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This study presents a comprehensive synthesis of machine learning (ML) techniques applied to groundwater
level (GWL) prediction, focusing on model architectures, feature selection methods, hyperparameter tuning,
optimization algorithms, and clustering techniques. A total of 223 peer-reviewed articles were systematically

iﬁ:}iMA reviewed using the PRISMA framework to guide study identification, inclusion, and exclusion. Widely used
Feature selection models include artificial neural networks (ANN), support vector machines (SVM), long short-term memory
Optimization networks (LSTM), and random forests (RF). More recent studies increasingly employ hybrid approaches

that integrate wavelet transforms, signal decomposition, and optimization techniques such as particle swarm
optimization (PSO), genetic algorithms (GA), and ant colony optimization (ACO). Transformer-based models
have also begun to emerge as promising tools in this domain. A central focus of this review is feature selection,
which remains one of the most underdeveloped areas in GWL modeling. Most studies rely on simple filter
methods like autocorrelation and mutual information. While SHapley Additive exPlanations (SHAP) has gained
some traction, more advanced techniques, such as recursive feature elimination (RFE), forward feature selection
(FFS), factor analysis (FA), and self-organizing maps (SOM), are rarely used. Notably, no study systematically
compared multiple feature selection strategies, limiting insights into their impact on model performance.
Scientometric analysis shows that Iran, China, India, and the United States contribute the most impactful
research. Despite strong predictive outcomes, trial-and-error remains the dominant approach to hyperparameter
tuning. The review emphasizes the need for more systematic, interpretable, and generalizable ML approaches
to support robust groundwater level (GWL) forecasting.

Hyperparameter tuning

1. Introduction crucial for managing groundwater resources amidst growing demand

and climate change impacts (Butler et al., 2013).

Groundwater is a critical global resource that supplies clean water
to more than two billion people (Famiglietti, 2014). However, increas-
ing demand and unsustainable exploitation, particularly in developing
regions, have strained aquifers, with projections indicating that nearly
20% are already overexploited and most could face the same fate by
2050 (Piesse, 2020). Groundwater levels (GWL), the depth from the
surface to the saturated zone, are vital indicators of aquifer health and
are measured through monitoring wells. Analyzing GWL fluctuations is

Traditional groundwater modeling often relies on conceptual or
physically based models such as MODFLOW and HydroGeoSphere
(Brunner and Simmons, 2012; Chakraborty et al., 2020; Dehghani
et al., 2022). These physically based models require extensive data
on aquifer properties like transmissivity, hydraulic conductivity, and
recharge rates, datasets that are frequently unavailable in data-scarce or
poorly instrumented regions. Machine learning (ML) has emerged as a
robust alternative for modeling GWL dynamics due to its ability to learn
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complex, non-linear relationships directly from observed data (Nourani
et al.,, 2011; Kalu et al., 2022; Maiti and Tiwari, 2014). A wide
array of ML techniques, ranging from traditional methods like Support
Vector Machines (SVMs) and Artificial Neural Networks (ANNs) to
deep learning architectures such as Long Short-Term Memory (LSTM)
and Deep Belief Networks (DBNs), have been deployed with promising
results. For instance, Nourani et al. (2011) used a hybrid ANN model to
predict GWLs in East Azerbaijan, Iran, while Kalu et al. (2022) applied
a DBN to model groundwater fluctuations in southern Africa.

While our focus is on ML for GWL forecasting, ML has also been
increasingly applied in related domains such as groundwater poten-
tial mapping and vulnerability assessment (e.g., delineating recharge
zones using ML-MCDM models (Kanji and Das, 2025) and improving
DRASTIC-based vulnerability indices (Dasgupta et al., 2024)). In paral-
lel, non-ML statistical and GIS-based methods have also been employed
for groundwater stress mapping, such as the GIS-statistical workflows
presented by John and Das (2020) and John et al. (2023). Together,
these applications highlight the breadth of data-driven approaches
being explored in hydrogeology.

However, despite these advances, ML applications in GWL mod-
eling still face critical limitations. Overfitting, underfitting, and poor
generalization, particularly in deep learning frameworks, remain recur-
ring issues, often exacerbated by the inclusion of noisy or irrelevant
input features (Kuhn et al., 2013a; Sharghi et al., 2022). This high-
lights the vital role of feature selection: identifying a minimal yet
informative subset of input variables that preserves predictive perfor-
mance while reducing model complexity. Inadequate feature selection
not only inflates computational costs, but can also obscure physical
interpretability and worsen generalization in unseen conditions.

In other scientific fields such as genomics, remote sensing, and
finance, systematic feature selection has been shown to substantially
improve model performance and transparency (Pudjihartono et al.,
2022; Dokeroglu et al., 2022; Iranzad and Liu, 2024). However, in
GWL modeling, no prior review has comprehensively examined the
methodologies and implications of feature selection despite its proven
importance. Existing reviews in hydrology and groundwater model-
ing (Solomatine, 2006; Wu et al., 2014; Rajaee et al., 2019; Tao et al.,
2022; Boo et al., 2024) tend to provide broad overviews of machine
learning applications but often overlook critical methodological as-
pects. Specifically, they do not categorize or analyze feature selection
methods, rarely discuss how time lags are determined, and do not
distinguish between filter, wrapper, and embedded feature selection
approaches.

To address this critical gap, this review provides a systematic and
detailed assessment of ML-based groundwater level modeling, with a
specific emphasis on the role of feature selection, model architecture,
optimization strategies, and hyperparameter tuning. Using the PRISMA
framework, we analyze recent peer-reviewed studies to identify trends,
innovations, and research gaps.

This review is guided by the following core inquiries:

1. What are the most commonly employed ML models in GWL
modeling?

2. What strategies are used for feature selection, and how do they
affect model performance?

3. How are model architectures structured and optimized in current
research?

4. How are hyperparameters selected and tuned across different ML
models?

By focusing on these aspects, our review not only synthesizes exist-
ing knowledge but also provides actionable insights into constructing
more reliable, interpretable, and efficient models for GWL prediction.
Unlike prior reviews that focus broadly on ML adoption in hydrology,
our work uniquely foregrounds feature selection as a methodological
pillar, setting a new benchmark for future research in this domain. We
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do not delve into the mathematical derivations of the models; instead,
we focus on their design principles, input structuring, optimization
strategies, and performance implications, offering practical value to
both researchers and practitioners.

2. Methodology

This systematic review adopts the PRISMA framework (Liberati
et al., 2009; Page et al., 2021) to ensure a comprehensive, unbiased
evaluation of the research literature. Following the PRISMA flow dia-
gram, we minimized researcher bias and maintained a traceable review
process.

The review aimed to identify the most common ML models used
for GWL prediction, methods to determine optimal input variables,
and techniques to fine-tune key hyperparameters to enhance model
performance. Through this exploration, we sought to provide insights
into factors influencing the accuracy of GWL predictions.

Key stages of the systematic review process included identification,
screening, eligibility assessment, and full-text evaluation, as outlined
in Fig. 1. By adhering to the PRISMA methodology, we ensured trans-
parency, rigor, and replicability, enabling a thorough analysis of the
existing literature and meaningful conclusions.

1. Identification: Following the PRISMA conceptual framework,
our systematic review utilized a comprehensive search strategy
to capture relevant articles from prominent electronic databases,
including Scopus, Science Direct, and Google Scholar. The search
was limited to English-language publications between 2010 and
2024, aiming to examine the contemporary applications of ML
models in predicting groundwater levels and availability. The
search strategy employed a carefully designed search string,
incorporating specific terms such as (‘“groundwater level pre-
diction” OR “water table prediction”) AND (“machine learning”
OR “artificial intelligence” OR “AI”’) AND (forecasting OR mod-
eling). In total, our search yielded 426 articles in all selected
databases, demonstrating the wide scope of literature available
on this topic. The details of the search string can be found in
Table 1.

2. Screening: Following the identification of relevant publications,
key metadata, including title, keywords, abstract, DOI, publi-
cation year, and author names, was extracted and recorded in
a Microsoft Excel spreadsheet. All articles were imported into
Mendeley, a reference management software used to streamline
literature organization and deduplication (Mendeley, 2022). Af-
ter removing 68 duplicate records, 358 articles were retained
for screening. These articles were evaluated against predefined
inclusion and exclusion criteria, resulting in the exclusion of
62 papers whose titles or abstracts were determined to be out
of scope. To ensure objectivity and consistency, two indepen-
dent reviewers assessed the eligibility of the remaining articles.
In cases of disagreement or ambiguity, article titles were dis-
cussed with external experts in groundwater or machine learning
research. Final inclusion decisions were based on consensus
between reviewers or expert resolution when needed.

3. Eligibility criteria
Studies were included if they:

(a) Focused on the application of machine learning algo-
rithms for simulating groundwater levels and availability.

(b) Employed meteorological parameters as inputs in the
models.

(c) Reported original research (e.g., case studies, simulations,
empirical analyses) with sufficient methodological detail
and performance metrics.

(d) Were published in peer-reviewed journals in English be-
tween 2010 and 2024.
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Fig. 1. The PRISMA workflow diagram.

Studies were excluded if they:

(a) Relied solely on traditional statistical or physically based
models without ML components.

(b) Were secondary sources (reviews, editorials, opinions,
conference abstracts, or book chapters).

(c) Did not provide sufficient methodological or results infor-
mation to assess model development and performance.

3. Results and discussion
3.1. Publication trends

As shown in Fig. 2, the application of ML for GWL prediction has
seen a marked upward trend, particularly after 2019. Between 2010

and 2018, annual publication counts remained relatively modest, fluc-
tuating between 2 and 13 papers per year and collectively accounting
for less than 30% of the total reviewed studies. However, from 2020,
research activity intensified significantly. In 2022 alone, 34 studies
were published, representing approximately 15.1% of all 223 studies
reviewed, while 2023 saw a comparable count of 39 papers (17.5%),
and 2024 (year-to-date) currently leads with 43 publications (19.3%).
This steady growth reflects a growing academic and practical interest
in leveraging ML techniques to address groundwater-related challenges.
These findings align with recent bibliometric reviews (Afrifa et al.,
2022; Tao et al., 2022; Ahmadi et al., 2022; Boo et al., 2024), which
also report a sharp increase after 2020 in data-driven groundwater
modeling studies. Fig. 3 presents the distribution of total and average
citations among the top academic publishers that contribute to the
groundwater level (GWL) modeling literature. Elsevier emerged as the
most influential publisher, with a total of 3191 citations, resulting in
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Table 1
The detailed search query.
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Search query

TITLE-ABS-KEY (“roundwater AND level AND prediction” OR “groundwater AND level AND forecasting” AND “machine AND learning”) AND PUBYEAR > 2009 AND
PUBYEAR < 2024 AND (EXCLUDE (LANGUAGE, “Chinese”) OR EXCLUDE (LANGUAGE, “Korean”)) AND (LIMIT-TO (EXACTKEYWORD, “Forecasting”) OR LIMIT-TO
(EXACTKEYWORD, “Groundwater”) OR LIMIT-TO (EXACTKEYWORD, “Machine Learning”) OR LIMIT-TO (EXACTKEYWORD, “Groundwater Resources”) OR LIMIT-TO
(EXACTKEYWORD, “Artificial Neural Network”) OR LIMIT-TO (EXACTKEYWORD, “Rain”) OR LIMIT-TO (EXACTKEYWORD, “Hydrology””) OR LIMIT-TO (EXACTKEYWORD,
“Evapotranspiration”) OR LIMIT-TO (EXACTKEYWORD, “Temperature”) OR LIMIT-TO (EXACTKEYWORD, “Groundwater Level Fluctuation”) OR LIMIT-TO (EXACTKEYWORD,

“Aquifer”) OR LIMIT-TO (EXACTKEYWORD, “Evaporation”))
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Fig. 2. Trends in publications within the reviewed articles from 2010 to 2024.
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Fig. 3. Publication outlet average normal citations.

an average of approximately 66.5 citations per study. Springer accumu-
lated 2192 citations with an average of 39.9 citations per article. MDPI
followed with 1045 total citations (41.8 average citations per study).
Wiley Online Library, while contributing fewer studies (6), achieved
a higher average impact with 78.3 citations per article, indicating a
strong influence relative to volume. Taylor & Francis, IWA Publishing
(iwaponline.com), and Nature also demonstrated moderate to high
average citation metrics. Notably, some specialized or lower-volume
platforms such as Copernicus (hess.copernicus.org) and EBSCOhost
showcased high average citations per article, although based on limited
publication counts.

Our systematic review analyzed 223 articles, revealing distinct au-
thorship patterns and geographic distribution. Iran led with 39% of

publications, followed by China (24%) and the United States (13%),
as shown in Fig. 4. Many studies in Iran address its dependence
on groundwater due to limited surface water resources, highlighting
concerns about the depletion of aquifers (Sharafati et al., 2020; Motagh
et al., 2017; Milan et al., 2023; Arabameri et al., 2019; Moravej et al.,
2020). In general, Asia dominated the research landscape, contributing
81.24% of the studies. In contrast, the use of ML for groundwater
modeling in Africa remains underrepresented, with little literature
highlighting a significant research gap in applying ML techniques to
groundwater dynamics on the continent. Fig. 4 summarizes the geo-
graphical distribution. Fig. 5 presents a country-level co-authorship and
a normalized citation network derived from VOSviewer. The graph re-
veals clear regional and international collaboration clusters, with India,
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Fig. 5. Country-level co-authorship and normalized citation network for studies on machine learning-based groundwater level modeling, generated using

VOSviewer.

Iran, and Malaysia serving as major hubs. In particular, India forms a
distinct cluster of cooperation with countries such as Portugal, Yemen,
and Bangladesh, while Iran exhibits strong ties within the Middle East
and Central Asia. The United States and China are central to a western
collaboration cluster, linking with Germany, Sweden, and Algeria. The
size of the node reflects the strength of the citation, indicating that
countries such as the United States, Iran, China, and India not only
publish frequently, but also produce highly cited research in GWL
modeling.

3.2. Algorithms used in groundwater level prediction

This review explores techniques for predicting GWL, with a focus
on the most widely applied machine learning algorithms. As illustrated
in Fig. 6, five dominant models: ANN (51%), SVM (13%), LSTM (12%),
tree-based ensembles (8%) and ANFIS (5%) collectively account for
89% of the models reviewed. These approaches have been used in-
dependently and in hybrid configurations in diverse case studies. The

following sections critically examine methodological elements includ-
ing feature selection, model design, data pre-processing, and parameter
tuning.

3.3. ANN (Standalone and hybrid) models

3.3.1. Bibliographic review

Experts worldwide have conducted numerous studies on groundwa-
ter level prediction across various geographical regions using ANNS,
and these studies have consistently reported the efficacy of these mod-
els. For example, Dash et al. (2010) developed a hybrid ANN-GA (Ge-
netic Algorithm) model to predict GWLs in the Mahanadi River Basin,
India, outperforming standalone ANN models trained with Levenberg—
Marquardt (LM), gradient descent, and Bayesian Regularization (BR)
algorithms. Hyperparameters and activation functions were optimized
via trial and error, with the hybrid model demonstrating superior
predictive performance. Chen et al. (2010) employed self-organizing
maps (SOM) to predict GWLs in the Zhuoshuixi River Basin, Taiwan,
using single-site and multisite models. ACF and PACF determined input
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features, and the multisite model outperformed single-site configu-
rations. Building on this, Chen et al. (2011) combined SOM with
backpropagation networks (BPN), developing six models. The improved
multisite SOM-BPN model outperformed ARIMA and single-site ANN
models. Rakhshandehroo et al. (2012) compared FFNN, Radial Ba-
sis Function (RBF), Elman (ELNN), and generalized regression neural
networks (GRNN) for monthly GWL prediction in the Shiraz plain,
Iran. All models performed effectively, with FFNN achieving the best
results. Adamowski and Chan (2011) integrated ANN with discrete
wavelet transform (DWT) for GWL forecasting in the Chateauguay
watershed, Quebec. DWT decomposed time series data, and the WA-
ANN model, trained with the LM algorithm, outperformed standalone
ANN and ARIMA models.

Nourani et al. (2011) integrated ANN and geostatistics to predict
GWL in eastern Azerbaijan, Iran. Sensitivity analysis guided input
selection, and FFNNs with optimized hidden neurons, trained using the
LM algorithm, achieved superior performance. Taormina et al. (2012)
applied FFNNs for hourly GWL simulations in the Lagoon of Venice,
Italy, utilizing AutoRegressive with eXogenous inputs (ARX) models
and the Akaike Information Criterion for input selection. Optimized via
trial and error, the models effectively simulated GWL over extended
periods.

A few years after Chen et al. (2010) used SOM for determining
hidden layer neurons in RBFN models, Nourani et al. (2015) combined
SOM-based clustering and wavelet transform (WT) to model one- and
multi-step-ahead GWLs in the Aradabil plain, Iran. SOM identified
homogeneous clusters, and WT extracted multi-scale features from non-
stationary GWL, runoff, and rainfall time series. The FFNN model,
trained via backpropagation with feature selection and lagged values
guided by mutual information (MI), demonstrated improved accuracy
and reduced model complexity. Bahaa et al. (2015) compared MLR,
ANN, wavelet MLR, wavelet ANN, and a wavelet ensemble ANN for
GWL forecasting in Quebec, Canada. The “a Trous” wavelet transform
was used for de-noising, and MI guided feature selection. The wavelet
ensemble ANN consistently outperformed other models across all lead

times. Chang et al. (2015) developed ANN models to simulate supra-
permafrost GWLs in the Qinghai-Tibet Plateau, China, using two and
three input variable configurations. A three-layer feedforward network
trained with the LM algorithm showed higher accuracy with three
inputs, while the two-input model performed reasonably well without
field GWL data.

Gholami et al. (2015) used a multilayer perceptron (MLP) net-
work with dendrochronology and precipitation data to simulate GWLs
in the Caspian Sea’s alluvial aquifer (1912-2013). A standard three-
layer feedforward neural network, trained using LM backpropagation,
showed that the sigmoid transfer function provided the best results
during the growing season.

Sun et al. (2016) employed a standard FFNN with a quasi-Newton
training algorithm to predict GWLs in a swamp forest in Singapore. In-
puts included reservoir levels and rainfall. Using logistic and threshold
activation functions, the ANN achieved accurate forecasts up to 7 days
ahead, though performance decreased with longer lead times.

Choubin and Malekian (2017) compared ANN and ARIMA models
for simulating GWLs in Iran’s Shiraz basin using precipitation, stream-
flow, temperature, evaporation, and GWL data. The LM algorithm
trained the ANN with logistic-sigmoid and purelinear activation func-
tions. ARIMA outperformed ANN based on the evaluation metrics. Wen
et al. (2017) also compared a wavelet analysis-based ANN (WA-ANN)
with a traditional ANN model for forecasting GWLs in an arid inland
river basin in northwestern China. Input variables included GWLs, total
precipitation, evaporation, and average temperature. Both models used
a three-layer architecture with a single-neuron output layer, sigmoid
activation for hidden layers, and a linear activation for the output layer.
The WA-ANN consistently outperformed the traditional ANN model
across all evaluation metrics.

Sahoo et al. (2017) developed a hybrid artificial neural network
(HANN) model for GWL prediction, incorporating innovative covariate
processing methods. Singular spectrum analysis decomposed time series
data, while mutual information and genetic algorithms identified key
components. The model used logistic sigmoid and linear activation
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functions in a single hidden layer, optimized through trial and error,
and trained with the LM algorithm. HANN outperformed hybrid linear
and nonlinear regression models. Similarly, El Ibrahimi et al. (2017)
integrated DWT with ANN-PMC for GWL prediction in Morocco, using
a three-layer architecture with precipitation, temperature, and GWLSs
as covariates. Systematic parameter optimization showed the DWT-
ANN-PMC model exceeded standalone ANN-PMC and MLR models in
accuracy.

Guzman et al. (2017) used the Nonlinear autoregressive exogenous
model (NARX) network to predict daily groundwater levels (GWLs) in
the Mississippi River Valley Alluvial (MRVA) aquifer in the southeast-
ern United States. The model, trained with both LM and BR algorithms,
used precipitation and GWL as covariates. Sensitivity analysis identified
historical GWL and precipitation as key variables. The optimal network
consisted of two hidden nodes with sigmoid transfer functions and one
output node with a linear function. The NARX-BR model achieved the
highest predictive accuracy among the tested models. Wunsch et al.
(2018) employed the NARX model for GWL prediction in southwest
Germany, identifying influential time lags using STL decomposition
and auto/cross-correlation. The study demonstrated NARX’s accuracy
and adaptability for GWL modeling. Similarly, Kouziokas et al. (2018)
implemented multilayer FFNN models with varying architectures to
forecast GWLs in Montgomery County, Pennsylvania. Using the LM
algorithm with Tanh-Sigmoid transfer functions in hidden layers, the
models achieved optimal predictive performance compared to other
training algorithms and transfer functions.

A year later, Lee et al. (2019) developed FFNN models to pre-
dict GWLs in South Korea’s Yangpyeong riverside area. Correlation
analysis identified surface water level as the most influential covari-
ate. The models used logistic-sigmoid and linear activation functions
in the hidden and output layers, respectively, and were trained us-
ing backpropagation, achieving strong predictive performance. Chen
et al. (2020) compared MLP, RBF, MODFLOW, and SVM models for
GWL prediction in the Heihe River Basin. The MLP employed a sin-
gle hidden layer with optimized neurons, using backpropagation and
gradient descent. Results showed that SVM and RBF outperformed
MODFLOW in accuracy. Banadkooki et al. (2020) assessed RBF neural
networks with Whale Algorithm (WA), MLP-WA, and GP models for
GWL prediction in Yazd-Ardakan, Iran. Cross-correlation and partial
autocorrelation guided feature selection, with MLP-WA demonstrat-
ing superior predictive performance. Similarly, Yadav et al. (2020)
combined singular spectrum analysis (SSA), MI, GA, ANN, and SVM
models to analyze groundwater fluctuations in India, considering cli-
matic and non-climatic factors. Hybrid models (SSA-MI-GA-ANN and
SSA-MI-GA-SVM) consistently outperformed standalone models.

