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A B S T R A C T

Effective marine conservation and management require ecological monitoring in the form of intensive real-time 
data collection over large spatial scales. The combined use of fixed platforms (e.g., cabled observatories) and 
research vessels with platforms of different levels of teleoperated autonomy (e.g., remotely operated vehicles 
(ROVs) and autonomous underwater vehicles (AUVs) can contribute to the acquisition of large multiparametric 
biological and environmental data. If those data are spatially combined, sufficient spatial coverage can be 
achieved for ecological monitoring. A digital twin of the ocean (DTO) approach can then be used as a virtual 
representation of that monitored space, enabling multiparametric analyses of environmental patterns and pro
cesses affecting biodiversity and species distributions, as well as socioeconomic activities. Here, we propose a 
general architecture for a DTO centred on real-time data collection from local networks on fixed and mobile 
platforms, such as the physical twin observers (PTO), which is synergistically merged with platforms operating at 
large geographic scales. We describe a roadmap to achieve this DTO via 4 key steps: (1) acquisition of in situ data 
with a robotic network of platforms; (2) the application of AI in image processing for extracting biological data; 
(3) big data management with data bubbles; and (4) development of the resulting DTO framework for providing 
ecosystem monitoring via the computation of ecological indicators and socioecological modelling.
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1. Introduction

On February 21, 2023, the European Commission adopted the Ma
rine Action Plan, which aimed to support sustainable and resilient 
fisheries within the European Union (EU) by protecting and restoring 
marine ecosystems. This plan aligns with the EU’s 2030 Biodiversity 
Strategy, in which 30 % of all EU marine habitats should be legally 
protected by 2030 (European Comission (EU), 2021). To achieve this 
goal, there is an urgent need to develop technologies and protocols for 
data acquisition and processing for ecological monitoring over broader 
spatial and temporal scales than currently possible (Danovaro et al., 
2017).

Digital twins (DTs) are virtual representations of physical objects (or 
systems) based on a complex array of diverse modelling approaches used 
to simulate their status and behaviour (De Koning et al., 2023; Segovia 
and Garcia-Alfaro, 2022; Tzilivakis, 2022). DTs are continually updated 
via real-time data and machine learning approaches to improve model 
outputs, and “what-if” scenarios can be explored by changing model 
parameters (Nativi et al., 2021). A digital twin of the ocean (DTO) is 
therefore a virtual representation of the marine biosphere built with a 
range of oceanographic, meteorological, biological, and socioeconomic 
data, enabling multiparametric analyses of environmental patterns and 
processes, such as ecosystem responses to natural phenomena and 
anthropogenic impacts (Barbie et al., 2022; Boschert and Rosen, 2016; 
Brönner et al., 2023; De Koning et al., 2023; Grossmann et al., 2022; 
Pillai et al., 2022; Schneider et al., 2023; Tzachor et al., 2023; Yu et al., 
2024).

The data-reliant nature of DTOs makes them suitable for marine 
systems for which large amounts of information are available (Murawski 
et al., 2010). Effective DTOs are therefore dependent on data from 
various sources, ranging from oceanographic campaigns on vessels, 
which support classic (e.g., trawl nets, towed sledges, and coring) and 
novel data collection platforms (e.g., remotely operated vehicles-ROVs 
and autonomous underwater vehicles-AUVs), to large permanent sci
entific monitoring (e.g., cable observatories) and industrial in
frastructures. Combined, these data-generation platforms can be 
considered part of a broader physical twin observer (PTO). While the PT 
corresponds to the real-world system (i.e., the ocean itself), within the 
framework of adaptive ecological monitoring, the embedded sensor 
platforms are also integral components of the physical layer. These 
platforms do not merely collect data but actively interact with the 
environment, and their operations must be modelled and simulated 
within the DTO to realistically reflect monitoring dynamics. The func
tion of these platforms can be adapted on the basis of iterative feedback 
from the DTO modelling process to highlight key areas in need of greater 
spatial or temporally intensive sampling. Permanently deployed marine 
platforms, which involve multiparametric biological and environmental 
data collection, are growing worldwide (Danovaro et al., 2017) and 
represent the core PTO monitoring units of future DTOs. The European 
Multidisciplinary Seafloor and Water-column Observatories (EMSO), 
the Ocean Network Canada (ONC) and the Cubic Kilometer Neutrino 
Telescope Network (KM3NeT) are ensembles of cabled observatories 
and moored platforms that perform coordinated, temporally intensive, 
4D data acquisition in the benthopelagic realm (Dañobeitia et al., 2023; 
Moran et al., 2022). These networks also host docked mobile platforms 
such as crawlers, which collect biological and environmental informa
tion at large spatial scales around fixed nodes (Aguzzi et al., 2019; 
Rountree et al., 2020). Their ecological monitoring functionalities are 
currently approaching the full virtualization of their deployment areas, a 
process based on web visualization via the standardization of sensors, 
data collection procedures and processing methods (Howe et al., 2010; 
Lantéri et al., 2022).

An established DTO framework for general reference in Europe is 
under construction and extends beyond the combination of different big 
data sources for modelling (European Union, n.d.). Such a DTO frame
work can be efficiently implemented in areas where permanent scientific 

infrastructures, such as PTOs, support decadal ecological monitoring; e. 
g., networks of benthic cabled observatories. Here, we propose a general 
architecture for a DTO dedicated to the ecological monitoring via the 
spatiotemporal integrated collection of biological and environmental 
multiparametric data. That DTO architecture encompasses data collec
tion by local permanent and nearby transiently operating PTOs with the 
capacity to collect biological and environmental multiparametric data 
over a wide range of spatial and temporal scales. Even though these 
PTOs are not currently modelled to be fully-represented elements of the 
actual DTO yet, it is envisioned that their structure and functionality will 
be fully included in the future in the framework of adaptive monitoring 
needs. We describe a roadmap of how the ecological data collection 
could be achieved via 4 key steps: (1) acquisition of in situ data with a 
robotic network of platforms; (2) the application of AI in image pro
cessing for extracting biological data; (3) the introduction of a DTO 
approach for big data management with data bubbles; and (4) devel
opment of a DTO framework for providing major services in ecosystem 
monitoring via ecological indicators and socioecological modelling.

2. Acquisition of in situ data with a robotic network of platforms

Marine robotics refers to the application of autonomous systems in 
data collection and in situ processes at different spatiotemporal scales 
(Aguzzi et al., 2024). Ecological monitoring is becoming increasingly 
independent of the presence of humans in the field with the extension of 
remote-control technology (Chatzievangelou et al., 2022). In the 
framework of the marine Internet of Things (Glaviano et al., 2022), the 
operability of fixed and mobile platforms can be coordinated to establish 
cooperative networks in strategic marine areas, resulting in the creation 
of in situ marine laboratories (Aguzzi et al., 2019; Rountree et al., 2020). 
Consequently, data collection platforms such as PTOs are being inte
grated into the DTO framework because the functioning of those plat
forms can be modelled and hence adaptively adjusted on the basis of 
ongoing monitoring results (Danovaro et al., 2017).

2.1. The use of platforms operating at different spatiotemporal scales

Two key types of PTOs (Fig. 1) serve as the data generators for DTOs: 
fixed-local PTOs (hereafter defined as F-PTOs) and geographically 
expanded PTOs (hereafter defined as G-PTOs). F-PTOs include station
ary platforms such as cabled observatories and landers with docked 
locally mobile crawlers or AUVs, as well as anchored or moored water 
column platforms and surface buoys (Aguzzi et al., 2019, 2020; Aguzzi 
et al., 2024; Rountree et al., 2020). Additionally, G-PTOs represent 
mobile long-range technologies, such as vessels and corresponding 
platforms (e.g., ROVs, towed sledges, AUVs, and pelagic cameras), along 
with other independent, drifting buoys (e.g., ARGO floats) (Dominguez- 
Carrió et al., 2021; Jayne et al., 2017; Lambertini et al., 2022; Robinson 
et al., 2021; Yu et al., 2024). This category also encompasses technol
ogies launched from shore (e.g., wave gliders, autonomous surface 
vessels (ASVs), drones (Phillips et al., 2019; Zhang et al., 2019) and use 
of satellites (Mohseni et al., 2022).

The need for building DTOs that can integrate density, biomass and 
derived biodiversity data at local (F-PTOs) and geographically expanded 
(G-PTOs) scales is motivated by the high variability in species distri
butions within the three-dimensional marine environment. Traditional 
sampling methods such as trawling, beach seines, or visual census, often 
produce biased results due to the activity rhythms of pelagic and benthic 
species (Aguzzi and Company, 2010). When measurement repetitions 
are not scheduled to account for the varying temporal scales of species 
movements, the observed species assemblage shows high variability as 
different species rhythmically enter and leave the sampling windows 
Repeating sampling at hourly scale, and prosecuting that sampling 
continuously in order to cover the seasonal cycle at a single location is 
necessary to detect population movements in and out of targeted areas 
(Aguzzi et al., 2015), which helps explain results on a larger geographic 
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scale. Integrating local observation nodes within broader geographic 
networks can enhance the accuracy of video-observations by enabling 
comprehensive comparisons, thus facilitating species abundance esti
mations similarly to other mobile sampling methods over larger seabed 
areas.

