 
more reliable convergence compared to traditional algorithms. 
Its ability to dynamically adjust learning rates for each parame-
ter during training proves particularly advantageous for complex 
models like LSTMs, where varying learning rates enhance con-
vergence. The widespread adoption of Adam is evidenced by 
its over 100,000 citations within eight years of publication. 
In comparative studies, LSTM consistently outperformed ANN 
models, likely due to its robust architecture, which effectively 
mitigates issues like local minima that often impede convergence 
during training.

2. The ReLU activation function was commonly utilized as the 
activation function for the LSTM model. The ReLU activation 
function was created by Nair and Hinton (2010) and it is well 
known for its ability to handle the gradient vanishing problem. 
Using the ReLU function as the activation in a neural network, as 
opposed to the sigmoid function, results in partial derivatives of 
the loss function having values of either 0 or 1. This property ef-
fectively mitigates the issue of gradient vanishing, making ReLU 
an effective choice for preventing gradient-related problems.

3. Hyperparameters were mostly adjusted through trial and error. 
However, in some cases, like in the study by Ao et al. (2021), 
the grid search method was used. The grid search approach 
is a systematic method used in machine learning to find the 
optimal hyperparameters for a model. it involves defining a grid 
of possible values for each hyperparameter and then evaluating 
the model’s performance for every possible combination of these 
values.

4. The selection of optimal input variables primarily relied on 
correlation analyses. However, in some select cases, methods 
such as Cross-wavelet analysis and the Granger causality (Kim 
et al., 2023), Multi Collinearity Test, and Variance Inflation 
Factor (VIF) (Manna and Anitha, 2023) were employed to im-
prove model performance through enhanced feature selection. 
Also, it is worth mentioning that one of the primary advantages 
of the LSTM model compared to other AI models like FFNN 
is that, while important features of the input dataset typically 
need to be identified through mathematical measures such as 
Cross-correlation (CC) or MI, the LSTM model can automatically 
achieve this through its hidden layers (Sharghi et al., 2022). 
Table  6 provides an overview of these methods as well as some 
strengths and limitations.

5. In terms of performance, LSTM consistently outperformed ANN 
models, possibly due to its inherent capability to overcome 
the limitations associated with local minima, which can hinder 
convergence in the training process.

3.7. RF (Standalone and hybrid) models

3.7.1. Bibliographic review
In the scope of GWL simulation and modeling with RF, Lendzioch 

et al. (2021) assessed the RF model’s ability to predict peat bog GWL 
12 
and soil moisture in the Rokytka Peat Bog using ultrahigh-resolution 
UAV maps. Predictor selection, hyperparameter tuning, and perfor-
mance evaluation were conducted using a leave-location-out (LLO) 
spatial cross-validation strategy combined with forward feature selec-
tion (FFS) to mitigate overfitting and enhance predictions for untested 
locations. The study concluded that the RF model demonstrated strong 
predictive performance. Mosavi et al. (2021) utilized ensemble models, 
including GamBoost, AdaBoost, and Bagged CART, to simulate and 
predict GWLs in the Dezekord-Kamfiruz watershed, Iran. Variable se-
lection was optimized using Recursive Feature Elimination (RFE) and 
multicollinearity assessment via the Variance Inflation Factor (VIF). 
The study concluded that Bagging methods, particularly Random Forest 
and Bagged CART, outperformed Boosting models like AdaBoost and 
GamBoost, with Random Forest achieving the highest performance.

Zhou et al. (2022) explored the use of GRACE satellite data, GLEAM, 
and GLDAS datasets, combined with meteorological variables, to pre-
dict GWL using RF, SVR, and ELM models. For the RF model, hyper-
parameters such as Ntree (100–500) and Mtry (1–3) were fine-tuned. 
The study concluded that RF demonstrated the best predictive perfor-
mance, followed by SVR and ELM. Liu et al. (2022) developed multiple 
models, including RF, SVM, GRNN, DT, CNN, LSTM, and GRU, to 
simulate GWLs in the lower Tarim River basin. The SHAP method 
was employed to evaluate the impact of covariates on model perfor-
mance. Results indicated that the RF model consistently outperformed 
the other models. Pham et al. (2022) tested the validity of the RF 
model in simulating and forecasting GWL fluctuations in two wells 
in northwest Bangladesh. The study compared the RF model with six 
other models: Random Tree (RT), Decision Stump, M5P, SVM, Lo-
cally Weighted Linear Regression (LWLR), and Reduced Error Pruning 
Tree (REP Tree). They concluded that the Bagging RF and Bagging 
RT models outperformed the others. Rafik et al. (2023) evaluated 
Random Forest (RF), SVM, and k-Nearest Neighbors (k-NN) for GWL 
prediction in the Saïs basin, Morocco. Input data included precipita-
tion, soil moisture, runoff, and evapotranspiration from ERA5-Land, 
along with NDVI and land surface temperature (LST). A correlation 
matrix was used for feature selection. Among the models, RF showed 
the most satisfactory performance, making it the preferred choice for 
regional GWL prediction. Zowam and Milewski (2024) applied RF and 
SVR for statewide GWL anomaly prediction in Arizona, integrating 
geostatistical interpolation (EBK) to estimate GWL and using it as a 
predictor in the RF model. Final features were selected using per-
mutation feature importance after training. The integrated RF+EBK 
model showed high accuracy in unconsolidated aquifers, emphasizing 
the role of geology and data quality. May-Lagunes et al. (2023) assessed 
several ML and deep learning models including ARIMA, XGBoost, RF, 
LSTM, and TFT for GWL prediction in California’s Sacramento River 
Basin. Inputs included historical GWLs, well characteristics (e.g., depth, 
usage, location), SWE, ET, and seasonal features from Fourier de-
composition. Feature selection involved experimenting with lagged 
variables and measuring importance in XGBoost, where well-specific 
features ranked highest. XGBoost outperformed all models, especially 
for 3-month forecasts, highlighting the value of well-level informa-
tion over climate predictors. Hikouei et al. (2023) applied MLR, RF, 
and XGBoost to predict GWL in Indonesia’s Mawas peat dome. In-
puts included elevation, precipitation, ET, and distance from canals. 
Tree-based models provided feature importance, with elevation ranked 
highest. XGBoost outperformed RF and MLR, showing superior accu-
racy and lower residuals. Yi et al. (2024) predicted GWL near South 
Korea’s Baekje weir using five ML models: RF, ANN, SVR, GB, and 
XGBoost. Feature selection was done via permutation-based impor-
tance. XGBoost consistently outperformed all others across evaluation 
metrics. Gupta et al. (2024) applied three Bagging-based models, Ran-
dom Forest (RF), Bagging-REPTree, and Bagging-DSTree, to forecast 
groundwater levels in Punjab, India, using long-term GWL data from 
14 wells. Feature importance was derived using the RF model. RF 
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Table 6
Analytical methods for feature selection in GWL using LSTM (Thompson et al., 2017; Maraun and Kurths, 2004; Akinwande et al., 2015; Torrence and Compo, 
1998; Attanasio et al., 2013; Stokes and Purdon, 2017).
 Method Description Advantages Disadvantages  
 Cross-wavelet 
analysis

Analyses the relationship between two time 
series in the time–frequency domain, 
providing insights into their co-movement 
at different frequencies and times.

Provides detailed time–frequency 
information 
Useful for analyzing non-stationary time 
series 
Can identify phase relationships

Computationally intensive 
Requires careful interpretation 
Sensitivity to noise and boundary effects

 

 Granger causality Determines whether one time series can 
predict another, indicating a directional 
influence between the variables.

Helps identify potential causal relationships Assumes linear relationships 
May not capture complex dynamics 
Sensitive to the choice of lag length

 

 Multi Collinearity 
Test

Assesses the degree of correlation among 
independent variables in a regression model, 
indicating potential multicollinearity issues.

Identifies problematic correlations 
Helps in improving model stability 
Simple and easy to apply

Does not quantify the impact on the model 
May miss subtle collinearity issues 
Assumes linear relationships

 

 Variance Inflation 
Factor (VIF)

Quantifies the degree of multicollinearity by 
measuring how much the variance of an 
estimated regression coefficient increases if 
the predictors are correlated.

Provides a clear numerical measure of 
multicollinearity 
Easy to interpret and use 
Helps in model refinement

Only applicable to linear models 
Does not indicate causality 
May not detect non-linear relationships

 

consistently outperformed the other models in both pre- and post-
monsoon seasons across multiple evaluation metrics. Chi et al. (2024) 
used Tree Ensemble models (DT, RF, XGBoost) with rolling means and 
lagged features to predict GWL. Inputs included groundwater depth, 
temperature, rainfall, and drainage volumes. SHAP analysis highlighted 
lagged GWL and moving averages as most important.

Refer to supplementary information for a detailed description of RF.

3.7.2. Results
1. In the extensive body of research we have examined, it is clear 
that both standalone RF models and their hybrid counterparts 
consistently outperform traditional models like ANN and SVM 
in various fields. RF’s strength lies primarily in its exceptional 
predictive accuracy, which makes it a valuable tool across many 
applications.

2. In conjunction with correlation analysis, the SHAP (SHapley 
Additive exPlanations), the Recursive Feature Elimination (RFE)
(Mosavi et al., 2021), and forward feature selection (FFS)
(Lendzioch et al., 2021) methods were occasionally employed to 
select optimal input variables for the models. Table  7 provides 
an overview of these methods as well as some strengths and 
limitations.

