Ecological Informatics 91 (2025) 103409

Contents lists available at ScienceDirect INFORMATICS

Ecological Informatics

ELSEVIER journal homepage: www.elsevier.com/locate/ecolinf

L))

Check for

A digital-twin strategy using robots for marine ecosystem monitoring | e

a,b,*

Jacopo Aguzzi*"", Elias Chatzidouros , Damianos Chatzievangelou®, Morane Clavel-Henry -,
Sascha Flogel 4 Nixon Bahamon ?, Michael Tangerlini b Laurenz Thomsen ¢, Giacomo Picardi ?,
Joan Navarro”, Ivan Masmitja ', Nathan J. Robinson *¢, Tim Nattkemper ", Sergio Stefanni”,
José Quintana’, Ricard Campos’, Rafael Garcia'”, Emanuela Fanelli “, Marco Francescangeli ™,
Luca Mirimin', Roberto Danovaro “, Daniel Mihai Toma', Joaquin Del Rio-Fernandez ",

Enoc Martinez ', Pol Bafios ', Oriol Prat’, David Sarria’, Matias Carandell ’, Jonathan White ™,

Thomas Parissis ", Stavroula Panagiotidou ", Juliana Quevedo °, Silvia Gallegati , Jordi Griny6 ?,
Erik Simon-Lled6 °, Joan B. Company °, Jennifer Doyle ™

2 Institut de Ciencies del Mar (ICM), CSIC, Paseo Maritimo de la Barceloneta 37-49, 08003 Barcelona, Spain

Y Stagione Zoologica Anton Dohrn, Via Francesco Caracciolo, 80121 Naples, Italy

¢ Engitec Systems International Limited, 143 Spyrou Kyprianou Avenue, 3083 Limassol, Cyprus

9 GEOMAR Helmbholtz Center for Ocean Research Kiel, WischhofstraSe 1-3, 24148 Kiel, Germany

€ University of Gothenburg, Universitetsplatsen 1, 40530 Gothenburg, Sweden

f SARTI Research Group, Electronic Department, Universitat Politecnica de Catalunya (UPC), Rambla Exposicion 24, Vilanova i la Geltri, 08800, Spain

8 Fundacién Oceanografic de la Comunitat Valenciana, Carrer d’Eduardo Primo Yiifera 1, 46013 Valencia, Spain

" Biodata Mining Group, Faculty of Technology, Bielefeld University, UniversititsstraBe 25, 33615 Bielefeld, Germany

! Coronis Computing SL, Carrer Pic de Peguera, 11, 17003 Girona, Spain

i Computer Vision and Robotics Institute, University of Girona, Carrer de la Universitat de Girona, 6, 17003 Girona, Spain

X Department of Life and Environmental Sciences, Polytechnic University of Marche and National Biodiversity Future Center, Via Brecce Bianche, 60131 Ancona, Italy
! Department of Natural Resources and the Environment, School of Science and Computing, Atlantic Technological University, Dublin Road, H91 TSNW Galway, Ireland
™ Marine Institute, Fisheries and Ecosystems Advisory, Rinville, Oranmore, Co. Galway H91 R673, Ireland

" STRATAGEM Energy Ltd, Agiou Andreou 365, 3035 Limassol, Cyprus

© Ocean BioGeosciences, National Oceanography Center, European Way, SO14 3ZH Southampton, United Kingdom

ARTICLE INFO ABSTRACT
Keywords: Effective marine conservation and management require ecological monitoring in the form of intensive real-time
Marine monitoring data collection over large spatial scales. The combined use of fixed platforms (e.g., cabled observatories) and

Robotic platforms
Data integration
Ecological indicators
Machine learning
Spatial modelling

research vessels with platforms of different levels of teleoperated autonomy (e.g., remotely operated vehicles
(ROVs) and autonomous underwater vehicles (AUVs) can contribute to the acquisition of large multiparametric
biological and environmental data. If those data are spatially combined, sufficient spatial coverage can be
achieved for ecological monitoring. A digital twin of the ocean (DTO) approach can then be used as a virtual
representation of that monitored space, enabling multiparametric analyses of environmental patterns and pro-
cesses affecting biodiversity and species distributions, as well as socioeconomic activities. Here, we propose a
general architecture for a DTO centred on real-time data collection from local networks on fixed and mobile
platforms, such as the physical twin observers (PTO), which is synergistically merged with platforms operating at
large geographic scales. We describe a roadmap to achieve this DTO via 4 key steps: (1) acquisition of in situ data
with a robotic network of platforms; (2) the application of Al in image processing for extracting biological data;
(3) big data management with data bubbles; and (4) development of the resulting DTO framework for providing
ecosystem monitoring via the computation of ecological indicators and socioecological modelling.
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1. Introduction