Local F-PTO data can be compared with similar data at larger 
geographic scales provided by G-PTOs, hence addressing the benefits 
and weaknesses of both monitoring strategies (see Fig. 1); notably, it is 
important to both build and keep developing DTOs. For example, data 
on species density, biomass, and overall biodiversity obtained via F-PTO 
monitoring should be compared with more spatially broad data 
collected by G-PTOs and nearby fishery operations for ecological 
representativeness. These broader datasets include conventional 
ecological monitoring methods such as echo sounder surveys to detect 
fish schools (e.g., Simmonds and MacLennan, 2005), underwater visual 
census techniques for assessing species presence and abundance in 
shallow habitats (e.g., Colton and Swearer, 2010), and fishing surveys 
which remain essential tools for estimating fish stock distributions and 
community structure across large areas (e.g., Rufener et al., 2021). 
Integrating these classical approaches with robotic-based monitoring 
platforms enhances the capacity of DTO frameworks to capture both 
fine-scale and regional ecological dynamics.

2.2. Technical limitations and solution affecting the use of F-PTOs in 
ecological monitoring

A list of technical specifications for platforms and their sensors 
related to local robotic networks for ecological monitoring (see Fig. 1) is 

reported in Table 1. In that Table, we also reported the monitored policy 
variables with the categories for the Essential Biodiversity Variables 
(EBVs), Essential Oceanographic Variables (EOVs; Muller-Karger et al., 
2018) and Marine Strategy Framework Directive Good Environmental 
Status Descriptors (MSFD GES; Directive 2008/56/EC). The deployment 
capabilities of these platforms range from AUVs and deep-sea landers to 
shallow-water cable observatories, each developed to meet specific 
monitoring requirements. The specifications in Table 1 therefore outline 
the technological and operational requirements of these platforms, 
including their sensor configurations, power consumption, data acqui
sition modes (continuous vs. time-lapsed), onboard processing capabil
ities, and data transmission methods according to our late experience 
(see Table 1 caption references). Furthermore, the Table provides in
sights into deployment and maintenance costs, which are critical for 
long-term ecological observation networks. The deployment cost col
umn considers not only the price of the asset (platform) itself but also the 
expenses associated with its transportation, personnel involvement, and 
operational setup within the observation area. By integrating various 
platforms, including cabled and non-cabled systems, data collection is 
extended across a wide range of spatial and temporal scales, enhancing 
the robustness of DTO initiatives. Continuous data acquisition refers to 
real-time, uninterrupted measurements, which are essential for 
capturing rapid environmental changes and dynamic biological activ
ities. In contrast, time-lapsed data acquisition, typically recorded every 
30 min, provides a more energy-efficient approach that allows for pe
riodic sampling while still ensuring temporal resolution sufficient for 
long-term monitoring trends.

Scientists and technologists are collaboratively developing a 

Fig. 1. Schematic illustration of the physical infrastructure supporting the Digital Twin of the Ocean (DTO). The figure shows the spatial layout of fixed and mobile 
platforms (e.g., moored sensors, seabed observatories, research vessels) and the pathways through which data are transmitted to a central shore-based science fa
cility. This facility functions as a data hub, integrating real-time environmental and biological observations with complementary data streams (e.g., from societal 
stakeholders), thus enabling centralized control, storage, and further processing toward DTO development.
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Table 1 
Technical details on operational specifications and costs for the establishment of ecological monitoring networks as F-PTOs. Commercially available platforms models can be very variable and specifications have been 
tailored on the OBSEA cabled observatory (www.obsea.es) and its local network (Del-Rio et al., 2020; Falahzadeh et al., 2023; Masmitja et al., 2024) as well as at the Ocean Network Canada (ONC; Purser et al., 2013). 
MANSIO-VIATOR specifications are presented in Flögel (2018), while for SLM are from Juva et al. (2020, 2021) and Büscher et al. (2024). Codes fand full policy variable names for EBVs and EOVs are reported in Appendix 
1. For EBVs definitions are from https://geobon.org/ebvs/what-are-ebvs/; EOVs definitions are from https://goosocean.org/what-we-do/framework/essential-ocean-variables/; MSFD GES Descriptors definitions are 
from https://environment.ec.europa.eu/topics/marine-environment/descriptors-under-marine-strategy-framework-directive_en.

Platform Installed 
Sensors

Measured 
Variable

EBVs; EOVs; 
MSFD GES

Type of 
Battery

Fuel Cell 
connectability 
(W/h)

Energy for 
Data 
Collection 
(Continuous; 
W/h)

Energy for 
Data 
Collection 
(Time- 
Lapsed, 30 
min; W/h)

Energy for 
displacement 
(W/h)

Onboard 
Processing

Time 
Requirements 
of Processing 
(seconds)

Acoustic Modem 
Data 
Transmission

Cost of 
Deployment 
(€)

Cost of 
Maintenance 
(month; €)

Cabled Observatory HD Camera Animal counts EBV5–7,9- 
10,12–15, 
17–18; 
BE2–4,,6,12; 
MSFD1–4

– – 7.5 0.02 NONE (Fixed) Animal 
Classification 
and Counting

0.1 Not required 
(unless for data 
exchange with 
non-wired, 
satellite 
platforms)

400,000 12,000

CTD Temperature, 
Salinity, Depth

P6,10,12 0.4 0.000024 None 0.01

AWAC Current Speed 
and Direction 
and Wave 
height, 
direction and 
period

P1,4,7–8; MSFD7 9 0.3 None 600

Fluorescence 
/ turbidity 
meter

Chlorophyll-a, 
Turbidity

BGC5; BE1; 
MSFD5

0.24 0.000001 None 0.1

O2 Oxygen 
concentration

BGC1 0.22 0.000001 None 0.1

Ph Acidity BGC3 1.02 0.00005 None 0.05
PAM Species Sound 

and Maritime 
Noise

EBV5–6,9- 
10,12–13, 
17–18; BE3–4,6; 
CD3; 
MSFD1–4,11

2.5 0.08 Animal 
Identification 
and Counting

60

Lander HD Camera Animal counts EBV5–7,9- 
10,12–15, 
17–18; BE2–3,12

Li-ion Possible 0.045 0.045 NONE (Fixed) Animal 
Classification 
and Counting

0.5 Not required 
(unless for data 
exchange with 
non-wired, seabed 
platforms)

45,000 800

CTD Temperature, 
Salinity, Depth

P6,10,12 0.001 0.000034 None 0.01

Fluorometer Chlorophyll-a, 
PAR

BGC5; BE1; 
MSFD5

0.24 0.008 None 0.1

PAM Species Sound 
and Maritime 
Noise

EBV5–6,9- 
10,12–13, 
17–18; 
BE3–4,10; CD3; 
MSFD1–4,11

1.2 0.04 None 60

Satellite Lander 
Module (SLM)

CTD Temperature, 
Salinity, Depth

P6,10,12 Primary 
cells (Li- 
SOCl2)

Possible 0.2565 0.01 324 None 0,01 Not required 
(unless for data 
exchange with 
non-wired, seabed 
platforms)

120,000 900

Fluorescence 
/ turbidity 
meter

Chlorophyll-a, 
Turbidity

BGC5; BE1; 
MSFD5

0.6 0.02 None 0,1

ADCP Current Speed 
and Direction

P8 3.78 0.126 None 600

O2 Oxygen BGC1 0.21744 0.01 None 0,5

(continued on next page)
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Table 1 (continued )

Platform Installed 
Sensors 

Measured 
Variable 

EBVs; EOVs; 
MSFD GES 

Type of 
Battery 

Fuel Cell 
connectability 
(W/h) 

Energy for 
Data 
Collection 
(Continuous; 
W/h) 

Energy for 
Data 
Collection 
(Time- 
Lapsed, 30 
min; W/h) 

Energy for 
displacement 
(W/h) 

Onboard 
Processing 

Time 
Requirements 
of Processing 
(seconds) 

Acoustic Modem 
Data 
Transmission 

Cost of 
Deployment 
(€) 

Cost of 
Maintenance 
(month; €)

Fuel Cell Lander CTD Temperature, 
Salinity, Depth

P6,10,12 H2O2, 
LiPo

150,000 0.2565 0.01 NONE (Fixed None None Required for 
docking of mobile 
platforms

220,000 3000

Coastal Cabled 
Crawler

HD Camera Animal counts EBV5–7,9- 
10,12–15, 
17–18; 
BE2–4,6,12; 
CD2; 
MSFD1–4,6,10

– Possible 7.5 0.02 57.6 Animal 
Classification 
and Counting

0.1 Not required since 
tethered to the 
observatory of 
when in stand- 
alone fashion, it 
operates with 
WiFi surface buoy 
(acoustic modem 
can anyway be 
required for data 
exchange with 
other lander 
platforms)

100,000 400

CTD Temperature, 
Salinity, Depth

P6,10,12 0.4 0.000024 None 0.01

ADCP Current Speed 
and Direction

P8 9 0.3 None 600

Fluorometer Chlorophyll-a, 
PAR

BGC5; BE1; CD1; 
MSFD5

0.24 0.000001 None 0.1

Deep-Sea untethered 
Crawler Rossia

HD Camera Animal counts EBV5–7,9- 
10,12–15, 
17–18; 
BE2–4,6,12; 
CD2; 
MSFD1–4,6,10