3. A noteworthy observation is that many papers did not explicitly 
specify the hyperparameter values for ‘ntree’ and ‘mtry’. The 
optimal values for ‘ntree’ and ‘mtry’ in RF models are recog-
nized to be problem-dependent (Martínez-Muñoz and Suárez, 
2010). While specific values may vary based on the nature 
of the problem, it is commonly acknowledged that RF often 
performs reasonably well with default hyperparameter values. 
For instance, the default value for ‘ntree’ is typically set at 500 
trees, and ‘mtry’ is defaulted to one-third of the total number of 
variables (Mutanga et al., 2012). This suggests that researchers 
may rely on these default values without explicit specification. 
However, the significance of choosing appropriate hyperparam-
eter values, particularly in the context of groundwater recharge 
studies, should not be overlooked.

4. Trends and gaps in feature selection for GWL modeling

Across the reviewed studies, a diverse array of feature selection 
techniques have been employed, ranging from classical statistical tools 
to modern hybrid and model-driven approaches. Broadly, these meth-
ods fall into three categories: filter-based, wrapper, and embedded 
approaches. Filter methods evaluate features based on statistical met-
rics independent of the model, wrapper methods iteratively assess 
feature subsets using the learning algorithm itself, and embedded meth-
ods perform selection as part of the model training process. Each 
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comes with trade-offs in interpretability, computational demand, and 
robustness. A close inspection reveals that while performance-centric 
motivations drive most feature selection choices, methodological in-
consistencies and reporting gaps persist, limiting comparability and 
reproducibility across studies.

4.1. Filter-based approaches

Filter methods are independent of the machine learning model and 
select features based on general characteristics of the data, such as sta-
tistical relevance or correlation. These techniques are computationally 
efficient and easy to implement. However, they may overlook feature 
interactions and dependencies that are only revealed during model 
training.

Filter techniques were extensively applied across early ANN, ANFIS, 
and SVM studies. ACF, PACF, cross-correlation, and Mutual Information 
(MI) were commonly used for lag selection. For instance, Nourani 
et al. (2015) and Bahaa et al. (2015) used MI to identify relevant time 
lags and improve model accuracy by capturing nonlinear dependen-
cies. Yu et al. (2021) implemented Gray Relational Analysis (GRA) 
and Factor Analysis (FA) in the SVM frameworks, observing better 
precision than conventional methods. The Hellwig method was adopted 
in SVR (Kajewska-Szkudlarek et al., 2022) to assess feature weights 
using a synthetic capacity index. LSTM-based studies often employed 
correlation matrices to select relevant features (Sun et al., 2023), 
while PCA was used in hybrid ANN-ANFIS frameworks (Seifi et al., 
2020) to reduce dimensionality. VIF and multicollinearity tests were 
also used (Manna and Anitha, 2023). Additional studies supporting 
filter-based selection include Wei et al. (2023a), who applied wavelet 
decomposition and phase space reconstruction (PSR) to preprocess 
inputs before feeding them into ANN models. Lyapunov exponent 
analysis supported the relevance of PSR in chaotic systems. In Ghafoor 
et al. (2024), ANN models using interpolated and upsampled GWL time 
series outperformed ARIMA, reinforcing ANN’s capability to learn from 
preprocessed, irregular data. Correlation and standard preprocessing 
approaches (e.g., normalization, cubic spline interpolation) were also 
applied in studies by Fahim et al. (2024), Seidu et al. (2023), Feng 
et al. (2024). Zheng et al. (2024) used Variational Mode Decomposition 
(VMD) as a preprocessing tool to decompose non-stationary time series 
before feeding data into the iTransformer model.

4.2. Wrapper approaches

Wrapper methods evaluate subsets of features by training and test-
ing a specific model. These approaches often yield better performance 
as they consider interaction effects and model dynamics. However, they 
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Table 7
Feature selection methods applied with RF models in GWL prediction studies (Strobl et al., 2007; Chen and Jeong, 2007; Kuhn et al., 2013b; Lundberg and Lee, 
2017; Jović et al., 2015; Kamalov et al., 2024; Takefuji, 2025).
 Method Description Advantages Disadvantages  
 SHAP (SHapley 
Additive 
exPlanations)

Game-theory-based approach that assigns 
each feature an importance value by 
quantifying its marginal contribution to 
predictions.

Provides consistent, interpretable 
attributions; captures nonlinear interactions.

Computationally expensive for large 
datasets; results can be sensitive to 
background data selection.

 

 Recursive Feature 
Elimination (RFE)

Iteratively fits the model, removes the least 
important feature(s), and repeats until the 
optimal subset is identified.

Efficiently identifies strong predictors; helps 
reduce dimensionality.

Greedy elimination may discard interacting 
features too early; requires repeated model 
training.

 

 Forward Feature 
Selection (FFS)

Begins with no features, adds predictors 
sequentially based on performance 
improvement until no significant gain is 
observed.

Computationally less intensive than 
exhaustive search; yields parsimonious 
models; avoids inclusion of irrelevant 
predictors.

Greedy nature may miss optimal subsets; 
struggles with correlated predictors; can 
overfit without proper validation.

 

 RF Inherent Feature 
Importance

RF naturally provides importance measures 
based on mean decrease in impurity (MDI) 
or mean decrease in accuracy (MDA).

Embedded in the model; efficient and 
scalable; offers direct ranking of features.

Importance may be biased toward variables 
with more categories or higher variance; 
does not always reflect causal relevance.

 

are computationally expensive and prone to overfitting, especially on 
small datasets.

Wrappers were increasingly adopted in more recent studies. For-
ward Feature Selection (FFS) was used by Lendzioch et al. (2021) to 
select UAV-based predictors for RF models under a leave-location-out 
strategy, showing strong performance in untested locations. Recursive 
Feature Elimination (RFE) was used in ensemble studies (Mosavi et al., 
2021), leading to the selection of non-redundant inputs and improved 
accuracy for RF and Bagged CART. The Taguchi method was used 
to select the optimal combinations of characteristics and parameters 
for ANFIS in Seifi et al. (2020), producing the best performing hy-
brid (ANFIS-GOA). Metaheuristic wrappers such as Genetic Algorithms 
(GA), Particle Swarm Optimization (PSO), and Ant Colony Optimiza-
tion (ACO) were used to tune the inputs and parameters of SVM and 
ANFIS (Kayhomayoon et al., 2022; Zhou et al., 2017), improving the 
generalization of the model. Akbari Majd et al. (2024) applied mul-
tiple preprocessing stages involving decomposition and metaheuristic 
optimization (GA, PSO, ACO) in ANN frameworks, with wrapper-based 
improvements delivering up to 76% accuracy gain. In Seifi et al. (2024), 
Boruta was used as a wrapper for feature importance before applying 
decomposition and GRU-RVM sequence models. Moradi et al. (2023) 
evaluated different sets of characteristics using internal validation per-
formance, choosing only GWL for the final training after evaluating the 
correlation patterns.

4.3. Embedded approaches

Embedded methods integrate feature selection directly into the 
model training process. These include regularization techniques and 
importance measures derived from model parameters. Embedded meth-
ods are more efficient than wrappers and often yield robust and inter-
pretable outcomes.

In studies based on RF and XGBoost, the importance of permuta-
tion characteristics and GINI was frequently applied after training to 
rank predictors (Yi et al., 2024; Jing et al., 2023). These techniques 
revealed the dominant role of well-level inputs and GRACE-derived 
groundwater storage indicators. SHAP values were used in the RF, SVM 
and LSTM studies (Elzain et al., 2024; Niu et al., 2023), providing 
interpretable information on variable contributions. MARS and RF were 
used as embedded selectors in ensemble pipelines (Roy et al., 2023), 
while permutation importance was used to refine features in ConvL-
STM and GRU models trained on remote sensing inputs (Foroumandi 
et al., 2023). GNG clustering, while not a direct selection method, 
helped identify spatially coherent input structures prior to model train-
ing (Heudorfer et al., 2023). Chi et al. (2024) used SHAP to analyze 
lagged inputs in tree ensemble models, confirming the dominance of 
moving averages and historical GWLs. Abdi et al. (2024) used CNN 
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and DNN models in which the relevance of input characteristics was 
indirectly derived from the learned filters. Their preprocessing relied 
on model-based interpolation techniques (e.g., M5P) to reconstruct 
missing inputs. Feng et al. (2024) further evaluated model-specific im-
portance rankings using Pearson and Spearman correlations to interpret 
dominant drivers. Jing et al. (2023) used GINI and Permutation Feature 
Importance (PFI) to assess the relevance of engineered features like 
GWSAFE and Human_activity, with deep learning models (especially 
EnDe-LSTM) outperforming tree-based alternatives.

Despite methodological innovations, a recurring limitation across all 
studies is the lack of standardization in reporting. Feature selection pro-
cedures were often vaguely described or entirely omitted, complicating 
reproducibility and interpretation. Only a handful of works explicitly 
distinguished between filter, wrapper, and embedded selection tech-
niques. To date, only one study by Saroughi et al. (2024) has come 
close to systematically evaluating the impact of input processing strate-
gies on groundwater level modeling. Their work tested 126 data pre-
processing methods across multiple AI models (SVR, ANN, LSTM, and 
POA-ANN), focusing on how statistical, wavelet, and decomposition-
based transformations influenced predictive accuracy. However, even 
this comprehensive effort emphasized data pre-processing rather than 
a formal comparison of feature selection methods.