On February 21, 2023, the European Commission adopted the Ma-
rine Action Plan, which aimed to support sustainable and resilient
fisheries within the European Union (EU) by protecting and restoring
marine ecosystems. This plan aligns with the EU’s 2030 Biodiversity
Strategy, in which 30 % of all EU marine habitats should be legally
protected by 2030 (European Comission (EU), 2021). To achieve this
goal, there is an urgent need to develop technologies and protocols for
data acquisition and processing for ecological monitoring over broader
spatial and temporal scales than currently possible (Danovaro et al.,
2017).

Digital twins (DTs) are virtual representations of physical objects (or
systems) based on a complex array of diverse modelling approaches used
to simulate their status and behaviour (De Koning et al., 2023; Segovia
and Garcia-Alfaro, 2022; Tzilivakis, 2022). DTs are continually updated
via real-time data and machine learning approaches to improve model
outputs, and “what-if” scenarios can be explored by changing model
parameters (Nativi et al., 2021). A digital twin of the ocean (DTO) is
therefore a virtual representation of the marine biosphere built with a
range of oceanographic, meteorological, biological, and socioeconomic
data, enabling multiparametric analyses of environmental patterns and
processes, such as ecosystem responses to natural phenomena and
anthropogenic impacts (Barbie et al., 2022; Boschert and Rosen, 2016;
Bronner et al., 2023; De Koning et al., 2023; Grossmann et al., 2022;
Pillai et al., 2022; Schneider et al., 2023; Tzachor et al., 2023; Yu et al.,
2024).

The data-reliant nature of DTOs makes them suitable for marine
systems for which large amounts of information are available (Murawski
et al.,, 2010). Effective DTOs are therefore dependent on data from
various sources, ranging from oceanographic campaigns on vessels,
which support classic (e.g., trawl nets, towed sledges, and coring) and
novel data collection platforms (e.g., remotely operated vehicles-ROVs
and autonomous underwater vehicles-AUVs), to large permanent sci-
entific monitoring (e.g., cable observatories) and industrial in-
frastructures. Combined, these data-generation platforms can be
considered part of a broader physical twin observer (PTO). While the PT
corresponds to the real-world system (i.e., the ocean itself), within the
framework of adaptive ecological monitoring, the embedded sensor
platforms are also integral components of the physical layer. These
platforms do not merely collect data but actively interact with the
environment, and their operations must be modelled and simulated
within the DTO to realistically reflect monitoring dynamics. The func-
tion of these platforms can be adapted on the basis of iterative feedback
from the DTO modelling process to highlight key areas in need of greater
spatial or temporally intensive sampling. Permanently deployed marine
platforms, which involve multiparametric biological and environmental
data collection, are growing worldwide (Danovaro et al., 2017) and
represent the core PTO monitoring units of future DTOs. The European
Multidisciplinary Seafloor and Water-column Observatories (EMSO),
the Ocean Network Canada (ONC) and the Cubic Kilometer Neutrino
Telescope Network (KM3NeT) are ensembles of cabled observatories
and moored platforms that perform coordinated, temporally intensive,
4D data acquisition in the benthopelagic realm (Danobeitia et al., 202.3;
Moran et al., 2022). These networks also host docked mobile platforms
such as crawlers, which collect biological and environmental informa-
tion at large spatial scales around fixed nodes (Aguzzi et al., 2019;
Rountree et al., 2020). Their ecological monitoring functionalities are
currently approaching the full virtualization of their deployment areas, a
process based on web visualization via the standardization of sensors,
data collection procedures and processing methods (Howe et al., 2010;
Lantéri et al., 2022).