LiPo Possible 1 0.016 150 Animal 
Classification 
and Counting

0.2 Not required since 
tethered to the 
observatory of 
when in stand- 
alone fashion, it 
operates with 
Junction box 
within a cabled 
observatory

150,000 2000

CTD Temperature, 
Salinity, Depth

P6,10,12 0.5 0.00013 None 0.01

ADCP Current Speed 
and Direction

P8 2 0.35 None 600

CH4 Methane 
concentration

BGC8; BE11 6.25 0,1 None 0.1

Fluorescence 
/ turbidity 
meter

Chlorophyll-a, 
Turbidity

BGC5; BE1; 
MSFD5

2.9 0.048 None 0.1

Particle 
Camera

Turbidity 
(particle size 
>100 μm)

BGC5 1.04 0.02 Particle 
Counting and 
Sizing

0.1

Mansio-Viator (deep- 
sea vessel- 
deployed crawler)

CTD Temperature, 
Salinity, Depth

P6,10,12 LiPo Possible 0.2565 0.01 750 (Viator 
8000 W/h 
LiPo, Mansio 
4000 W/h 
LiPo, with 
inductive 
transfer)

None 0,01 Required, if not it 
can run fully 
autonomous (also, 
acoustic data 
transfer possible)

300,000 2500

Fluorescence 
/ turbidity 
meter

Chlorophyll-a, 
Turbidity

BGC5; BE1; 
MSFD5

LiPo 0.6 0.02 None 0,1

ADCP Current Speed 
and Direction

P8 LiPo 3.78 0.126 None 600

O2 Oxygen 
concentration

BGC1 LiPo 0.21744 0.01 None 0,5

Camera/Line 
laser

Seabed 
morphology

EBV19–20; 
BE7–9; CD2; 
MSFD6,10

LiPo 6 0.5 Animal 
Classification 
and Counting

300

Navigational 
data

IMU/acoustic 
navigation

– LiPo 3 0.5 None 180

Moored Buoy CTD Temperature, 
Salinity, Depth

P6,10,12 LiPo Possible 0.4 0.000024 NONE (Fixed) None 0.01 Not required 
(unless for data 
exchange with 

60,000 600

(continued on next page)
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Table 1 (continued )

Platform Installed 
Sensors 

Measured 
Variable 

EBVs; EOVs; 
MSFD GES 

Type of 
Battery 

Fuel Cell 
connectability 
(W/h) 

Energy for 
Data 
Collection 
(Continuous; 
W/h) 

Energy for 
Data 
Collection 
(Time- 
Lapsed, 30 
min; W/h) 

Energy for 
displacement 
(W/h) 

Onboard 
Processing 

Time 
Requirements 
of Processing 
(seconds) 

Acoustic Modem 
Data 
Transmission 

Cost of 
Deployment 
(€) 

Cost of 
Maintenance 
(month; €)

non-wired, seabed 
platforms)

ADCP Current Speed 
and Direction

P8 9 0.3 None 600

Fluorescence 
/ turbidity 
meter

Chlorophyll-a, 
Turbidity

BGC5; BE1; 
MSFD5

0.24 0.000001 None 0.1

PAM Species Sound 
and Maritime 
Noise

EBV5–6,9- 
10,12–13, 
17–18; BE3–4,6; 
CD3; 
MSFD1–4,11

1.2 0.04 None 60

AUV HD Camera Animal counts EBV5–7,9- 
10,12–15, 
17–20; BE2–4,6- 
9,12; CD2; 
MSFD1–4,6,10

Li Possible 7.5 0.02 200 Animal 
Classification 
and Counting

0.1 Not required 
(unless for data 
exchange with 
non-wired, seabed 
platforms)

200,000 1100

Optoacoustic 
Mosaics & 
Mapping

Seabed 
Morphology

EBV5–6,17–20; 
BE3–4,7-9,12; 
CD2; 
MSFD1–4,6,10

20 3.2 3D Habitat 
Rendering 
plus 
Lebensspuren

0.04

Gliders CTD Temperature, 
Salinity, Depth

P6,10,12 Alkaline, 
Li

Impossible 0.4 0.000024 3.1 None 0.01 250,000 1250

Fluorescence 
/ turbidity 
meter

Chlorophyll-a, 
Turbidity

BGC5; BE1; 
MSFD5

0.24 0.000001 None 0.1

ASV HD Camera Animal counts EBV5–7,9- 
10,12–15, 
17–20; BE2–4,6- 
9,12; 
MSFD1–4,6,10

Li Impossible 7.5 0.02 200 Animal 
Classification 
and Counting

0.1 400,000 1250

CTD Temperature, 
Salinity, Depth

P6,10,12 0.4 0.000024 None 0.01

Fluorescence 
/ turbidity 
meter

Chlorophyll-a, 
Turbidity

BGC5; BE1; 
MSFD5

0.24 0.000001 None 0.1
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Fig. 3. BIIGLE for image and video annotation. Marine image and video data must be annotated, i.e., the localization and naming of objects of interest. Using modern 
state-of-the-art online annotation tools such as BIIGLE, image and video data can be browsed, managed, shared, and annotated (e.g., with circles, as shown in (a) with 
customized labels. Then, (b) quality control (c) or computational segmentation can be performed via incorporated deep learning algorithms such as the Segment 
Anything Model (SAM) (Kirillov et al., 2023). This is shown for one hagfish (Eptatretus stoutii) and one rockfish (Sebastes spp.) in the middle of (a) with contour 
descriptions on the basis of BIIGLE’s SAM result. The BIIGLE information visualization window (d) gives a compressed overview of the annotation results obtained by 
a group of experts or AI tools. The images in (a) and (c) were collected by the crawler “Wally” (Chatzievangelou et al., 2022) at Ocean Networks Canada’s (ONC; 
www.oceannetworks.ca) Barkley Canyon methane hydrate site (870 m depth).

Fig. 2. Automated classification at OBSEA. An example of real-time, automated classification of coastal fishes by the OBSEA network as an example of an F-PTO, 
which provides biological time series of data to an observatory cyber management infrastructure (Del-Rio et al., 2020; Martínez et al., 2023). Links to the datasets 
and AI models are available at the Data Availability section.
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spatially adaptive, non-invasive modular platform made up of vessel- 
independent, wirelessly connected benthic stations and AUVs to 
monitor and map marine ecosystems over extended periods, autono
mously. One challenge is the mission duration, which limits the use of 
landers and AUVs for ecological monitoring in remote areas without 
cables to shore sources. Landers operativity can be increased with Fuel 
Cells (Aguzzi et al., 2020) and that solution can also be extended to 
AUVs by developing docking stations. These stations provide protection, 
allow battery charging, and enable data transmission without adding 
mechanical parts to the AUV. Although various types of docking stations 
have been proposed in literature, funnel-based ones are the most pop
ular for torpedo-shaped AUVs (Palomeras et al., 2018). Underwater 
wireless recharging techniques for AUVs have been explored in recent 
years, which offer a safe and reliable method for power transfer between 
a charging station and a vehicle (Teeneti et al., 2019).

In a cooperative network of fixed observatories with docked AUVs, 
wireless communication is crucial. Acoustic systems have achieved 
significant success underwater due to their ability to communicate over 
many kilometres (Song et al., 2019). However, their performance is 
influenced by the physical properties of the water environment, which 
limit bandwidth, cause high latency, produce high transmission losses, 
lead to time-varying multipath propagation, and create Doppler spread 
(Stojanovic and Preisig, 2009). These limitations prevent AUVs from 
transmitting real-time imaging products via acoustic communication. 
Therefore, a complementary technology is necessary to achieve broad
band underwater communications. Visible-Light Communication (VLC) 
technology has the potential to address this issue. Nevertheless, VLC 
systems are currently limited to short-range use, and only a few com
mercial systems are available (e.g., BlueComm, www.sonardyne.com).

A complementary challenge in underwater communications is 
achieving remote access to underwater platforms “from the office” (see 
next section). Moored buoys can be used to monitor oceanic and near- 

Fig. 5. Data bubbles. DTO input data are represented by a set of data bubbles 
(DBs) associated with any PTO component in a spatial monitoring network that 
includes fixed and mobile platforms with different levels of vessel tele- 
operations and nearby commercial operations (such as trawling fishing boats 
catching shrimps in this example). Platforms and tools for data collection cover 
a specific underwater volume during any specific time interval, so all biological 
and environmental data are labelled with at least 4 metadata tags: latitude and 
longitude (L,L), depth (D) and time (Tn). Therefore, storage in a common 
database requires the same typology to be applied to any other type of archived 
or contemporary data in nearby areas (e.g., trawler data for demersal crusta
cean resources in this case).

Fig. 4. Grafana visualization tool. Consecutive AI-processed images of the OBSEA artificial reef (see Fig. 2) are visualized to evaluate the performance of automation 
in species classification and individual counting. Moreover, time series of counts can be generated to obtain species count trends. In the example, two common coastal 
fish species (Chromis chromis in green and Coris julis in yellow) are automatically identified, and their time series are depicted over consecutive days. (For inter
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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surface atmospheric conditions and facilitate data transmission (e.g., 
Bahamon et al., 2011). However, these moored systems face limitations 
such as deployment complexity, maintenance requirements, and 
compliance with standards and governmental regulations. To obtain 
reliable and real-time data for tracking and responding to rapidly 
evolving environments, the use of Unmanned Surface Vehicles (USVs) is 
becoming increasingly popular (Zhang et al., 2021). USVs can be rapidly 
deployed and operate at sea for several weeks at very low operational 
costs, offering a clear advantage over using crewed ships for monitoring 
deployed instruments. Additionally, innovative pop-up buoys provide 
complementary information. These buoys can be connected to landers 
and released to the surface without any surface infrastructure, sending 
information via satellite/GSM communications (Carandell et al., 2023). 
These buoys can last more than three months, acting as Lagrangian 
platforms for oceanographic purposes and transmitting their positions 
for recovery. This is especially useful in areas where, due to weather or 
security reasons, USVs are not a feasible option.