This signals a methodological gap where future research could 
systematically evaluate and benchmark feature selection techniques, es-
pecially under varying hydrogeological and data availability scenarios, 
to establish standardized best practices for ML-based GWL forecasting. 
Table  9 provides a summary of all the feature selection approaches 
reviewed.

5. General overview and discussion

This section will highlight key findings from the analysis of the 223 
reviewed articles. These findings encompass various aspects, including 
optimization algorithms, the treatment of time steps, selection of input 
variables, validation metrics, etc.

5.1. Optimization algorithms

In recent decades, several bio-inspired optimization techniques have 
been created. According to Tang and Wu (2009), these algorithms can 
be broadly categorized into three primary types: swarm intelligence, 
bacterial foraging algorithms, and evolutionary algorithms. Swarm in-
telligence algorithms were the most popular optimization techniques 
used in groundwater studies, according to the articles reviewed. Table 
10 provides some advantages and disadvantages of the optimization 
algorithms mentioned above. Refer to the Supplementary Information 
for a detailed description of the workflow of all the optimization 
algorithms discussed.



G. Jesse et al. Applied Computing and Geosciences 28 (2025) 100303 
Table 8
Summary of the reviewed paper used in the bibliographic sections.
 Paper Ref AI used Prediction horizon Input variables Time 

steps
Data 
division (%)

Length of total data  

 Dash et al. (2010) ANN Short-term (1-week ahead) GWL,R Weekly 70/30 1993–2002 (2340 samples)  
 Mohanty et al. 
(2010)

FFNN Short-term (1,2,3,4-weeks 
ahead)

R, E, RS, water level in the 
drain, pumping rate, GWL

Weekly 70/30 Feb 2004–June 2007 (174 
samples)

 

 Chen et al. (2010) RBFN Short-term (1-month 
ahead)

GWL Monthly 79/21 1997–2003 (63 samples)  

 Chen et al. (2011) BPN Short-term (1-month 
ahead)

GWL Monthly 79/21 Jul 1998–Nov 2004 (76 
samples)

 

 Trichakis et al. 
(2011)

ANN Short-term (1-day ahead) GWL, wet days, R, 
pumping rate

Daily 80/20 - (7109 samples)  

 Rakhshandehroo 
et al. (2012)

FFNN, RBNN, 
ELNN, GRNN

Short-term (1-month 
ahead)

GWL, Temp, Runoff, R Monthly 77/23 1993 to 2003 (4524 
samples)

 

 Adamowski and 
Chan (2011)

ANN, ARIMA Short-term (1-month 
ahead)

GWL, Temp, R Monthly 80/20 Nov 2002–Oct 2009 (84 
samples)

 

 Nourani et al. 
(2011)

ANN, 
Geostatistics

Short-term (1-month 
ahead)

GWL, Temp, R, discharge, 
lake level

Monthly 80/20 Apr 1994–Mar 2006 (144 
samples)

 

 Taormina et al. 
(2012)

FFNN, ARX Short-term (1-h ahead) GWL, Evapotranspiration, 
R

Hourly 83/17 Oct 2006–June 2008 
(23 850 samples)

 

 Sahoo and Jha 
(2013)

ANN, MLR Short-term (1-month 
ahead)

GWL, Evapotranspiration, 
R, Temp, river stage, SDV

Monthly 73/27 1999–2004 (72 samples)  

 Nourani et al. 
(2015)

FFNN, ARIMAX Short-term (1-month 
ahead)

GWL, Runoff, R Monthly 72/28 1988–2012 (298 samples)  

 Guzman et al. 
(2015)

ANN, SVR Short-term (1-day ahead) GWL, R Daily 55/45 Jun 1984–Sep 1994 (2679 
samples)

 

 Bahaa et al. 
(2015)

ANN, MLR, ENN Short-term(1-
day,week,month ahead)

Tailing Recharge, R, Air 
temp

Daily 90/10 May 2009–Oct 2011 (900 
samples)

 

 Chang et al. 
(2015)

ANN Short-term (10-days ahead) GWL, Temp, R Daily 56/44 Jul 2009–Dec 2012 (653 
samples)

 

 Gholami et al. 
(2015)

ANN Monthly 
(dendrochronology)

Tree-ring diameter, R Monthly 70/30 1970–2013 (44 samples)  

 Sun et al. (2016) FFNN Short-term (1,3,7 days 
ahead)

GWL, R Daily 50/50 Jan 2012–Dec 2013 (731 
samples)

 

 Choubin and 
Malekian (2017)

ANN, ARIMA Short-term (1 months 
ahead)

R, SF, Temp, Evaporation, 
GWL

Monthly 83/17 1993–2010 (216 samples)  

 Wen et al. (2017) ANN Short-term (1,2,3 months 
ahead)

R, Temp, Evaporation, 
GWL, R

Monthly 74/26 Jun 2003–Dec 2010. (91 
samples)

 

 Sahoo et al. 
(2017)

ANN, MLR, 
MNLR

Seasonal-annual (1̃ year 
ahead)

R, Temp, ENSO, NAO, SF, 
ID

Monthly 70/30 1980–2012 (148 368 
samples)

 

 Ebrahimi and 
Rajaee (2017)

ANN Short-term (1-month 
ahead)

R, Temp, GWL Monthly 70/30 Apr 2002–Mar 2013 (132 
samples)

 

 Guzman et al. 
(2017)

NARX Short-term (3-months 
ahead)

R, GWL Daily 70/30 1987–1994 (2922 samples)  

 Wunsch et al. 
(2018)

NARX short-mid-term(1 week-6 
months ahead)

R, Temp Daily 90/10 1948–2015 (13 676 
samples)

 

 Jeong and Park 
(2019)

NARX, LSTM, 
GRU

Short-term (1-day ahead, 
continuous)

R, Temp, Humidity, GWL, 
CSH, AAP

Daily 50/50 2005–2014 (7284 samples)  

 Lee et al. (2019) FFNN Short-term (1-h ahead) SWL, GA, GHPU Hourly 60/40 Feb 2016– Apr 2017 (8712 
samples)

 

 Kouziokas et al. 
(2018)

FFNN Short-term (1-day ahead) Humidity, Temp, R, GWL Daily 70/30 Jan 2014–Dec 2014 (365 
samples)

 

 Ghose et al. 
(2018)

RNN Short-mid-term (monthly 
steps)

Humidity, Temp, R, 
Runoff, Evapotranspiration

Monthly 70/30 1988–2007 (120 samples)  

 (continued on next page)
5.2. Validation metrics

Machine learning models are prone to limitations that can hinder 
their predictive performance, one of the most notable being overfitting. 
Overfitting occurs when a model learns patterns and noise specific to 
15 
the training dataset, resulting in high training accuracy but poor per-
formance on unseen test data. Detecting overfitting therefore requires 
evaluating model performance on both training and test datasets, and 
comparing the results. The role of validation metrics is to quantify 
prediction accuracy and reliability, enabling meaningful comparison of 
results across datasets and studies.
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 Van Thieu et al. 
(2023)

MLP Short-term (1-month 
ahead)

R, Temp, Tidal height, 
GWL

Monthly – 1989–2012 (552 samples)  

 Aderemi et al. 
(2023)

NARX Short-term (No. specified) R, Temp Monthly 70/30 1996–2021 (6240 samples)  

 Panahi et al. 
(2023)

RBFNN, ANFIS, 
SVM, MLP

Long-term (Years ahead) R, Max Temp, Min Temp, 
Evaporation

Daily – 2022–2064 (10 950 
samples)

 

 Jalalkamali et al. 
(2011)

ANFIS, ANN Short-term (1-month 
ahead)

R, Temp, GWL Monthly 80/20 1988–2009 (264 samples)  

 Shirmohammadi 
et al. (2013)

ANFIS, ARIMA, 
ARMA, ARX, 
ARMAX, 
SARIMA

Short-term (1,2,3-months 
ahead)

Discharge, R, Evaporation Monthly 1992–2007 (180 samples)  

 Emamgholizadeh 
et al. (2014)

ANFIS, ANN Long-term (2-Years ahead) Recharge, Pumping Rates, 
IRF

Monthly 80/20 2002–2011 (108 samples)  

 Maiti and Tiwari 
(2014)

ANFIS, ANN, 
BNN

Short-term (1-month 
ahead)

Temp, R Monthly 75/25 Sep 1972–Oct 2001 (350 
samples)

 

 Mirzavand et al. 
(2015)

ANFIS, SVR Long-term (No. Specified) Streamflow, Evaporation, 
SD, AD, R

Monthly 70/30 Jan 1990–Jan 2010 (240 
samples)

 

 Gong et al. (2016) ANFIS, ANN, 
SVM

Short-term (1,2,3-months 
ahead)

GWL, Temp, Lake levels, 
AD, R

Monthly 80/20 1998–2009 (144 samples)  

 Seifi et al. (2020) ANFIS, ANN Short-term (1-month 
ahead)

GWL Monthly 80/20 Jan 2000–Sep 2012 (140 
samples)

 

 Kayhomayoon 
et al. (2022)

ANFIS Short-term (1-month 
ahead)

GWL, R, Temp, GW Monthly 70/30 2001–2017 (204 samples)  

 Behzad et al. 
(2010)

SVM, ANN Daily, Weekly, Monthly Pump Rates, R, Temp, 
GWL

Daily, 
Weekly, 
Biweekly, 
Monthly, 
Bimonthly

– 2002–2002 
(63,93,109,116,122 
samples)

 