Miiller et al. (2021) compared LSTM, MLP, RNN, and CNN mod-
els for GWL prediction in Butte County, California, using surrogate-
based algorithms and random sampling for hyperparameter tuning.
MLP, optimized with ADAM and ReLU activation, outperformed the
other models, emphasizing the importance of precise hyperparame-
ter tuning. Sharghi et al. (2022) evaluated FFNN, ANFIS, LSTM, and
GMDH models for multi-step GWL forecasting in Iran. Pre- and post-
processing techniques like COMUSA and NAE improved accuracy, with
GMDH outperforming others, highlighting the benefits of clustering
and ensemble approaches. Yin et al. (2021) introduced a Bayesian
ensemble model integrating ANN, SVM, and Response Surface Re-
gression (RSR) to predict groundwater storage fluctuations. The ANN
model, trained with the LM algorithm, demonstrated low uncertainty,
particularly at sub-regional scales. Bayesian model averaging provided
the most accurate predictions. Kalu et al. (2022) utilized a Deep Belief
Network (DBN) to simulate monthly GWLs in southern Africa, using
hydrological variables and global climate indices. Variable selection
employed correlation analysis, and the architecture was optimized
through trial and error. Results highlighted DBN’s efficacy in GWL
prediction. Collados-Lara et al. (2023) applied NAR, NARX, and Elman
Neural Networks for short-term GWL prediction in Spain. Effective
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precipitation emerged as a key predictor, with NARX and Elman Neural
Networks outperforming others. Van Thieu et al. (2023) proposed
the Augmented Artificial Ecosystem Optimization-based Multi-Layer
Perceptron (AAEO-MLP) model for monthly GWL prediction in India,
using ELU activation and mutual information for input selection. The
AAEO-MLP consistently outperformed other MLP models. Panahi et al.
(2023) compared Radial Basis Function Neural Network (RBF), ANFIS,
SVM, and MLP for GWL prediction under future climate conditions
in Iran. RBFNN exhibited superior performance, proving reliable for
climate-related GWL forecasts. Wei et al. (2023a) proposed a hybrid
WT-PSR-ANN model for GWL forecasting by combining wavelet decom-
position, phase space reconstruction (PSR), and ANN. GWL time series
were decomposed using three types of mother wavelets, and PSR was
applied to select relevant sub-series as input. Lyapunov exponent analy-
sis confirmed chaotic behavior in the data. The WT-ANN outperformed
standard ANN, while WT-PSR-ANN yielded the best results overall. The
study highlighted PSR as a valuable enhancement to wavelet-based
preprocessing for improving model accuracy. Ghafoor et al. (2024)
applied autoregressive moving average (ARIMA) and ANN models to
predict GWLs across four wells in Cheyenne and Delta counties, Col-
orado, USA. Monthly GWL data were preprocessed via interpolation
and up-sampling to enhance model training. The ANN employed a
feedforward architecture with rectified linear unit (ReLU) and linear
activation functions. Model evaluation revealed that ANN consistently
outperformed ARIMA in accuracy across all sites. This result was at-
tributed to ANN’s robustness against nonlinearity and noise, making it
more adaptable to the irregular GWL fluctuations observed. Fahim et al.
(2024) evaluated MLR, SVM, Gaussian process regression (GPR), regres-
sion trees, bagged and boosted ensembles, and ANN models for GWL
prediction in Bangladesh. Weekly GWL observations, with missing val-
ues addressed using cubic spline interpolation. Inputs included Global
Land Data Assimilation System (GLDAS) groundwater storage, rainfall,
temperature, elevation, irrigation, population, and GRACE-based water
storage variability. ANN performed best, effectively modeling spatial
groundwater variability. Seifi et al. (2024) proposed a hybrid BFSA-
MVMD-GRU-RVM model for GWL prediction in Iran’s Bastam Plain.
Boruta was used for feature selection, multivariate variational mode
decomposition (MVMD) for decomposition, gated recurrent unit (GRU)
for sequence learning, and relevance vector machine (RVM) for predic-
tion. Inputs included lagged rainfall, temperature, pumping, irrigation
return flow, and humidity. The model outperformed other MVMD-
based models and showed reduced prediction uncertainty across short-
to long-term forecasts. Moradi et al. (2023) compared a numerical
model (GMS) with AI models including GA-ANN, ICA-ANN, Extreme
Learning Machine (ELM), Outlier Robust ELM (ORELM), and Group
Method of Data Handling (GMDH) for predicting GWL in the Lur Plain,
Iran. Initial inputs were GWL, rainfall, temperature, and evaporation,
but only GWL was retained due to stronger correlations. ORELM outper-
formed all other models and the numerical approach. Model evaluation
used RMSE, NRMSE, NASH, R, and a Taylor diagram. Abdi et al.
(2024) applied CNN and DNN models for GWL prediction in Iran,
using 34 wells. Missing data were handled via interpolation (Kriging,
SVM, M5P), with M5P proving most accurate. Inputs included spatial
coordinates and groundwater levels. CNN outperformed DNN across
scenarios, especially when interpolated data were used to expand input
coverage. Ghafoor et al. (2024) applied ARIMA and ANN models to
forecast GWL at four wells in Colorado, USA. Auto-ARIMA identified
optimal parameters for ARIMA. A feedforward ANN with one hidden
layer used Adam optimizer and ReLU activation. ANN consistently
outperformed ARIMA across all wells. Despite data limitations and a
small number of wells, both models showed effectiveness for GWL
prediction. Seidu et al. (2023) evaluated four ANN models (BPNN,
RBFNN, GRNN, GMDH) for groundwater level prediction using data
from 13 boreholes in Ghana. Input features included rainfall, evap-
oration, and temperature. Min—-Max normalization was applied, and
model performance was assessed across five train—test splits (90-10
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to 50-50). The 70-30 and 80-20 splits produced the most accurate
predictions. RBFNN performed best in six out of thirteen boreholes. Ak-
bari Majd et al. (2024) developed ANN-based models hybridized with
three metaheuristic algorithms (Particle Swarm Optimization (PSO),
Genetic Algorithm (GA), Ant Colony Optimization (ACO)) to predict
GWL in Iran’s Ardabil Plain. Unlike most studies, historical GWL was
not used. Inputs included rainfall, temperature, runoff, and discharges.
Three preprocessing stages were tested, with Stage 3 involving time
series decomposition (trend, seasonality removal) showing the best
performance. ANN-GA performed best for some wells, ANN-PSO for
others. Overall, Stage 3 improved prediction accuracy by 76%, making
the method suitable for data-scarce basins. Feng et al. (2024) evaluated
decision tree (DT), RF, SVM, convolutional neural network (CNN),
recurrent neural network (RNN), and generative adversarial network
(GAN) models for GWL prediction in Izeh City, Iran. The study used
extraction rate, rainfall, and river flow as inputs. Feature importance
was assessed using Pearson and Spearman correlation, revealing that
river flow and extraction had stronger associations with GWL than
rainfall. CNN outperformed other models, demonstrating robustness
and high accuracy in capturing groundwater fluctuations.

Refer to supplementary information for a detailed description of
ANN.

3.3.2. Results
Based on the reviewed papers, we found that

1. The Levenberg-Marquardt (LM) algorithm emerged as the pri-
mary optimization method for training ANN models, often en-
hanced with Bayesian Regularization to improve generalization.
The Backpropagation algorithm was utilized to compute gradi-
ents for weight updates. The LM algorithm is recognized for
its computational efficiency, balancing Newton’s method, which
converges rapidly near minima but risks divergence, with gradi-
ent descent, which ensures convergence but at a slower rate if
step sizes are chosen carefully (Tyagi et al., 2022). Researchers
have highlighted the LM method’s computational advantages
and its reduced likelihood of becoming trapped in local min-
ima, making it a robust and effective choice for training ANN
models (Daliakopoulos et al., 2005).

2. A typical ANN structure consists of three layers, incorporating

the sigmoid activation function in the hidden layer and a lin-
ear activation function in the output layer. Some studies also
employed ReLU and ELU. Notably, in most of the reviewed
papers, the determination of the ANN structure, the number
of hidden neurons, and hyper-parameter tuning were achieved
using a trial-and-error approach. However, genetic programming
(GP) was used for hyperparameter optimization in specific cases.
The reported learning rates mainly ranged between 0.001 and
0.009, with the highest recorded as 0.01 (Emamgholizadeh et al.,
2014).
Activation function plays a crucial role in the successful training
of deep neural networks. It introduces non-linearity into the
neural network model, enabling the network to learn more
effectively by capturing and understanding the intricate non-
linear patterns present in input datasets. Table 2 summarizes
the general output range, along with some advantages and dis-
advantages of the various activation functions used in GWL
modeling. Further details on these functions can be in the works
of LeCun et al. (2015), Banerjee et al. (2019), Ramachandran
et al. (2017), Jamel and Khammas (2012), Narayan (1997),
Kalaiselvi et al. (2022), Ding et al. (2018), Nwankpa et al. (2018)
and Rasamoelina et al. (2020)

3. The selection of optimal input variables primarily relied on
correlation analyses, including Partial Auto-correlation, Auto-
correlation, and Cross-Correlation function. In some cases, MI
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Table 2

Comparison of activation functions (LeCun et al., 2015; Banerjee et al., 2019;
Ramachandran et al., 2017; Jamel and Khammas, 2012; Narayan, 1997;
Kalaiselvi et al., 2022; Ding et al., 2018; Nwankpa et al., 2018; Rasamoelina
et al., 2020).

Activation function Sigmoid Tanh ReLU ELU
Output range 0, 1) -1, 1) [0, ) [-1, )
Smooth gradient Yes Yes No No
Vanishing gradient issue Yes Yes Yes (for negative Reduced
inputs)

Zero-centered output No Yes No Yes
Computational efficiency Yes No Yes No
Dying neurons problem No No Yes Reduced

was used to improve model performance through enhanced
feature selection.
Auto-correlation gauges how similar a time series is to a lagged
version of itself, helping spot repeating patterns or trends at
different time points in the same series. Partial Auto-correlation
is similar but removes the influence of intermediate lagged
values.
Cross-correlation compares two different time series at the same
time points, identifying relationships and potential lead-lag pat-
terns between them.
MI quantifies the mutual information shared between two vari-
ables, offering an indirect means to identify pertinent time
lags by evaluating information content across various temporal
shifts (Van Thieu et al., 2023). Table 3 provides a summary of
the formulas, advantages, and disadvantages of the feature selec-
tion methods employed. Further details on these methods can be
found in the works (Kraskov et al., 2004; Veyrat-Charvillon and
Standaert, 2009; Batina et al., 2011; Latham and Roudi, 2009;
Bourke, 1996; Yoo and Han, 2009; Ramsey, 1974)

4. Among the hybrid models, the combinations consistently yield
optimal performance involving ANN coupled with WT.

3.4. ANFIS (Standalone and hybrid) models

3.4.1. Bibliographic review

When it comes to GWL modeling with Adaptive Neural Networks
Fuzzy Inference Systems (ANFIS), Jalalkamali et al. (2011) evaluated
the predictive performance of ANFIS and ANN models for groundwater
level (GWL) prediction in two neighboring wells in Kerman Plain, Iran.
Input variables included rainfall, air temperature, and GWLs. Hyper-
parameters for both models were optimized through trial and error,
with the ANFIS model utilizing the Gaussian membership function
(gaussmf). Performance evaluations indicated that ANFIS outperformed
ANN in accuracy. Emamgholizadeh et al. (2014) compared ANFIS and
ANN for GWL prediction in Bastam Plain, Iran, concluding that ANFIS,
with trapezoidal input membership functions and a hybrid learning
algorithm, consistently outperformed ANN. Similarly, Maiti and Tiwari
(2014) evaluated ANN, Bayesian Neural Network (BNN), and ANFIS
for modeling GWL fluctuations in Dindigul, Southern India. The study
found ANFIS excelled with noise-free data, while BNN was more ef-
fective for noisy hydrological series. The following year, Mirzavand
et al. (2015) evaluated the ANFIS model against the support vector
regression (SVR) model for predicting monthly GWL fluctuations in
the Kashan plain, Iran, concluding that ANFIS with a Bell-shaped MF
outperformed SVR. Similarly, Gong et al. (2016) compared ANFIS to
ANN and support vector machine (SVM) for forecasting GWLs near
Lake Okeechobee, Florida. Input factors were selected using partial and
autocorrelation coefficients, and models were tuned via trial-and-error.
Results indicated that ANFIS and SVM consistently outperformed ANN.

Seifi et al. (2020) combined six meta-heuristic methods (e.g.,
grasshopper optimization algorithm (GOA), cat swarm optimization
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Table 3

Applied Computing and Geosciences 28 (2025) 100303

Comparison of feature selection methods employed for ANN (Kraskov et al., 2004; Veyrat-Charvillon and Standaert, 2009; Batina et al., 2011; Latham and Roudi,

2009; Bourke, 1996; Yoo and Han, 2009; Ramsey, 1974).

Method Formula

Advantages

Disadvantages

Partial Autocorrelation (PACF) PACF(k) = ¢y

- Measures the direct effect of a lagged variable
- Helps determine appropriate lag in time series

- Assumes linearity
- Sensitive to noise and outliers

models
Autocorrelation (ACF) k= C°$a):£?')+“ - Detects repeating patterns and serial correlation - Only captures linear dependence
' - Easy to compute and interpret - Can be misleading for non-stationary
or non-linear data
Cross-Correlation (CCF) CCF(k) = CovX Y - Identifies lead-lag relationships across variables - Does not account for indirect effects

Ox Oy

- Useful in multivariate time series

- Assumes stationarity and linearity

Mutual Information (MI) I(X:Y)= 3, p(x.y)log ( pxy) )

PP(yY)

- Captures non-linear dependencies
- More general than correlation

- Computationally expensive
- Hard to interpret for high-dimensional

- Model-agnostic data

Notes:

X,, Y, represent time series variables at time #; k is the lag; Cov(-) is covariance; Var(-) is variance; oy, o, are standard deviations of X and Y; ¢, is the kth lag partial

autocorrelation coefficient.
p(x) and p(y) are marginal probabilities; p(x, y) is the joint probability distribution.

(CSO), and genetic algorithm (GA)) with ANN, ANFIS, and SVM for
monthly GWL predictions. Principal component analysis (PCA) re-
duced time series data, and the Taguchi model optimized parameters.
ANFIS-GOA achieved the best accuracy, while SVM was less effec-
tive. Kayhomayoon et al. (2022) applied ANFIS with meta-heuristic
algorithms (e.g., Genetic Algorithm (GA) and Ant Colony Optimization
(ACO)) to predict GWLs in the Urmia aquifer. Using a Sugeno-type
function with Gaussian membership functions, ANFIS-ACOR outper-
formed the base model and other hybrids. Roy et al. (2023) developed a
Bayesian model averaging (BMA)-based ensemble model for GWL fore-
casting in Bangladesh, combining seven ML models including ANFIS,
RF, GPR, Bi-LSTM, and SVR. Past GWL values were used as inputs,
with Minimum Redundancy Maximum Relevance (MRMR) applied
for lag selection. Lag-1 was most predictive. MARS and RF handled
feature selection internally. The ensemble consistently outperformed
standalone models across all wells and forecast horizons.

Refer to supplementary information for a detailed description of
ANFIS.

3.4.2. Results
Based on the reviewed papers, we found that

1. Gaussian Membership Functions (MF) were the most frequently
employed, followed by Trapezoidal MF. Membership functions
are a fundamental component of fuzzy logic systems, and they
define how each input variable’s value is associated with dif-
ferent fuzzy sets. These functions are essential to ANFIS’s fuzzy
inference procedure. In a study by Talpur et al. (2017), the
influence of four common membership function shapes on the
effectiveness of ANFIS in tackling diverse classification tasks
was investigated. Their findings indicated that the Gaussian
membership function, due to its superior accuracy and lower
computational demands, emerged as the most promising choice.
It is worth noting that several reviewed papers did not specify
the MF utilized.

2. Hyperparameter tuning was performed primarily using a trial-
and-error approach. However, in select cases, algorithms such as
ACOR, GOA, CSO, WA, GA, KA, and PSO were employed, pro-
ducing favorable results. Section 5.1, provides more information
about these algorithms.

3. Partial Autocorrelation and Autocorrelation analyses were the
prevalent methods for selecting optimal features for model in-
puts.

4. Both standalone ANFIS models and hybrid ANFIS models con-
sistently outperformed ANN models. This superior performance
can likely be attributed to ANFIS models integrating both neural
networks and fuzzy logic, making them more adept at handling
non-stationary time series data.

3.5. SVM/SVR (Standalone and hybrid) models

3.5.1. Bibliographic review

Behzad et al. (2010) compared SVM and ANN for simulating and
forecasting GWLs in the Towaco aquifer, Morris County, N.J., across
multiple timeframes (daily to bimonthly). The study employed the
radial basis function kernel for SVM and concluded that SVM out-
performed ANN in both training and testing phases, showcasing its
reliability for GWL prediction. In a similar study, Yoon et al. (2011)
evaluated the performance of SVM and ANN models in predicting GWL
fluctuations in a coastal aquifer in Korea. The study employed the
cross-correlation analysis to identify the most influential features. The
SVM model was trained using the Sequential Minimal Optimization
(SMO) algorithm, and parameters were fine-tuned through trial and
error. Results showed that the SVM model outperformed the ANN
model in forecasting GWL fluctuations. Suryanarayana et al. (2014)
introduced an integrated wavelet-SVR (WA-SVR) model with an RBF
kernel for predicting monthly GWL fluctuations in Visakhapatnam,
India. Optimized through trial and error, the WA-SVR outperformed
SVR, ANN, and ARIMA models. Zhou et al. (2017) combined discrete
wavelet transform (DWT) with SVM (WSVM) for GWL forecasting in the
Huai River Basin, China. Using PSO-based hyperparameter tuning and
lag optimization via Partial Autocorrelation Function, WSVM achieved
superior performance over standard ANN, SVM, and Wavelet Prepro-
cessed ANN (WANN) models. In the same year, Ebrahimi and Rajaee
(2017) evaluated the impact of wavelet analysis on SVR, MLR, and ANN
models for one-month-ahead GWL predictions in the Qom Plain, Iran.
Using auto-correlation analysis for feature selection, wavelet-enhanced
models (WNN, WLR, WSVR) outperformed standalone counterparts.
The RBF kernel was used for SVR with trial-and-error optimization. Nie
et al. (2017) applied SVM and RBF-ANN models to forecast monthly
GWL in Jilin province, China, concluding that SVM effectively pre-
dicts GWL while analyzing uncertainties through confidence inter-
vals. Huang et al. (2017) employed chaos theory for variable selection,
bypassing linear correlation analyses. They developed SVM and BP-
ANN models for predicting GWLs in China’s Three Gorges Reservoir
Area. The chaotic PSO-SVM model, optimized with RBF kernel and
PSO, achieved superior accuracy over its linear counterpart and chaotic
BP-ANN models. Mukherjee and Ramachandran (2018) explored the re-
lationship between terrestrial water changes from GRACE data (ATWS)
and GWLs in India using SVR, ANN, and linear regression models. SVR
outperformed the others, highlighting ATWS as a valuable input for
modeling irregular GWL time series. Hussein et al. (2020) compared
SVR with MLR, MLP, RF, and XGB for GWL prediction, with XGB
also used for feature selection. Feature engineering was performed
using the Gaussian Mixture Model on GRACE data. SVR consistently
outperformed all other models. Yadav et al. (2020) integrated MI
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theory, SSA, and GA with SVM and ANN models to analyze climatic and
non-climatic impacts on GWL fluctuations in India. Using the Kernel
Basis Function, hybrid models (SSA-MI-GA-ANN and SSA-MI-GA-SVM)
outperformed standalone models after hyperparameter fine-tuning. Yin
et al. (2021) developed a Bayesian ensemble modeling approach using
SVM, ANN, and Response Surface Regression to predict groundwater
storage fluctuations. The SVM model, employing a Gaussian kernel,
demonstrated low uncertainty and strong regional-scale predictions. Yu
et al. (2021) combined Grey Relational Analysis (GRA) and Factor
Analysis (FA) with SVM to predict GWL in Mingin County, China.
The GRA-FA-SVM, utilizing an RBF kernel, outperformed standalone
SVM, BPNN, and RBFNN models. Liu et al. (2021) compared stan-
dalone SVM and SVM with data assimilation (SVM-DA) for predicting
short- to medium-term GWL changes (1-3 months) in the northeast-
ern United States. Using correlation analysis for feature selection and
the RBF kernel with fine-tuned hyperparameters, SVM-DA achieved
higher accuracy than standalone SVM. Dehghani et al. (2022) evalu-
ated hybrid models (BWO-SVR, WSVR, and AIG-SVR) for predicting
GWL changes under the RCP8.5 scenario in Iran’s Khorramabad plain.
Parameter tuning employed black widow and rifile algorithms, with
WSVR consistently outperforming other models. Kajewska-Szkudlarek
et al. (2022) compared SVR and MLP for monthly GWL prediction in
northern Poland, using the Hellwig method for predictor selection. The
RBF kernel in SVR slightly outperformed MLP. Sarkar et al. (2024)
evaluated five nonlinear ML models: Polynomial Regression, Random
Forest, XGBoost, KNN, and SVM-RBF for GWL prediction at a well
in IIT Roorkee, India. Cross-validation was used for hyperparameter
tuning. XGBoost achieved the highest accuracy and was best suited for
capturing GWL changes linked to gravity variations. Niu et al. (2023)
used a SVM model to predict GWL in the North China Plain, focusing
on regions with varying human activity. Cross-correlation analysis and
SHapley Additive exPlanations (SHAP) analysis were used to select
input variables (e.g., precipitation, temperature, population, GDP) and
determine time lags. Bayesian optimization tuned SVM parameters.
The model had a commendable overall performance. Kayhomayoon
et al. (2023) evaluated GWL prediction in Iran’s Dehgolan aquifer
using MODFLOW and machine learning models—SVR, least-square
SVR (LSSVR), and a hybrid SVR-WOA. Inputs included past GWL and
monthly recharge/withdrawal. LSSVR outperformed other ML models,
and the combined LSSVR-MODFLOW model gave the best results. Wu
et al. (2023) compared SVM, Long-Short Term Memory (LSTM), MLP,
and Gated Recurrent Units (GRU) models for GWL prediction in China’s
Hebei Plain using data from six monitoring stations (2018-2020). RBF
kernel function selected for SVM. GRU showed the highest accuracy,
especially for fluctuating or increasing trends. SVM had the weakest
performance.

Refer to supplementary information for a detailed description of
SVM/SVR

3.5.2. Results
Based on the reviewed papers, we found that

1. The RBF that is the Radial Basis Function kernel was the most
frequently employed, followed by the Polynomial and Linear
kernels. The RBF kernel formulated by Broomhead and Lowe
(1988) in 1988 is a mathematical function commonly used in
machine learning, particularly in SVM and other kernel-based
algorithms. It is a type of kernel function that helps transform
data into a higher-dimensional space, making it easier to classify
or separate non-linear data. it is important to note that there is
no one-size-fits-all kernel function. The choice of kernel relies on
the particular problem, dataset, and its inherent characteristics.
In some cases, other kernels like linear, polynomial, or sigmoid
kernels may perform better. Table 4 provides a comparison
between these kernels.
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2. Hyper-parameters were predominantly fine-tuned through a
trial-and-error approach. However, in specific instances, alter-
native methods such as the Creative Rifle and Black Widow (De-
hghani et al., 2022), and the Taguchi Model (Seifi et al., 2020)
were utilized to optimize the tuning process.

3. In addition to correlation analysis, Principal Component Analysis
(PCA), Chaos theory, Grey Relational Analysis (GRA), Factor
Analysis (FA), and the Hellwig method were utilized to facilitate
optimal feature selection. Table 5 provides a general overview as
well as some advantages and disadvantages.

4. SVMs, when tuned to optimal hyperparameters, consistently
outperformed ANN and ANFIS models.

3.6. LSTM (Standalone and hybrid) models

3.6.1. Bibliographic review

Zhang et al. (2018) assessed the LSTM model’s performance in
five sub-areas of the Hetao Irrigation District in arid northwestern
China, comparing it with a traditional FFNN and a double-layered
LSTM model. Monthly data on evaporation, temperature, precipitation,
water diversion, and time were used as inputs. Key hyperparameters
were fine-tuned through trial and error. The results indicated that
the LSTM model outperformed both the FFNN and the double-layered
LSTM model. A few years later, Solgi et al. (2021) employed the LSTM-
NN model to predict GWLs using historical GWL data as the only
input. The study compared its performance with a basic neural network
(NN) for predicting short- and long-term GWLs in the Edwards aquifer,
Texas. The LSTM-NN model was trained with the Adam optimizer, and
input variable selection was refined through trial and error. Results
consistently demonstrated that the LSTM-NN outperformed the basic
NN across all evaluation scenarios. In that same year, Haq et al.
(2021) applied LSTM networks for real-time tracking and prediction
of Terrestrial Water Storage Change (TWSC) and Groundwater Stor-
age Change (GWSC) across five Saudi Arabian basins using GRACE
datasets from 2003 to 2025. Correlation analysis was employed to
evaluate the influence of input variables. The LSTM model, trained
with the ADAM optimizer, outperformed the autoregression model in
accuracy and computational efficiency. Wu et al. (2021a) proposed
the WT-multivariate LSTM (WT-MLSTM) method for simulating and
predicting GWLs, tested in the Liangshui River Basin, China, and the
Cibola National Wildlife Refuge, USA. The model, trained using the
Adam optimizer, demonstrated superior prediction accuracy compared
to standard LSTM, MLSTM, and WT-LSTM models. Ao et al. (2021)
compared the LSTM model, the kernel-based nonlinear extension of
the Arps decline model (KNEA), and the GRU model for estimating
GWL in the Hetao Irrigation District, China. Hyperparameters were
optimized using grid search, and the study concluded that the LSTM
model outperformed the other methods.