2.3. The control Centre for platform navigation and data collection

A DTO framework for ecological monitoring encompasses not only 
on simulations of ecosystem dynamics but also on the PTO, which pro
vides input data. A remote-control centre is valuable for the adaptive 
modification of platform operations on the basis of simulations estab
lished considering energy autonomy constraints in relation to the 
quality of the acquired data. A control centre can streamline in situ data 
transmission and mission planning and coordinate data collection 
remotely. Mission changes can be made on the basis of real-time data 
with a mission planning tool, such as the planning domain definition 
language (PDDL) (Kootbally et al., 2015). Within such a framework, the 
mission plan for each robotic platform can be generated on the basis of 
the mission tasks and goals specified by the user and monitored by an 
operator through a graphical interface. After checking the generated 
plan, the operator can confirm it or alter it. Operators can record mission 
execution information before deployment and assess the status of each 
step as “not completed”, “in progress” or “completed”. Another func
tionality of the control centre is the simulation of F-PTO platform op
erations. The control architectures of the newest robotic platforms and 
prototypes are based on the Robotic Operating System (ROS) (Macenski 
et al., 2022; Quigley, 2009), an open-source software tool for control, 
simulation, and planning. The mission goals for autonomous vehicles 
are routine data collection, surveying specific areas to confirm DTO 

predictions, and implementing reactive navigation schemes on the basis 
of environmental variables. It is crucial to update planning algorithms’ 
knowledgebases with DTO predictions. Finally, deploying a ROS-based 
architecture with nonrobotic F-PTO nodes (e.g., buoys, cabled obser
vatories and landers) may improve intraplatform communication and 
knowledgebase updates and enhance assessments of DTO planning 
outcomes.

3. AI in image processing for extracting biological data

A critical portion of the ecological data input into DTOs currently 
comes from imaging applications. Image-based methods for animal 
detection, classification, and tracking (see e.g., Durden et al., 2016) are 
relevant for the automated generation of biological data by both F-PTO 
fixed infrastructures (e.g., cabled observatories and landers; Fig. 2) and 
mobile platforms that deliver seabed mapping products (e.g., photo
mosaics; see section 4). Deep learning (DL) and convolutional neural 
networks (CNNs) have already proven useful in many different ecolog
ical scenarios for partially or fully automatically classifying specific 
marine animal species from large images and video sources (Cline et al., 
2009; Cuvelier et al., 2024; Garcia et al., 2020; Möller and Nattkemper, 
2021; Purser et al., 2009; Salman et al., 2016; Schoening et al., 2022; 
Villon et al., 2018, 2020; Xu and Matzner, 2018; Zurowietz et al., 2018).

Relevant consideration in image transference and processing can be 
described in the case of the OBSEA network of ecological monitoring 
(see Table 1). Images are collected by the observatory and transferred 
for real-time processing through AI and machine learning approaches in 
shore centralized facilities (see Table 1). The computational detection 
and classification of species (e.g., fishes) requires an average time 0.1 s/ 
image for a 10 megapixels image (i.e., full HD) or video frame, consid
ering a standard neural architecture as YOLO. An example of this 
network for OBSEA can be seen in Baños Castelló et al. (2025), where the 
CNN was trained with images from 23 different classes. In case of larger 
images (e.g., 20 megapixel), the processing would occur in tiles of 800 ×
800 pixel and processing time would be N x 0.1 s. If other more so
phisticated architectures are used, than the processing time can increase 
to 1–10s. For all other non-cabled platforms (i.e., mobile of fixed; see 
Fig. 1), edge-computing functionalities in onboard image treatment 
would be required and the processing time and energy requirements will 
depend upon resolution, tasks (animals’ detection and classification or 
mapping), and available processing hardware (GPU power and number 
of units available; Ortenzi et al., 2024).Automated biological 

Fig. 6. Norway lobster photomosaic. Segment of a photomosaic of a two-sided video transect during the Norway lobster (Nephrops norvegicus) 2018 stock assessment 
surveys in the Kattegat area (~100 m depth; 57.86706–57.86694◦N; 9.79335–9.79373◦E) by the ICES Working Group on Nephrops (WGNEPS). The date, hour, and 
frames stitched to create each part of the mosaic are provided in the upper part of the figure (right-hand side in the full vertical mosaic). The two green lines (70 cm in 
distance) depict the useful area for data extraction. This approach allows for the geospatial and temporal referencing of biological data from video surveys (e.g., 
number of individuals and their burrow entrances) with all other data within a DTO database. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.)
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classification models can be trained with archived imagery data and can 
be periodically retrained or adapted to site-specific knowledge as new 
PTO data are input into DTOs (e.g., Ottaviani et al., 2022). In essence, 
imagery characterizing target communities or populations is needed 
(Durden et al., 2024), and it can be sourced from available repositories 
(e.g., Zenodo and datasets presented in Garcia et al., 2020), along with 
associated ‘real-world conditions’ recorded during image acquisition or 
metadata (depth, environmental light levels, changing seabed back
ground and turbidity, among others). Marine imaging data typologies, 
collection methods, and processing techniques can be highly diverse (e. 
g., Durden et al., 2016), and the application of each of these methods for 
automated classification can vary from small-scale approaches (e.g., for 
model training) to extensive manual tagging efforts (Marini et al., 2018; 
Ottaviani et al., 2022). Online initiatives are a step toward overcoming 
data processing issues since they can facilitate interoperability across 
institutions and quality control and data sharing methods, increasing the 
image analysis capability and use efficiency of CNNs.

Server-stored or locally stored videos and images can be readily 
annotated with available online software platforms such as BIIGLE 
(equipped with computer vision tools such as DELPHI and MAIA) 
(Fig. 3), FathomNet or RoboFlow (Katija et al., 2022; Langenkämper 
et al., 2017; Schoening et al., 2015; Zurowietz et al., 2018; Zurowietz 
and Nattkemper, 2020). In biological analyses, the term “annotation” 
refers to (1) detection, the presence of an animal in a given location (a 
point, line or circle in a georeferenced image or video frame), and (2) 
classification, the assignment of an animal to a semantic or taxonomic 
category (e.g., species) selected from a standardized image-based cata
logue (a species list; see e.g., Simon-Lledó et al., 2023). Since the level of 
taxonomic precision that can be achieved using imagery can vary (e.g., 
morphotypes, from species to family or order level) depending on the 
collection methods (e.g., the platform characteristics, camera settings, 
or resolution) and across animal groups (e.g., requiring physical exam
ination for species determination), the use of an open taxonomic 
nomenclature for image-based identification (aligned to the World 
Register of Marine Species; e.g., Horton et al., 2021) can improve the 
reliability of biological datasets and their usability and comparability 
across DTOs. In both detection and classification, AI has played a vital 
and growing role, as the volume of recorded data has, in most instances, 
already exceeded the volume at which it can be effectively processed by 
human domain experts (marine biologists or engineers/inspectors).

Grafana is an interactive web application for data visualization that 
can be used to plot time series of detected species counts in real time via 
image processing on the basis of a trained machine learning algorithm 
for animal classification and counting (Fig. 4). Once the camera source 
and a particular species have been selected, consecutive AI-processed 
images can be visualized along with time series of counts. Time series 
visualization can be performed for multiple species at once, providing a 
clear representation of dynamics.

4. Big data management with data bubbles

Effective data management is a critical component in the develop
ment of DTOs, particularly when handling high-frequency, multi-modal 
data streams originating from heterogeneous sensor platforms, such as 
fixed-local (F-PTOs) and geographically expanded physical twins ob
servers (G-PTOs). These platforms generate large volumes of structured 
and unstructured data in various native formats (e.g., ASCII, BIN, NMEA, 
JPEG, WAV). To ensure interoperability, long-term usability, and 
seamless integration into modelling and visualization systems, these 
data streams are harmonized and standardized across institutions and 
platforms.

Structured datasets are converted into the Network Common Data 
Form (NetCDF) format (Rew and Davis, 1990), following the widely 
adopted Climate and Forecast (CF) metadata conventions (Eaton et al., 
2023). These standards enforce consistency in variable naming, units, 
coordinate reference systems, and temporal structures. Depending on 

the characteristics of the data, the appropriate CF feature type is 
assigned: 

• Point – Instantaneous, discrete observations (e.g., single sensor 
readings)

• TimeSeries – Repeated measurements at a fixed location (e.g., 
moored sensors)

• Profile – Vertical sampling at a single time point (e.g., CTD casts)
• Trajectory – Time-stamped data along a horizontal path (e.g., 

drifters)
• TimeSeriesProfile – Repeated vertical profiles at a fixed site (e.g., 

moored profilers)
• TrajectoryProfile – Vertical profiles along a moving platform path (e. 

g., gliders)
• Grid – Spatially continuous data gridded over a region (e.g., remote 

sensing or model outputs)

Each NetCDF file is enriched with metadata describing deployment 
context, sensor specifications, calibration parameters, quality control 
flags, and standardized attributes, conforming to INSPIRE and SeaDa
taNet guidelines. This enables semantic interoperability and enhances 
machine readability. Standardized datasets are made accessible through 
an ERDDAP server Simons, 2017), which supports RESTful and OPeN
DAP API access, facilitating remote data retrieval, real-time integration, 
and downstream applications in forecasting or DTO visualization 
frameworks.