 Yoon et al. (2011) SVM, ANN Short-term (multiple-hours 
ahead)

Tide level, R, GWL Hourly – Jun 2004–Nov 2006 (3213 
samples)

 

 Suryanarayana 
et al. (2014)

SVR, ANN, 
ARIMA

Short-term (1-month 
ahead)

GW Depth, Max Temp, 
Mean Temp, R

Monthly – May 2001–Feb 2012 (130 
samples)

 

 Yoon et al. (2016) SVR, ANN Long-term (1-day ahead) GWL, R Daily 70/30 2003–2008 (10 229 
samples)

 

 Zhou et al. (2017) SVM, ANN Short-term (1-month 
ahead)

GWL, R Monthly 75/25 Jan 1974–Dec 2010 (444 
samples)

 

 Nie et al. (2017) SVM, RBF-ANN, 
MLR

Short-term (1-month 
ahead)

R, Evaporation, Temp Monthly 83/17 Jan 2003 to Dec 2014 
(144 samples)

 

 Huang et al. 
(2017)

SVM, BPNN Short-term 
(1-day,week,month ahead)

GWL daily, 
weekly, 
monthly

50/50 2006–2014 (171, 90, 24 
samples)

 

 Mukherjee and 
Ramachandran 
(2018)

SVM, ANN, LRM Short-term (No. Specified) ▵TWS, R, Temp, Humidity monthly 80/20 Jan 2005–Dec 2013 (35, 
67 samples)

 

 Hosseini et al. 
(2016)

ANN Short-term (1-month 
ahead)

R, Average Discharge, 
Temp, Evaporation

Monthly – Oct 2000 8̃0/20 Sep 2009 
(108 samples)

 

 Yadav et al. 
(2020)

SVM, ANN Short-term (1,2-months 
ahead)

GWL, R, Temp, Population, 
GR, SOI, NOI, NINO3

Monthly 70/30 2010–2017 (96 samples)  

 Liu et al. (2022) RF, SVM, GRNN, 
DT, CNN, LSTM, 
GRU

Long-term 
(Month-years-ahead)

Temperature, Humidity Monthly 75/25 Jan 2000–Dec 2020 
(1̃8 648 samples)

 

 Guzman et al. 
(2019)

SVR, NARX Short-term (days-ahead) GWL R, Evapotranspiration Daily 70/30 Jun 1985–Sep 1994 (2592 
samples)

 

 Chen et al. (2020) MLP, RBF, 
MODFLOW, SVM

Long-term (1 month-ahead) SF, GWL Daily 80/20 Jan 1986–Dec 2010 (300 
samples)

 

 (continued on next page)
In groundwater level (GWL) modeling, a wide variety of evaluation 
metrics have been employed. Fig.  7 shows the frequency of perfor-
mance metrics reported in the reviewed literature. Among these, RMSE 
is the most frequently adopted, appearing in nearly 160 instances, 
followed by R2, correlation coefficient (Corr), and NSE. Metrics such as 
16 
MAE, MSE, and MASE are also widely used, reflecting a strong prefer-
ence for error-based evaluations. In contrast, less common metrics like 
ME, RE, and NRMSE appear less frequently but still contribute to the 
assessment landscape. The ‘‘Others’’ category includes less standardized 
or study-specific measures.
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 Kajewska-
Szkudlarek et al. 
(2022)

SVR, MLP Long-term (Monthly) R, Temp, GWL Monthly 75/25 1975–2014 (414, 411, 476 
samples)

 

 Zhang et al. 
(2018)

LSTM, FFNN Long-term (1-month ahead) R, Temp, Evaporation, 
Water Division, Time

Monthly 85/15 2000–2013 (168 samples)  

 Solgi et al. (2021) LSTM-NN Short&Long-term 
(days,months-ahead)

GWL Monthly 80/20 Nov 1932–Jul 2020 
(31 239, 1043 samples)

 

 Haq et al. (2021) LSTM-NN, 
ARIMA

Long-term (65 months 
ahead)

GRACE Monthly 85/15 Jan 2003–Jun 2020 (185 
samples)

 

 Wu et al. (2021a) LSTM Short&Long-term 
(months-ahead)

River Stage, GWL Monthly 70/30 Nov 2003–Dec 2019 (194, 
10176, samples)

 

 Ao et al. (2021) LSTM, KNEA, 
GRU

Long-term (1-month ahead) Temp, GWL, R, GSR, 
Irrigation Quantity

Monthly 70/30 1990–2015 (312 samples)  

 Gaffoor et al. 
(2022)

LSTM, GBDT Long-term (1-month ahead) Temp, GWL Anomaly, R, 
runoff, Evapotranspiration

Monthly 70/30, 
80/20, 
65/36

2009–2019 (42, 88 
samples)

 

 Kim et al. (2023) LSTM Short-term (2-weeks head) Sun Hours, GWL Anomaly, 
R, runoff, Min Temp, Mean 
Wind Speed, Evaporation, 
R

Daily 90/10 2012–2021 (3653 samples)  

 Vu et al. (2023) BiLSTM Long-term (7,4,30-days 
ahead)

River Level, River Flux, 
Sea Level, R, Temp, Seinen 
River Data

Daily, 
Hourly

65/35 1971–2021 (5479 samples)  

 Manna and Anitha 
(2023)

DEBi-LSTM Long-term (Multiple days 
ahead)

GW Recharge, Natural GW 
Discharge, R

Daily 60/40 2000 to 2021 (12 000 
samples)

 

 Patra et al. (2023) LSTM Short-term (Daily) GWL Daily – 2013 83/17 Jun 2021 
(139 653 samples)

 

 Foroumandi et al. 
(2023)

ConvLSTM, 
FFNN, RF

– LST, NDVI, R, DEM, ET, 
SM, SWE

Monthly 70/30 Apr 2002–Dec 2016 (297 
samples)

 

 Lendzioch et al. 
(2021)

RF – GWL, NDVI, SM Monthly – Aug 2018–Nov 2019 (630 
samples)

 

 Gonzalez and 
Arsanjani (2021)

RF, ANN, SVM Long-term (years-ahead) Max Temp, Min Temp, R, 
Mean Temperature, 
Topography

Monthly 80/20 1990–2018 (over 10000 
samples)

 

 Zhou et al. (2022) RF, SVR, ELM Short-term (1,2,3-months 
ahead)

R, Temp, Actual 
Evapotranspiration, 
GLEAM, GLDAS

Monthly 80/20 Apr 2002–Jun 2017(183 
samples)

 

 Kalu et al. (2022) DBN Short-term (5-months 
ahead)

GWL, ENSO, NAO, AMO, 
IOD, PDO

Monthly 70/30 Nov 2007–Oct 2012 (1620 
samples)

 

 Hussein et al. 
(2020)

MLR, MLP, RF, 
XGB

Short-term (1-month 
ahead)

GRACE Monthly 90/10 Mar 2002–May 2019 (161 
samples)

 

 Liu et al. (2021) SVM Short-term (3-months 
ahead)

GRACE, Temp, R, Solar 
Radiation, IST

Monthly 50/50 Jan 2007–Dec 2016 (5520 
samples)

 

 Yu et al. (2021) SVM, BPNN, 
RBFNN

Short-term (Months ahead) Meteorological, 
Socio-economic factors

Monthly 86/14 2004–2010 (168 samples)  

 Derbela and 
Nouiri (2020)

ANN Medium-term 
(months-ahead)

R, GWL, 
Evapotranspiration

Monthly 80/20 2000–2018 (1944 samples)  

 Chenjia et al. 
(2024)

LSTM, GRU, 
MLP, 1DCNN, 
TR

Short-term (12,24,36-days 
ahead)

GWL, Extraction, ET Daily 70/30 2017–2022 (2190 samples)  

 Akbari Majd et al. 
(2024)

ANN Short-term (Months ahead) Climate Variables Monthly 70/30 2001–2019 (7068 samples)  

 Mohapatra et al. 
(2021)

DNN, ANFIS, 
SVM

Long-term (seasons ahead) GWL, R, Temp, Monthly 70/30 1996–2016 (835 044 
samples)

 

 (continued on next page)
RMSE and R2 are especially prominent choices because they provide 
complementary insights: RMSE quantifies the average magnitude of 
prediction error in the same units as the observed data, while R2
measures the proportion of variance in the observations explained by 
the model. The choice of metric should be informed by the study’s ob-
jectives, the characteristics of the dataset, and the model’s intended ap-
plication, ensuring that the evaluation process captures both accuracy 
and explanatory power.
17 
5.3. Covariates used

ML models offer a unique advantage by learning patterns in data, 
whether simple or complex, to predict specific outcomes. In the context 
of this systematic review, we examine the use of different types of 
data for groundwater modeling, including climate variables, hydroge-
ological parameters, and aquifer characteristics, albeit the latter being 
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 Müller et al. 
(2021)

LSTM, MLP, 
RNN, CNN

Short-term (1-day ahead) Streamflow, Temp, R Daily 67/33 2010–2018 (2191 samples)  

 Sharghi et al. 
(2022)

FFNN, ANFIS, 
LSTM, GMDH

Long-term (1,2,3 - months 
ahead)

GWL, R, Runoff Monthly 70/30 1989–2018 (17 640 
samples)

 

 Yin et al. (2021) ANN, SVM, RSR, 
BMA

Short-term (1-month 
ahead)

ASR, GP, SWD Monthly 80/20 Oct 1973–Sept 2015 (2016 
samples)

 