In some of the more recent studies, Vu et al. (2023) utilized the
Bidirectional LSTM (BiLSTM) model to predict GWL dynamics in a
Normandy karst massif in eastern France. Feature relevance was de-
termined through correlation analysis, and the ADAM optimizer was
used for training. The study concluded that the BiLSTM model outper-
formed the standard LSTM model. Manna and Anitha (2023) developed
the Double-Edge Bi-Directed Long Short-Term Memory (DEBi-LSTM)
model, a deep ensemble learning approach for simulating and fore-
casting groundwater levels in India. The model was enhanced using
the Randomized Low-Ranked Approximation (RLRA) algorithm, with
feature selection guided by the Variance Inflation Factor (VIF) and
Multi-Collinearity Test. The study concluded that the DEBi-LSTM model
outperformed existing models, including LSTM, bagging ensemble, and
general ensemble models. Foroumandi et al. (2023) employed Con-
vLSTM, FENN, and RF models to downscale monthly GRACE-derived
Terrestrial Water Storage Anomaly (TWSA) to a 10 km resolution over
Iran using remote sensing images. The Growing Neural Gas (GNG)
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Table 4
Comparison of the SVM kernels (Rahmadani and Lee, 2020; Scholkopf et al., 1997; Panja et al., 2019; Patle and Chouhan, 2013).
Kernel Description Formula Advantages Disadvantages
RBF The RBF kernel maps input vectors K(x,x") = exp(=y|lx = x"||*) - Handles non-linear relationships well - Requires careful tuning of y
(Gaussian) into an infinite-dimensional space - Effective in high-dimensional spaces - May overfit with high y
and is effective for capturing - Few parameters to tune - Computationally demanding for
complex non-linear relationships. large datasets
Polynomial Captures interactions of features by Kx,x")=(a-x-x"+b)? - Models non-linear patterns - Computationally expensive for large
kernel computing polynomial combinations - Adjustable via degree d d
of inputs. Useful when prior - Performs well when data is - Prone to overfitting
knowledge suggests polynomial polynomially separable - Requires parameter tuning (a, b, d)
relationships.
Sigmoid Inspired by neural networks, this K(x,x")=tanh(a- x - x" + b) - Mimics neural network behavior - Sensitive to parameter choices
kernel kernel simulates the behavior of an - Useful for binary classification - Less robust than RBF

activation function.

- Captures certain non-linearities

- Not always positive semi-definite

Linear kernel Assumes linear separability. Best
suited for high-dimensional data with

a clear linear margin.

Kx,x")=x-x'

- Fast and simple
- Fewer hyperparameters

- Works well with linearly separable

data
- Less prone to overfitting

- Ineffective for non-linear problems
- Limited flexibility
- May underfit complex patterns

Notes: x, x' are input feature vectors; x - x' denotes their dot product; ||x — x’||> is the squared Euclidean distance.
y is a kernel parameter controlling the spread in the RBF kernel; a is a scale factor; b is a bias term; d is the degree of the polynomial.
tanh is the hyperbolic tangent function used in the sigmoid kernel. Proper tuning of these parameters is essential for optimal model performance.

Table 5
Comparison of feature selection methods (King and Jackson, 1999; Tang et al., 2014; Omiotek et al., 2019; Huang et al., 2017).
Method Description Advantages Disadvantages
PCA PCA is a dimensionality reduction technique - Reduces dimensionality - May lose interpretability

that transforms features into a set of
linearly uncorrelated components, ordered
by variance.

- Highlights key features
- Simplifies data visualization

- Assumes linear relationships
- Not ideal for non-linear data

Chaos theory Chaos theory examines complex systems
that appear disordered but are deterministic.

In ML, it identifies chaotic patterns in data.

- Identifies hidden patterns
- Useful for complex systems
- Captures dynamic behaviors

- Requires complex calculations
- Interpretation can be difficult
- Sensitive to initial conditions

GRA Evaluates the relationship between multiple
criteria using grey relational grades to rank
and select important features.

- Handles uncertainty and complex
multi-criteria problems well

- Requires fewer data points compared to some
methods

- Provides a clear ranking of features based on
relational grades

- Can be complex to implement and interpret
- Sensitive to the selection of reference series
- May require normalization of data for
accurate analysis

FA A statistical method that identifies
underlying factors that explain the
relationships between variables, reducing
dimensionality.

- Reduces dimensionality by identifying latent
factors

- Helps in understanding the underlying
structure of data

- Simplifies the feature space by focusing on
significant factors

- Assumes linear relationships among variables
- Can be sensitive to outliers and data noise

- Interpretation of factors can be subjective and
complex

Hellwig method The Hellwig method evaluates the
importance of features by considering their

correlation with the target variable and

- Considers both relevance and redundancy
- Facilitates selection of non-redundant features
- Provides a clear ranking of features

- May require large datasets
- Can be computationally intensive
- Relies on accurate correlation measures

redundancy among themselves.

algorithm clustered TWSA data to identify similar pixels for model
inputs and outputs. ConvLSTM utilized the ReLU activation function,
with layer optimization performed through trial-and-error. The re-
sults indicated that ConvLSTM outperformed RF and FFNN, effectively
downscaling GRACE data and producing groundwater storage maps for
Iran. Ehteram et al. (2023) developed a hybrid SATCN-LSTM model
integrating self-attention and temporal convolution with LSTM to im-
prove GWL prediction accuracy. The model was tested using meteoro-
logical inputs and outperformed baseline SATCN, TCN, and standalone
LSTM models. It achieved the lowest MAE (0.06) and RMSE (0.08),
addressing limitations of vanishing gradients and redundant inputs in
sequence forecasting. Heudorfer et al. (2023) used global LSTM models
to predict GWL from 108 wells in Germany. Dynamic inputs included
precipitation and temperature, while static features (e.g., land cover,
hydrogeology) were selected via correlation and spatial relevance anal-
ysis. Feature importance was assessed using permutation feature im-
portance (PFI). Models with static features performed no better than
random ones in-sample. Out-of-sample, the dynamic-only model gave
the best results, highlighting the stronger role of climatic inputs. Jing
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et al. (2023) applied six models (RF, XGBoost (XGB), GBR, Light-
GBM, Vanilla-LSTM, EnDe-LSTM) to simulate GWL in China’s North
China Plain. Feature engineering created GWSAFE and Human activity
from GRACE and GLDAS datasets. Feature importance was assessed
using GINI and Permutation Feature Importance (PFI). Human_activity
emerged as the dominant predictor. Deep learning models, especially
EnDe-LSTM, outperformed tree-based models in capturing groundwater
variation across aquifer types. Zheng et al. (2024) developed a VMD-
iTransformer model to predict GWL in China’s Kubuqi Desert using
data from nine monitoring stations. Variational Mode Decomposition
(VMD) was used as a preprocessing step to decompose non-stationary
time series into intrinsic components. The VMD-iTransformer model
outperformed both classic Transformer and LSTM models. Elzain et al.
(2024) used CBR, XGB, LGBM and LSTM, GRU, Transformer to forecast
water table rise (WTR) in Oman. SHAP was used for feature selection.
Data preprocessing involved lag creation, differencing, and seasonal
aggregation. Stacked models outperformed individual ones, with GRU
leading in one-week ahead forecasts. Sun et al. (2023) assessed GWL
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prediction in Beijing’s Yongding River fan using Long Short-Term Mem-
ory (LSTM) models and a physics-based (PB) model (PGMS). Input
variables included water supply, precipitation, and runoff, with lag
times identified via correlation analysis. Improved LSTM models con-
sistently outperformed the PB model in short-term forecasts. The PB
model remained better for long-term trends.

Refer to supplementary information for a detailed description of
LSTM.

3.6.2. Results

1. The Adam optimizer, introduced by Kingma and Ba (2014), was
predominantly utilized for training the LSTM model. Renowned
for its efficiency and adaptability, Adam combines the strengths
of RMSprop and Momentum optimizers, resulting in faster and
more reliable convergence compared to traditional algorithms.
Its ability to dynamically adjust learning rates for each parame-
ter during training proves particularly advantageous for complex
models like LSTMs, where varying learning rates enhance con-
vergence. The widespread adoption of Adam is evidenced by
its over 100,000 citations within eight years of publication.
In comparative studies, LSTM consistently outperformed ANN
models, likely due to its robust architecture, which effectively
mitigates issues like local minima that often impede convergence
during training.

2. The ReLU activation function was commonly utilized as the
activation function for the LSTM model. The ReLU activation
function was created by Nair and Hinton (2010) and it is well
known for its ability to handle the gradient vanishing problem.
Using the ReLU function as the activation in a neural network, as
opposed to the sigmoid function, results in partial derivatives of
the loss function having values of either 0 or 1. This property ef-
fectively mitigates the issue of gradient vanishing, making ReLU
an effective choice for preventing gradient-related problems.

3. Hyperparameters were mostly adjusted through trial and error.
However, in some cases, like in the study by Ao et al. (2021),
the grid search method was used. The grid search approach
is a systematic method used in machine learning to find the
optimal hyperparameters for a model. it involves defining a grid
of possible values for each hyperparameter and then evaluating
the model’s performance for every possible combination of these
values.

4. The selection of optimal input variables primarily relied on
correlation analyses. However, in some select cases, methods
such as Cross-wavelet analysis and the Granger causality (Kim
et al., 2023), Multi Collinearity Test, and Variance Inflation
Factor (VIF) (Manna and Anitha, 2023) were employed to im-
prove model performance through enhanced feature selection.
Also, it is worth mentioning that one of the primary advantages
of the LSTM model compared to other AI models like FFNN
is that, while important features of the input dataset typically
need to be identified through mathematical measures such as
Cross-correlation (CC) or MI, the LSTM model can automatically
achieve this through its hidden layers (Sharghi et al., 2022).
Table 6 provides an overview of these methods as well as some
strengths and limitations.

5. In terms of performance, LSTM consistently outperformed ANN
models, possibly due to its inherent capability to overcome
the limitations associated with local minima, which can hinder
convergence in the training process.

3.7. RF (Standalone and hybrid) models

3.7.1. Bibliographic review
In the scope of GWL simulation and modeling with RF, Lendzioch
et al. (2021) assessed the RF model’s ability to predict peat bog GWL
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and soil moisture in the Rokytka Peat Bog using ultrahigh-resolution
UAV maps. Predictor selection, hyperparameter tuning, and perfor-
mance evaluation were conducted using a leave-location-out (LLO)
spatial cross-validation strategy combined with forward feature selec-
tion (FFS) to mitigate overfitting and enhance predictions for untested
locations. The study concluded that the RF model demonstrated strong
predictive performance. Mosavi et al. (2021) utilized ensemble models,
including GamBoost, AdaBoost, and Bagged CART, to simulate and
predict GWLs in the Dezekord-Kamfiruz watershed, Iran. Variable se-
lection was optimized using Recursive Feature Elimination (RFE) and
multicollinearity assessment via the Variance Inflation Factor (VIF).
The study concluded that Bagging methods, particularly Random Forest
and Bagged CART, outperformed Boosting models like AdaBoost and
GamBoost, with Random Forest achieving the highest performance.
Zhou et al. (2022) explored the use of GRACE satellite data, GLEAM,
and GLDAS datasets, combined with meteorological variables, to pre-
dict GWL using RF, SVR, and ELM models. For the RF model, hyper-
parameters such as Ntree (100-500) and Mtry (1-3) were fine-tuned.
The study concluded that RF demonstrated the best predictive perfor-
mance, followed by SVR and ELM. Liu et al. (2022) developed multiple
models, including RF, SVM, GRNN, DT, CNN, LSTM, and GRU, to
simulate GWLs in the lower Tarim River basin. The SHAP method
was employed to evaluate the impact of covariates on model perfor-
mance. Results indicated that the RF model consistently outperformed
the other models. Pham et al. (2022) tested the validity of the RF
model in simulating and forecasting GWL fluctuations in two wells
in northwest Bangladesh. The study compared the RF model with six
other models: Random Tree (RT), Decision Stump, M5P, SVM, Lo-
cally Weighted Linear Regression (LWLR), and Reduced Error Pruning
Tree (REP Tree). They concluded that the Bagging RF and Bagging
RT models outperformed the others. Rafik et al. (2023) evaluated
Random Forest (RF), SVM, and k-Nearest Neighbors (k-NN) for GWL
prediction in the Sais basin, Morocco. Input data included precipita-
tion, soil moisture, runoff, and evapotranspiration from ERA5-Land,
along with NDVI and land surface temperature (LST). A correlation
matrix was used for feature selection. Among the models, RF showed
the most satisfactory performance, making it the preferred choice for
regional GWL prediction. Zowam and Milewski (2024) applied RF and
SVR for statewide GWL anomaly prediction in Arizona, integrating
geostatistical interpolation (EBK) to estimate GWL and using it as a
predictor in the RF model. Final features were selected using per-
mutation feature importance after training. The integrated RF+EBK
model showed high accuracy in unconsolidated aquifers, emphasizing
the role of geology and data quality. May-Lagunes et al. (2023) assessed
several ML and deep learning models including ARIMA, XGBoost, RF,
LSTM, and TFT for GWL prediction in California’s Sacramento River
Basin. Inputs included historical GWLs, well characteristics (e.g., depth,
usage, location), SWE, ET, and seasonal features from Fourier de-
composition. Feature selection involved experimenting with lagged
variables and measuring importance in XGBoost, where well-specific
features ranked highest. XGBoost outperformed all models, especially
for 3-month forecasts, highlighting the value of well-level informa-
tion over climate predictors. Hikouei et al. (2023) applied MLR, RF,
and XGBoost to predict GWL in Indonesia’s Mawas peat dome. In-
puts included elevation, precipitation, ET, and distance from canals.
Tree-based models provided feature importance, with elevation ranked
highest. XGBoost outperformed RF and MLR, showing superior accu-
racy and lower residuals. Yi et al. (2024) predicted GWL near South
Korea’s Baekje weir using five ML models: RF, ANN, SVR, GB, and
XGBoost. Feature selection was done via permutation-based impor-
tance. XGBoost consistently outperformed all others across evaluation
metrics. Gupta et al. (2024) applied three Bagging-based models, Ran-
dom Forest (RF), Bagging-REPTree, and Bagging-DSTree, to forecast
groundwater levels in Punjab, India, using long-term GWL data from
14 wells. Feature importance was derived using the RF model. RF
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Table 6
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Analytical methods for feature selection in GWL using LSTM (Thompson et al., 2017; Maraun and Kurths, 2004; Akinwande et al., 2015; Torrence and Compo,
1998; Attanasio et al., 2013; Stokes and Purdon, 2017).

Method

Description

Advantages

Disadvantages

Cross-wavelet
analysis

Analyses the relationship between two time
series in the time-frequency domain,
providing insights into their co-movement
at different frequencies and times.

Provides detailed time—frequency
information

Useful for analyzing non-stationary time
series

Can identify phase relationships

Computationally intensive
Requires careful interpretation
Sensitivity to noise and boundary effects

Granger causality

Determines whether one time series can
predict another, indicating a directional
influence between the variables.

Helps identify potential causal relationships

Assumes linear relationships
May not capture complex dynamics
Sensitive to the choice of lag length

Multi Collinearity
Test

Assesses the degree of correlation among
independent variables in a regression model,
indicating potential multicollinearity issues.

Identifies problematic correlations
Helps in improving model stability
Simple and easy to apply

Does not quantify the impact on the model
May miss subtle collinearity issues
Assumes linear relationships

Variance Inflation
Factor (VIF)

Quantifies the degree of multicollinearity by
measuring how much the variance of an
estimated regression coefficient increases if
the predictors are correlated.

Provides a clear numerical measure of
multicollinearity

Easy to interpret and use

Helps in model refinement

Only applicable to linear models
Does not indicate causality
May not detect non-linear relationships

consistently outperformed the other models in both pre- and post-
monsoon seasons across multiple evaluation metrics. Chi et al. (2024)
used Tree Ensemble models (DT, RF, XGBoost) with rolling means and
lagged features to predict GWL. Inputs included groundwater depth,
temperature, rainfall, and drainage volumes. SHAP analysis highlighted
lagged GWL and moving averages as most important.

Refer to supplementary information for a detailed description of RF.

3.7.2. Results

1. In the extensive body of research we have examined, it is clear
that both standalone RF models and their hybrid counterparts
consistently outperform traditional models like ANN and SVM
in various fields. RF’s strength lies primarily in its exceptional
predictive accuracy, which makes it a valuable tool across many
applications.

2. In conjunction with correlation analysis, the SHAP (SHapley
Additive exPlanations), the Recursive Feature Elimination (RFE)
(Mosavi et al., 2021), and forward feature selection (FFS)
(Lendzioch et al., 2021) methods were occasionally employed to
select optimal input variables for the models. Table 7 provides
an overview of these methods as well as some strengths and
limitations.

3. A noteworthy observation is that many papers did not explicitly
specify the hyperparameter values for ‘ntree’ and ‘mtry’. The
optimal values for ‘ntree’ and ‘mtry’ in RF models are recog-
nized to be problem-dependent (Martinez-Munoz and Suérez,
2010). While specific values may vary based on the nature
of the problem, it is commonly acknowledged that RF often
performs reasonably well with default hyperparameter values.
For instance, the default value for ‘ntree’ is typically set at 500
trees, and ‘mtry’ is defaulted to one-third of the total number of
variables (Mutanga et al., 2012). This suggests that researchers
may rely on these default values without explicit specification.
However, the significance of choosing appropriate hyperparam-
eter values, particularly in the context of groundwater recharge
studies, should not be overlooked.

4. Trends and gaps in feature selection for GWL modeling

Across the reviewed studies, a diverse array of feature selection
techniques have been employed, ranging from classical statistical tools
to modern hybrid and model-driven approaches. Broadly, these meth-
ods fall into three categories: filter-based, wrapper, and embedded
approaches. Filter methods evaluate features based on statistical met-
rics independent of the model, wrapper methods iteratively assess
feature subsets using the learning algorithm itself, and embedded meth-
ods perform selection as part of the model training process. Each
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comes with trade-offs in interpretability, computational demand, and
robustness. A close inspection reveals that while performance-centric
motivations drive most feature selection choices, methodological in-
consistencies and reporting gaps persist, limiting comparability and
reproducibility across studies.

4.1. Filter-based approaches

Filter methods are independent of the machine learning model and
select features based on general characteristics of the data, such as sta-
tistical relevance or correlation. These techniques are computationally
efficient and easy to implement. However, they may overlook feature
interactions and dependencies that are only revealed during model
training.

Filter techniques were extensively applied across early ANN, ANFIS,
and SVM studies. ACF, PACF, cross-correlation, and Mutual Information
(MI) were commonly used for lag selection. For instance, Nourani
et al. (2015) and Bahaa et al. (2015) used MI to identify relevant time
lags and improve model accuracy by capturing nonlinear dependen-
cies. Yu et al. (2021) implemented Gray Relational Analysis (GRA)
and Factor Analysis (FA) in the SVM frameworks, observing better
precision than conventional methods. The Hellwig method was adopted
in SVR (Kajewska-Szkudlarek et al., 2022) to assess feature weights
using a synthetic capacity index. LSTM-based studies often employed
correlation matrices to select relevant features (Sun et al.,, 2023),
while PCA was used in hybrid ANN-ANFIS frameworks (Seifi et al.,
2020) to reduce dimensionality. VIF and multicollinearity tests were
also used (Manna and Anitha, 2023). Additional studies supporting
filter-based selection include Wei et al. (2023a), who applied wavelet
decomposition and phase space reconstruction (PSR) to preprocess
inputs before feeding them into ANN models. Lyapunov exponent
analysis supported the relevance of PSR in chaotic systems. In Ghafoor
et al. (2024), ANN models using interpolated and upsampled GWL time
series outperformed ARIMA, reinforcing ANN’s capability to learn from
preprocessed, irregular data. Correlation and standard preprocessing
approaches (e.g., normalization, cubic spline interpolation) were also
applied in studies by Fahim et al. (2024), Seidu et al. (2023), Feng
et al. (2024). Zheng et al. (2024) used Variational Mode Decomposition
(VMD) as a preprocessing tool to decompose non-stationary time series
before feeding data into the iTransformer model.

4.2. Wrapper approaches
Wrapper methods evaluate subsets of features by training and test-

ing a specific model. These approaches often yield better performance
as they consider interaction effects and model dynamics. However, they
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Table 7
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Feature selection methods applied with RF models in GWL prediction studies (Strobl et al., 2007; Chen and Jeong, 2007; Kuhn et al., 2013b; Lundberg and Lee,
2017; Jovi¢ et al., 2015; Kamalov et al., 2024; Takefuji, 2025).

Method Description Advantages Disadvantages

SHAP (SHapley Game-theory-based approach that assigns Provides consistent, interpretable Computationally expensive for large
Additive each feature an importance value by attributions; captures nonlinear interactions. datasets; results can be sensitive to
exPlanations) quantifying its marginal contribution to background data selection.

predictions.

Recursive Feature
Elimination (RFE)

Iteratively fits the model, removes the least
important feature(s), and repeats until the
optimal subset is identified.

Efficiently identifies strong predictors; helps
reduce dimensionality.

Greedy elimination may discard interacting
features too early; requires repeated model
training.

Forward Feature
Selection (FFS)

Begins with no features, adds predictors
sequentially based on performance
improvement until no significant gain is
observed.

Computationally less intensive than
exhaustive search; yields parsimonious
models; avoids inclusion of irrelevant
predictors.

Greedy nature may miss optimal subsets;
struggles with correlated predictors; can
overfit without proper validation.

RF Inherent Feature
Importance

RF naturally provides importance measures
based on mean decrease in impurity (MDI)

Embedded in the model; efficient and
scalable; offers direct ranking of features.

Importance may be biased toward variables
with more categories or higher variance;

or mean decrease in accuracy (MDA).

does not always reflect causal relevance.

are computationally expensive and prone to overfitting, especially on
small datasets.

Wrappers were increasingly adopted in more recent studies. For-
ward Feature Selection (FFS) was used by Lendzioch et al. (2021) to
select UAV-based predictors for RF models under a leave-location-out
strategy, showing strong performance in untested locations. Recursive
Feature Elimination (RFE) was used in ensemble studies (Mosavi et al.,
2021), leading to the selection of non-redundant inputs and improved
accuracy for RF and Bagged CART. The Taguchi method was used
to select the optimal combinations of characteristics and parameters
for ANFIS in Seifi et al. (2020), producing the best performing hy-
brid (ANFIS-GOA). Metaheuristic wrappers such as Genetic Algorithms
(GA), Particle Swarm Optimization (PSO), and Ant Colony Optimiza-
tion (ACO) were used to tune the inputs and parameters of SVM and
ANFIS (Kayhomayoon et al., 2022; Zhou et al., 2017), improving the
generalization of the model. Akbari Majd et al. (2024) applied mul-
tiple preprocessing stages involving decomposition and metaheuristic
optimization (GA, PSO, ACO) in ANN frameworks, with wrapper-based
improvements delivering up to 76% accuracy gain. In Seifi et al. (2024),
Boruta was used as a wrapper for feature importance before applying
decomposition and GRU-RVM sequence models. Moradi et al. (2023)
evaluated different sets of characteristics using internal validation per-
formance, choosing only GWL for the final training after evaluating the
correlation patterns.

4.3. Embedded approaches

Embedded methods integrate feature selection directly into the
model training process. These include regularization techniques and
importance measures derived from model parameters. Embedded meth-
ods are more efficient than wrappers and often yield robust and inter-
pretable outcomes.

In studies based on RF and XGBoost, the importance of permuta-
tion characteristics and GINI was frequently applied after training to
rank predictors (Yi et al., 2024; Jing et al., 2023). These techniques
revealed the dominant role of well-level inputs and GRACE-derived
groundwater storage indicators. SHAP values were used in the RF, SVM
and LSTM studies (Elzain et al., 2024; Niu et al., 2023), providing
interpretable information on variable contributions. MARS and RF were
used as embedded selectors in ensemble pipelines (Roy et al., 2023),
while permutation importance was used to refine features in ConvL-
STM and GRU models trained on remote sensing inputs (Foroumandi
et al., 2023). GNG clustering, while not a direct selection method,
helped identify spatially coherent input structures prior to model train-
ing (Heudorfer et al., 2023). Chi et al. (2024) used SHAP to analyze
lagged inputs in tree ensemble models, confirming the dominance of
moving averages and historical GWLs. Abdi et al. (2024) used CNN
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and DNN models in which the relevance of input characteristics was
indirectly derived from the learned filters. Their preprocessing relied
on model-based interpolation techniques (e.g., M5P) to reconstruct
missing inputs. Feng et al. (2024) further evaluated model-specific im-
portance rankings using Pearson and Spearman correlations to interpret
dominant drivers. Jing et al. (2023) used GINI and Permutation Feature
Importance (PFI) to assess the relevance of engineered features like
GWSAFE and Human_activity, with deep learning models (especially
EnDe-LSTM) outperforming tree-based alternatives.