4.1. The application of data bubbles to merge multiparametric data

A DTO should be able to acquire, store and process multiparametric 
biological and environmental data in a spatiotemporally collated 
fashion. The diversity of sensor types and data formats calls for formal 
frameworks that allow datasets to be interoperable and machine- 
readable. Semantic interoperability among heterogeneous sensing sys
tems is essential for the effective integration and interpretation of 
ecological big data. In this context, dedicated ontologies (e.g., Bio
divOnto; Abdelmageed et al., 2021), can play a central role by providing 
shared vocabularies and defining relationships among biological and 
environmental variables collected in different areas at different time. 
This creates the need for a spatiotemporal sampling unit (referred to as a 
data bubble), which can be treated as a semi-independent DTO element 
used to merge data (i.e., standardize and homogenize data). The term 
“data bubbles” is not standard in oceanographic literature, which more 
commonly refers to “data cubes” for a posteriori organizing large-scale 
spatiotemporal datasets (e.g., Montero et al., 2024). While data cubes 
are well suited for post-hoc integration and retrospective analysis across 
broad spatial domains, we introduce “data bubbles” as a novel and 
complementary concept tailored to in-situ ecological monitoring. Data 
bubbles represent localized, multi-parametric datasets collected 
dynamically by monitoring platforms within a known radius their im
mediate environment, effectively capturing information in a 360-degree 
horizontal and vertical sphere. Each bubble encapsulates high- 
resolution physical, chemical, biological, and behavioural data, rooted 
in the real-time context of ecological processes.

A data bubble (Fig. 5) is a geospatially defined location (including 
depth), within which all relevant biological and environmental data are 
collated and stored with appropriate time stamps. The operational 
metadata labels associated with each type of biological and environ
mental information can be obtained via the precise geo-referencing of 
platform positions with active acoustic communication tools (reviewed 
by Aguzzi et al., 2024).

While fixed platforms such as cabled observatories and landers 
provide synchronous biological and environmental data (e.g., counts of 
individuals of different species) within the same imaged seascape of a 
few cubic metres (e.g., HD and multibeam acoustic imaging can reach a 
distance from 2 to 3 to 12–15 m of field projection) at minute time 
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intervals, mobile platforms can generate image-based data for ecosys
tems ranging from a few hundred metres to tens of kilometres (Aguzzi 
et al., 2019). Thus, biological data can be extracted by mapping the 
occurrence and detailed positions of megafaunal samples per unit of 
video-captured surface in created photomosaics to derive, for example, 
the spatial range or standing stock of an animal (Fig. 6). Since mobile 
platforms provide temporally continuous imaging products, the ob
tained biological information can be processed into standardized time
–lapse intervals for comparison with data from other platforms (e.g., by 
subdividing transects into subsections of video-captured seabed surfaces 
and by estimating species densities at certain intervals (e.g., minutes) 
(Chatzievangelou et al., 2020).

The georeferenced and time-stamped biological and environmental 
data collected by the F-PTO and G-PTO platforms can be synchronized 
with other historical and up-to-date oceanographic and biogeochemical 
data from both public and private sources (see section 4.2). In this 
process, datasets provided by societal actors should have the same 
metadata labels and nomenclature typology as the PTO data, including a 
range of essential data collection parameters, ranging from the time and 
exact positioning of an observation to the sampling platform type and 
the measuring sensor/tool used (as described in Fig. 5).

4.2. The architecture for data storage and management

A DTO requires an infrastructure for data storage and management, 
as well as computational tools, to automatically compose data work
flows on the basis of ecological information. That architecture should be 
built with a bottom-up approach. The base layer should be able to 
process a very diverse range of biological and environmental data from 
multiple sources, such as in situ PTOs (with their platforms and sensors; 
see Fig. 1), as well as any other locally collected data. Then, workflows 
capable of automated data processing should be embedded for the 
computation of ecological metrics, such as indicators (Aguzzi et al., 
2019, 2020), yielding new scientific knowledge for a diversified class of 
end-users, spanning from scientists to citizens and stakeholders.

The workflow for data treatment, which influences the final DTO 
architecture, is presented in Fig. 7. A central repository should be 
created to store all biological (including image-based), oceanographic 
and geochemical data with associated metadata (see the data bubble 
labelling requirements in Fig. 5). The data bubbles associated with PTO 
platforms need to be temporarily stored with other previously and 
continuously obtained similar information. Example of such information 
are the catch per unit effort of nearby commercial fishing boats, 

Fig. 7. DTO flow chart for relevant information processing. Ecological information flow processing (bottom-up) from the F-PTO (on the left) and G-PTO (on the right, 
with different types of societal data) at the core of the DTO structure. Data bank activities associated with pre-processing, storage, processing, visualization, and 
analysis are based on AI functionalities. CPUE is the catch per unit effort, and VMS is the vessel monitoring system.
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information for commercial species size classes, sex and maturity, as 
obtained via government- or EU-funded monitoring programs (e.g., the 
Data Collection Framework), or the results of citizen science (e.g., 
SCUBA diving images and information from recreational fishing 
activities).

Acquiring a high volume of data from various F-PTO and G-PTO 
components, at times with latency, and harmonizing them over time are 
notable challenges. To illustrate the diversity of data sources, formats, 
and standardization strategies across the monitoring infrastructure, 
Table 2 summarizes representative sensor types and platforms inte
grated into the DTO framework. The table includes key information such 
as measured variables, native file formats, underlying data structures, 
sampling rates, and typical daily data volumes. Additionally, it outlines 
the harmonization formats applied during data processing—such as 
NetCDF feature types and CF-compliant metadata standards—used to 
ensure semantic interoperability and long-term usability. This overview 
highlights the heterogeneity of the data ecosystem and the necessity of a 
robust standardization pipeline to support integration into downstream 
analysis, modelling, and visualization systems.

These data-specific standardization strategies constitute the foun
dational layer of our DTO architecture, enabling scalable and harmo
nized data ingestion pipelines that support downstream AI-driven 
analysis as well as spatiotemporal modelling workflows. In our frame
work, AI routines embedded in a central DTO data infrastructure are not 
only used for basic tasks such as data cleaning, temporal alignment, and 
outlier removal, but are also central to more advanced processes like 
predictive modelling and inferential gap filling. We particularly support 
the view that probabilistic approaches are essential when direct obser
vations are incomplete or sporadic (Price et al., 2025). For example, 
spatiotemporal models informed by time series of species detections and 
associated environmental parameters allow for the forecasting of likely 
presence or abundance in unsampled intervals or locations. These pre
dictions can be strengthened by leveraging data from ecologically 
analogous areas, using transfer learning or environmental similarity 
metrics. This is not merely a workaround for data limitations, but a 
functional feature of the DTO, which aims to produce actionable 
ecological indicators even in data-sparse contexts.

The application of FAIR (Findability, Accessibility, Interoperability, 

and Reusability) data principles can facilitate data retrieval by the sci
entific community (Wilkinson et al., 2016). To ensure sustainable 
multimodal data collection, integration, and interpretation, metadata 
standards such as iFDO (Schoening et al., 2022), DublinCore (Weibel 
and Koch, 2000), Audubon (Morris et al., 2013), SmartarID (Howell 
et al., 2019), and PDS4 (Hughes et al., 2014) have been created and 
applied.

Finally, the DTO architecture should be presented to the public via 
web visualization interfaces as interactive windows to visualize all types 
of biological and environmental information. Synthetic graphic outputs 
from different multivariate statistics and time series analysis approaches 
can be selected and displayed for different combinations of data and 
spatiotemporal frameworks (Aguzzi et al., 2020).

The storage, open-access querying, and downloading of data from 
PTO platforms should be managed by an associated Application Pro
gramming Interface (API) (Martínez et al., 2023) that is connected to 
other portals and applications. For organizations that carry out specific 
experiments or target surveys and host their own data, metadata har
vesting mechanisms (using standard APIs) can be established, facili
tating the discovery of datasets stored at distributed nodes via a search 
of the central catalogue. This interconnection capability can be upgra
ded by employing the SensorThings API to provide an Open Geospatial 
Consortium (OGC) standard (Liang et al., 2021), resulting in an open 
and unified framework to interconnect different platforms and sensors, 
data, and applications via the SensorThings API.

4.3. Graphical user interfaces

A DTO offers worldwide end-users the opportunity to investigate 
ecological processes through Graphical User Interfaces (GUIs) as central 
parts of web visualization interfaces (Fig. 8). These interfaces should 
support the visualization of complex ecological (biological and envi
ronmental) information within a spatially simulated representation of 
the monitored marine environment, where the trends of changes in 
different biological and environmental variables can be assessed. The 
graphic outputs used should highlight significant trends for ecological 
components in a given space, supported by the relevant AI tools for data 
treatment, sensor integration, and data banking (Chen et al., 2023).