 Maheswaran and 
Khosa (2013)

ANN, LR, DAR Long-term (multiple 
months ahead)

GWL Monthly 90/10 1975–2002 (648 samples)  

 Dehghani et al. 
(2022)

SVR Long-term (Months & 
Years ahead)

R, Temp, GWL, Water 
Withdrawal

Monthly 70/30 2000–2020 and 2021–2040 
(960 samples)

 

 Pham et al. (2022) RT, Decision 
Stump, M5P, 
SVM, LWLR, 
REP, Tree

Long-term (months ahead) GWL, Mean Temp, R, 
Humidity

Monthly 80/20 Jan 1981–Dec 2017 (888 
samples)

 

 Collados-Lara 
et al. (2023)

NARX, NAR, 
ELNN

Short-term (1–6 months 
ahead)

R, Min Temp, Max Temp Monthly 70/30 Jan 2000–Jan 2020 
(12 852 samples)

 

 Chang et al. 
(2016)

NARX Short-term (1-month 
ahead)

GWL, SF, R Monthly 80/20 2000–2013 (168 samples)  

 Banadkooki et al. 
(2020)

RBFNN, MLP Short-term (months-ahead) R, Temp Monthly 70/30 2000–2012 (156 samples)  

 Guo et al. (2021) ConvLSTM Short-term (5-days 
intervals)

GWL, R, GSD, HPD Monthly 70/30 Jan 2012–Dec 2012 (3456 
samples)

 

 Rafik et al. (2023) RF, SVM Short-term (Months-ahead) TWS, R, ET, Q, SM, NDVI, 
and LST

Monthly – Apr 2002–2022 (264 
samples)

 

 Elmotawakkil 
et al. (2024)

GBR, SVR, RF, 
and DT

Short-term (Months-ahead) ET, R, NDVI, and LST Daily 70/30 Feb 2000–Feb 2023 
(42 000 samples)

 

 Bonkoungou et al. 
(2024)

NeuralProphet, 
LSTM, XGBoost

Short-term (multiple days 
ahead)

GWLs, R, and EVI Daily 85/15 2010–2021 (26 298 
samples)

 

 Singh et al. (2024) AutoML, RF, 
Boosting EL, 
BDT, GAM, 
GRNN, LR, ANN, 
SVR, RBNN, KR, 
LSTM

Long-term (quarterly 
seasons)

GWLs, EVAP, Temp, R, 
RH, Soil type

Monthly 70/30 1997–2018 (8310 samples)  

 Fahim et al. 
(2024)

MLR, Tree 
models, SVM, 
GPR, and ANN

Spatial prediction GLDAS GWS data, ED, 
Temp, R, PD, ID, GRACE

Monthly 80/20 2003–2019 (183 samples)  

 Osman et al. 
(2024)

ANN, SVR, 
XGBoost, and 
LSTM

Short-term (1-day ahead) R, Temp, EVAP, GWLs Daily 70/30 Jan 2030–Dec 2039 (1390 
samples)

 

 Wei et al. (2023a) ANN Short-term (m × 10-days 
ahead)

GWLs Daily 80/20 1991–2015 (576 samples)  

 Seifi et al. (2024) RVM, ANN, MLP Short-term (1-month 
ahead)

R, Average Temp, RH, IRF Daily 80/20 1995–2015 (252 samples)  

 Ali et al. (2024) TFT, LSTM Short-term (7,30,60 days 
ahead)

R, GWL Daily 70/30 2001–2023 (8400 samples)  

 LaBianca et al. 
(2024)

CatBoost, GBDT, 
PB

Spatial prediction DEM, LandUse, TS, GWLs Monthly 67/33 2006–2022 (280 samples)  

 Moradi et al. 
(2023)

ANN, ELM, 
ORELM, and 
GMDH

Short-term (1-month 
ahead)

GWL, R, Temp, and EVAP Monthly 80/20 2010–2016 (198 samples)  

 Heudorfer et al. 
(2023)

LSTM Short-term (weeks ahead) R, Temp, RH, Tsin Weekly 50/50 Jan 2000–Dec 2015 
(205 343 samples)

 

 Roy et al. (2023) ANFIS, Bagged 
RF, Boosted RF, 
GPR, LSTM 
MARS, SVR

Short-term (1–3 weeks 
ahead)

GWLs Weekly 70/30 Feb 1984–Sep 2018 (7228 
samples)

 

 (continued on next page)
non-mandatory compared to conventional models. The choice of these 
covariates is critical, significantly affecting model performance.

Groundwater levels are closely tied to climate conditions, and 
the ever-growing concerns of climate change, marked by events like 
droughts, floods, and shifting precipitation patterns, emphasize the 
18 
urgency of groundwater management. Fig.  8 shows that historical 
GWL data is the most employed covariate for ML models predicting 
groundwater levels.
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 Chi et al. (2024) WT-Model Short-term (7-days ahead) Temp and R Daily 80/20 Jan 2009–Jun 2020 (5223, 

609 samples)
 

 Abdi et al. (2024) CNN, DNN Short-term (1-month 
ahead)

GWS Monthly 70/30 2018–2021 (1632 samples)  

 Zowam and 
Milewski (2024)

SVR, RF Long-term (1-month ahead) R, SM, ET, LST, VI, CN, 
SHC, and GSA

Monthly 60/40 and 
85/15

Jan 2010–Dec 2019 (7080 
samples)

 

 Zhu et al. (2024) GBDT Short-mid-term 
(days,month-ahead)

GWL, R, Q, CWD Monthly 70/30 Jan 1997 to Dec 2011 
(163 155 samples)

 

 Feng et al. (2024) CNN, RNN, 
SVM, DT, RF, 
and GAN

– GRE, R, and RFR Monthly 70/30 2018–2022 (2136 samples)  

 May-Lagunes et al. 
(2023)

XGBoost, RF, 
TFT, GDR, LR

Short-term (3-months 
ahead)

SWE, ET, WSE Monthly – 2010–2020 (3960 samples)  

 Jing et al. (2023) RF, XGBoost, 
GBR, LightGBM, 
LSTM

– R, ET, RD, GWL Daily – 2003–2014 (1584 samples)  

 Zheng et al. 
(2024)

iTransformer, 
LSTM

Short-term (4-months 
ahead)

Agricultural irrigation, 
climatic component, basin 
factor, and human factor

Hourly – Jul 2021–Sep 2022 (24 678 
samples)

 

 Hikouei et al. 
(2023)

RF, XGBoost, 
MLR

– GWL ET ET, R, Z, DFC Monthly 80/20 2010–2012 (11 641 
samples)

 

 Seidu et al. (2023) ANN, BPNN, 
RBFNN, GMDH, 
GRNN

– R, EVAP, Temp Monthly 50/50, 
60/40, 
70/30, 
80/20, 
90/10

2013–2018 (676 samples)  

 Yi et al. (2024) RF, ANN, SVR, 
GB, XGBoost

Short-term (1-day ahead) DWL, R Daily 80/20 2011–2021 (17 350 
samples)

 

 Chidepudi et al. 
(2023)

LSTM, BiLSTM, 
GRU

Short-term (Daily) TEMP, R Daily 80/20 1970–2020 (600)  

 Sriram et al. 
(2023)

RF, ML, MD, 
KNN

– – – – - (4044 samples)  

 Sun et al. (2023) LSTM, PB Short-term (3-months 
ahead)

R, WS, GWL, Q Daily 80/20 Jan 2018–Sep 30 (68 958 
samples)

 

 Elzain et al. 
(2024)

CBR, XGB, 
LGBM, LSTM, 
GRU

Short-term (1,2,3-weeks 
ahead)

WTR Daily 90/10 Dec 2017–Jan 2019 
(19 465 samples)

 

 Chen et al. (2023) CBR, XGB, 
LGBM, LSTM, 
GRU

Short-term (1–10 days 
ahead)

GWL, R Daily 70/30 2002–2021 (7305 samples)  

 Sarkar et al. 
(2024)

KNN, SVM-RBF, 
PR, XGB, RF

– GRACE Daily 83/13 Jan 2022–Oct 2022 (177 
samples)

 

 Ehteram et al. 
(2023)

SATCN, LSTM Short-term (1-month 
ahead)

Temp, R, Elevation, WS, 
RH, GWL

Monthly 75/25 1995–2010 (192 samples)  

 Niu et al. (2023) SVM Short-term (1-month 
ahead)

R, wind speed WS, Temp, 
POP,GDP, EIA

Monthly 60/40 Jan 1991–Dec 2019 (240 
samples)

 

 Kayhomayoon 
et al. (2023)

SVR, 
Least-Square 
SVR (LSSVR), 
MODFLOW

Long-term (Years ahead) GWL, Recharge, 
Withdrawal

Monthly 75/25 Oct 2010–Sep 2013 (150 
samples)

 

 Bai and 
Tahmasebi (2023)

GWN, 
GWN-adaptive, 
LSTM, GRU

Long-term (Multiple weeks 
ahead)

Temp, R, VP, SR, day Weekly 
(GWL), 
Daily 
(Climate)

60/40 2010–2020 (23 452 
samples)

 

 Nan et al. (2023) Attention-GRU, 
LSTM, RNN, 
CNN

Short-mid-term (6-months 
ahead)

GWL, R, Temp, ELEV, SM Monthly 75/25 2017–2022 (24 120 
samples)

 

 Li et al. (2023) MLR, MARS, 
ANN, RFR, GBR

– ELEV, soil type, Climate 
Data, NDVI

Seasonal 84/16 Oct 2005–Sep 2007 (75 
samples)