Despite methodological innovations, a recurring limitation across all
studies is the lack of standardization in reporting. Feature selection pro-
cedures were often vaguely described or entirely omitted, complicating
reproducibility and interpretation. Only a handful of works explicitly
distinguished between filter, wrapper, and embedded selection tech-
niques. To date, only one study by Saroughi et al. (2024) has come
close to systematically evaluating the impact of input processing strate-
gies on groundwater level modeling. Their work tested 126 data pre-
processing methods across multiple Al models (SVR, ANN, LSTM, and
POA-ANN), focusing on how statistical, wavelet, and decomposition-
based transformations influenced predictive accuracy. However, even
this comprehensive effort emphasized data pre-processing rather than
a formal comparison of feature selection methods.

This signals a methodological gap where future research could
systematically evaluate and benchmark feature selection techniques, es-
pecially under varying hydrogeological and data availability scenarios,
to establish standardized best practices for ML-based GWL forecasting.
Table 9 provides a summary of all the feature selection approaches
reviewed.

5. General overview and discussion

This section will highlight key findings from the analysis of the 223
reviewed articles. These findings encompass various aspects, including
optimization algorithms, the treatment of time steps, selection of input
variables, validation metrics, etc.

5.1. Optimization algorithms

In recent decades, several bio-inspired optimization techniques have
been created. According to Tang and Wu (2009), these algorithms can
be broadly categorized into three primary types: swarm intelligence,
bacterial foraging algorithms, and evolutionary algorithms. Swarm in-
telligence algorithms were the most popular optimization techniques
used in groundwater studies, according to the articles reviewed. Table
10 provides some advantages and disadvantages of the optimization
algorithms mentioned above. Refer to the Supplementary Information
for a detailed description of the workflow of all the optimization
algorithms discussed.
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Table 8
Summary of the reviewed paper used in the bibliographic sections.
Paper Ref Al used Prediction horizon Input variables Time Data Length of total data
steps division (%)

Dash et al. (2010) ANN Short-term (1-week ahead) GWL,R Weekly 70/30 1993-2002 (2340 samples)

Mohanty et al. FFNN Short-term (1,2,3,4-weeks R, E, RS, water level in the Weekly 70/30 Feb 2004-June 2007 (174

(2010) ahead) drain, pumping rate, GWL samples)

Chen et al. (2010) RBFN Short-term (1-month GWL Monthly 79/21 1997-2003 (63 samples)
ahead)

Chen et al. (2011) BPN Short-term (1-month GWL Monthly 79/21 Jul 1998-Nov 2004 (76
ahead) samples)

Trichakis et al. ANN Short-term (1-day ahead) GWL, wet days, R, Daily 80/20 - (7109 samples)

(2011) pumping rate

Rakhshandehroo FFNN, RBNN, Short-term (1-month GWL, Temp, Runoff, R Monthly 77/23 1993 to 2003 (4524

et al. (2012) ELNN, GRNN ahead) samples)

Adamowski and ANN, ARIMA Short-term (1-month GWL, Temp, R Monthly 80/20 Nov 2002-Oct 2009 (84

Chan (2011) ahead) samples)

Nourani et al. ANN, Short-term (1-month GWL, Temp, R, discharge, Monthly 80/20 Apr 1994-Mar 2006 (144

(2011) Geostatistics ahead) lake level samples)

Taormina et al. FFNN, ARX Short-term (1-h ahead) GWL, Evapotranspiration, Hourly 83/17 Oct 2006-June 2008

(2012) R (23850 samples)

Sahoo and Jha ANN, MLR Short-term (1-month GWL, Evapotranspiration, Monthly 73/27 1999-2004 (72 samples)

(2013) ahead) R, Temp, river stage, SDV

Nourani et al. FFNN, ARIMAX Short-term (1-month GWL, Runoff, R Monthly 72/28 1988-2012 (298 samples)

(2015) ahead)

Guzman et al. ANN, SVR Short-term (1-day ahead) GWL, R Daily 55/45 Jun 1984-Sep 1994 (2679

(2015) samples)

Bahaa et al. ANN, MLR, ENN Short-term(1- Tailing Recharge, R, Air Daily 90/10 May 2009-Oct 2011 (900

(2015) day,week,month ahead) temp samples)

Chang et al. ANN Short-term (10-days ahead) GWL, Temp, R Daily 56/44 Jul 2009-Dec 2012 (653

(2015) samples)

Gholami et al. ANN Monthly Tree-ring diameter, R Monthly 70/30 1970-2013 (44 samples)

(2015) (dendrochronology)

Sun et al. (2016) FFNN Short-term (1,3,7 days GWL, R Daily 50/50 Jan 2012-Dec 2013 (731
ahead) samples)

Choubin and ANN, ARIMA Short-term (1 months R, SF, Temp, Evaporation, Monthly 83/17 1993-2010 (216 samples)

Malekian (2017) ahead) GWL

Wen et al. (2017) ANN Short-term (1,2,3 months R, Temp, Evaporation, Monthly 74/26 Jun 2003-Dec 2010. (91
ahead) GWL, R samples)

Sahoo et al. ANN, MLR, Seasonal-annual (I year R, Temp, ENSO, NAO, SF, Monthly 70/30 1980-2012 (148368

(2017) MNLR ahead) D samples)

Ebrahimi and ANN Short-term (1-month R, Temp, GWL Monthly 70/30 Apr 2002-Mar 2013 (132

Rajaee (2017) ahead) samples)

Guzman et al. NARX Short-term (3-months R, GWL Daily 70/30 1987-1994 (2922 samples)

(2017) ahead)

Wunsch et al. NARX short-mid-term(1 week-6 R, Temp Daily 90/10 1948-2015 (13676

(2018) months ahead) samples)

Jeong and Park NARX, LSTM, Short-term (1-day ahead, R, Temp, Humidity, GWL, Daily 50/50 2005-2014 (7284 samples)

(2019) GRU continuous) CSH, AAP

Lee et al. (2019) FFNN Short-term (1-h ahead) SWL, GA, GHPU Hourly 60/40 Feb 2016- Apr 2017 (8712

samples)

Kouziokas et al. FFNN Short-term (1-day ahead) Humidity, Temp, R, GWL Daily 70/30 Jan 2014-Dec 2014 (365

(2018) samples)

Ghose et al. RNN Short-mid-term (monthly Humidity, Temp, R, Monthly 70/30 1988-2007 (120 samples)

(2018) steps) Runoff, Evapotranspiration

(continued on next page)

5.2. Validation metrics the training dataset, resulting in high training accuracy but poor per-
formance on unseen test data. Detecting overfitting therefore requires
evaluating model performance on both training and test datasets, and
comparing the results. The role of validation metrics is to quantify
prediction accuracy and reliability, enabling meaningful comparison of

results across datasets and studies.

Machine learning models are prone to limitations that can hinder
their predictive performance, one of the most notable being overfitting.
Overfitting occurs when a model learns patterns and noise specific to
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Van Thieu et al. MLP Short-term (1-month R, Temp, Tidal height, Monthly - 1989-2012 (552 samples)
(2023) ahead) GWL
Aderemi et al. NARX Short-term (No. specified) R, Temp Monthly 70/30 1996-2021 (6240 samples)
(2023)
Panahi et al. RBFNN, ANFIS, Long-term (Years ahead) R, Max Temp, Min Temp, Daily - 2022-2064 (10950
(2023) SVM, MLP Evaporation samples)
Jalalkamali et al. ANFIS, ANN Short-term (1-month R, Temp, GWL Monthly 80/20 1988-2009 (264 samples)
(2011) ahead)
Shirmohammadi ANFIS, ARIMA, Short-term (1,2,3-months Discharge, R, Evaporation Monthly 1992-2007 (180 samples)
et al. (2013) ARMA, ARX, ahead)
ARMAX,
SARIMA
Emamgholizadeh ANFIS, ANN Long-term (2-Years ahead) Recharge, Pumping Rates, Monthly 80/20 2002-2011 (108 samples)
et al. (2014) IRF
Maiti and Tiwari ANFIS, ANN, Short-term (1-month Temp, R Monthly 75/25 Sep 1972-Oct 2001 (350
(2014) BNN ahead) samples)
Mirzavand et al. ANFIS, SVR Long-term (No. Specified) Streamflow, Evaporation, Monthly 70/30 Jan 1990-Jan 2010 (240
(2015) SD, AD, R samples)
Gong et al. (2016) ANFIS, ANN, Short-term (1,2,3-months GWL, Temp, Lake levels, Monthly 80/20 1998-2009 (144 samples)
SVM ahead) AD, R
Seifi et al. (2020) ANFIS, ANN Short-term (1-month GWL Monthly 80/20 Jan 2000-Sep 2012 (140
ahead) samples)
Kayhomayoon ANFIS Short-term (1-month GWL, R, Temp, GW Monthly 70/30 2001-2017 (204 samples)
et al. (2022) ahead)
Behzad et al. SVM, ANN Daily, Weekly, Monthly Pump Rates, R, Temp, Daily, - 2002-2002
(2010) GWL Weekly, (63,93,109,116,122
Biweekly, samples)
Monthly,
Bimonthly
Yoon et al. (2011) SVM, ANN Short-term (multiple-hours Tide level, R, GWL Hourly - Jun 2004-Nov 2006 (3213
ahead) samples)
Suryanarayana SVR, ANN, Short-term (1-month GW Depth, Max Temp, Monthly - May 2001-Feb 2012 (130
et al. (2014) ARIMA ahead) Mean Temp, R samples)
Yoon et al. (2016) SVR, ANN Long-term (1-day ahead) GWL, R Daily 70/30 2003-2008 (10229
samples)
Zhou et al. (2017) SVM, ANN Short-term (1-month GWL, R Monthly 75/25 Jan 1974-Dec 2010 (444
ahead) samples)
Nie et al. (2017) SVM, RBF-ANN, Short-term (1-month R, Evaporation, Temp Monthly 83/17 Jan 2003 to Dec 2014
MLR ahead) (144 samples)
Huang et al. SVM, BPNN Short-term GWL daily, 50/50 2006-2014 (171, 90, 24
(2017) (1-day,week,month ahead) weekly, samples)
monthly
Mukherjee and SVM, ANN, LRM Short-term (No. Specified) ATWS, R, Temp, Humidity monthly 80/20 Jan 2005-Dec 2013 (35,
Ramachandran 67 samples)
(2018)
Hosseini et al. ANN Short-term (1-month R, Average Discharge, Monthly - Oct 2000 80/20 Sep 2009
(2016) ahead) Temp, Evaporation (108 samples)
Yadav et al. SVM, ANN Short-term (1,2-months GWL, R, Temp, Population, Monthly 70/30 2010-2017 (96 samples)
(2020) ahead) GR, SOI, NOI, NINO3
Liu et al. (2022) RF, SVM, GRNN, Long-term Temperature, Humidity Monthly 75/25 Jan 2000-Dec 2020
DT, CNN, LSTM, (Month-years-ahead) (18648 samples)
GRU
Guzman et al. SVR, NARX Short-term (days-ahead) GWL R, Evapotranspiration Daily 70/30 Jun 1985-Sep 1994 (2592
(2019) samples)
Chen et al. (2020) MLP, RBF, Long-term (1 month-ahead) SF, GWL Daily 80/20 Jan 1986-Dec 2010 (300

MODFLOW, SVM

samples)

In groundwater level (GWL) modeling, a wide variety of evaluation
metrics have been employed. Fig. 7 shows the frequency of perfor-
mance metrics reported in the reviewed literature. Among these, RMSE
is the most frequently adopted, appearing in nearly 160 instances,
followed by R?, correlation coefficient (Corr), and NSE. Metrics such as
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(continued on next page)

MAE, MSE, and MASE are also widely used, reflecting a strong prefer-
ence for error-based evaluations. In contrast, less common metrics like
ME, RE, and NRMSE appear less frequently but still contribute to the
assessment landscape. The “Others” category includes less standardized
or study-specific measures.
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Kajewska- SVR, MLP Long-term (Monthly) R, Temp, GWL Monthly 75/25 1975-2014 (414, 411, 476
Szkudlarek et al. samples)
(2022)
Zhang et al. LSTM, FFNN Long-term (1-month ahead) R, Temp, Evaporation, Monthly 85/15 2000-2013 (168 samples)
(2018) Water Division, Time
Solgi et al. (2021) LSTM-NN Short&Long-term GWL Monthly 80/20 Nov 1932-Jul 2020
(days,months-ahead) (31239, 1043 samples)
Hagq et al. (2021) LSTM-NN, Long-term (65 months GRACE Monthly 85/15 Jan 2003-Jun 2020 (185
ARIMA ahead) samples)
Wu et al. (2021a) LSTM Short&Long-term River Stage, GWL Monthly 70/30 Nov 2003-Dec 2019 (194,
(months-ahead) 10176, samples)
Ao et al. (2021) LSTM, KNEA, Long-term (1-month ahead) Temp, GWL, R, GSR, Monthly 70/30 1990-2015 (312 samples)
GRU Irrigation Quantity
Gaffoor et al. LSTM, GBDT Long-term (1-month ahead) Temp, GWL Anomaly, R, Monthly 70/30, 2009-2019 (42, 88
(2022) runoff, Evapotranspiration 80/20, samples)
65/36
Kim et al. (2023) LSTM Short-term (2-weeks head) Sun Hours, GWL Anomaly, Daily 90/10 2012-2021 (3653 samples)
R, runoff, Min Temp, Mean
Wind Speed, Evaporation,
R
Vu et al. (2023) BiLSTM Long-term (7,4,30-days River Level, River Flux, Daily, 65/35 1971-2021 (5479 samples)
ahead) Sea Level, R, Temp, Seinen Hourly
River Data
Manna and Anitha DEBi-LSTM Long-term (Multiple days GW Recharge, Natural GW Daily 60/40 2000 to 2021 (12000
(2023) ahead) Discharge, R samples)
Patra et al. (2023) LSTM Short-term (Daily) GWL Daily - 2013 83/17 Jun 2021
(139653 samples)
Foroumandi et al. ConvLSTM, - LST, NDVI, R, DEM, ET, Monthly 70/30 Apr 2002-Dec 2016 (297
(2023) FFNN, RF SM, SWE samples)
Lendzioch et al. RF - GWL, NDVI, SM Monthly - Aug 2018-Nov 2019 (630
(2021) samples)
Gonzalez and RF, ANN, SVM Long-term (years-ahead) Max Temp, Min Temp, R, Monthly 80/20 1990-2018 (over 10000
Arsanjani (2021) Mean Temperature, samples)
Topography
Zhou et al. (2022) RF, SVR, ELM Short-term (1,2,3-months R, Temp, Actual Monthly 80/20 Apr 2002-Jun 2017(183
ahead) Evapotranspiration, samples)
GLEAM, GLDAS
Kalu et al. (2022) DBN Short-term (5-months GWL, ENSO, NAO, AMO, Monthly 70/30 Nov 2007-Oct 2012 (1620
ahead) 10D, PDO samples)
Hussein et al. MLR, MLP, RF, Short-term (1-month GRACE Monthly 90/10 Mar 2002-May 2019 (161
(2020) XGB ahead) samples)
Liu et al. (2021) SVM Short-term (3-months GRACE, Temp, R, Solar Monthly 50/50 Jan 2007-Dec 2016 (5520
ahead) Radiation, IST samples)
Yu et al. (2021) SVM, BPNN, Short-term (Months ahead) Meteorological, Monthly 86/14 2004-2010 (168 samples)
RBFNN Socio-economic factors
Derbela and ANN Medium-term R, GWL, Monthly 80/20 2000-2018 (1944 samples)
Nouiri (2020) (months-ahead) Evapotranspiration
Chenjia et al. LSTM, GRU, Short-term (12,24,36-days GWL, Extraction, ET Daily 70/30 2017-2022 (2190 samples)
(2024) MLP, 1DCNN, ahead)
TR
Akbari Majd et al. ANN Short-term (Months ahead) Climate Variables Monthly 70/30 2001-2019 (7068 samples)
(2024)
Mohapatra et al. DNN, ANFIS, Long-term (seasons ahead) GWL, R, Temp, Monthly 70/30 1996-2016 (835044
(2021) SVM samples)

RMSE and R? are especially prominent choices because they provide
complementary insights: RMSE quantifies the average magnitude of
prediction error in the same units as the observed data, while R?
measures the proportion of variance in the observations explained by
the model. The choice of metric should be informed by the study’s ob-
jectives, the characteristics of the dataset, and the model’s intended ap-
plication, ensuring that the evaluation process captures both accuracy
and explanatory power.
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5.3. Covariates used

ML models offer a unique advantage by learning patterns in data,
whether simple or complex, to predict specific outcomes. In the context
of this systematic review, we examine the use of different types of
data for groundwater modeling, including climate variables, hydroge-
ological parameters, and aquifer characteristics, albeit the latter being
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Miiller et al.
(2021)

Sharghi et al.
(2022)

Yin et al. (2021)

Maheswaran and
Khosa (2013)

Dehghani et al.
(2022)

Pham et al. (2022)

Collados-Lara
et al. (2023)

Chang et al.
(2016)

Banadkooki et al.
(2020)

Guo et al. (2021)
Rafik et al. (2023)
Elmotawakkil

et al. (2024)

Bonkoungou et al.
(2024)

Singh et al. (2024)

Fahim et al.
(2024)

Osman et al.
(2024)

Wei et al. (2023a)
Seifi et al. (2024)
Ali et al. (2024)
LaBianca et al.
(2024)

Moradi et al.
(2023)

Heudorfer et al.

(2023)

Roy et al. (2023)

non-mandatory compared to conventional models. The choice of these
covariates is critical, significantly affecting model performance.
Groundwater levels are closely tied to climate conditions, and

LSTM, MLP,
RNN, CNN

FFNN, ANFIS,
LSTM, GMDH

ANN, SVM, RSR,
BMA

ANN, LR, DAR

SVR

RT, Decision
Stump, M5P,
SVM, LWLR,
REP, Tree

NARX, NAR,
ELNN

NARX

RBFNN, MLP

ConvLSTM

RF, SVM

GBR, SVR, RF,
and DT

NeuralProphet,
LSTM, XGBoost

AutoML, RF,
Boosting EL,
BDT, GAM,
GRNN, LR, ANN,
SVR, RBNN, KR,
LSTM

MLR, Tree
models, SVM,
GPR, and ANN

ANN, SVR,
XGBoost, and
LSTM

ANN

RVM, ANN, MLP

TFT, LSTM

CatBoost, GBDT,
PB

ANN, ELM,
ORELM, and
GMDH

LSTM

ANFIS, Bagged
RF, Boosted RF,
GPR, LSTM
MARS, SVR

Short-term (1-day ahead)

Long-term (1,2,3 - months
ahead)

Short-term (1-month
ahead)

Long-term (multiple
months ahead)

Long-term (Months &
Years ahead)

Long-term (months ahead)

Short-term (1-6 months
ahead)

Short-term (1-month
ahead)

Short-term (months-ahead)

Short-term (5-days
intervals)

Short-term (Months-ahead)

Short-term (Months-ahead)

Short-term (multiple days
ahead)

Long-term (quarterly
seasons)

Spatial prediction

Short-term (1-day ahead)

Short-term (m x 10-days
ahead)

Short-term (1-month
ahead)

Short-term (7,30,60 days
ahead)

Spatial prediction

Short-term (1-month
ahead)

Short-term (weeks ahead)

Short-term (1-3 weeks
ahead)

Streamflow, Temp, R

GWL, R, Runoff

ASR, GP, SWD

GWL

R, Temp, GWL, Water

Withdrawal

GWL, Mean Temp, R,
Humidity

R, Min Temp, Max Temp

GWL, SF, R

R, Temp

GWL, R, GSD, HPD

TWS, R, ET, Q, SM, NDVI,

and LST

ET, R, NDVI, and LST

GWLs, R, and EVI

GWLs, EVAP, Temp, R,
RH, Soil type

GLDAS GWS data, ED,
Temp, R, PD, ID, GRACE

R, Temp, EVAP, GWLs

GWLs

R, Average Temp, RH, IRF

R, GWL

DEM, LandUse, TS, GWLs

GWL, R, Temp, and EVAP

R, Temp, RH, Tsin

GWLs

Daily

Monthly

Monthly

Monthly

Monthly

Monthly

Monthly

Monthly

Monthly

Monthly

Monthly

Daily

Daily

Monthly

Monthly

Daily

Daily

Daily

Daily

Monthly

Monthly

Weekly

Weekly

67/33

70/30

80/20

90/10

70/30

80/20

70/30

80/20

70/30

70/30

70/30

85/15

70/30

80/20

70/30

80/20

80/20

70/30

67/33

80/20

50/50

70/30

2010-2018 (2191 samples)

1989-2018 (17 640
samples)

Oct 1973-Sept 2015 (2016
samples)

1975-2002 (648 samples)

2000-2020 and 2021-2040
(960 samples)

Jan 1981-Dec 2017 (888
samples)

Jan 2000-Jan 2020
(12852 samples)

2000-2013 (168 samples)

2000-2012 (156 samples)

Jan 2012-Dec 2012 (3456
samples)

Apr 2002-2022 (264
samples)

Feb 2000-Feb 2023
(42000 samples)

2010-2021 (26298
samples)

1997-2018 (8310 samples)

2003-2019 (183 samples)

Jan 2030-Dec 2039 (1390
samples)

1991-2015 (576 samples)

1995-2015 (252 samples)

2001-2023 (8400 samples)

2006-2022 (280 samples)

2010-2016 (198 samples)

Jan 2000-Dec 2015
(205 343 samples)

Feb 1984-Sep 2018 (7228
samples)

(continued on next page)

urgency of groundwater management. Fig. 8 shows that historical

GWL data is the most employed covariate for ML models predicting

the ever-growing concerns of climate change, marked by events like
droughts, floods, and shifting precipitation patterns, emphasize the

18

groundwater levels.
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Chi et al. (2024)

Abdi et al. (2024)

Zowam and
Milewski (2024)

Zhu et al. (2024)

Feng et al. (2024)

May-Lagunes et al.
(2023)

Jing et al. (2023)

Zheng et al.
(2024)

Hikouei et al.
(2023)

Seidu et al. (2023)

Yi et al. (2024)

Chidepudi et al.
(2023)

Sriram et al.
(2023)

Sun et al. (2023)

Elzain et al.
(2024)

Chen et al. (2023)

Sarkar et al.
(2024)

Ehteram et al.
(2023)
Niu et al. (2023)

Kayhomayoon
et al. (2023)

Bai and
Tahmasebi (2023)

Nan et al. (2023)

Li et al. (2023)

Nand et al. (2024)

WT-Model

CNN, DNN

SVR, RF

GBDT

CNN, RNN,
SVM, DT, RF,
and GAN

XGBoost, RF,
TFT, GDR, LR

RF, XGBoost,
GBR, LightGBM,
LSTM

iTransformer,
LSTM

RF, XGBoost,
MLR

ANN, BPNN,
RBFNN, GMDH,
GRNN

RF, ANN, SVR,
GB, XGBoost

LSTM, BiLSTM,
GRU

RF, ML, MD,
KNN

LSTM, PB

CBR, XGB,
LGBM, LSTM,
GRU

CBR, XGB,
LGBM, LSTM,
GRU

KNN, SVM-RBF,
PR, XGB, RF

SATCN, LSTM

SVM

SVR,
Least-Square
SVR (LSSVR),
MODFLOW

GWN,
GWN-adaptive,
LSTM, GRU

Attention-GRU,
LSTM, RNN,
CNN

MLR, MARS,
ANN, RFR, GBR

MLP-GA,
MODFLOW

Short-term (7-days ahead)