Table 2 
Overview of data characteristics and standardization strategies for representative sensing platforms integrated into the DTO framework. File formats, data structures, 
sampling rates, daily volumes, and harmonization methods (e.g., NetCDF feature types and metadata standards) are based on existing deployments, including OBSEA 
(www.obsea.es), Ocean Network Canada (Purser et al., 2013), and Sentinel/Planet satellite data services. Posidonia mapping formats and rates reflect Sentinel-2 
(Copernicus) and PlanetScope (Planet Labs) usage.

Sensor type Measured variables File format 
(s)

Data 
structure

Sampling rate Volume/ 
day

Storage requirement 
(GB/day)

Standardization format

HD Camera (stills) Images (Biodiversity, 
Richness)

JPEG Unstructured 1 image/min 
(1440/day)

~720 MB 0.72 GB NetCDF (metadata + AI 
detections)

HD Camera (videos) Short videos (faunal 
behaviour)

MP4 
(H.264)

Unstructured 1 video/min (10s, 
1440/day)

~14,400 
MB

14.4 GB NetCDF (metadata + AI 
detections)

CTD Temperature, Salinity, 
Depth

ASCII, BIN Structured 1 Hz ~2 MB 0.002 GB NetCDF (Point, 
TimeSeries)

ADCP Currents, Wave height/ 
direction

BIN Structured 1 Hz ~5 MB 0.005 GB NetCDF (TimeSeries)

FTU (Chlorophyll/ 
Turbidity)

Fluorescence, Turbidity ASCII, CSV Structured Every 5 min ~1–2 MB 0.001–0.002 GB NetCDF (TimeSeries)

PAM Hydrophone Marine noise, species calls FLAC Unstructured Continuous @96 
kHz, 16-bit

Raw: 
~15.5 GB

~8 GB NetCDF (metadata +
FLAC)

Oxygen Sensor (O₂) Dissolved oxygen ASCII, CSV Structured 1 reading/5 min ~1 MB 0.001 GB NetCDF (TimeSeries)
Particle Camera Sediment & particle sizes JPEG, CSV Mixed ~200 images/day ~2 GB 2 GB NetCDF (metadata +

imagery)
Seafloor Crawler HD Video, CTD, Mapping MP4, BIN, 

ASCII
Mixed Continuous mission 

(8 h/day)
~5–10 GB 5–10 GB NetCDF 

(TrajectoryProfile)
Gliders / AUVs CTD, Video, Currents, 

Mapping
BIN, ASCII, 
MP4

Mixed Mission-dependent 0.5–2 GB 0.5–2 GB NetCDF 
(TrajectoryProfile)

Satellite Habitat cover (e.g., 
Posidonia), RGB/NIR

GeoTIFF (. 
tif)

Gridded 
Raster

5–10 scenes/day 
(3–5 m res.)

~0.5–2 GB 0.5–2 GB NetCDF (Grid)

Satellite Remote 
Sensing

SST, Altimetry, Ocean 
colour (global)

NetCDF, 
HDF5

Gridded Daily pass (~4–8/ 
day)

~1–10 GB 1–10 GB NetCDF (Grid)
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GUIs can be developed to visualize trends in environmental param
eters by selecting various data time series collected over different tem
poral windows (Llorach-Tó et al., 2023) (see Fig. 8). For example, the 
occupancy of each spatial subunit by individuals of different species can 
be monitored and modelled. Although this approach is relatively 
straightforward in 2D space (e.g., the heatmap approach of Chatzie
vangelou et al., 2020 and Doya et al., 2016), 3D benthopelagic habitats 
can make this process challenging. Multiple imaging tools operating 
simultaneously and focusing on the same areas can provide information 
to help assess not only the presence but also the trajectory of megafauna.

5. DTO framework for ecosystem monitoring via ecological 
indicators and socioecological modelling

5.1. Computation of ecological indicators

Ecological indicators are at the centre of current management and 
conservation policy frameworks (Danovaro et al., 2020; Miloslavich 
et al., 2018) as per the information presented in Table 1. A description of 
how to implement a DTO based on a combination of different F-PTO and 

G-PTO platforms (and their sensors) is presented in Table 3 in relation to 
three different categories of ecological monitoring indicators and their 
objectives.

5.1.1. Biodiversity in data bubbles
The measurement of marine biodiversity is strategically important 

for conservation and management policies (Duarte et al., 2020; Mokany 
et al., 2020) and is thus a key aspect of DTO functionality. This func
tionality is based on several key operational assumptions for both 
assessing the present status of DTOs and modelling changes at different 
spatiotemporal scales.

First, F-PTO and G-PTO platforms can support data collection over 
different temporal scales, allowing the precise characterization of the 
ecological niches of species. The abiotic niches of individuals are rep
resented by “imaged spaces” (i.e., data bubbles; see Fig. 5), with habitat 
features that are synchronously monitored by oceanographic and 
geochemical sensors installed near platform cameras (Aguzzi et al., 
2020). Increasing the number of sensors utilized by platforms in a given 
area can enhance the precision of niche delineation. This precision is 
fundamental to analyses and modelling (Fig. 9): locally acquired 

Fig. 8. OBSEA visualization interface as GUI. Web visualization interface for the OBSEA F-PTO, incorporating a surface meteorological buoy, a seabed-cabled 
multiparametric video observatory, a docked video crawler in front of an artificial reef, namely, a slag reef of recycled metal compounds, and a satellite lander 
(link to the GUI https://cgi-dto.github.io/OBSEA/ and link to the source code of the GUI https://github.com/BlueNetCat/OBSEA). This 3D GUI allows the spatial 
representation of the dynamics of ecological variables on the basis of the selection of time windows for different time series of data in the bottom panel (i.e., the 
columns with red arrows indicate the current direction components). Descriptions of the crawler and OBSEA platforms were presented by Del-Rio et al. (2020) and 
Falahzadeh et al. (2023). While the current interface primarily displays physical oceanographic parameters such as sea temperature, salinity, wave height, wave 
direction, and air temperature, it forms a foundational layer of the broader DTO framework. The integration of ecological variables such as species presence, 
abundance, and activity, is currently under development, supported by the implementation of AI-driven image and acoustic analysis pipelines. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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knowledge of species presence and abundance can be inferred for any 
other area for which only some in situ data on seascape conditions are 
available (e.g., discrete or gridded data stored in EMODNet). This im
plies the capacity to relate the status of biological data with the status of 
habitat variables and identify conditioning drivers (e.g., via multivariate 
statistics) to be used for further inference.

Second, F- and G-PTO data can be used to interpret the temporal 
trends for species in historical datasets at large geographic ranges (with 
different types of archived data). For motile species, for example, time 
series of species counts, with peaks and troughs at 24-h and seasonal 
scales, as recorded by cabled observatories and landers, can be 
compared to concomitant changes in species densities over larger sur
rounding areas derived via ROV and AUV direct inspection and even 
from the reports of commercial fishing operations (e.g., the established 
case of the Norway lobster as seen in Aguzzi et al., 2022).

On the basis of both assumptions, the fusion of real-time monitoring 
data with those historically archived for the same PTO zones would 
provide a homogenized and detailed dataset for the spatiotemporal 
modelling of biodiversity on the basis of the detection of cause–effect 
relationships for species and community responses (abundance fluctu
ations) under changing environmental conditions. From a perspective 
encompassing species assemblages and biodiversity, the Joint Species 
Distribution Model (JSDM) (Franklin, 2023) is a valuable tool for 
interpreting geographic patterns of biodiversity by correlating known 
species occurrence or abundance records with environmental conditions 
(Warton et al., 2015; Wilkinson et al., 2021). The modelling strategy, 
along with multivariate statistical approaches, can be used to identify 
functional relationships among biological and environmental parame
ters, hence identifying key drivers of the observed conditions and sup
porting forecasting methods for diverse scenarios. The JSDM supports 
the upscaling of environmental and occurrence data after the adequate 
treatment of boundary predictors (Meynard et al., 2023; Wilkinson 
et al., 2021) beyond the data bubbles associated with a DTO.

5.1.2. The DTO for marine functional connectivity
Marine functional connectivity refers to the flux of individuals (and 

their genes) at any level of development (i.e., from gametes to adult 
stages) across three-dimensional spatial scales (Darnaude et al., 2024). 
For highly motile organisms, measuring connectivity at the DTO scale is 
challenging, as it requires tracking specific individuals via electronic 
devices (Espinoza et al., 2015), intrinsic biomarkers or photo
identification processes (Ferreira et al., 2021). For low-motility organ
isms, oceanographic factors play pivotal roles in dispersing individuals 
in weak pelagic early-life stages away from their natal origins. Assessing 
the connectivity of these species can be achieved through an ecological 
modelling approach on the basis of an individual-based model (IBM). In 
IBMs, oceanographic data are used to estimate the potential dispersion 
pathways of organisms, integrating ecological parameters such as 
spawning times, larval durations, and vertical displacement (Clavel- 
Henry et al., 2020; Fobert et al., 2019; Matos et al., 2024; Sciascia et al., 
2022).