 

 Nand et al. (2024) MLP-GA, 
MODFLOW

Long-term (Annual/Seasons 
ahead)

ETC, R, GR, GD Annual 67/33 2000–2015 (880 samples)  

 (continued on next page)
19 
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 Bhadani et al. 
(2024)

F-IWO-GWL, RF, 
BoostEL, BDT, 
LSTM, SVR, 
GAM, ANN, 
RBNN, GRNN, 
hybrids

Short-mid-term 
(Annual/Seasons ahead)

R, Temp, ET, RH, GWL Daily 70/30 1997–2018 (8310 samples)  

 Sun et al. (2024) Transformer, 
MLP, LSTM, 
CNN

Short-term (10, 20 days 
ahead)

R, Flow, GWL Daily 60/40 2000–2019 (725 samples)  

 Zhang et al. 
(2023)

TCN, LSTM Short-term (1,3,7,15-days 
ahead)

Tidal-level, R, GWL Hourly 80/20 Oct 2011–Oct 2012 
(28 836 samples)

 

 Xie and Zhang 
(2024)

STA-GRU, LSTM, 
GRU, 
CNN+GRU, 
CNN+BiLSTM+
Attention

Short-term (1-month 
ahead)

Climate, hydrogeological, 
Topographic

Monthly 70/30 2017–2117 (7272 samples)  

 Zhou et al. (2024) LSTM Short-term (1-month 
ahead)

GWL Monthly 81/19 2018–2022 (20 340 
samples)

 

 Wei et al. (2023b) M5, RF, GRBFN, 
MLP, Ensemble 
methods

Spatial (No time-series) Remote sensing Data – 80/20 2018 (436 samples)  

 Wang et al. (2024) LSTM, RR-LSTM, 
Geo-RR-LSTM, 
ARIMA, 
ARIMAX, MLR

Long-term (1-year ahead) R, geographical features Monthly 78/22 2009–2013 (3816 samples)  

 Su et al. (2024) MLR, SVR, LSTM Long-term (20-months 
ahead)

GWL, Extraction Daily 89/11 2007–2021 (964 260 
samples)

 

 Wu et al. (2023) SVM, LSTM, 
MLP, GRU

Short-term (1-h ahead) GWL Hourly 70/30 2018–2020 (32 880 
samples)

 

 Eghrari et al. 
(2023)

LSTM, GRU Long-term (Monthly) Climate Data Monthly 80/20 Nov 2002–Jun 2022 (1652 
samples)

 

 Fronzi et al. 
(2024)

Prophet, ARIMA, 
MARS, ETS

Short-term (2-weeks ahead) GWL, Hydrological, 
Exogenous, Atmospheric 
variables

Daily 87/13 Mar 2023–Apr 2023 (485 
samples)

 

 Gupta et al. 
(2024)

RF, Bagging-
REPTree, 
Bagging-DSTree

Seasonal GWL Seasonal 70/30 1997–2018 (616 samples)  

 Ghazi et al. (2021) ANN, LSSVM, 
NARX

Long-term (Years ahead) R, Temp, Time Delay Monthly 70/30 1966–2019 (6840 samples)  

 Idrizovic et al. 
(2020)

ANN Long-term (Years ahead) R, Temp, PET, GWL Daily and 
monthly

70/30 1988–2016 (342 samples)  

 Karthikeyan et al. 
(2013)

FFNN, RNN Short-term (1-week ahead) R, Temp, EVAPO, GWL weekly 70/30 May 2004–May 2006 (109 
samples)

 

 Yan and Ma 
(2016)

ARIMA, RBFN Short-term (1-month 
ahead)

GWL monthly 83/17 Jan 1998–Dec 2010 (144 
samples)

 

 Secci et al. (2023) NARX, LSTM, 
CNN

Long-term (years ahead) R, Temp monthly 90/10 Mar 2005–Dec 2020 (190 
samples)

 

 Fallah-Mehdipour 
et al. (2013)

ANFIS, GP Medium-term (months) EVAPO, R, GWL monthly 86/14 7-year (84-month) (252 
samples)

 

Abbreviations: R, Precipitation; SM, Soil moisture; E, efficiency coefficient; LWLR; locally weighted linear regression, REP Tree; reduce error pruning tree; TWI, Topographic 
wetness index; TPI, Topographic position index; TRI, Topographic roughness index, Dd; Drainage density; Dff, Distance from fault; NDVI, Normalized Difference Vegetation Index; 
DEM: Digital Elevation Map; GSR; Global Solar Radiation, IST; Infrared Surface Temperature, Streamflow; SF, Seasonal Dummy Variables, SDV; Streamflow Discharge, SD; Aquifer 
Discharge, AD; Linear Regression, LR; Dynamic Auto-Regressive, DAR; Nash sutcliffe criteria, NSC; Geological Structure Data, GSD; Hydrogeological Parameter Data; HPD, Terrestrial 
Water Storage; TWS, evapotranspiration; ET, Soil Moisture; SM, Gradient Boosting Regression; GBR, Enhanced Vegetation Index; EVI, Runoff; Q, Fuzzy Inference Systems; FIS, 
Teaching–Learning Based Optimization; TLBO, Ant Colony Optimization; ACO, Harmony Search; HS, Evaporation; EVAP, Relative Humidity; RH, Self-Normalizing Neural Network; 
SNN, Standardized Bathymetry Data; SBA, Population Data; PD, ID; irrigation data, elevation data; ED, phase space reconstruction; PSR, Relevance Vector Machine; RVM, multivariate 
variational mode decomposition; MVMD, Boruta feature selection algorithm; BFSA; Irrigation Flow; IRF, Temporal Fusion Transformer; TFT, Bayesian optimization; BO, Terrain slope; 
TS, Group Method of Data Handling; GMDH, Annual sinusoidal curve fitted to temperature; Tsin, drainage_volumes; V, drainage_volumes; V, groundwater surfaces; GWS, Empirical 
Bayesian kriging; EBK, Land Surface Temperature; LST, Generative adversarial network; GAN, Groundwater extraction rate; GRE, River flow rate; RFR, crop water demands; CWD, 
Temporal Fusion Transformer; TFT, Gradient Descent Regressor; GDR, Snow water equivalent; SWE, Water Surface Elevation; WSE, River Discharge; RD, Elevation; Z, and Distance 
from canal; DFC, Daily weir level; DWL, Transformer; TR,LightGBM; LGBM,CatBoost Regressor; CBR, Water Table Rise; WTR, Polynomial Regression; PR, population; POP, Gross 
domestic product; GDP, and Effective irrigated area; EIA, One-Dimensional Convolutional Neural Network; 1DCNN, Vapor Pressure; VP, Solar radiation; SR, Crop evapotranspiration; 
ETc, deep percolation; GR, applied irrigation water; GD, Rainfall intensity; RI, pore water pressure; PWP, permeability coefficients PCs, lateral flow coefficient; LFC, initial water 
level height; IWLH, self-attention; SA, convolutional network; SATCN.
Out of 223 papers, 187 incorporate groundwater level data as an 
input, with 77 using it as the sole input without additional factors. 
Precipitation data is also frequently used, appearing in 161 instances. 
20 
Other hydrological data, such as temperature, river discharge, evapo-
transpiration, and surface water levels, have been employed as inputs. 
Some papers have explored additional variables like irrigation patterns, 
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Fig. 7. Various metrics used in validation reviewed ML models’ performance.
Table 9
Feature selection methods identified in groundwater level (GWL) modeling 
studies, organized by general category. This taxonomy reflects common prac-
tice but is not absolute, as some methods overlap across categories.
 Feature selection method Type  
 Autocorrelation Function (ACF)/Partial ACF (PACF) Filter  
 Mutual Information (MI) Filter  
 Cross-correlation analysis Filter  
 Correlation matrix/Pearson/Spearman correlations Filter  
 Principal Component Analysis (PCA) Filter  
 Grey Relational Analysis (GRA) Filter  
 Factor Analysis (FA) Filter  
 Hellwig method Filter  
 Variance Inflation Factor (VIF) Filter  
 Multicollinearity test Filter  
 Lyapunov exponent + Phase Space Reconstruction (PSR) Filter  
 Wavelet decomposition/Variational Mode Decomposition (VMD) Filter  
 Recursive Feature Elimination (RFE) Wrapper  
 Forward Feature Selection (FFS) Wrapper  
 Taguchi design method Wrapper  
 Genetic Algorithm (GA) Wrapper  
 Particle Swarm Optimization (PSO) Wrapper  
 Ant Colony Optimization (ACO) Wrapper  
 Boruta algorithm Wrapper  
 Internal validation performance-based selection Wrapper  
 SHAP (SHapley Additive exPlanations) Embedded 
 GINI importance (from decision trees) Embedded 
 Permutation Feature Importance (PFI) Embedded 
 Model-derived importance (RF, XGBoost, MARS, etc.) Embedded 
 Growing Neural Gas (GNG) clustering Embedded 
 Model-based interpolation (e.g., M5P) Embedded 
Note: Some methods fall at the boundary of categories. For example, Boruta leverages 
Random Forest importance measures but is generally treated as a wrapper due to 
its iterative retraining process. Permutation Feature Importance (PFI) is technically 
post-hoc but grouped under embedded methods here because it is tied directly to 
fitted models. Wavelet and variational mode decomposition (VMD) are primarily 
preprocessing/feature extraction steps but are treated as filter techniques in this context.

population figures, seasonal factors, and more, though to a lesser ex-
tent. These variables may present challenges during the input selection 
process.