Short-term (1-month
ahead)

Long-term (1-month ahead)

Short-mid-term
(days,month-ahead)

Short-term (3-months
ahead)

Short-term (4-months
ahead)

Short-term (1-day ahead)

Short-term (Daily)

Short-term (3-months
ahead)

Short-term (1,2,3-weeks
ahead)

Short-term (1-10 days
ahead)

Short-term (1-month
ahead)

Short-term (1-month
ahead)

Long-term (Years ahead)

Long-term (Multiple weeks
ahead)

Short-mid-term (6-months
ahead)

Long-term (Annual/Seasons
ahead)

Temp and R

GWS

R, SM, ET, LST, VI, CN,
SHC, and GSA

GWL, R, Q, CWD

GRE, R, and RFR

SWE, ET, WSE

R, ET, RD, GWL

Agricultural irrigation,
climatic component, basin
factor, and human factor
GWL ET ET, R, Z, DFC

R, EVAP, Temp

DWL, R

TEMP, R

R, WS, GWL, Q

WTR

GWL, R

GRACE

Temp, R, Elevation, WS,
RH, GWL

R, wind speed WS, Temp,
POP,GDP, EIA

GWL, Recharge,
Withdrawal

Temp, R, VP, SR, day

GWL, R, Temp, ELEV, SM

ELEV, soil type, Climate
Data, NDVI

ETC, R, GR, GD

19

Daily

Monthly

Monthly

Monthly

Monthly

Monthly

Daily

Hourly

Monthly

Monthly

Daily

Daily

Daily

Daily

Daily

Daily

Monthly

Monthly

Monthly

Weekly
(GWL),
Daily
(Climate)

Monthly

Seasonal

Annual

80/20
70/30
60/40 and
85/15

70/30

70/30

80/20

50/50,
60/40,
70/30,
80/20,
90/10
80/20

80/20

80/20

90/10

70/30

83/13

75/25

60/40

75/25

60/40

75/25

84/16

67/33

Jan 2009-Jun 2020 (5223,
609 samples)

2018-2021 (1632 samples)

Jan 2010-Dec 2019 (7080
samples)

Jan 1997 to Dec 2011
(163155 samples)

2018-2022 (2136 samples)

2010-2020 (3960 samples)

2003-2014 (1584 samples)

Jul 2021-Sep 2022 (24678
samples)

2010-2012 (11641
samples)

2013-2018 (676 samples)

2011-2021 (17 350
samples)

1970-2020 (600)

- (4044 samples)

Jan 2018-Sep 30 (68958
samples)

Dec 2017-Jan 2019
(19465 samples)

2002-2021 (7305 samples)

Jan 2022-Oct 2022 (177
samples)

1995-2010 (192 samples)

Jan 1991-Dec 2019 (240
samples)

Oct 2010-Sep 2013 (150
samples)

2010-2020 (23452
samples)

2017-2022 (24120
samples)

Oct 2005-Sep 2007 (75
samples)

2000-2015 (880 samples)

(continued on next page)
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Bhadani et al. F-IWO-GWL, RF, Short-mid-term R, Temp, ET, RH, GWL Daily 70/30 1997-2018 (8310 samples)
(2024) BoostEL, BDT, (Annual/Seasons ahead)
LSTM, SVR,
GAM, ANN,
RBNN, GRNN,
hybrids
Sun et al. (2024) Transformer, Short-term (10, 20 days R, Flow, GWL Daily 60/40 2000-2019 (725 samples)
MLP, LSTM, ahead)
CNN
Zhang et al. TCN, LSTM Short-term (1,3,7,15-days Tidal-level, R, GWL Hourly 80/20 Oct 2011-Oct 2012
(2023) ahead) (28836 samples)
Xie and Zhang STA-GRU, LSTM, Short-term (1-month Climate, hydrogeological, Monthly 70/30 2017-2117 (7272 samples)
(2024) GRU, ahead) Topographic
CNN+GRU,
CNN+BiLSTM+
Attention
Zhou et al. (2024) LSTM Short-term (1-month GWL Monthly 81/19 2018-2022 (20340
ahead) samples)
Wei et al. (2023b) M5, RF, GRBFN, Spatial (No time-series) Remote sensing Data - 80/20 2018 (436 samples)
MLP, Ensemble
methods
Wang et al. (2024) LSTM, RR-LSTM, Long-term (1-year ahead) R, geographical features Monthly 78/22 2009-2013 (3816 samples)
Geo-RR-LSTM,
ARIMA,
ARIMAX, MLR
Su et al. (2024) MLR, SVR, LSTM Long-term (20-months GWL, Extraction Daily 89/11 2007-2021 (964260
ahead) samples)
Wu et al. (2023) SVM, LSTM, Short-term (1-h ahead) GWL Hourly 70/30 2018-2020 (32880
MLP, GRU samples)
Eghrari et al. LSTM, GRU Long-term (Monthly) Climate Data Monthly 80/20 Nov 2002-Jun 2022 (1652
(2023) samples)
Fronzi et al. Prophet, ARIMA, Short-term (2-weeks ahead) GWL, Hydrological, Daily 87/13 Mar 2023-Apr 2023 (485
(2024) MARS, ETS Exogenous, Atmospheric samples)
variables
Gupta et al. RF, Bagging- Seasonal GWL Seasonal 70/30 1997-2018 (616 samples)
(2024) REPTree,
Bagging-DSTree
Ghazi et al. (2021) ANN, LSSVM, Long-term (Years ahead) R, Temp, Time Delay Monthly 70/30 1966-2019 (6840 samples)
NARX
Idrizovic et al. ANN Long-term (Years ahead) R, Temp, PET, GWL Daily and 70/30 1988-2016 (342 samples)
(2020) monthly
Karthikeyan et al. FFNN, RNN Short-term (1-week ahead) R, Temp, EVAPO, GWL weekly 70/30 May 2004-May 2006 (109
(2013) samples)
Yan and Ma ARIMA, RBFN Short-term (1-month GWL monthly 83/17 Jan 1998-Dec 2010 (144
(2016) ahead) samples)
Secci et al. (2023) NARX, LSTM, Long-term (years ahead) R, Temp monthly 90/10 Mar 2005-Dec 2020 (190
CNN samples)
Fallah-Mehdipour ANFIS, GP Medium-term (months) EVAPO, R, GWL monthly 86/14 7-year (84-month) (252

et al. (2013)

samples)

Abbreviations: R, Precipitation; SM, Soil moisture; E, efficiency coefficient; LWLR; locally weighted linear regression, REP Tree; reduce error pruning tree; TWI, Topographic
wetness index; TPI, Topographic position index; TRI, Topographic roughness index, Dd; Drainage density; Dff, Distance from fault; NDVI, Normalized Difference Vegetation Index;
DEM: Digital Elevation Map; GSR; Global Solar Radiation, IST; Infrared Surface Temperature, Streamflow; SF, Seasonal Dummy Variables, SDV; Streamflow Discharge, SD; Aquifer
Discharge, AD; Linear Regression, LR; Dynamic Auto-Regressive, DAR; Nash sutcliffe criteria, NSC; Geological Structure Data, GSD; Hydrogeological Parameter Data; HPD, Terrestrial
Water Storage; TWS, evapotranspiration; ET, Soil Moisture; SM, Gradient Boosting Regression; GBR, Enhanced Vegetation Index; EVI, Runoff; Q, Fuzzy Inference Systems; FIS,
Teaching-Learning Based Optimization; TLBO, Ant Colony Optimization; ACO, Harmony Search; HS, Evaporation; EVAP, Relative Humidity; RH, Self-Normalizing Neural Network;
SNN, Standardized Bathymetry Data; SBA, Population Data; PD, ID; irrigation data, elevation data; ED, phase space reconstruction; PSR, Relevance Vector Machine; RVM, multivariate
variational mode decomposition; MVMD, Boruta feature selection algorithm; BFSA; Irrigation Flow; IRF, Temporal Fusion Transformer; TFT, Bayesian optimization; BO, Terrain slope;
TS, Group Method of Data Handling; GMDH, Annual sinusoidal curve fitted to temperature; Tsin, drainage_volumes; V, drainage_volumes; V, groundwater surfaces; GWS, Empirical
Bayesian kriging; EBK, Land Surface Temperature; LST, Generative adversarial network; GAN, Groundwater extraction rate; GRE, River flow rate; RFR, crop water demands; CWD,
Temporal Fusion Transformer; TFT, Gradient Descent Regressor; GDR, Snow water equivalent; SWE, Water Surface Elevation; WSE, River Discharge; RD, Elevation; Z, and Distance
from canal; DFC, Daily weir level; DWL, Transformer; TR,LightGBM; LGBM,CatBoost Regressor; CBR, Water Table Rise; WTR, Polynomial Regression; PR, population; POP, Gross
domestic product; GDP, and Effective irrigated area; EIA, One-Dimensional Convolutional Neural Network; 1DCNN, Vapor Pressure; VP, Solar radiation; SR, Crop evapotranspiration;
ETc, deep percolation; GR, applied irrigation water; GD, Rainfall intensity; RI, pore water pressure; PWP, permeability coefficients PCs, lateral flow coefficient; LFC, initial water
level height; IWLH, self-attention; SA, convolutional network; SATCN.

Out of 223 papers, 187 incorporate groundwater level data as an
input, with 77 using it as the sole input without additional factors.
Precipitation data is also frequently used, appearing in 161 instances.

Other hydrological data, such as temperature, river discharge, evapo-
transpiration, and surface water levels, have been employed as inputs.
Some papers have explored additional variables like irrigation patterns,

20
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Fig. 7. Various metrics used in validation reviewed ML models’ performance.

Table 9

Feature selection methods identified in groundwater level (GWL) modeling
studies, organized by general category. This taxonomy reflects common prac-
tice but is not absolute, as some methods overlap across categories.

Feature selection method Type
Autocorrelation Function (ACF)/Partial ACF (PACF) Filter
Mutual Information (MI) Filter
Cross-correlation analysis Filter
Correlation matrix/Pearson/Spearman correlations Filter
Principal Component Analysis (PCA) Filter
Grey Relational Analysis (GRA) Filter
Factor Analysis (FA) Filter
Hellwig method Filter
Variance Inflation Factor (VIF) Filter
Multicollinearity test Filter
Lyapunov exponent + Phase Space Reconstruction (PSR) Filter
Wavelet decomposition/Variational Mode Decomposition (VMD) Filter
Recursive Feature Elimination (RFE) Wrapper
Forward Feature Selection (FFS) Wrapper
Taguchi design method Wrapper
Genetic Algorithm (GA) Wrapper
Particle Swarm Optimization (PSO) Wrapper
Ant Colony Optimization (ACO) Wrapper
Boruta algorithm Wrapper
Internal validation performance-based selection Wrapper
SHAP (SHapley Additive exPlanations) Embedded
GINI importance (from decision trees) Embedded
Permutation Feature Importance (PFI) Embedded
Model-derived importance (RF, XGBoost, MARS, etc.) Embedded
Growing Neural Gas (GNG) clustering Embedded
Model-based interpolation (e.g., M5P) Embedded

Note: Some methods fall at the boundary of categories. For example, Boruta leverages
Random Forest importance measures but is generally treated as a wrapper due to
its iterative retraining process. Permutation Feature Importance (PFI) is technically
post-hoc but grouped under embedded methods here because it is tied directly to
fitted models. Wavelet and variational mode decomposition (VMD) are primarily
preprocessing/feature extraction steps but are treated as filter techniques in this context.

population figures, seasonal factors, and more, though to a lesser ex-
tent. These variables may present challenges during the input selection
process.

5.4. Programming languages utilized
In the review, we realized that most of the research papers used

MATLAB, PYTHON, and R to build the various ML algorithms used.
Researchers predominantly utilizing these programs for developing

21

machine learning algorithms in their studies can be attributed to the
fact that these programming languages offer extensive libraries and
frameworks specifically tailored for machine learning, simplifying algo-
rithm development and implementation. Python, in particular, boasts
a vast machine-learning ecosystem, including popular libraries like
Scikit-Learn and TensorFlow, making it highly versatile and ideal for
a wide variety of ML tasks.

R is favored for its exceptional statistical capabilities and visualiza-
tion tools, providing researchers with robust data analysis and model
interpretation capabilities alongside machine learning functionalities.
These languages are open-source, facilitating collaboration and accessi-
bility for researchers globally, while also significantly reducing research
costs. Their active and supportive communities continuously contribute
to the development and improvement of machine learning tools and
resources, ensuring researchers have access to the latest advancements
in the field. Information regarding these software programs is available
online, and we do not delve into their specifics here. Nevertheless, it is
noteworthy that MATLAB is commonly favored in the development of
Al models, although several papers have not explicitly mentioned the
software used.

5.5. Time steps and forecast horizons

Fig. 9 shows the time steps used in the reviewed GWL modeling
studies. Most studies (187 papers) employed monthly data, followed
by daily (19) and hourly (8) intervals. Weekly, biweekly, and bi-
monthly resolutions appeared only rarely. The dominance of monthly
data can be partly attributed to its wider availability from monitoring
networks and its suitability for capturing the delayed recharge response
of precipitation, which must travel through the vadose zone before
reaching the water table. In inland aquifers, groundwater levels often
vary slowly, making coarse temporal resolution sufficient. In contrast,
coastal aquifers (Yoon et al., 2011; Taormina et al., 2012) and areas
near large reservoirs (Rajaee et al., 2019) require finer time steps to
represent rapid tidal or reservoir-driven fluctuations.

A notable trend shown in Table 8 is the strong emphasis on short-
term forecasts (3rd column), typically ranging from days to a few
months, in the majority of studies. This focus reflects the strengths
of machine learning models, which are effective at capturing recent
patterns and correlations directly from data. However, the predictive
accuracy of ML models tends to decline as the forecasting lead time
increases (Shirmohammadi et al., 2013; Sun et al., 2016; Yu et al.,
2018; Wu et al., 2021b; Momeneh and Nourani, 2022; Roy et al., 2023).
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Comparison of optimization algorithms (Gandomi and Alavi, 2012; Mehrabian and Lucas, 2006; Saremi et al., 2017; Mafarja
et al., 2019; Wang et al., 2018; Asgari et al., 2016; Chandirasekaran and Jayabarathi, 2019; Puente et al., 2009).

Algorithm Type of optimization Advantages Disadvantages
GA Evolutionary -Good for global optimization -Requires careful parameter tuning
-Flexible and adaptable -Can be computationally intensive
-Handles complex spaces -May converge to local optima
CSO Swarm intelligence -Balances exploration and exploitation -Sensitivity to parameters
-Good for dynamic problems -Requires parameter tuning
-Simple implementation -Can be slow in convergence
PSO Swarm intelligence -Simple implementation -May get stuck in local minima
-Few parameters to adjust -Sensitivity to initial settings
-Efficient global search -Can require many iterations
GOA Swarm intelligence -Balances exploration and exploitation -Computationally expensive
-Effective for continuous problems -Sensitive to parameter settings
-Adaptable to various problems -May require many iterations
WOA Bio-inspired -Good for dynamic environments -Can be computationally demanding
-Mimics natural adaptability -Requires careful tuning
-Simple concept to understand -Sensitivity to initial population
KHA Swarm intelligence Effective in multi-modal problems Computationally intensive
Adaptive to problem complexity Sensitive to parameters
Good convergence properties Requires many iterations
ACO Swarm intelligence -Good for combinatorial problems -Can be slow to converge
-Utilizes collective intelligence -Parameter sensitive
-Finds good paths through search space -May require large computational resources
BWO Bio-inspired -Early convergence due to cannibalism -Risk of losing good solutions

-Maintains diversity

-Sensitive to cannibalism and mutation rates

-Simple implementation

-Requires careful tuning
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Fig. 8. Various covariates employed in reviewed articles.

Over longer horizons, these models may experience error accumulation
and reduced generalization, especially when future conditions differ
from those present in the training data.

Time step choice is closely linked to the intended forecast horizon.
Short-term predictions often employ daily or hourly steps to capture
high-frequency variations (Wu et al., 2023; Zhang et al., 2023; Sun
et al., 2024), while long-term studies generally adopt monthly intervals
to reflect slower groundwater responses (Ghazi et al., 2021; Eghrari
et al., 2023; Zowam and Milewski, 2024). Selecting an appropriate
combination of time step and forecast horizon should be guided by
the dynamics of the aquifer system and the overall purpose of the
prediction, balancing the short-term skill of ML methods with the need
for robustness in longer-term projections.

6. Implications and future directions

This review identifies several key methodological patterns and re-
search gaps that can inform future GWL modeling efforts and guide the
development of more robust, interpretable, and operational models.

First, the lack of comparative studies on feature selection meth-
ods represents a major limitation. Although various techniques such

22
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Fig. 9. Different time steps used in GWL modeling.

as mutual information, cross-correlation, importance of permutation,
SHAP, and elimination of recursive features have been used in studies,
very few have systematically evaluated their impact within a consistent
modeling framework. Given the strong influence of input features on
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model performance, future research should prioritize controlled com-
parisons of feature selection strategies, especially in cases involving
high-dimensional or multi-source inputs.

Second, the consistent superiority of hybrid models over standalone
approaches highlights a promising direction. Many hybrid frameworks,
such as LSTM-CNN or RF-GA, combined different model components
or algorithms to address specific limitations. For instance, decompo-
sition methods like EMD and VMD (Wu et al., 2021b) helped isolate
signal components with clearer temporal patterns, making them easier
to model. Optimization algorithms such as GA and PSO were often
used to fine-tune hyperparameters, reducing manual trial-and-error.
Ensemble techniques also improved prediction by combining outputs
from multiple learners (Yin et al., 2021), reducing variance and en-
hancing robustness. These strategies allowed hybrid and ensemble
models to better capture the complex, nonlinear, and multi-scale dy-
namics of groundwater systems. Future studies should explore their
broader integration, particularly in conjunction with hybrid model
architectures.

Third, recent developments in deep learning point to new oppor-
tunities. Transformer-based architectures, though used in only a few
studies, demonstrated strong predictive capabilities and the ability
to handle long sequences and complex dependencies. Their limited
use in groundwater applications suggests a valuable area for further
exploration, especially for multi-step forecasting or spatially distributed
predictions.

Fourth, this review finds that remotely sensed data, particularly
from GRACE satellites, offer great promise for groundwater modeling in
data-scarce regions. GRACE-derived storage changes, while only used
in a few studies, enhanced prediction accuracy and captured large-scale
dynamics that in-situ measurements could not. There is a strong case for
integrating remote sensing into machine learning workflows, especially
in regions with sparse monitoring networks.

Additionally, long-term prediction horizons (beyond one year) re-
main a significant gap, with very few studies attempting extended
forecasts due to data limitations, non-stationarity, and issues like model
drift. This is particularly relevant for water planning and early warn-
ing systems. Addressing this will require robust temporal validation
strategies and possibly the integration of seasonal climate forecasts.

Also, despite limited datasets, most ML-based GWL studies achieved
strong short-term predictive accuracy. A majority of the reviewed
models were developed using relatively small datasets, often fewer
than 500 samples, yet still demonstrated high performance, particularly
for short-term forecasts. This confirms the flexibility of ML models
in data-scarce settings, especially when supported by decomposition,
optimization, and appropriate input selection. However, the predictive
accuracy of ML models tends to decline as the forecasting lead time
increases, as shown by Shirmohammadi et al. (2013), Sun et al. (2016),
Yu et al. (2018), Wu et al. (2021b), Momeneh and Nourani (2022) and
Roy et al. (2023).

A notable mention in the reviewed literature is the consistent
commendation of Long Short-Term Memory (LSTM) networks for their
strong performance in long-term groundwater level forecasting
(Kajewska-Szkudlarek et al., 2022; Zhang et al., 2018; Solgi et al.,
2021; Haq et al.,, 2021; Wu et al.,, 2021a; Ao et al., 2021). These
studies highlighted LSTM’s ability to capture complex temporal de-
pendencies and delayed hydrological responses, even under extended
lead times. Ao et al. (2021), in particular, compared LSTM with
Kernel-based Nonlinear Extreme Learning Algorithm (KNEA) and Gated
Recurrent Unit (GRU) models across multiple districts, and found that
LSTM not only achieved a good accuracy but also demonstrated better
generalization across spatially distinct sites. This is likely due to LSTM’s
internal memory and gated structure, which allow it to retain relevant
information over long sequences, making it especially suitable for
modeling persistent and gradual groundwater dynamics.

While few studies directly compared ML with conceptual mod-
els, Chen et al. (2020) found that physically based models like MOD-
FLOW offered better generalization under varying conditions because
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of the inclusion of physical mechanisms, although not higher short-term
accuracy. Based on these findings, future studies could explore com-
bining both approaches. For example, a physically based model could
simulate the overall groundwater system, while a machine learning
model could improve predictions by learning from the errors or gaps
in the physical model. Sun et al. (2023) demonstrated the value of this
approach by integrating LSTM with a PB model, achieving prediction
accuracy improvements for over 67% of wells when PB model perfor-
mance was moderate or better, and over 77% when PB performance
was poor. Similarly, Kayhomayoon et al. (2023) combined MODFLOW
with support vector regression variants, showing that the MODFLOW-
LSSVR configuration achieved near-perfect accuracy (NSE = 0.998) in
forecasting groundwater levels under climate change scenarios. These
examples illustrate how physically consistent PB outputs can provide a
robust baseline, while ML components refine predictions by capturing
nonlinear and site-specific dynamics. This kind of setup could help
improve forecast accuracy across both short- and long-term timeframes.

Finally, the near absence of socio-economic and anthropogenic
factors in GWL modeling remains a critical oversight. Land use change,
irrigation practices, and population pressures play a significant role in
groundwater dynamics, yet are rarely modeled. Future work should
consider coupling physical and socio-economic data to capture human—
water interactions more effectively.

7. Limitations

Although we employed a broad and comprehensive set of keywords
to capture a wide range of relevant studies, systematic reviews are
inherently challenged by the diversity of terminology used in the
literature. For example, some studies may refer to “groundwater level”
as “water table” or use “forecasting” instead of “prediction”. Similarly,
certain papers highlight specific algorithms without explicitly mention-
ing “machine learning” or “AI”. While our expanded keyword strategy
mitigated much of this risk, it remains possible that a small number of
relevant studies were omitted.

Another limitation is the tendency of the reviewed literature to
predominantly report positive results of machine learning applications.
Few studies explicitly discussed the failures or shortcomings of the
models they employed. This publication bias may have led to an over-
representation of successful applications, thereby limiting the scope for
a balanced evaluation of machine learning performance.

Finally, our review focused exclusively on peer-reviewed journal
articles. This decision was intended to ensure methodological rigor and
comparability, but it also excluded potentially valuable insights from
grey literature, such as conference papers, theses, or technical reports.
While including these sources might have broadened the perspective, it
would also have increased heterogeneity and made systematic analysis
more challenging.

8. Conclusion

ML models have shown significant promise in hydrology and
groundwater modeling. This review examines 223 research articles,
published from 2010 to 2024, focusing on ML applications in ground-
water level (GWL) modeling across diverse geographical settings. These
models excel at identifying complex patterns in groundwater datasets,
enabling accurate GWL simulations and predictions. Key findings em-
phasize the critical roles of variable selection, hyperparameter tun-
ing, model architecture, and data preprocessing in achieving optimal
model performance. Selecting relevant variables and employing ef-
fective preprocessing and optimization techniques can significantly
enhance model accuracy and reliability. This review offers practical
guidance for researchers adopting ML models for GWL studies, high-
lighting best practices in variable selection, architecture design, and
optimization strategies to improve the accuracy and interpretability of
ML-based groundwater predictions
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1. During the review, feature selection methods such as correlation 6. Among the 223 articles reviewed, the data splits for training and
analysis and SHapley Additive exPlanations (SHAP) were identi- testing varied from 50%-50%, 56%-44% (Chang et al., 2015;
fied, but no single optimal method emerged. The choice depends Seidu et al., 2023; Heudorfer et al., 2023) to 90%-10% (Ma-
on data characteristics, model needs, and research objectives, en- heswaran and Khosa, 2013; Bahaa et al., 2015; Secci et al.,
couraging researchers to test multiple techniques for relevance. 2023), with an 80/20 split being the most common. Most studies
Linear correlation, widely used, assumes proportional relation- used monthly datasets spanning over 10 years, with sample sizes
ships between variables. However, groundwater systems involve ranging from 35 (Mukherjee and Ramachandran, 2018), 48 (Guo
complex, non-linear interactions like precipitation and aquifer et al., 2021), 23,850 (Taormina et al., 2012), 445,104 (Sahoo
properties, which linear methods often overlook, affecting model et al., 2017) 835,044 (Mohapatra et al., 2021) to 964,260 (Su
performance (Huang et al., 2017). Advanced methods, including et al., 2024). Larger datasets, particularly for training, generally

improved model performance.