DTOs should encompass in situ hydrodynamics and gridded ocean
ographic information from external datasets (e.g., COPERNICUS), thus 
providing minimum inputs for running the applications associated with 
an IBM. These applications can be explored to obtain connectivity in
sights regarding DTO through the utilization of metrics and indicators 
derived from an approach adapted within the IBM context and consid
ering the IBM objectives. For example, these approaches involve simple 
dispersal metrics (e.g., the number of particles arriving at a DTO and the 
dispersed distance from a DTO), metrics related to connectivity between 
sites (e.g., links between deployed PTO sites) via a graph theory 
approach (Treml et al., 2008), and indicators of temporal variability 
regarding connectivity between sites (Clavel-Henry et al., 2024).

The real-time and forecasted hydrodynamic products provided 
through a DTO can be used to explore development in the computing of 
operational connectivity; e.g., automating the estimates of particle Ta
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transport on the basis of the most recent hydrodynamic data if the 
simulated period of the trajectories can be assessed. This approach, 
rooted in numerical modelling, can also be expanded to other key pro
cesses for conservation and management, such as the dispersion of 
contaminants (Keramea et al., 2022) and sediment clouds due to 
trawling and mining (Weaver et al., 2022). Recent studies have sub
stantiated the efficacy of such approaches (Andruszkiewicz et al., 2019; 
Córdova and Flores, 2022; Payo-Payo et al., 2017), highlighting their 
importance in advancing environmental monitoring and response 

capabilities. Moreover, adopting an operational approach would allow 
DTO managers to swiftly respond to authorities during emergencies such 
as human rescues, ship drifts, and oil spills within the scope of a given 
(Keramea et al., 2022; Pereiro et al., 2021).

Ecological modelling on the basis of F-PTO and G-PTO data allows 
the visualization and prediction of species distributions and dispersal in 
the ocean. Modelling methods can be added to DTO frameworks, 
assuming that ecological models such as IBMs or the JSDM (see section 
5.1.1) have been established (Fig. 10). Moreover, ecological predictions 

Fig. 9. Site-specific ecological knowledge obtained via multiparametric monitoring, which is spatially scaled for predictions of species distributions and abundances. 
The presence and abundance of benthic species can be tracked over time at any monitored and mapped site (by F-PTOs, via the combination of different imaging 
approaches). The results can be compared with similar data from nearby areas (e.g., fishery-dependent trawl data, with commercial vessels being a part of the G-PTO 
framework). Predictions of species presence and abundance can then be formulated for any other non-surveyed area for which only seascape data are available.

Fig. 10. Ecological modelling flow chart. The ecological modelling approach is based on an individual-based model (IBM, for larval transport) and, to a lesser extent, 
a JSDM. F-PTO and G-PTO data are used as follows: data assimilation for modelling local marine ecosystem features, assessing the deployment of mobile observatory 
tools, and validating model outputs.
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can be produced at a local scale (i.e., at the site of real-time measure
ments) or at a regional scale (i.e., when PTO data are assimilated into 
oceanographic models) and can be directly validated with the data 
collected at observatories (see Fig. 1). The overall output can be infor
mative for the initiation of seawater sampling activities, whether 
autonomously or mechanically implemented, and for enhancing model 
reliability (see Table 2).

5.2. Socioecological modelling

A holistic DTO requires the implementation of socioecological ap
proaches and models to capture the complexity of the interactions be
tween nature and people. The social dimension of socioecological 
systems includes a diversity of actors, institutions, cultures, and econ
omies, whereas the ecological dimension includes the relevant species 
and the ecosystems they inhabit (IPBES, 2024).

Socioecological systems typically consist of three inextricable di
mensions: (1) the environment, (2) society, and (3) the economy. Each 
dimension interacts in many ways over time based on a hierarchical 
dimensional scale, now widely accepted in the holistic approach of 
ecological economics (Daly and Farley, 2011). This means that in the 
socioecological approach, the interactions between human behaviour 
and the environment are considered part of a complex socioecological 
system.

The goal of introducing a socioecological approach and corre
sponding modelling into a DTO is to identify the socioeconomic com
ponents of marine and coastal systems in relation to different ecological 
and environmental components (Davies et al., 2016). A socioecological 
approach requires the development of a conceptual model in which the 
different components can interact, potential interactions (positive, 
neutral, or negative) can be identified and the weights of these com
ponents can be determined. The interactions can produce emergent 
properties, and the aggregate result may differ from what it would be if 
each agent were isolated from others.

One of the tools used to develop socioecological models is the Agent- 
Based Model (ABM), which is a computational model populated by 
many heterogeneous agents independently interacting with each other 
(a bottom-up approach, without a coordinator), without feedback or 
externalities (Caiani et al., 2016). The strength of an ABM is its ability to 
assess emergent patterns that result from the dynamic behaviour, 
adaptation, and learning of each individual independently. As such, 
questions about how a system would react to a certain stimulation are 
explored, as are the corresponding outcomes, and new hypotheses 
regarding the functioning of a system for which not all data are available 
can be investigated (Heckbert et al., 2010). ABMs have been widely 

applied in economics (Gallegati et al., 2017; Hamill and Gilbert, 2015) 
but are also gaining popularity in ecological assessments, land-use de
cision-making (Matthews et al., 2007), fishery management (Lindkvist 
et al., 2020; Moran et al., 2021), pollutant emission assessments (Ghazi 
et al., 2014; Newth and Gunasekera, 2012), and natural resource man
agement (Loomis et al., 2009), among other fields.

Integrating the socioecological approach with a DTO can signifi
cantly enhance the understanding of the marine environment and its 
impacts on society, and vice versa, in various ways: (1) models can be 
used to assimilate the data obtained during fishing activities and fishing 
catch observations with microdata collected from the fishery community 
to consequently inform policies and strategies related to marine con
servation, sustainable use of fishing resources, ecosystem restoration, 
the rebuilding of depleted stocks, and planning and management stra
tegies at multiple spatial scales; (2) multivariate statistical analyses can 
be performed to answer questions about the efficiency and benefits of 
integrated coastal and marine management actions related to the miti
gation of anthropogenic impacts on ecosystems (caused by overfishing, 
pollution, or habitat destruction) or, conversely, the impacts of changing 
ecosystems on human life; and (3) fluctuations in fish populations can be 
predicted, and direct impacts on the fishing industry and coastal com
munities can be determined.

The integration of socioeconomic data, gathered at the microscale 
via ABMs, into a DTO can be useful for the development of recom
mendations and guidelines in the context of various objectives: 

• Mapping human activities and ocean use patterns: Socioeconomic 
data can be used to map human activities in the ocean. Shipping, 
fisheries, marine tourism, resource extraction, and coastal infra
structure are some of the sectors that can be investigated. Data may 
include information regarding fleet sizes, the geographic distribution 
of activities, and changes over time. The environmental data 
modelled by a DTO can be combined with socioeconomic data to 
understand how changes in ocean conditions affect local and 
regional economies.

• Increasing the forecasting ability of a DTO through the use of 
regional oceanographic, environmental, and biological/fishery data 
can be accomplished via the mapping of areas with F-PTOs and an
alyses of spatial and temporal biological community structures in 
addition to environmental characteristics. This process relies on 
available databases with information regarding marine environ
mental conditions from remote (e.g., satellites) and in situ (e.g., 
moored buoys and ship-borne sensors) observations.

The resulting data can be used within a DTO framework to construct 

Fig. 11. Causal loop diagram of fishery socio-ecological dynamics and interactions. Arrows indicate causal relationships between variables, with their respective 
effects (positive, negative, or neutral).
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an operating model that projects the future dynamics of marine eco
systems to assess the possible impacts on society under different man
agement scenarios; e.g., a reduction in fish catches could result in 
reduced disposable income for households relying on the fishery 
economy.

While the integration of socioecological models into DTOs offers 
significant potential benefits, the actual implementation process faces 
substantial challenges. These include limited access to comprehensive 
socioeconomic datasets across different geographical regions, hetero
geneity of information across different fisheries categories, and dis
crepancies between monitoring observations and fisheries data (Addison 
et al., 2017; Leenhardt et al., 2015; Saunders et al., 2015). These data 
integration issues can affect consistent estimation of socioecological 
impacts. However, once socioecological models are established and 
validated with appropriate data inputs, their technical integration into 
DTOs should follow similar protocols as other types of models (species 
population, distribution, connectivity and hydrodynamic models), albeit 
with necessary adjustments for human dimension components. Fig. 11
illustrates a causal loop diagram depicting the complex relationships 
between ecological variables, fishery activities, and socioeconomic 
impacts.

Implementation will likely follow an iterative process (Gallegati 
et al., 2024), beginning with data collection and integration from 
demonstration sites. These sites will serve as test cases for developing 
methodologies to bridge the gap between environmental and socioeco
nomic domains, with continuous refinement based on stakeholder 
feedback and evolving technical capabilities. The development of soci
oecological DTOs therefore represents not only a technical data inte
gration challenge, but a complex socio-technical effort that requires 
careful consideration of human behaviour, policy and governance 
structures along with technical implementation aspects that will be 
addressed by systems engineers and data scientists.