5.4. Programming languages utilized

In the review, we realized that most of the research papers used 
MATLAB, PYTHON, and R to build the various ML algorithms used. 
Researchers predominantly utilizing these programs for developing 
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machine learning algorithms in their studies can be attributed to the 
fact that these programming languages offer extensive libraries and 
frameworks specifically tailored for machine learning, simplifying algo-
rithm development and implementation. Python, in particular, boasts 
a vast machine-learning ecosystem, including popular libraries like 
Scikit-Learn and TensorFlow, making it highly versatile and ideal for 
a wide variety of ML tasks.

R is favored for its exceptional statistical capabilities and visualiza-
tion tools, providing researchers with robust data analysis and model 
interpretation capabilities alongside machine learning functionalities. 
These languages are open-source, facilitating collaboration and accessi-
bility for researchers globally, while also significantly reducing research 
costs. Their active and supportive communities continuously contribute 
to the development and improvement of machine learning tools and 
resources, ensuring researchers have access to the latest advancements 
in the field. Information regarding these software programs is available 
online, and we do not delve into their specifics here. Nevertheless, it is 
noteworthy that MATLAB is commonly favored in the development of 
AI models, although several papers have not explicitly mentioned the 
software used.

5.5. Time steps and forecast horizons

Fig.  9 shows the time steps used in the reviewed GWL modeling 
studies. Most studies (187 papers) employed monthly data, followed 
by daily (19) and hourly (8) intervals. Weekly, biweekly, and bi-
monthly resolutions appeared only rarely. The dominance of monthly 
data can be partly attributed to its wider availability from monitoring 
networks and its suitability for capturing the delayed recharge response 
of precipitation, which must travel through the vadose zone before 
reaching the water table. In inland aquifers, groundwater levels often 
vary slowly, making coarse temporal resolution sufficient. In contrast, 
coastal aquifers (Yoon et al., 2011; Taormina et al., 2012) and areas 
near large reservoirs (Rajaee et al., 2019) require finer time steps to 
represent rapid tidal or reservoir-driven fluctuations.

A notable trend shown in Table  8 is the strong emphasis on short-
term forecasts (3rd column), typically ranging from days to a few 
months, in the majority of studies. This focus reflects the strengths 
of machine learning models, which are effective at capturing recent 
patterns and correlations directly from data. However, the predictive 
accuracy of ML models tends to decline as the forecasting lead time 
increases (Shirmohammadi et al., 2013; Sun et al., 2016; Yu et al., 
2018; Wu et al., 2021b; Momeneh and Nourani, 2022; Roy et al., 2023). 
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Table 10
Comparison of optimization algorithms (Gandomi and Alavi, 2012; Mehrabian and Lucas, 2006; Saremi et al., 2017; Mafarja 
et al., 2019; Wang et al., 2018; Asgari et al., 2016; Chandirasekaran and Jayabarathi, 2019; Puente et al., 2009).
 Algorithm Type of optimization Advantages Disadvantages  
 GA Evolutionary -Good for global optimization

-Flexible and adaptable
-Handles complex spaces

-Requires careful parameter tuning
-Can be computationally intensive
-May converge to local optima

 

 CSO Swarm intelligence -Balances exploration and exploitation
-Good for dynamic problems
-Simple implementation

-Sensitivity to parameters
-Requires parameter tuning
-Can be slow in convergence

 

 PSO Swarm intelligence -Simple implementation
-Few parameters to adjust
-Efficient global search

-May get stuck in local minima
-Sensitivity to initial settings
-Can require many iterations

 

 GOA Swarm intelligence -Balances exploration and exploitation
-Effective for continuous problems
-Adaptable to various problems

-Computationally expensive
-Sensitive to parameter settings
-May require many iterations

 

 WOA Bio-inspired -Good for dynamic environments
-Mimics natural adaptability
-Simple concept to understand

-Can be computationally demanding
-Requires careful tuning
-Sensitivity to initial population

 

 KHA Swarm intelligence Effective in multi-modal problems
Adaptive to problem complexity
Good convergence properties

Computationally intensive
Sensitive to parameters
Requires many iterations

 

 ACO Swarm intelligence -Good for combinatorial problems
-Utilizes collective intelligence
-Finds good paths through search space

-Can be slow to converge
-Parameter sensitive
-May require large computational resources

 

 BWO Bio-inspired -Early convergence due to cannibalism
-Maintains diversity
-Simple implementation

-Risk of losing good solutions
-Sensitive to cannibalism and mutation rates
-Requires careful tuning

 

Fig. 8. Various covariates employed in reviewed articles.
Over longer horizons, these models may experience error accumulation 
and reduced generalization, especially when future conditions differ 
from those present in the training data.

Time step choice is closely linked to the intended forecast horizon. 
Short-term predictions often employ daily or hourly steps to capture 
high-frequency variations (Wu et al., 2023; Zhang et al., 2023; Sun 
et al., 2024), while long-term studies generally adopt monthly intervals 
to reflect slower groundwater responses (Ghazi et al., 2021; Eghrari 
et al., 2023; Zowam and Milewski, 2024). Selecting an appropriate 
combination of time step and forecast horizon should be guided by 
the dynamics of the aquifer system and the overall purpose of the 
prediction, balancing the short-term skill of ML methods with the need 
for robustness in longer-term projections.

6. Implications and future directions

This review identifies several key methodological patterns and re-
search gaps that can inform future GWL modeling efforts and guide the 
development of more robust, interpretable, and operational models.

First, the lack of comparative studies on feature selection meth-
ods represents a major limitation. Although various techniques such 
22 
Fig. 9. Different time steps used in GWL modeling.

as mutual information, cross-correlation, importance of permutation, 
SHAP, and elimination of recursive features have been used in studies, 
very few have systematically evaluated their impact within a consistent 
modeling framework. Given the strong influence of input features on 
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model performance, future research should prioritize controlled com-
parisons of feature selection strategies, especially in cases involving 
high-dimensional or multi-source inputs.

Second, the consistent superiority of hybrid models over standalone 
approaches highlights a promising direction. Many hybrid frameworks, 
such as LSTM-CNN or RF-GA, combined different model components 
or algorithms to address specific limitations. For instance, decompo-
sition methods like EMD and VMD (Wu et al., 2021b) helped isolate 
signal components with clearer temporal patterns, making them easier 
to model. Optimization algorithms such as GA and PSO were often 
used to fine-tune hyperparameters, reducing manual trial-and-error. 
Ensemble techniques also improved prediction by combining outputs 
from multiple learners (Yin et al., 2021), reducing variance and en-
hancing robustness. These strategies allowed hybrid and ensemble 
models to better capture the complex, nonlinear, and multi-scale dy-
namics of groundwater systems. Future studies should explore their 
broader integration, particularly in conjunction with hybrid model 
architectures.

Third, recent developments in deep learning point to new oppor-
tunities. Transformer-based architectures, though used in only a few 
studies, demonstrated strong predictive capabilities and the ability 
to handle long sequences and complex dependencies. Their limited 
use in groundwater applications suggests a valuable area for further 
exploration, especially for multi-step forecasting or spatially distributed 
predictions.

Fourth, this review finds that remotely sensed data, particularly 
from GRACE satellites, offer great promise for groundwater modeling in 
data-scarce regions. GRACE-derived storage changes, while only used 
in a few studies, enhanced prediction accuracy and captured large-scale 
dynamics that in-situ measurements could not. There is a strong case for 
integrating remote sensing into machine learning workflows, especially 
in regions with sparse monitoring networks.

Additionally, long-term prediction horizons (beyond one year) re-
main a significant gap, with very few studies attempting extended 
forecasts due to data limitations, non-stationarity, and issues like model 
drift. This is particularly relevant for water planning and early warn-
ing systems. Addressing this will require robust temporal validation 
strategies and possibly the integration of seasonal climate forecasts.

Also, despite limited datasets, most ML-based GWL studies achieved 
strong short-term predictive accuracy. A majority of the reviewed 
models were developed using relatively small datasets, often fewer 
than 500 samples, yet still demonstrated high performance, particularly 
for short-term forecasts. This confirms the flexibility of ML models 
in data-scarce settings, especially when supported by decomposition, 
optimization, and appropriate input selection. However, the predictive 
accuracy of ML models tends to decline as the forecasting lead time 
increases, as shown by Shirmohammadi et al. (2013), Sun et al. (2016), 
Yu et al. (2018), Wu et al. (2021b), Momeneh and Nourani (2022) and 
Roy et al. (2023).

A notable mention in the reviewed literature is the consistent 
commendation of Long Short-Term Memory (LSTM) networks for their 
strong performance in long-term groundwater level forecasting
(Kajewska-Szkudlarek et al., 2022; Zhang et al., 2018; Solgi et al., 
2021; Haq et al., 2021; Wu et al., 2021a; Ao et al., 2021). These 
studies highlighted LSTM’s ability to capture complex temporal de-
pendencies and delayed hydrological responses, even under extended 
lead times. Ao et al. (2021), in particular, compared LSTM with 
Kernel-based Nonlinear Extreme Learning Algorithm (KNEA) and Gated 
Recurrent Unit (GRU) models across multiple districts, and found that 
LSTM not only achieved a good accuracy but also demonstrated better 
generalization across spatially distinct sites. This is likely due to LSTM’s 
internal memory and gated structure, which allow it to retain relevant 
information over long sequences, making it especially suitable for 
modeling persistent and gradual groundwater dynamics.