7. We recommend further exploration of modeled meteorological
variables from IPCC climate change scenarios, such as Shared So-
cioeconomic Pathways (SSPs) and Representative Concentration
Pathways (RCPs), as inputs for GWL models. Assessing how well
these models simulate future conditions under climate change is
crucial but currently underexplored. Only a hand full of studies
explored this in detail (e.g. Javadinejad et al. (2020), Secci et al.
(2023) and Osman et al. (2024)). Expanding this research could
deepen our understanding of climate impacts on groundwater
resources and improve future resource management strategies.

8. Finally, future work should explore combining physically based
models with machine learning to benefit from the process repre-
sentation of conceptual models and the pattern-learning
strengths of ML. Recent work by Sun et al. (2023) demon-
strated that integrating LSTM with physically based models can
substantially improve prediction accuracy, especially when the
physical model’s performance is moderate or poor. Given the
strong long-term forecasting performance of LSTM under data-
scarce conditions (Gaffoor et al., 2022), it is a strong candidate

mutual information, recursive feature elimination, and model-
based approaches, are recommended for identifying features in
non-linear contexts.

2. Most studies relied on trial-and-error for hyperparameter tun-
ing, but combining machine learning models with optimization
algorithms consistently improved performance. particle swarm
optimization (PSO), known for strong global search capabili-
ties, was particularly effective for SVM (Lin et al., 2008; Fei
et al., 2009; Huang et al., 2017). Other algorithms, such as
Genetic Algorithm (GA), Ant Colony Optimization (ACO), and
Grasshopper Optimization Algorithm (GOA), offered robustness
and adaptability. However, research on newer techniques like
Weed Optimization Algorithm (WOA) and Black Widow Opti-
mization (BWO) remains limited in GW Level modeling studies
using ML. Further exploration of these methods is recommended
to enhance model performance and optimization.

3. Our review of hybrid models, particularly those integrating
wavelet transforms with machine learning, highlights their value
for improving groundwater level simulations (e.g., Adamowski

and Chan, 2011; Nourani et al., 2015; Ebrahimi and Rajaee, for inclusion in such hybrid frameworks. This integration could
2017; Wei et al, 2023a; Saroughi et al., 2024). Daubechies enhance forecast robustness across varying time horizons, and
wavelets, especially db2 and db4, were widely used. Their model development should also move beyond trial-and-error by
popularity may be due to their short support and strong time adopting more systematic optimization techniques.

localization, which help capture sudden fluctuations in ground-
water signals. However, because they rely on downsampling,
they may distort temporal alignment. To address this, some

List of abbreviations

studies used the a trous wavelet transform, which maintains the Al Artificial Intelligence
original signal length and better preserves structure in seasonal ANN Artificial Neural Network
or noisy data. The a trous method has been described as well ANFIS Adaptive Neuro-Fuzzy Inference System
suited for forecasting applications (Mallat, 1989; Bahaa et al., ACF Autocorrelation Function
2015). PACF Partial Autocorrelation Function
4. It is not possible to recommend a single best ML model for MI Mutual Information

simulating groundwater levels, but the review shows that hybrid SHAP SHapley Additive exPlanations
models consistently performed better than individual models. RFE Recursive Feature Elimination
This advantage often results from improved handling of signal PSO Particle Swarm Optimization
complexity, more effective parameter tuning, and reduced over- GA Genetic Algorithm
fitting. Some studies (Yin et al., 2021) also applied ensemble ACO Ant Colony Optimization
techniques like Bayesian model averaging, where combining CNN Convolutional Neural Network
predictions from multiple models produced more stable and LSTM Long Short-Term Memory
accurate results than any standalone model. By testing and RF Random Forest
combining different models, it is possible to achieve optimal SVM Support Vector Machine

MLP Multilayer Perceptron

performance in groundwater level simulations.

5. Our review identified Self-Organizing Maps (SOM), Growing G;NL GrOIfJfI}ttl.waterfLevel o
Neural Gas (GNG), Fuzzy C-Means (FCM), and K-means as R Coefficient of Determination
. . . . . o RMSE Root Mean Square Error
common clustering techniques, particularly in studies utilizing MAE Mean Absolute Error
GRACE-derived Terrestrial Water Storage Anomaly (TWSA) data
R i} i . R MSE Mean Squared Error
for downscaling to finer resolutions. These algorithms effectively ME Mean Error
clustered TWSA.data to identify 31m.11ar .p1xels for }nqus .and RE Relative Error
outputs, enhancing GWL understanding in areas with limited GCM Global Climate Model

observations. SOM was also applied to optimize the number GRACE Gravity Recovery and Climate Experiment
of hidden layer neurons, improving standalone model accu- DA Data Assimilation
racy. However, most studies relied on trial and error for model WOA Weed Optimization Algorithm

structure, highlighting a gap in systematic research.
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BWO Black Widow Optimization

LM Levenberg—Marquardt

BR Bayesian Regularization

ARX AutoRegressive with eXogenous inputs
FCM Fuzzy C-Means

SOM Self-Organizing Maps

GNG Growing Neural Gas

SSPs Shared Socioeconomic Pathways (SSPs)
RCPs Representative Concentration Pathways
GOA Grasshopper Optimization Algorithm
CSO Cat Swarm Optimization

KHA Krill Herd Algorithm

CRediT authorship contribution statement

Gilbert Jesse: Writing — review & editing, Writing — original draft,
Visualization, Validation, Software, Methodology, Investigation, For-
mal analysis, Data curation, Conceptualization. Cyril D. Boateng: Writ-
ing — review & editing, Validation, Supervision, Resources, Project
administration, Methodology, Investigation, Funding acquisition, Con-
ceptualization. Jeffrey N.A. Aryee: Writing — review & editing, Val-
idation, Supervision. Marian A. Osei: Writing - review & editing,
Validation, Supervision. David D. Wemegah: Writing — review & edit-
ing, Validation, Supervision. Solomon S.R. Gidigasu: Writing — review
& editing, Validation, Supervision. Akyana Britwum: Writing — review
& editing, Validation. Samuel K. Afful: Writing - review & editing,
Validation, Data curation. Haoulata Touré: Writing — review & editing,
Validation. Vera Mensah: Writing — review & editing, Validation.
Prinsca Owusu-Afriyie: Writing — review & editing, Validation, Data
curation.

Computer code availability

No code or software has been developed for this research.

Funding

Support for implementation of project activities was made possible
by the Research Grant (109705-001/002) by the Responsible Artificial
Intelligence Network for Climate Action in Africa (RAINCA) consortium
made up of WASCAL, RUFORUM and AKADEMIYA 2063 provided by
IDRC.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.acags.2025.100303.

Data availability

No data was used for the research described in the article.

25

Applied Computing and Geosciences 28 (2025) 100303

References

Abdi, E., Ali, M., Santos, C.A.G., Olusola, A., Ghorbani, M.A., 2024. Enhancing
groundwater level prediction accuracy using interpolation techniques in deep
learning models. Groundw. Sustain. Dev. 26, 101213.

Adamowski, J., Chan, H.F., 2011. A wavelet neural network conjunction model for
groundwater level forecasting. J. Hydrol. 407 (1-4), 28-40.

Aderemi, B.A., Olwal, T.O., Ndambuki, J.M., Rwanga, S.S., 2023. Groundwater levels
forecasting using machine learning models: A case study of the groundwater region
10 at Karst Belt, South Africa. Syst. Soft Comput. 5, 200049.

Afrifa, S., Zhang, T., Appiahene, P., Varadarajan, V., 2022. Mathematical and ma-
chine learning models for groundwater level changes: a systematic review and
bibliographic analysis. Futur. Internet 14 (9), 259.

Ahmadi, A., Olyaei, M., Heydari, Z., Emami, M., Zeynolabedin, A., Ghomlaghi, A.,
Daccache, A., Fogg, G.E., Sadegh, M., 2022. Groundwater level modeling with
machine learning: a systematic review and meta-analysis. Water 14 (6), 949.

Akbari Majd, A., Rasoulzadeh, A., Hasanpour Kashani, M., Kisi, O., et al., 2024.
Enhancing the accuracy of metaheuristic neural networks in predicting underground
water levels using meteorological data and remote sensing: A case study of Ardabil
Plain, Iran.

Akinwande, M.O., Dikko, H.G., Samson, A., et al., 2015. Variance inflation factor: as a
condition for the inclusion of suppressor variable (s) in regression analysis. Open
J. Stat. 5 (07), 754.

Ali, A.J., Ahmed, A.A., Abbod, M.F., 2024. Groundwater level predictions in the Thames
Basin, London over extended horizons using transformers and advanced machine
learning models. J. Clean. Prod. 484, 144300.

Ao, C., Zeng, W., Wu, L., Qian, L., Srivastava, A.K., Gaiser, T., 2021. Time-delayed
machine learning models for estimating groundwater depth in the Hetao Irrigation
District, China. Agricult. Water. Manag. 255, 107032.

Arabameri, A., Roy, J., Saha, S., Blaschke, T., Ghorbanzadeh, O., Tien Bui, D.,
2019. Application of probabilistic and machine learning models for groundwater
potentiality mapping in Damghan sedimentary plain, Iran. Remote. Sens. 11 (24),
3015.

Asgari, H.-R., Bozorg Haddad, O., Pazoki, M., Lodiciga, H.A., 2016. Weed optimization
algorithm for optimal reservoir operation. J. Irrig. Drain. Eng. 142 (2), 04015055.

Attanasio, A., Pasini, A., Triacca, U., 2013. Granger causality analyses for climatic
attribution. Atmospheric Clim. Sci. 2013.

Bahaa, K., Stefan, B., Jan, A., Ozga-Zielinski, B., Amanda, D., 2015. Short-term
forecasting of groundwater levels under conditions of mine-tailings recharge using
wavelet ensemble neural network models. Hydrogeol. J. 23 (1).

Bai, T., Tahmasebi, P., 2023. Graph neural network for groundwater level forecasting.
J. Hydrol. 616, 128792.

Banadkooki, F.B., Ehteram, M., Ahmed, A.N., Teo, F.Y., Fai, C.M., Afan, H.A., Sapi-
tang, M., El-Shafie, A., 2020. Enhancement of groundwater-level prediction using
an integrated machine learning model optimized by whale algorithm. Nat. Resour.
Res. 29, 3233-3252.

Banerjee, C., Mukherjee, T., Pasiliao, Jr., E., 2019. An empirical study on generaliza-
tions of the ReLU activation function. In: Proceedings of the 2019 ACM Southeast
Conference. pp. 164-167.

Batina, L., Gierlichs, B., Prouff, E., Rivain, M., Standaert, F.-X., Veyrat-Charvillon, N.,
2011. Mutual information analysis: a comprehensive study. J. Cryptology 24 (2),
269-291.

Behzad, M., Asghari, K., Coppola, Jr., E.A., 2010. Comparative study of SVMs and ANNs
in aquifer water level prediction. J. Comput. Civ. Eng. 24 (5), 408-413.

Bhadani, V., Singh, A., Kumar, V., Gaurav, K., 2024. Nature-inspired optimal tuning
of input membership functions of fuzzy inference system for groundwater level
prediction. Environ. Model. Softw. 175, 105995.

Bonkoungou, A.A., Zio, S., Sabane, A., Kafando, R., Kabore, AK., Bissyande, T.F.,
2024. A comparison of Al methods for groundwater level prediction in burkina
faso. In: IFIP International Conference on Artificial Intelligence Applications and
Innovations. Springer, pp. 3-16.

Boo, K.B.W., El-Shafie, A., Othman, F., Khan, M.M.H., Birima, A.H., Ahmed, A.N., 2024.
Groundwater level forecasting with machine learning models: A review. Water Res.
252, 121249.

Bourke, P., 1996. Cross correlation. Cross Correlation”, Auto Correlation—2D Pattern
Identification 596.

Broomhead, D.S., Lowe, D., 1988. Radial basis functions, multi-variable functional
interpolation and adaptive networks. R. Signals Radar Establ. Malvern (UK) 25
(3), 1-8.

Brunner, P., Simmons, C.T., 2012. HydroGeoSphere: a fully integrated, physically based
hydrological model. Ground Water 50 (2), 170-176.

Butler, Jr., J., Stotler, R., Whittemore, D., Reboulet, E., 2013. Interpretation of water
level changes in the High Plains aquifer in western Kansas. Groundwater 51 (2),
180-190.

Chakraborty, S., Maity, P.K., Das, S., 2020. Investigation, simulation, identification and
prediction of groundwater levels in coastal areas of Purba Midnapur, India, using
MODFLOW. Environ. Dev. Sustain. 22, 3805-3837.

Chandirasekaran, D., Jayabarathi, T., 2019. Cat swarm algorithm in wireless sensor
networks for optimized cluster head selection: a real time approach. Clust. Comput.
22, 11351-11361.


https://doi.org/10.1016/j.acags.2025.100303
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb1
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb1
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb1
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb1
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb1
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb2
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb2
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb2
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb3
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb3
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb3
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb3
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb3
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb4
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb4
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb4
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb4
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb4
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb5
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb5
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb5
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb5
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb5
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb6
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb6
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb6
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb6
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb6
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb6
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb6
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb7
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb7
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb7
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb7
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb7
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb8
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb8
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb8
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb8
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb8
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb9
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb9
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb9
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb9
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb9
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb10
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb10
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb10
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb10
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb10
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb10
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb10
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb11
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb11
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb11
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb12
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb12
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb12
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb13
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb13
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb13
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb13
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb13
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb14
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb14
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb14
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb15
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb15
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb15
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb15
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb15
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb15
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb15
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb16
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb16
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb16
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb16
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb16
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb17
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb17
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb17
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb17
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb17
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb18
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb18
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb18
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb19
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb19
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb19
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb19
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb19
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb20
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb20
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb20
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb20
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb20
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb20
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb20
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb21
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb21
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb21
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb21
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb21
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb22
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb22
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb22
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb23
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb23
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb23
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb23
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb23
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb24
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb24
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb24
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb25
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb25
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb25
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb25
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb25
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb26
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb26
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb26
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb26
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb26
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb27
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb27
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb27
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb27
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb27

G. Jesse et al.

Chang, F.-J., Chang, L.-C., Huang, C.-W., Kao, I.-F., 2016. Prediction of monthly regional
groundwater levels through hybrid soft-computing techniques. J. Hydrol. 541,
965-976.

Chang, J., Wang, G., Mao, T., 2015. Simulation and prediction of suprapermafrost
groundwater level variation in response to climate change using a neural network
model. J. Hydrol. 529, 1211-1220.

Chen, L.-H., Chen, C.-T., Lin, D.-W., 2011. Application of integrated back-propagation
network and self-organizing map for groundwater level forecasting. J. Water
Resour. Plan. Manag. 137 (4), 352-365.

Chen, L.-H., Chen, C.-T., Pan, Y.-G., 2010. Groundwater level prediction using
SOM-RBFN multisite model. J. Hydrol. Eng. 15 (8), 624-631.

Chen, C., He, W., Zhou, H., Xue, Y., Zhu, M., 2020. A comparative study among
machine learning and numerical models for simulating groundwater dynamics in
the Heihe River Basin, northwestern China. Sci. Rep. 10 (1), 3904.

Chen, X.-w., Jeong, J.C., 2007. Enhanced recursive feature elimination. In: Sixth
International Conference on Machine Learning and Applications. ICMLA 2007, IEEE,
pp. 429-435.

Chen, H.-Y., Vojinovic, Z., Lo, W., Lee, J.-W., 2023. Groundwater level prediction with
deep learning methods. Water 15 (17), 3118.

Chenjia, Z., Xu, T., Zhang, Y., Ma, D., 2024. Deep learning models for groundwater
level prediction based on delay penalty. Water Supply 24 (2), 555-567.

Chi, D.T.K., Thiem, D.D., Quynh, T.T.N., Nguyen, T.Q., 2024. Enhancing prediction
accuracy and data handling for environmental applications in innovative modeling
of underground water level fluctuations based on tree ensembles technique.

Chidepudi, S.K.R., Massei, N., Jardani, A., Henriot, A., Allier, D., Baulon, L., 2023. A
wavelet-assisted deep learning approach for simulating groundwater levels affected
by low-frequency variability. Sci. Total Environ. 865, 161035.

Choubin, B., Malekian, A., 2017. Combined gamma and M-test-based ANN and ARIMA
models for groundwater fluctuation forecasting in semiarid regions. Environ. Earth
Sci. 76, 1-10.

Collados-Lara, A.J., Pulido-Velazquez, D., Ruiz, L., Pegalajar, M., Pardo-Igtizquiza, E.,
Baena-Ruiz, L., 2023. A parsimonious methodological framework for short-term
forecasting of groundwater levels. Sci. Total Environ. 881, 163328.

Daliakopoulos, I.N., Coulibaly, P., Tsanis, LK., 2005. Groundwater level forecasting
using artificial neural networks. J. Hydrol. 309 (1-4), 229-240.

Dasgupta, R., Banerjee, G., Hidayetullah, S.M., Saha, N., Das, S., Mazumdar, A., 2024. A
comparative analysis of statistical, MCDM and machine learning based modification
strategies to reduce subjective errors of DRASTIC models. Environ. Earth Sci. 83
(7), 211.

Dash, N.B., Panda, S.N., Remesan, R., Sahoo, N., 2010. Hybrid neural modeling for
groundwater level prediction. Neural Comput. Appl. 19, 1251-1263.

Dehghani, R., Poudeh, H.T., Izadi, Z., 2022. The effect of climate change on groundwa-
ter level and its prediction using modern meta-heuristic model. Groundw. Sustain.
Dev. 16, 100702.

Derbela, M., Nouiri, I., 2020. Intelligent approach to predict future groundwater level
based on artificial neural networks (ANN). Euro-Mediterranean J. Environ. Integr.
5, 1-11.

Ding, B., Qian, H., Zhou, J., 2018. Activation functions and their characteristics in deep
neural networks. In: 2018 Chinese Control and Decision Conference. CCDC, IEEE,
pp. 1836-1841.

Dokeroglu, T., Deniz, A., Kiziloz, H.E., 2022. A comprehensive survey on recent
metaheuristics for feature selection. Neurocomputing 494, 269-296.

Ebrahimi, H., Rajaee, T., 2017. Simulation of groundwater level variations using
wavelet combined with neural network, linear regression and support vector
machine. Glob. Planet. Change 148, 181-191.

Eghrari, Z., Delavar, M., Zare, M., Mousavi, M., Nazari, B., Ghaffarian, S., 2023.
Groundwater level prediction using deep recurrent neural networks and uncertainty
assessment. ISPRS Ann. Photogramm. Remote. Sens. Spat. Inf. Sci. 10, 493-500.

Ehteram, M., et al., 2023. An advanced deep learning model for predicting groundwater
level.

El Ibrahimi, A., Baali, A., Couscous, A., Hamdani, N., et al., 2017. Comparative study
of the three models (ANN-PMC),(DWT-ANN-PMC) and (MLR) for prediction of the
groundwater level of the surface water table in the Saiss Plain (North of Morocco).
Int. J. Intell. Eng. Syst. 10 (5).

Elmotawakkil, A., Sadiki, A., Enneya, N., 2024. Predicting groundwater level based on
remote sensing and machine learning: a case study in the Rabat-Kénitra region. J.
Hydroinformatics 26 (10), 2639-2667.

Elzain, H.E., Abdalla, O., Al-Maktoumi, A., Kacimov, A., Eltayeb, M., 2024. A novel
approach to forecast water table rise in arid regions using stacked ensemble
machine learning and deep artificial intelligence models. J. Hydrol. 640, 131668.

Emamgholizadeh, S., Moslemi, K., Karami, G., 2014. Prediction the groundwater level
of bastam plain (Iran) by artificial neural network (ANN) and adaptive neuro-fuzzy
inference system (ANFIS). Water Resour. Manag. 28, 5433-5446.

Fahim, A.K.F., Kamal, A.M., Shahid, S., 2024. Modeling spatial groundwater level
patterns of Bangladesh using physio-climatic variables and machine learning
algorithms. Groundw. Sustain. Dev. 25, 101142.

Fallah-Mehdipour, E., Haddad, O.B., Marifio, M., 2013. Prediction and simulation of
monthly groundwater levels by genetic programming. J. Hydro-Environ. Res. 7
(4), 253-260.

Famiglietti, J.S., 2014. The global groundwater crisis. Nat. Clim. Chang. 4 (11),
945-948.

26

Applied Computing and Geosciences 28 (2025) 100303

Fei, S.-w., Wang, M.-J., Miao, Y.-b., Tu, J., Liu, C.-1., 2009. Particle swarm optimization-
based support vector machine for forecasting dissolved gases content in power
transformer oil. Energy Convers. Manage. 50 (6), 1604-1609.

Feng, F., Ghorbani, H., Radwan, A.E., 2024. Predicting groundwater level using
traditional and deep machine learning algorithms. Front. Environ. Sci. 12, 1291327.

Foroumandi, E., Nourani, V., Huang, J.J., Moradkhani, H., 2023. Drought monitoring
by downscaling GRACE-derived terrestrial water storage anomalies: A deep learning
approach. J. Hydrol. 616, 128838.

Fronzi, D., Narang, G., Galdelli, A., Pepi, A., Mancini, A., Tazioli, A., 2024. Towards
groundwater-level prediction using prophet forecasting method by exploiting a
high-resolution hydrogeological monitoring system. Water 16 (1), 152.

Gaffoor, Z., Pietersen, K., Jovanovic, N., Bagula, A., Kanyerere, T., Ajayi, O.,
Wanangwa, G., 2022. A comparison of ensemble and deep learning algorithms to
model groundwater levels in a data-scarce aquifer of Southern Africa. Hydrology
9 (7), 125.

Gandomi, A.H., Alavi, A.H., 2012. Krill herd: a new bio-inspired optimization algorithm.
Commun. Nonlinear Sci. Numer. Simul. 17 (12), 4831-4845.

Ghafoor, H., Umer, R., Muhammad, J., Rauf, Z., Khan, P., et al., 2024. Predicting
groundwater levels at Colorado state of USA using ARIMA and ANN models. In:
2024 2nd International Conference on Foundation and Large Language Models.
FLLM, IEEE, pp. 188-193.

Ghazi, B., Jeihouni, E., Kalantari, Z., 2021. Predicting groundwater level fluctuations
under climate change scenarios for Tasuj Plain, Iran. Arab. J. Geosci. 14 (2), 115.

Gholami, V., Chau, K.W., Fadaee, F., Torkaman, J., Ghaffari, A., 2015. Modeling
of groundwater level fluctuations using dendrochronology in alluvial aquifers. J.
Hydrol. 529, 1060-1069.

Ghose, D., Das, U., Roy, P., 2018. Modeling response of runoff and evapotranspiration
for predicting water table depth in arid region using dynamic recurrent neural
network. Groundw. Sustain. Dev. 6, 263-269.

Gong, Y., Zhang, Y., Lan, S., Wang, H., 2016. A comparative study of artificial neural
networks, support vector machines and adaptive neuro fuzzy inference system
for forecasting groundwater levels near Lake Okeechobee, Florida. Water Resour.
Manag. 30, 375-391.

Gonzalez, R.Q., Arsanjani, J.J., 2021. Prediction of groundwater level variations in a
changing climate: A Danish case study. ISPRS Int. J. Geo-Inf. 10 (11), 792.