6. Conclusion

This study outlines a comprehensive and forward-looking strategy 
for marine ecosystem monitoring based on the development of a Digital 
Twin of the Ocean (DTO). Current robotic platforms, such as those we 
describe, can generate high-resolution data, however, challenges remain 
in achieving adequate spatial coverage, temporal continuity, and 
ecological representativeness. One of the key messages of our manu
script is that technological capability alone is not sufficient. It must be 
coupled with adaptive monitoring strategies, data integration protocols, 
and modelling approaches to effectively address the complexity of ma
rine ecosystems. We therefore do not claim that existing systems are 
universally sufficient, but rather that they represent a foundational step 
toward more robust and scalable monitoring frameworks. A concise 
Strengths, Weaknesses, Opportunities, Threats (SWOT) analysis can be 
proposed as follows. Strengths of the elaborated DTO concept rely on its 
highly innovative and integrative approach for data collection grounded 
in robotic platforms and AI-driven image analysis. Its strength lies in the 
interdisciplinary and modular design, including fixed and mobile ro
botic monitoring assets operating at local and larger geographic scales, 
and producing data that can be homogenized based on data bubbles, 
where biological data on species presence and abundance can be 
constantly updated (as core functionality for monitoring) via AI pipe
lines for image processing. The detailed technological roadmap and the 
potential for real-time, spatially explicit ecological monitoring position 
this approach as a future-proof solution for marine conservation and 
policy implementation, with in situ collected data usable for species 
distribution and environmental modelling. Despite its conceptual 
robustness, the proposed framework faces weaknesses as practical lim
itations regarding the heterogeneity and interoperability of data from 
diverse platforms, particularly in areas with low infrastructure or 
inconsistent monitoring protocols. Additionally, high initial costs for 
deployment and maintenance (especially for cabled observatories and 

deep-sea platforms) might hinder widespread adoption, especially in 
developing regions. Notwithstanding, there are opportunities because 
the proposed technological development in platforms deployment, data 
collection and treatment meet the ongoing EU strategies for resource 
management and ecosystems conservation (e.g., EU Biodiversity Strat
egy 2030). The framework offers an opportunity to standardize marine 
monitoring, improve ecological forecasting, and foster socioecological 
integration via agent-based modelling. Finally, hidden threats are 
associated to the DTO implementation itself that relies on stable funding 
to continue producing real-world data and updating its datasets through 
the PTO, thus avoiding cumulative overreliance on AI-generated infor
mation. In addition, maintaining of it, functionality also relies on tech
nological readiness, and data-sharing agreements. Moreover, the 
dependence on advanced AI and high-volume data processing may limit 
resilience in case of system failures. The potential ecological disturbance 
by increased deployment of mobile units in sensitive habitats could also 
raise environmental concerns if not managed properly.
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Writing – review & editing, Writing – original draft, Methodology, 
Investigation, Funding acquisition, Conceptualization. Nixon Baha
mon: Writing – review & editing, Writing – original draft, Methodology, 
Investigation, Conceptualization. Michael Tangerlini: Writing – review 
& editing, Writing – original draft, Visualization, Methodology, Inves
tigation, Conceptualization. Laurenz Thomsen: Writing – review & 
editing, Writing – original draft, Methodology, Investigation, Funding 
acquisition, Conceptualization. Giacomo Picardi: Writing – review & 
editing, Writing – original draft, Methodology, Investigation, Concep
tualization. Joan Navarro: Writing – review & editing, Writing – orig
inal draft, Methodology, Investigation, Conceptualization. Ivan 
Masmitja: Writing – review & editing, Writing – original draft, Meth
odology, Investigation, Conceptualization. Nathan J. Robinson: 
Writing – review & editing, Writing – original draft, Methodology, 
Investigation, Conceptualization. Tim Nattkemper: Writing – review & 
editing, Writing – original draft, Visualization, Methodology, Investi
gation, Conceptualization. Sergio Stefanni: Writing – review & editing, 
Writing – original draft, Methodology, Investigation, Conceptualization. 
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Appendix A. Codes and names for the different EBVs, EOVs and MSFD GES Descriptors reported in Table 1

N EBV P (EOV - Physics) BGC (EOV 
–Biogeochemistry)

BE (EOV - Biology and 
Ecosystems)

CD (EOV –Cross- 
disciplinary)

MSFD GES descriptors

1 Genetic diversity (richness and 
heterozygosity)

Sea state Oxygen Phytoplankton biomass and 
diversity

Ocean colour Marine biodiversity

2 Genetic differentiation (number of 
genetic units and genetic distance)

Ocean surface stress Nutrients Zooplankton biomass and 
diversity

Marine debris 
(*pilot)

Non-indigenous species

3 Effective population size Sea ice Inorganic carbon Fish abundance and 
distribution

Ocean sound Commercial fish and 
shellfish

4 Inbreeding Sea surface height Transient tracers Sea turtles abundance and 
distribution

Food webs

5 Species distributions Sea surface 
temperature

Particulate matter Seabirds abundance and 
distribution

Eutrophication

6 Species abundances Subsurface 
temperature

Nitrous oxide Marine mammal abundance 
and distribution

Seabed integrity

7 Morphology Surface currents Stable carbon isotopes Coral cover and composition Hydrographical 
conditions

8 Physiology Subsurface currents Dissolved organic 
carbon

Seagrass cover and 
composition

Contaminants

9 Phenology Sea surface salinity Macroalgal canopy cover and 
composition

Contaminants in 
seafood

10 Movement Subsurface salinity Mangrove cover and 
composition

Marine litter

11 Reproduction Ocean surface heat 
flux

Microbe biomass and diversity 
(*pilot)

Energy, including 
underwater noise

12 Community abundance Ocean bottom 
pressure

Benthic invertebrate 
abundance and distribution 
(*pilot)

13 Taxonomic/phylogenetic diversity Turbulent diapycnal 
fluxes (*pilot)

14 Trait diversity
15 Interaction diversity
16 Primary productivity
17 Ecosystem phenology

(continued on next page)
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(continued )

N EBV P (EOV - Physics) BGC (EOV 
–Biogeochemistry) 

BE (EOV - Biology and 
Ecosystems) 

CD (EOV –Cross- 
disciplinary) 

MSFD GES descriptors

18 Ecosystem disturbances
19 Live cover fraction
20 Ecosystem distribution
21 Ecosystem Vertical Profile

Data availability

Raw and processed data and metadata presented here is public, on- 
line and free following FAIR principles.- 

Physical data from Obsea sensors is available at○ 

https://data.obsea.es/erddap/tabledap/index.html? 
page=1&itemsPerPage=1000- 

Raw images, labelled images and AI models are available here○ 

Baños Castelló, P., Prat Bayarri, O., Martínez Padró, E., Frances
cangeli, M., Aguzzi, J., & del Rio, J. (2025). Labelled Images at OBSEA 
for Object Detection Algorithms [Data set]. Zenodo. https://doi. 
org/10.5281/zenodo.14888328○ 

Martínez Padró, E., Prat i Bayarri, O., Baños Castelló, P., Frances
cangeli, M., Toma, D. M., Nogueras-Cervera, M., Artero-Delgado, C., 
Carandell Widmer, M., Cadena muñoz, F. J., Bghiel Bensalah, I., Batet 
Xaus, G., Aguzzi, J., & del Rio, J. (2025). AI-based fish detections at 
OBSEA Underwater Observatory [Data set]. Zenodo. https://doi. 
org/10.5281/zenodo.14916451○ 

Baños Castelló, P., Prat I Bayarri, O., Martínez Padró, E., Frances
cangeli, M., & del Rio, J. (2025). Underwater images from OBSEA fish 
detection training dataset (YOLO) [Data set]. Zenodo. https://doi. 
org/10.5281/zenodo.14888440○ 

Pol, B., Oriol, P., Martínez Padró, E., & del Rio, J. (2025). OBSEA fish 
detector AI model (YOLO). Zenodo. https://doi. 
org/10.5281/zenodo.14910365- 

Abyssal NE Pacific Seafloor Megafauna Dataset is available at:○ 

Erik Simon-Lledó, Amon, D. J., Bribiesca-Contreras, G., Daphne 
Cuvelier, Jennifer M. Durden, Sofia P. Ramalho, Katja Uhlenkott, Pedro 
Martinez Arbizu, Noëlie Benoist, Jonathan Copley, Thomas G. Dahlgren, 
Adrian G. Glover, Bethany Fleming, Tammy Horton, Se-Jong Ju, Ale
jandra Mejia-Saenz, Kirsty McQuaid, Ellen Pape, Chailinn Park, … 
Daniel O. B. Jones. (2023). Abyssal NE Pacific Seafloor Megafauna 
Dataset (Versión 1) [Data set]. Zenodo. https://doi. 
org/10.5281/zenodo.7982462- 

Source code of the GUI visualization tool is available at○ 

https://github.com/BlueNetCat/OBSEA
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Glossary

ROVs: remotely operated vehicles
AUVs: autonomous underwater vehicles
ASVs: autonomous surface vessels
DTO: digital twin of the ocean
PTO: physical twin observer
F-PTOs: fixed, local physical twin observer
G-PTOs: geographically expanded physical twin observer
EMSO: European Multidisciplinary Seafloor and Water-column Observatories
PDDL: planning domain definition language
ROS: Robotic Operating System
CNNs: convolutional neural networks
DBs: data bubbles
WGNEPS: Working Group on Nephrops norvegicus
FAIR: findability, accessibility, interoperability, and reusability
API: application programming interface
OGC: open geospatial consortium
GUIs: graphical user interfaces
eDNA: environmental DNA
JSDM: Joint Species Distribution Model
IBM: individual-based model
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