While few studies directly compared ML with conceptual mod-
els, Chen et al. (2020) found that physically based models like MOD-
FLOW offered better generalization under varying conditions because 
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of the inclusion of physical mechanisms, although not higher short-term 
accuracy. Based on these findings, future studies could explore com-
bining both approaches. For example, a physically based model could 
simulate the overall groundwater system, while a machine learning 
model could improve predictions by learning from the errors or gaps 
in the physical model. Sun et al. (2023) demonstrated the value of this 
approach by integrating LSTM with a PB model, achieving prediction 
accuracy improvements for over 67% of wells when PB model perfor-
mance was moderate or better, and over 77% when PB performance 
was poor. Similarly, Kayhomayoon et al. (2023) combined MODFLOW 
with support vector regression variants, showing that the MODFLOW–
LSSVR configuration achieved near-perfect accuracy (NSE = 0.998) in 
forecasting groundwater levels under climate change scenarios. These 
examples illustrate how physically consistent PB outputs can provide a 
robust baseline, while ML components refine predictions by capturing 
nonlinear and site-specific dynamics. This kind of setup could help 
improve forecast accuracy across both short- and long-term timeframes.

Finally, the near absence of socio-economic and anthropogenic 
factors in GWL modeling remains a critical oversight. Land use change, 
irrigation practices, and population pressures play a significant role in 
groundwater dynamics, yet are rarely modeled. Future work should 
consider coupling physical and socio-economic data to capture human–
water interactions more effectively.

7. Limitations

Although we employed a broad and comprehensive set of keywords 
to capture a wide range of relevant studies, systematic reviews are 
inherently challenged by the diversity of terminology used in the 
literature. For example, some studies may refer to ‘‘groundwater level’’ 
as ‘‘water table’’ or use ‘‘forecasting’’ instead of ‘‘prediction’’. Similarly, 
certain papers highlight specific algorithms without explicitly mention-
ing ‘‘machine learning’’ or ‘‘AI’’. While our expanded keyword strategy 
mitigated much of this risk, it remains possible that a small number of 
relevant studies were omitted.

Another limitation is the tendency of the reviewed literature to 
predominantly report positive results of machine learning applications. 
Few studies explicitly discussed the failures or shortcomings of the 
models they employed. This publication bias may have led to an over-
representation of successful applications, thereby limiting the scope for 
a balanced evaluation of machine learning performance.

Finally, our review focused exclusively on peer-reviewed journal 
articles. This decision was intended to ensure methodological rigor and 
comparability, but it also excluded potentially valuable insights from 
grey literature, such as conference papers, theses, or technical reports. 
While including these sources might have broadened the perspective, it 
would also have increased heterogeneity and made systematic analysis 
more challenging.

8. Conclusion

ML models have shown significant promise in hydrology and
groundwater modeling. This review examines 223 research articles, 
published from 2010 to 2024, focusing on ML applications in ground-
water level (GWL) modeling across diverse geographical settings. These 
models excel at identifying complex patterns in groundwater datasets, 
enabling accurate GWL simulations and predictions. Key findings em-
phasize the critical roles of variable selection, hyperparameter tun-
ing, model architecture, and data preprocessing in achieving optimal 
model performance. Selecting relevant variables and employing ef-
fective preprocessing and optimization techniques can significantly 
enhance model accuracy and reliability. This review offers practical 
guidance for researchers adopting ML models for GWL studies, high-
lighting best practices in variable selection, architecture design, and 
optimization strategies to improve the accuracy and interpretability of 
ML-based groundwater predictions
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1. During the review, feature selection methods such as correlation 
analysis and SHapley Additive exPlanations (SHAP) were identi-
fied, but no single optimal method emerged. The choice depends 
on data characteristics, model needs, and research objectives, en-
couraging researchers to test multiple techniques for relevance. 
Linear correlation, widely used, assumes proportional relation-
ships between variables. However, groundwater systems involve 
complex, non-linear interactions like precipitation and aquifer 
properties, which linear methods often overlook, affecting model 
performance (Huang et al., 2017). Advanced methods, including 
mutual information, recursive feature elimination, and model-
based approaches, are recommended for identifying features in 
non-linear contexts.

2. Most studies relied on trial-and-error for hyperparameter tun-
ing, but combining machine learning models with optimization 
algorithms consistently improved performance. particle swarm 
optimization (PSO), known for strong global search capabili-
ties, was particularly effective for SVM (Lin et al., 2008; Fei 
et al., 2009; Huang et al., 2017). Other algorithms, such as 
Genetic Algorithm (GA), Ant Colony Optimization (ACO), and 
Grasshopper Optimization Algorithm (GOA), offered robustness 
and adaptability. However, research on newer techniques like 
Weed Optimization Algorithm (WOA) and Black Widow Opti-
mization (BWO) remains limited in GW Level modeling studies 
using ML. Further exploration of these methods is recommended 
to enhance model performance and optimization.

3. Our review of hybrid models, particularly those integrating 
wavelet transforms with machine learning, highlights their value 
for improving groundwater level simulations (e.g., Adamowski 
and Chan, 2011; Nourani et al., 2015; Ebrahimi and Rajaee, 
2017; Wei et al., 2023a; Saroughi et al., 2024). Daubechies 
wavelets, especially db2 and db4, were widely used. Their 
popularity may be due to their short support and strong time 
localization, which help capture sudden fluctuations in ground-
water signals. However, because they rely on downsampling, 
they may distort temporal alignment. To address this, some 
studies used the à trous wavelet transform, which maintains the 
original signal length and better preserves structure in seasonal 
or noisy data. The à trous method has been described as well 
suited for forecasting applications (Mallat, 1989; Bahaa et al., 
2015).

4. It is not possible to recommend a single best ML model for 
simulating groundwater levels, but the review shows that hybrid 
models consistently performed better than individual models. 
This advantage often results from improved handling of signal 
complexity, more effective parameter tuning, and reduced over-
fitting. Some studies (Yin et al., 2021) also applied ensemble 
techniques like Bayesian model averaging, where combining 
predictions from multiple models produced more stable and 
accurate results than any standalone model. By testing and 
combining different models, it is possible to achieve optimal 
performance in groundwater level simulations.

5. Our review identified Self-Organizing Maps (SOM), Growing 
Neural Gas (GNG), Fuzzy C-Means (FCM), and K-means as 
common clustering techniques, particularly in studies utilizing 
GRACE-derived Terrestrial Water Storage Anomaly (TWSA) data 
for downscaling to finer resolutions. These algorithms effectively 
clustered TWSA data to identify similar pixels for inputs and 
outputs, enhancing GWL understanding in areas with limited 
observations. SOM was also applied to optimize the number 
of hidden layer neurons, improving standalone model accu-
racy. However, most studies relied on trial and error for model 
structure, highlighting a gap in systematic research.
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6. Among the 223 articles reviewed, the data splits for training and 
testing varied from 50%–50%, 56%–44% (Chang et al., 2015; 
Seidu et al., 2023; Heudorfer et al., 2023) to 90%–10% (Ma-
heswaran and Khosa, 2013; Bahaa et al., 2015; Secci et al., 
2023), with an 80/20 split being the most common. Most studies 
used monthly datasets spanning over 10 years, with sample sizes 
ranging from 35 (Mukherjee and Ramachandran, 2018), 48 (Guo 
et al., 2021), 23,850 (Taormina et al., 2012), 445,104 (Sahoo 
et al., 2017) 835,044 (Mohapatra et al., 2021) to 964,260 (Su 
et al., 2024). Larger datasets, particularly for training, generally 
improved model performance.

7. We recommend further exploration of modeled meteorological 
variables from IPCC climate change scenarios, such as Shared So-
cioeconomic Pathways (SSPs) and Representative Concentration 
Pathways (RCPs), as inputs for GWL models. Assessing how well 
these models simulate future conditions under climate change is 
crucial but currently underexplored. Only a hand full of studies 
explored this in detail (e.g. Javadinejad et al. (2020), Secci et al. 
(2023) and Osman et al. (2024)). Expanding this research could 
deepen our understanding of climate impacts on groundwater 
resources and improve future resource management strategies.

8. Finally, future work should explore combining physically based 
models with machine learning to benefit from the process repre-
sentation of conceptual models and the pattern-learning
strengths of ML. Recent work by Sun et al. (2023) demon-
strated that integrating LSTM with physically based models can 
substantially improve prediction accuracy, especially when the 
physical model’s performance is moderate or poor. Given the 
strong long-term forecasting performance of LSTM under data-
scarce conditions (Gaffoor et al., 2022), it is a strong candidate 
for inclusion in such hybrid frameworks. This integration could 
enhance forecast robustness across varying time horizons, and 
model development should also move beyond trial-and-error by 
adopting more systematic optimization techniques.

List of abbreviations
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 ANN Artificial Neural Network  
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 ACF Autocorrelation Function  
 PACF Partial Autocorrelation Function  
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  BWO Black Widow Optimization  
 LM Levenberg–Marquardt  
 BR Bayesian Regularization  
 ARX AutoRegressive with eXogenous inputs  
 FCM Fuzzy C-Means  
 SOM Self-Organizing Maps  
 GNG Growing Neural Gas  
 SSPs Shared Socioeconomic Pathways (SSPs) 
 RCPs Representative Concentration Pathways 
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 CSO Cat Swarm Optimization  
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