Guo, F., Yang, J., Li, H, Li, G., Zhang, Z., 2021. A convLSTM conjunction model
for groundwater level forecasting in a karst aquifer considering connectivity
characteristics. Water 13 (19), 2759.

Gupta, S.K., Sahoo, S., Sahoo, B.B., Srivastava, P.K., Pateriya, B., Santosh, D., 2024.
Prediction of groundwater level changes based on machine learning technique in
highly groundwater irrigated alluvial aquifers of south-central Punjab, India. Phys.
Chem. Earth, Parts A/B/C 135, 103603.

Guzman, S.M., Paz, J.O., Tagert, M.L.M., 2017. The use of NARX neural networks to
forecast daily groundwater levels. Water Resour. Manag. 31, 1591-1603.

Guzman, S.M., Paz, J.O., Tagert, M.L.M., Mercer, A., 2015. Artificial neural networks
and support vector machines: Contrast study for groundwater level prediction. In:
2015 ASABE Annual International Meeting. American Society of Agricultural and
Biological Engineers, p. 1.

Guzman, S.M., Paz, J.O., Tagert, M.L.M., Mercer, A.E., 2019. Evaluation of seasonally
classified inputs for the prediction of daily groundwater levels: NARX networks vs
support vector machines. Environ. Model. Assess. 24, 223-234.

Haq, M.A., Jilani, A.K., Prabu, P., 2021. Deep learning based modeling of groundwater
storage change. CMC-Comput. Mater. Contin. 70, 4599-4617.

Heudorfer, B., Liesch, T., Broda, S., 2023. On the challenges of global entity-aware deep
learning models for groundwater level prediction. Hydrol. Earth Syst. Sci. Discuss.
2023, 1-28.

Hikouei, LS., Eshleman, K.N., Saharjo, B.H.,, Graham, L.L.,, Applegate, G.,
Cochrane, M.A., 2023. Using machine learning algorithms to predict groundwater
levels in Indonesian tropical peatlands. Sci. Total Environ. 857, 159701.

Hosseini, Z., Gharechelou, S., Nakhaei, M., Gharechelou, S., 2016. Optimal design of
BP algorithm by ACO R model for groundwater-level forecasting: A case study on
Shabestar Plain, Iran. Arab. J. Geosci. 9, 1-16.

Huang, F., Huang, J., Jiang, S.-H., Zhou, C., 2017. Prediction of groundwater levels
using evidence of chaos and support vector machine. J. Hydroinformatics 19 (4),
586-606.

Hussein, E.A., Thron, C., Ghaziasgar, M., Bagula, A., Vaccari, M., 2020. Groundwater
prediction using machine-learning tools. Algorithms 13 (11), 300.

Idrizovic, D., Pocuca, V., Mandic, M.V., Djurovic, N., Matovic, G., Gregoric, E.,
2020. Impact of climate change on water resource availability in a mountainous
catchment: a case study of the Toplica River catchment, Serbia. J. Hydrol. 587,
124992.

Iranzad, R., Liu, X., 2024. A review of random forest-based feature selection methods
for data science education and applications. Int. J. Data Sci. Anal. 1-15.

Jalalkamali, A., Sedghi, H., Manshouri, M., 2011. Monthly groundwater level prediction
using ANN and neuro-fuzzy models: a case study on Kerman Plain, Iran. J.
Hydroinformatics 13 (4), 867-876.

Jamel, T.M., Khammas, B.M., 2012. Implementation of a sigmoid activation function
for neural network using FPGA. In: 13th Scientific Conference of Al-Ma’Moon
University College. vol. 13, pp. 1589-1591.


http://refhub.elsevier.com/S2590-1974(25)00085-0/sb28
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb28
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb28
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb28
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb28
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb29
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb29
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb29
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb29
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb29
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb30
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb30
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb30
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb30
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb30
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb31
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb31
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb31
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb32
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb32
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb32
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb32
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb32
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb33
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb33
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb33
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb33
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb33
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb34
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb34
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb34
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb35
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb35
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb35
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb36
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb36
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb36
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb36
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb36
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb37
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb37
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb37
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb37
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb37
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb38
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb38
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb38
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb38
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb38
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb39
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb39
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb39
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb39
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb39
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb40
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb40
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb40
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb41
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb41
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb41
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb41
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb41
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb41
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb41
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb42
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb42
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb42
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb43
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb43
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb43
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb43
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb43
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb44
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb44
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb44
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb44
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb44
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb45
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb45
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb45
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb45
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb45
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb46
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb46
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb46
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb47
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb47
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb47
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb47
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb47
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb48
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb48
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb48
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb48
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb48
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb49
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb49
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb49
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb50
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb50
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb50
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb50
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb50
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb50
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb50
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb51
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb51
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb51
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb51
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb51
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb52
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb52
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb52
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb52
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb52
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb53
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb53
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb53
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb53
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb53
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb54
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb54
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb54
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb54
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb54
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb55
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb55
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb55
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb55
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb55
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb56
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb56
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb56
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb57
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb57
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb57
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb57
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb57
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb58
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb58
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb58
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb59
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb59
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb59
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb59
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb59
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb60
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb60
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb60
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb60
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb60
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb61
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb61
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb61
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb61
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb61
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb61
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb61
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb62
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb62
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb62
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb63
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb63
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb63
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb63
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb63
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb63
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb63
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb64
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb64
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb64
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb65
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb65
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb65
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb65
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb65
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb66
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb66
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb66
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb66
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb66
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb67
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb67
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb67
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb67
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb67
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb67
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb67
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb68
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb68
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb68
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb69
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb69
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb69
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb69
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb69
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb70
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb70
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb70
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb70
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb70
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb70
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb70
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb71
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb71
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb71
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb72
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb72
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb72
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb72
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb72
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb72
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb72
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb73
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb73
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb73
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb73
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb73
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb74
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb74
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb74
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb75
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb75
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb75
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb75
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb75
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb76
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb76
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb76
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb76
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb76
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb77
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb77
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb77
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb77
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb77
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb78
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb78
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb78
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb78
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb78
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb79
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb79
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb79
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb80
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb80
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb80
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb80
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb80
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb80
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb80
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb81
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb81
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb81
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb82
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb82
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb82
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb82
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb82
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb83
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb83
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb83
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb83
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb83

G. Jesse et al.

Javadinejad, S., Dara, R., Jafary, F., 2020. How groundwater level can predict under
the effect of climate change by using artificial neural networks of NARX. Resour.
Environ. Inf. Eng. 2 (1), 90-99.

Jeong, J., Park, E., 2019. Comparative applications of data-driven models representing
water table fluctuations. J. Hydrol. 572, 261-273.

Jing, H., He, X., Tian, Y., Lancia, M., Cao, G., Crivellari, A., Guo, Z., Zheng, C., 2023.
Comparison and interpretation of data-driven models for simulating site-specific
human-impacted groundwater dynamics in the north China Plain. J. Hydrol. 616,
128751.

John, B., Das, S., 2020. Identification of risk zone area of declining piezometric level
in the urbanized regions around the City of Kolkata based on ground investigation
and GIS techniques. Groundw. Sustain. Dev. 11, 100354.

John, B., Das, S., Das, R., 2023. Natural groundwater level fluctuations of Kolkata City
based on seasonal field data and population growth using geo-spatial application
and characterised statistical techniques. Environ. Dev. Sustain. 25 (7), 6503-6528.

Jovi¢, A., Brki¢, K., Bogunovi¢, N., 2015. A review of feature selection methods
with applications. In: 2015 38th International Convention on Information and
Communication Technology, Electronics and Microelectronics. MIPRO, IEEE, pp.
1200-1205.

Kajewska-Szkudlarek, J., Kubicz, J., Kajewski, 1., 2022. Correlation approach in predic-
tor selection for groundwater level forecasting in areas threatened by water deficits.
J. Hydroinformatics 24 (1), 143-159.

Kalaiselvi, T., Padmapriya, S., Somasundaram, K., Praveenkumar, S., 2022. E-Tanh:
a novel activation function for image processing neural network models. Neural
Comput. Appl. 34 (19), 16563-16575.

Kalu, I., Ndehedehe, C.E., Okwuashi, O., Eyoh, A.E., Ferreira, V.G., 2022. A new
modelling framework to assess changes in groundwater level. J. Hydrol.: Reg. Stud.
43, 101185.

Kamalov, F., Elnaffar, S., Cherukuri, A., Jonnalagadda, A., 2024. Forward feature
selection: empirical analysis. J. Intell. Syst. Internet Things 11 (1), 44-54.

Kanji, S., Das, S., 2025. Assessing groundwater potentialities and replenishment
feasibility using machine learning and MCDM models considering hydro-geological
aspects and water quality constituents. Environ. Earth Sci. 84 (1), 16.

Karthikeyan, L., Kumar, D.N., Graillot, D., Gaur, S., 2013. Prediction of ground water
levels in the uplands of a tropical coastal riparian wetland using artificial neural
networks. Water Resour. Manag. 27, 871-883.

Kayhomayoon, Z., Babaeian, F., Ghordoyee Milan, S., Arya Azar, N., Berndtsson, R.,
2022. A combination of metaheuristic optimization algorithms and machine
learning methods improves the prediction of groundwater level. Water 14 (5), 751.

Kayhomayoon, Z., Jamnani, M.R., Rashidi, S., Milan, S.G., Azar, N.A., Berndtsson, R.,
2023. Soft computing assessment of current and future groundwater resources
under CMIP6 scenarios in northwestern Iran. Agricult. Water. Manag. 285, 108369.

Kim, D., Jang, C., Choi, J., Kwak, J., 2023. A case study: Groundwater level forecasting
of the gyorae area in actual practice on Jeju island using deep-learning technique.
Water 15 (5), 972.

King, J.R., Jackson, D.A., 1999. Variable selection in large environmental data sets
using principal components analysis. Environmetrics: Off. J. Int. Environmetrics
Soc. 10 (1), 67-77.

Kingma, D.P., Ba, J., 2014. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Kouziokas, G.N., Chatzigeorgiou, A., Perakis, K., 2018. Multilayer feed forward models
in groundwater level forecasting using meteorological data in public management.
Water Resour. Manag. 32 (15), 5041-5052.

Kraskov, A., Stogbauer, H., Grassberger, P., 2004. Estimating mutual information. Phys.
Rev. E—Statist. Nonlinear Soft Matter Phys. 69 (6), 066138.

Kuhn, M., Johnson, K., Kuhn, M., Johnson, K., 2013a. Data pre-processing. Appl.
Predict. Model. 27-59.

Kuhn, M., Johnson, K., et al., 2013b. Applied Predictive Modeling, vol. 26, Springer.

LaBianca, A., Koch, J., Jensen, K.H., Sonnenborg, T.O., Kidmose, J., 2024. Machine
learning for predicting shallow groundwater levels in urban areas. J. Hydrol. 632,
130902.

Latham, P.E., Roudi, Y., 2009. Mutual information. Scholarpedia 4 (1), 1658.

LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. Nature 521 (7553), 436-444.

Lee, S., Lee, K.-K., Yoon, H., 2019. Using artificial neural network models for
groundwater level forecasting and assessment of the relative impacts of influencing
factors. Hydrogeol. J. 27 (2).

Lendzioch, T., Langhammer, J., VI¢ek, L., Minafik, R., 2021. Mapping the groundwater
level and soil moisture of a montane peat bog using uav monitoring and machine
learning. Remote. Sens. 13 (5), 907.

Li, W., Finsa, M.M., Laskey, K.B., Houser, P., Douglas-Bate, R., 2023. Groundwater level
prediction with machine learning to support sustainable irrigation in water scarcity
regions. Water 15 (19), 3473.

Liberati, A., Altman, D.G., Tetzlaff, J., Mulrow, C., Gotzsche, P.C., loannidis, J.P.A.,
Clarke, M., Devereaux, P.J., Kleijnen, J., Moher, D., 2009. The PRISMA statement
for reporting systematic reviews and meta-analyses of studies that evaluate health-
care interventions: explanation and elaboration. BMJ 339, http://dx.doi.org/10.
1136/bmj.b2700, URL: https://www.bmj.com/content/339/bmj.b2700. arXiv:https:
//www.bmj.com/content/339/bmj.b2700.full.pdf.

Lin, S.-W., Ying, K.-C., Chen, S.-C., Lee, Z.-J., 2008. Particle swarm optimization for
parameter determination and feature selection of support vector machines. Expert
Syst. Appl. 35 (4), 1817-1824.

27

Applied Computing and Geosciences 28 (2025) 100303

Liu, Q., Gui, D., Zhang, L., Niu, J., Dai, H., Wei, G., Hu, B.X., 2022. Simulation of
regional groundwater levels in arid regions using interpretable machine learning
models. Sci. Total Environ. 831, 154902.

Liu, D., Mishra, AK., Yu, Z., Lii, H., Li, Y., 2021. Support vector machine and data
assimilation framework for groundwater level forecasting using GRACE satellite
data. J. Hydrol. 603, 126929.

Lundberg, S.M., Lee, S.-I., 2017. A unified approach to interpreting model predictions.
Adv. Neural Inf. Process. Syst. 30.

Mafarja, M., Aljarah, I, Faris, H., Hammouri, A.L,, Ala’M, A.-Z., Mirjalili, S., 2019. Bi-
nary grasshopper optimisation algorithm approaches for feature selection problems.
Expert Syst. Appl. 117, 267-286.

Maheswaran, R., Khosa, R., 2013. Long term forecasting of groundwater levels with
evidence of non-stationary and nonlinear characteristics. Comput. Geosci. 52,
422-436.

Maiti, S., Tiwari, R., 2014. A comparative study of artificial neural networks, Bayesian
neural networks and adaptive neuro-fuzzy inference system in groundwater level
prediction. Environ. Earth Sci. 71, 3147-3160.

Mallat, S.G., 1989. A theory for multiresolution signal decomposition: the wavelet
representation. IEEE Trans. Pattern Anal. Mach. Intell. 11 (7), 674-693.

Manna, T., Anitha, A., 2023. Deep ensemble-based approach using randomized low-
rank approximation for sustainable groundwater level prediction. Appl. Sci. 13 (5),
3210.

Maraun, D., Kurths, J., 2004. Cross wavelet analysis: significance testing and pitfalls.
Nonlinear Process. Geophys. 11 (4), 505-514.

Martinez-Mufloz, G., Suarez, A., 2010. Out-of-bag estimation of the optimal sample size
in bagging. Pattern Recognit. 43 (1), 143-152.

May-Lagunes, G., Chau, V., Ellestad, E., Greengard, L., D’Odorico, P., Vahabi, P.,
Todeschini, A., Girotto, M., 2023. Forecasting groundwater levels using machine
learning methods: The case of California’s central valley. J. Hydrol. X 21, 100161.

Mehrabian, A.R., Lucas, C., 2006. A novel numerical optimization algorithm inspired
from weed colonization. Ecol. Inform. 1 (4), 355-366.

Mendeley, 2022. Mendeley. https://www.mendeley.com. (Accessed 17 July 2023).

Milan, S.G., Kayhomayoon, Z., Azar, N.A., Berndtsson, R., Ramezani, M.R., Moghad-
dam, H.K.,, 2023. Using machine learning to determine acceptable levels of
groundwater consumption in Iran. Sustain. Prod. Consum. 35, 388-400.

Mirzavand, M., Khoshnevisan, B., Shamshirband, S., Kisi, O., Ahmad, R., Akib, S., et
al., 2015. Evaluating groundwater level fluctuation by support vector regression
and neuro-fuzzy methods: a comparative study. Nat. Hazards 1 (1), 1-15.

Mohanty, S., Jha, M.K., Kumar, A., Sudheer, K., 2010. Artificial neural network
modeling for groundwater level forecasting in a river island of eastern India. Water
Resour. Manag. 24, 1845-1865.

Mohapatra, J.B., Jha, P., Jha, M.K., Biswal, S., 2021. Efficacy of machine learning
techniques in predicting groundwater fluctuations in agro-ecological zones of India.
Sci. Total Environ. 785, 147319.

Momeneh, S., Nourani, V., 2022. Forecasting of groundwater level fluctuations using
a hybrid of multi-discrete wavelet transforms with artificial intelligence models.
Hydrol. Res. 53 (6), 914-944.

Moradi, A., Akhtari, A.A., Azari, A., 2023. Prediction of groundwater level fluctuation
using methods based on machine learning and numerical model. J. Appl. Res. Water
Wastewater 10 (1), 20-28.

Moravej, M., Amani, P., Hosseini-Moghari, S.-M., 2020. Groundwater level simula-
tion and forecasting using interior search algorithm-least square support vector
regression (ISA-LSSVR). Groundw. Sustain. Dev. 11, 100447.

Mosavi, A., Sajedi Hosseini, F., Choubin, B., Goodarzi, M., Dineva, A.A., Rafiei Sar-
dooi, E., 2021. Ensemble boosting and bagging based machine learning models for
groundwater potential prediction. Water Resour. Manag. 35, 23-37.

Motagh, M., Shamshiri, R., Haghighi, M.H., Wetzel, H.-U., Akbari, B., Nahavandchi, H.,
Roessner, S., Arabi, S., 2017. Quantifying groundwater exploitation induced sub-
sidence in the Rafsanjan Plain, southeastern Iran, using InSAR time-series and in
situ measurements. Eng. Geol. 218, 134-151.

Mukherjee, A., Ramachandran, P., 2018. Prediction of GWL with the help of GRACE
TWS for unevenly spaced time series data in India: Analysis of comparative
performances of SVR, ANN and LRM. J. Hydrol. 558, 647-658.

Miiller, J., Park, J., Sahu, R., Varadharajan, C., Arora, B., Faybishenko, B., Agarwal, D.,
2021. Surrogate optimization of deep neural networks for groundwater predictions.
J. Global Optim. 81, 203-231.

Mutanga, O., Adam, E., Cho, M.A., 2012. High density biomass estimation for wetland
vegetation using WorldView-2 imagery and random forest regression algorithm. Int.
J. Appl. Earth Obs. Geoinf. 18, 399-406.

Nair, V., Hinton, G.E., 2010. Rectified linear units improve restricted Boltzmann ma-
chines. In: Proceedings of the 27th International Conference on Machine Learning.
ICML-10, pp. 807-814.

Nan, T., Cao, W., Wang, Z., Gao, Y., Zhao, L., Sun, X., Na, J., 2023. Evaluation of
shallow groundwater dynamics after water supplement in north China Plain based
on attention-GRU model. J. Hydrol. 625, 130085.

Nand, V., Narjary, B., Singh, V.K., Kumar, N., Islam, A., Kumar, S., 2024. Reliability
of artificial intelligence-based models compared to numerical model for predicting
groundwater level under changing climate. J. Agric. Eng. 61 (spl), 339-356.

Narayan, S., 1997. The generalized sigmoid activation function: Competitive supervised
learning. Inform. Sci. 99 (1-2), 69-82.


http://refhub.elsevier.com/S2590-1974(25)00085-0/sb84
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb84
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb84
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb84
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb84
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb85
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb85
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb85
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb86
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb86
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb86
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb86
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb86
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb86
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb86
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb87
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb87
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb87
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb87
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb87
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb88
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb88
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb88
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb88
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb88
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb89
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb89
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb89
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb89
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb89
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb89
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb89
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb90
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb90
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb90
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb90
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb90
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb91
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb91
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb91
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb91
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb91
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb92
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb92
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb92
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb92
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb92
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb93
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb93
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb93
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb94
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb94
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb94
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb94
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb94
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb95
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb95
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb95
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb95
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb95
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb96
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb96
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb96
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb96
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb96
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb97
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb97
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb97
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb97
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb97
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb98
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb98
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb98
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb98
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb98
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb99
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb99
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb99
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb99
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb99
http://arxiv.org/abs/1412.6980
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb101
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb101
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb101
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb101
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb101
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb102
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb102
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb102
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb103
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb103
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb103
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb104
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb105
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb105
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb105
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb105
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb105
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb106
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb107
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb108
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb108
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb108
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb108
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb108
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb109
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb109
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb109
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb109
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb109
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb110
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb110
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb110
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb110
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb110
http://dx.doi.org/10.1136/bmj.b2700
http://dx.doi.org/10.1136/bmj.b2700
http://dx.doi.org/10.1136/bmj.b2700
https://www.bmj.com/content/339/bmj.b2700
https://www.bmj.com/content/339/bmj.b2700.full.pdf
https://www.bmj.com/content/339/bmj.b2700.full.pdf
https://www.bmj.com/content/339/bmj.b2700.full.pdf
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb112
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb112
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb112
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb112
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb112
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb113
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb113
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb113
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb113
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb113
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb114
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb114
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb114
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb114
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb114
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb115
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb115
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb115
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb116
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb116
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb116
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb116
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb116
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb117
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb117
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb117
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb117
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb117
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb118
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb118
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb118
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb118
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb118
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb119
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb119
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb119
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb120
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb120
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb120
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb120
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb120
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb121
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb121
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb121
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb122
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb122
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb122
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb123
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb123
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb123
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb123
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb123
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb124
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb124
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb124
https://www.mendeley.com
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb126
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb126
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb126
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb126
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb126
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb127
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb127
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb127
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb127
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb127
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb128
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb128
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb128
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb128
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb128
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb129
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb129
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb129
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb129
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb129
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb130
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb130
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb130
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb130
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb130
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb131
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb131
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb131
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb131
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb131
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb132
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb132
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb132
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb132
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb132
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb133
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb133
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb133
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb133
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb133
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb134
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb134
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb134
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb134
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb134
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb134
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb134
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb135
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb135
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb135
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb135
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb135
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb136
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb136
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb136
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb136
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb136
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb137
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb137
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb137
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb137
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb137
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb138
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb138
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb138
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb138
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb138
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb139
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb139
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb139
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb139
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb139
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb140
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb140
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb140
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb140
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb140
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb141
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb141
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb141

G. Jesse et al.

Nie, S., Bian, J., Wan, H., Sun, X., Zhang, B., 2017. Simulation and uncertainty analysis
for groundwater levels using radial basis function neural network and support
vector machine models. J. Water Supply: Res. Technol.—AQUA 66 (1), 15-24.

Niu, X., Lu, C., Zhang, Y., Zhang, Y., Wu, C., Saidy, E., Liu, B., Shu, L., 2023. Hysteresis
response of groundwater depth on the influencing factors using an explainable
learning model framework with Shapley values. Sci. Total Environ. 904, 166662.

Nourani, V., Alami, M.T., Vousoughi, F.D., 2015. Wavelet-entropy data pre-processing
approach for ANN-based groundwater level modeling. J. Hydrol. 524, 255-269.

Nourani, V., Ejlali, R.G., Alami, M.T., 2011. Spatiotemporal groundwater level fore-
casting in coastal aquifers by hybrid artificial neural network-geostatistics model:
a case study. Environ. Eng. Sci. 28 (3), 217-228.

Nwankpa, C., Ijomah, W., Gachagan, A., Marshall, S., 2018. Activation functions:
Comparison of trends in practice and research for deep learning. arXiv preprint
arXiv:1811.03378.

Omiotek, Z., Stepanchenko, O., Wdjcik, W., Legieé, W., Szatkowska, M., 2019. The
use of the Hellwig’s method for feature selection in the detection of myeloma
bone destruction based on radiographic images. Biocybern. Biomed. Eng. 39 (2),
328-338.

Osman, A.LA., Latif, S.D., Boo, K.B.W., Ahmed, A.N., Huang, Y.F., El-Shafie, A., 2024.
Advanced machine learning algorithm to predict the implication of climate change
on groundwater level for protecting aquifer from depletion. Groundw. Sustain. Dev.
25, 101152.

Page, M.J., McKenzie, J.E., Bossuyt, P.M., Boutron, 1., Hoffmann, T.C., Mulrow, C.D.,
Shamseer, L., Tetzlaff, J.M., Akl, E.A., Brennan, S.E., et al., 2021. The PRISMA 2020
statement: an updated guideline for reporting systematic reviews. Int. J. Surg. 88,
105906.

Panahi, G., Hassanzadeh Eskafi, M., Faridhosseini, A., Khodashenas, S.R., Rohani, A.,
2023. Prediction of groundwater level fluctuations under climate change based on
machine learning algorithms in the Mashhad aquifer, Iran. J. Water Clim. Chang.
14 (3), 1039-1059.

Panja, S., Chatterjee, A., Yasmin, G., 2019. Kernel functions of svm: A comparison
and optimal solution. In: Advanced Informatics for Computing Research: Second
International Conference, ICAICR 2018, Shimla, India, July 14-15, 2018, Revised
Selected Papers, Part I 2. Springer, pp. 88-97.

Patle, A., Chouhan, D.S., 2013. SVM kernel functions for classification. In: 2013
International Conference on Advances in Technology and Engineering. ICATE, IEEE,
pp. 1-9.

Patra, S.R., Chu, H.-J., et al., 2023. Regional groundwater sequential forecasting using
global and local LSTM models. J. Hydrol.: Reg. Stud. 47, 101442.

Pham, Q.B., Kumar, M., Di Nunno, F., Elbeltagi, A., Granata, F., Islam, A.R.M.T.,
Talukdar, S., Nguyen, X.C., Ahmed, A.N., Anh, D.T., 2022. Groundwater level
prediction using machine learning algorithms in a drought-prone area. Neural
Comput. Appl. 34 (13), 10751-10773.

Piesse, M., 2020. Global water supply and demand trends point towards rising water
insecurity.

Pudjihartono, N., Fadason, T., Kempa-Liehr, A.W., O’Sullivan, J.M., 2022. A review of
feature selection methods for machine learning-based disease risk prediction. Front.
Bioinform. 2, 927312.

Puente, J., Gomez, A., Fernandez, 1., Priore, P., 2009. Medical doctor rostering problem
in a hospital emergency department by means of genetic algorithms. Comput. Ind.
Eng. 56 (4), 1232-1242.

Rafik, A., Ait Brahim, Y., Amazirh, A., Ouarani, M., Bargam, B., Ouatiki, H., Bous-
lihim, Y., Bouchaou, L., Chehbouni, A., 2023. Groundwater level forecasting
in a data-scarce region through remote sensing data downscaling, hydrological
modeling, and machine learning: A case study from Morocco. J. Hydrol.: Reg. Stud.
50, 101569.

Rahmadani, F., Lee, H., 2020. ODE-based epidemic network simulation of viral Hepatitis
A and kernel support vector machine based vaccination effect analysis. Journal of
Korean Institute of Intelligent Systems 30 (2), 106-112.

Rajaee, T., Ebrahimi, H., Nourani, V., 2019. A review of the artificial intelligence
methods in groundwater level modeling. J. Hydrol. 572, 336-351.

Rakhshandehroo, G.R., Vaghefi, M., Aghbolaghi, M.A., 2012. Forecasting groundwater
level in Shiraz Plain using artificial neural networks. Arab. J. Sci. Eng. 37,
1871-1883.

Ramachandran, P., Zoph, B., Le, Q.V., 2017. Searching for activation functions. arXiv
preprint arXiv:1710.05941.

Ramsey, F.L., 1974. Characterization of the partial autocorrelation function. Ann.
Statist. 1296-1301.

Rasamoelina, A.D., Adjailia, F., Sin¢dk, P., 2020. A review of activation function for
artificial neural network. In: 2020 IEEE 18th World Symposium on Applied Machine
Intelligence and Informatics. SAMI, IEEE, pp. 281-286.

Roy, D.K., Munmun, T.H., Paul, C.R., Haque, M.P., Al-Ansari, N., Mattar, M.A., 2023.
Improving forecasting accuracy of multi-scale groundwater level fluctuations using
a heterogeneous ensemble of machine learning algorithms. Water 15 (20), 3624.

Sahoo, S., Jha, M.K., 2013. Groundwater-level prediction using multiple linear regres-
sion and artificial neural network techniques: a comparative assessment. Hydrogeol.
J. 21 (8), 1865.

Sahoo, S., Russo, T., Elliott, J., Foster, 1., 2017. Machine learning algorithms for
modeling groundwater level changes in agricultural regions of the US. Water
Resour. Res. 53 (5), 3878-3895.

28

Applied Computing and Geosciences 28 (2025) 100303

Saremi, S., Mirjalili, S., Lewis, A., 2017. Grasshopper optimisation algorithm: theory
and application. Adv. Eng. Softw. 105, 30-47.

Sarkar, H., Goriwale, S.S., Ghosh, J.K., Ojha, C.S.P., Ghosh, S.K., 2024. Potential of
machine learning algorithms in groundwater level prediction using temporal gravity
data. Groundw. Sustain. Dev. 25, 101114.

Saroughi, M., Mirzania, E., Achite, M., Katipoglu, O.M., Al-Ansari, N., Vish-
wakarma, D.K., Chung, L.-M., Alreshidi, M.A., Yadav, K.K., 2024. Evaluate effect
of 126 pre-processing methods on various artificial intelligence models accuracy
versus normal mode to predict groundwater level (case study: Hamedan-Bahar
Plain, Iran). Heliyon 10 (7).

Scholkopf, B., Sung, K.-K., Burges, C.J., Girosi, F., Niyogi, P., Poggio, T., Vapnik, V.,
1997. Comparing support vector machines with Gaussian kernels to radial basis
function classifiers. IEEE Trans. Signal Process. 45 (11), 2758-2765.

Secci, D., Tanda, M.G., D’Oria, M., Todaro, V., 2023. Artificial intelligence models to
evaluate the impact of climate change on groundwater resources. J. Hydrol. 627,
130359.

Seidu, J., Ewusi, A., Kuma, J.S.Y., Ziggah, Y.Y., Voigt, H.-J., 2023. Impact of data
partitioning in groundwater level prediction using artificial neural network for
multiple wells. Int. J. River Basin Manag. 21 (4), 639-650.

Seifi, A., Ehteram, M., Singh, V.P., Mosavi, A., 2020. Modeling and uncertainty analysis
of groundwater level using six evolutionary optimization algorithms hybridized
with ANFIS, SVM, and ANN. Sustainability 12 (10), 4023.

Seifi, A., Pourebrahim, S., Ehteram, M., Shabanian, H., 2024. A robust multi-model
framework for groundwater level prediction: The BFSA-MVMD-GRU-RVM model.
Results Eng. 24, 103250.

Sharafati, A., Asadollah, S.B.H.S., Neshat, A., 2020. A new artificial intelligence strategy
for predicting the groundwater level over the Rafsanjan aquifer in Iran. J. Hydrol.
591, 125468.

Sharghi, E., Nourani, V., Zhang, Y., Ghaneei, P., 2022. Conjunction of cluster ensemble-
model ensemble techniques for spatiotemporal assessment of groundwater depletion
in semi-arid plains. J. Hydrol. 610, 127984.

Shirmohammadi, B., Vafakhah, M., Moosavi, V., Moghaddamnia, A., 2013. Application
of several data-driven techniques for predicting groundwater level. Water Resour.
Manag. 27, 419-432.

Singh, A., Patel, S., Bhadani, V., Kumar, V., Gaurav, K., 2024. AutoML-GWL: automated
machine learning model for the prediction of groundwater level. Eng. Appl. Artif.
Intell. 127, 107405.

Solgi, R., Loaiciga, H.A., Kram, M., 2021. Long short-term memory neural network
(LSTM-NN) for aquifer level time series forecasting using in-situ piezometric
observations. J. Hydrol. 601, 126800.

Solomatine, D.P., 2006. Data-driven modeling and computational intelligence methods
in hydrology. Encycl. Hydrol. Sci..

Sriram, R., et al., 2023. Groundwater level prediction: A novel study on machine learn-
ing based approach with regression models for sustainable resource management.
In: 2023 IEEE International Conference on Cloud Computing in Emerging Markets.
CCEM, IEEE, pp. 137-142.

Stokes, P.A., Purdon, P.L., 2017. A study of problems encountered in granger causal-
ity analysis from a neuroscience perspective. Proc. Natl. Acad. Sci. 114 (34),
E7063-E7072.

Strobl, C., Boulesteix, A.-L., Zeileis, A., Hothorn, T., 2007. Bias in random forest variable
importance measures: Illustrations, sources and a solution. BMC Bioinformatics 8
(1), 25.

Su, Y.-S., Hu, Y.-C., Wu, Y.-C., Lo, C.-T., 2024. Evaluating the impact of pumping
on groundwater level prediction in the chuoshui river alluvial fan using artificial
intelligence techniques.

Sun, W., Chang, L.-C., Chang, F.-J., 2024. Deep dive into predictive excellence:
Transformer’s impact on groundwater level prediction. J. Hydrol. 636, 131250.
Sun, K., Hu, L., Sun, J., Cao, X., 2023. Enhancing groundwater level prediction accuracy
at a daily scale through combined machine learning and physics-based modeling.

J. Hydrol.: Reg. Stud. 50, 101577.

Sun, Y., Wendi, D., Kim, D.E., Liong, S.-Y., 2016. Application of artificial neural
networks in groundwater table forecasting-a case study in a Singapore swamp
forest. Hydrol. Earth Syst. Sci. 20 (4), 1405-1412.

Suryanarayana, C., Sudheer, C., Mahammood, V., Panigrahi, B.K., 2014. An in-
tegrated wavelet-support vector machine for groundwater level prediction in
Visakhapatnam, India. Neurocomputing 145, 324-335.

Takefuji, Y., 2025. Addressing feature importance biases in machine learning models
for early diagnosis of type 1 Gaucher disease. J. Clin. Epidemiol. 178.

Talpur, N., Salleh, M.N.M., Hussain, K., 2017. An investigation of membership functions
on performance of ANFIS for solving classification problems. In: IOP Conference
Series: Materials Science and Engineering. vol. 226, IOP Publishing, 012103, 1.

Tang, J., Alelyani, S., Liu, H., 2014. Feature selection for classification: A review. Data
Classif.: Algorithms Appl. 37.

Tang, W., Wu, Q., 2009. Biologically inspired optimization: a review. Trans. Inst. Meas.
Control 31 (6), 495-515.

Tao, H., Hameed, M.M., Marhoon, H.A., Zounemat-Kermani, M., Heddam, S., Kim, S.,
Sulaiman, S.0., Tan, M.L., Sa’adi, Z., Mehr, A.D., et al, 2022. Groundwa-
ter level prediction using machine learning models: A comprehensive review.
Neurocomputing 489, 271-308.


http://refhub.elsevier.com/S2590-1974(25)00085-0/sb142
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb142
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb142
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb142
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb142
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb143
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb143
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb143
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb143
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb143
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb144
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb144
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb144
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb145
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb145
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb145
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb145
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb145
http://arxiv.org/abs/1811.03378
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb147
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb147
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb147
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb147
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb147
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb147
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb147
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb148
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb148
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb148
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb148
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb148
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb148
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb148
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb149
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb149
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb149
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb149
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb149
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb149
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb149
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb150
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb150
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb150
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb150
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb150
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb150
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb150
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb151
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb151
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb151
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb151
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb151
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb151
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb151
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb152
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb152
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb152
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb152
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb152
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb153
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb153
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb153
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb154
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb154
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb154
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb154
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb154
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb154
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb154
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb155
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb155
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb155
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb156
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb156
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb156
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb156
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb156
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb157
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb157
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb157
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb157
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb157
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb158
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb158
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb158
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb158
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb158
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb158
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb158
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb158
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb158
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb159
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb159
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb159
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb159
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb159
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb160
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb160
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb160
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb161
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb161
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb161
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb161
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb161
http://arxiv.org/abs/1710.05941
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb163
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb163
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb163
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb164
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb164
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb164
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb164
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb164
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb165
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb165
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb165
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb165
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb165
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb166
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb166
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb166
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb166
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb166
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb167
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb167
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb167
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb167
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb167
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb168
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb168
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb168
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb169
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb169
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb169
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb169
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb169
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb170
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb170
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb170
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb170
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb170
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb170
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb170
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb170
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb170
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb171
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb171
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb171
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb171
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb171
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb172
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb172
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb172
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb172
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb172
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb173
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb173
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb173
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb173
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb173
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb174
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb174
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb174
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb174
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb174
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb175
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb175
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb175
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb175
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb175
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb176
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb176
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb176
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb176
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb176
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb177
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb177
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb177
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb177
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb177
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb178
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb178
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb178
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb178
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb178
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb179
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb179
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb179
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb179
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb179
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb180
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb180
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb180
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb180
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb180
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb181
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb181
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb181
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb182
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb182
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb182
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb182
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb182
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb182
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb182
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb183
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb183
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb183
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb183
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb183
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb184
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb184
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb184
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb184
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb184
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb185
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb185
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb185
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb185
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb185
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb186
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb186
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb186
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb187
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb187
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb187
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb187
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb187
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb188
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb188
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb188
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb188
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb188
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb189
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb189
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb189
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb189
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb189
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb190
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb190
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb190
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb191
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb191
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb191
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb191
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb191
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb192
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb192
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb192
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb193
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb193
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb193
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb194
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb194
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb194
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb194
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb194
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb194
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb194

G. Jesse et al.

Taormina, R., Chau, K.-w., Sethi, R., 2012. Artificial neural network simulation of
hourly groundwater levels in a coastal aquifer system of the Venice lagoon. Eng.
Appl. Artif. Intell. 25 (8), 1670-1676.

Thompson, C.G., Kim, R.S., Aloe, A.M., Becker, B.J., 2017. Extracting the variance
inflation factor and other multicollinearity diagnostics from typical regression
results. Basic Appl. Soc. Psychol. 39 (2), 81-90.

Torrence, C., Compo, G.P., 1998. A practical guide to wavelet analysis. Bull. Am.
Meteorol. Soc. 79 (1), 61-78.

Trichakis, I.C., Nikolos, LK., Karatzas, G., 2011. Artificial neural network (ANN) based
modeling for karstic groundwater level simulation. Water Resour. Manag. 25,
1143-1152.

Tyagi, K., Rane, C., Manry, M., 2022. Supervised learning. In: Artificial Intelligence
and Machine Learning for EDGE Computing. Elsevier, pp. 3-22.

Van Thieu, N., Barma, S.D., Van Lam, T., Kisi, O., Mahesha, A., 2023. Groundwater
level modeling using augmented artificial ecosystem optimization. J. Hydrol. 617,
129034.

Veyrat-Charvillon, N., Standaert, F.-X., 2009. Mutual information analysis: how, when
and why? In: International Workshop on Cryptographic Hardware and Embedded
Systems. Springer, pp. 429-443.

Vu, M.T., Jardani, A., Massei, N., Deloffre, J., Fournier, M., Laignel, B., 2023. Long-run
forecasting surface and groundwater dynamics from intermittent observation data:
An evaluation for 50 years. Sci. Total Environ. 880, 163338.

Wang, Y., Guo, F., Chen, S., Zhang, H., Zhang, Z., Li, A., 2024. Quantitative study of
rainfall lag effects and integration of machine learning methods for groundwater
level prediction modelling. Hydrol. Process. 38 (5), e15171.

Wang, D., Tan, D., Liu, L., 2018. Particle swarm optimization algorithm: an overview.
Soft Comput. 22 (2), 387-408.

Wei, A., Li, X., Yan, L., Wang, Z., Yu, X., 2023a. Machine learning models combined
with wavelet transform and phase space reconstruction for groundwater level
forecasting. Comput. Geosci. 177, 105386.

Wei, Y., Wang, F., Hong, B., Yang, S., 2023b. Revealing spatial variability of ground-
water level in typical ecosystems of the Tarim Basin through ensemble algorithms
and limited observations. J. Hydrol. 620, 129399.

Wen, X., Feng, Q., Deo, R.C., Wu, M., Si, J., 2017. Wavelet analysis-artificial neural
network conjunction models for multi-scale monthly groundwater level predicting
in an arid inland river basin, northwestern China. Hydrol. Res. 48 (6), 1710-1729.

Wu, W., Dandy, G.C., Maier, H.R., 2014. Protocol for developing ANN models and its
application to the assessment of the quality of the ANN model development process
in drinking water quality modelling. Environ. Model. Softw. 54, 108-127.

Wu, M., Feng, Q., Wen, X., Yin, Z., Yang, L., Sheng, D., 2021b. Deterministic analysis
and uncertainty analysis of ensemble forecasting model based on variational mode
decomposition for estimation of monthly groundwater level. Water 13 (2), 139.

Wu, Z., Ly, C., Sun, Q., Lu, W., He, X,, Qin, T., Yan, L., Wu, C., 2023. Predicting
groundwater level based on machine learning: A case study of the Hebei Plain.
Water 15 (4), 823.

Wu, C., Zhang, X., Wang, W., Lu, C., Zhang, Y., Qin, W., Tick, G.R., Liu, B., Shu, L.,
2021a. Groundwater level modeling framework by combining the wavelet transform
with a long short-term memory data-driven model. Sci. Total Environ. 783, 146948.

Wunsch, A., Liesch, T., Broda, S., 2018. Forecasting groundwater levels using nonlinear
autoregressive networks with exogenous input (NARX). J. Hydrol. 567, 743-758.

Xie, X., Zhang, X., 2024. Development of a deep surrogate model with spatiotemporal
characteristics mining capabilities for the prediction of groundwater level in coastal
areas. J. Environ. Manag. 370, 122724.

29

Applied Computing and Geosciences 28 (2025) 100303

Yadav, B., Gupta, P.K., Patidar, N., Himanshu, S.K., 2020. Ensemble modelling
framework for groundwater level prediction in urban areas of India. Sci. Total
Environ. 712, 135539.

Yan, Q., Ma, C., 2016. Application of integrated ARIMA and RBF network for
groundwater level forecasting. Environ. Earth Sci. 75, 1-13.

Yi, S., Kondolf, G.M., Sandoval Solis, S., Dale, L., 2024. Groundwater level forecasting
using machine learning: a case study of the Baekje Weir in Four Major Rivers
Project, South Korea. Water Resour. Res. 60 (5), e2022WR032779.

Yin, J., Medellin-Azuara, J., Escriva-Bou, A., Liu, Z., 2021. Bayesian machine learning
ensemble approach to quantify model uncertainty in predicting groundwater
storage change. Sci. Total Environ. 769, 144715.

Yoo, J.-C., Han, T.H., 2009. Fast normalized cross-correlation. Circuits Systems Signal
Process. 28, 819-843.

Yoon, H., Hyun, Y., Ha, K., Lee, K.-K., Kim, G.-B., 2016. A method to improve the
stability and accuracy of ANN-and SVM-based time series models for long-term
groundwater level predictions. Comput. Geosci. 90, 144-155.

Yoon, H., Jun, S.-C., Hyun, Y., Bae, G.-O., Lee, K.-K., 2011. A comparative study of
artificial neural networks and support vector machines for predicting groundwater
levels in a coastal aquifer. J. Hydrol. 396 (1-2), 128-138.

Yu, S., Qiu, L., Xu, X., Yang, Y.-S., 2021. Machine learning-based algorithm for
predicting the groundwater level in Mingin Oasis region of China. In: 2021
7th International Conference on Hydraulic and Civil Engineering & Smart Water
Conservancy and Intelligent Disaster Reduction Forum. ICHCE & SWIDR, IEEE, pp.
89-95.

Yu, H., Wen, X., Feng, Q., Deo, R.C., Si, J., Wu, M., 2018. Comparative study of hybrid-
wavelet artificial intelligence models for monthly groundwater depth forecasting in
extreme arid regions, northwest China. Water Resour. Manag. 32 (1), 301-323.

Zhang, X., Dong, F., Chen, G., Dai, Z., 2023. Advance prediction of coastal groundwater
levels with temporal convolutional and long short-term memory networks. Hydrol.
Earth Syst. Sci. 27 (1), 83-96.

Zhang, J., Zhu, Y., Zhang, X., Ye, M., Yang, J., 2018. Developing a long short-term
memory (LSTM) based model for predicting water table depth in agricultural areas.
J. Hydrol. 561, 918-929.

Zheng, H., Hou, H., Qin, Z., 2024. Research on a non-stationary groundwater level
prediction model based on VMD-itransformer and its application in sustainable
water resource management of ecological reserves. Sustainability 16 (21), 9185.

Zhou, T., Wang, F., Yang, Z., 2017. Comparative analysis of ANN and SVM models
combined with wavelet preprocess for groundwater depth prediction. Water 9 (10),
781.

Zhou, T., Wen, X., Feng, Q., Yu, H., Xi, H., 2022. Bayesian model averaging ensemble
approach for multi-time-ahead groundwater level prediction combining the GRACE,
GLEAM, and GLDAS data in arid areas. Remote. Sens. 15 (1), 188.

Zhou, Y., Zhang, Q., Bai, G., Zhao, H., Shuai, G., Cui, Y., Shao, J., 2024. Groundwater
dynamics clustering and prediction based on grey relational analysis and LSTM
model: a case study in Beijing Plain, China. J. Hydrol.: Reg. Stud. 56, 102011.

Zhu, F., Han, M., Sun, Y., Zeng, Y., Zhao, L., Zhu, O., Hou, T., Zhong, P.-a., 2024.
A machine learning framework for multi-step-ahead prediction of groundwater
levels in agricultural regions with high reliance on groundwater irrigation. Environ.
Model. Softw. 180, 106146.

Zowam, F.J., Milewski, A.M., 2024. Groundwater level prediction using machine
learning and geostatistical interpolation models. Water 16 (19), 2771.


http://refhub.elsevier.com/S2590-1974(25)00085-0/sb195
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb195
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb195
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb195
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb195
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb196
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb196
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb196
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb196
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb196
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb197
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb197
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb197
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb198
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb198
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb198
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb198
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb198
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb199
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb199
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb199
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb200
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb200
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb200
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb200
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb200
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb201
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb201
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb201
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb201
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb201
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb202
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb202
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb202
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb202
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb202
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb203
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb203
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb203
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb203
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb203
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb204
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb204
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb204
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb205
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb205
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb205
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb205
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb205
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb206
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb206
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb206
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb206
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb206
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb207
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb207
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb207
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb207
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb207
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb208
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb208
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb208
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb208
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb208
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb209
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb209
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb209
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb209
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb209
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb210
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb210
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb210
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb210
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb210
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb211
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb211
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb211
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb211
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb211
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb212
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb212
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb212
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb213
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb213
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb213
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb213
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb213
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb214
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb214
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb214
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb214
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb214
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb215
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb215
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb215
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb216
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb216
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb216
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb216
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb216
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb217
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb217
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb217
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb217
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb217
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb218
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb218
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb218
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb219
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb219
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb219
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb219
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb219
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb220
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb220
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb220
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb220
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb220
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb221
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb221
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb221
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb221
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb221
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb221
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb221
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb221
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb221
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb222
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb222
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb222
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb222
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb222
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb223
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb223
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb223
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb223
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb223
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb224
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb224
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb224
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb224
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb224
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb225
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb225
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb225
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb225
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb225
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb226
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb226
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb226
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb226
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb226
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb227
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb227
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb227
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb227
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb227
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb228
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb228
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb228
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb228
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb228
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb229
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb229
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb229
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb229
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb229
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb229
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb229
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb230
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb230
http://refhub.elsevier.com/S2590-1974(25)00085-0/sb230

	A systematic review of machine learning models for groundwater level prediction
	Introduction
	Methodology
	Results and Discussion
	Publication Trends
	Algorithms Used in Groundwater Level Prediction
	ANN (Standalone and Hybrid) models
	Bibliographic Review
	Results

	ANFIS (Standalone and Hybrid) models
	Bibliographic review
	Results

	SVM/SVR (Standalone and Hybrid) models 
	Bibliographic review
	Results

	LSTM (Standalone and Hybrid) models
	Bibliographic review
	Results

	RF (Standalone and Hybrid) models
	Bibliographic review
	Results


	Trends and Gaps in Feature Selection for GWL Modeling
	Filter-Based Approaches
	Wrapper Approaches
	Embedded Approaches

	General Overview and Discussion
	Optimization Algorithms
	Validation metrics
	Covariates Used
	Programming Languages Utilized
	Time steps and forecast horizons

	Implications and Future Directions
	Limitations
	Conclusion
	List of Abbreviations
	CRediT authorship contribution statement
	Computer Code Availability
	Funding
	Declaration of competing interest
	Appendix A. Supplementary data
	Data availability
	References