An established DTO framework for general reference in Europe is
under construction and extends beyond the combination of different big
data sources for modelling (European Union, n.d.). Such a DTO frame-
work can be efficiently implemented in areas where permanent scientific
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infrastructures, such as PTOs, support decadal ecological monitoring; e.
g., networks of benthic cabled observatories. Here, we propose a general
architecture for a DTO dedicated to the ecological monitoring via the
spatiotemporal integrated collection of biological and environmental
multiparametric data. That DTO architecture encompasses data collec-
tion by local permanent and nearby transiently operating PTOs with the
capacity to collect biological and environmental multiparametric data
over a wide range of spatial and temporal scales. Even though these
PTOs are not currently modelled to be fully-represented elements of the
actual DTO yet, it is envisioned that their structure and functionality will
be fully included in the future in the framework of adaptive monitoring
needs. We describe a roadmap of how the ecological data collection
could be achieved via 4 key steps: (1) acquisition of in situ data with a
robotic network of platforms; (2) the application of AI in image pro-
cessing for extracting biological data; (3) the introduction of a DTO
approach for big data management with data bubbles; and (4) devel-
opment of a DTO framework for providing major services in ecosystem
monitoring via ecological indicators and socioecological modelling.

2. Acquisition of in situ data with a robotic network of platforms

Marine robotics refers to the application of autonomous systems in
data collection and in situ processes at different spatiotemporal scales
(Aguzzi et al., 2024). Ecological monitoring is becoming increasingly
independent of the presence of humans in the field with the extension of
remote-control technology (Chatzievangelou et al., 2022). In the
framework of the marine Internet of Things (Glaviano et al., 2022), the
operability of fixed and mobile platforms can be coordinated to establish
cooperative networks in strategic marine areas, resulting in the creation
of in situ marine laboratories (Aguzzi et al., 2019; Rountree et al., 2020).
Consequently, data collection platforms such as PTOs are being inte-
grated into the DTO framework because the functioning of those plat-
forms can be modelled and hence adaptively adjusted on the basis of
ongoing monitoring results (Danovaro et al., 2017).

2.1. The use of platforms operating at different spatiotemporal scales

Two key types of PTOs (Fig. 1) serve as the data generators for DTOs:
fixed-local PTOs (hereafter defined as F-PTOs) and geographically
expanded PTOs (hereafter defined as G-PTOs). F-PTOs include station-
ary platforms such as cabled observatories and landers with docked
locally mobile crawlers or AUVs, as well as anchored or moored water
column platforms and surface buoys (Aguzzi et al., 2019, 2020; Aguzzi
et al.,, 2024; Rountree et al., 2020). Additionally, G-PTOs represent
mobile long-range technologies, such as vessels and corresponding
platforms (e.g., ROVs, towed sledges, AUVs, and pelagic cameras), along
with other independent, drifting buoys (e.g., ARGO floats) (Dominguez-
Carri6 et al., 2021; Jayne et al., 2017; Lambertini et al., 2022; Robinson
et al., 2021; Yu et al., 2024). This category also encompasses technol-
ogies launched from shore (e.g., wave gliders, autonomous surface
vessels (ASVs), drones (Phillips et al., 2019; Zhang et al., 2019) and use
of satellites (Mohseni et al., 2022).

The need for building DTOs that can integrate density, biomass and
derived biodiversity data at local (F-PTOs) and geographically expanded
(G-PTOs) scales is motivated by the high variability in species distri-
butions within the three-dimensional marine environment. Traditional
sampling methods such as trawling, beach seines, or visual census, often
produce biased results due to the activity rhythms of pelagic and benthic
species (Aguzzi and Company, 2010). When measurement repetitions
are not scheduled to account for the varying temporal scales of species
movements, the observed species assemblage shows high variability as
different species rhythmically enter and leave the sampling windows
Repeating sampling at hourly scale, and prosecuting that sampling
continuously in order to cover the seasonal cycle at a single location is
necessary to detect population movements in and out of targeted areas
(Aguzzi et al., 2015), which helps explain results on a larger geographic
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Fig. 1. Schematic illustration of the physical infrastructure supporting the Digital Twin of the Ocean (DTO). The figure shows the spatial layout of fixed and mobile
platforms (e.g., moored sensors, seabed observatories, research vessels) and the pathways through which data are transmitted to a central shore-based science fa-
cility. This facility functions as a data hub, integrating real-time environmental and biological observations with complementary data streams (e.g., from societal
stakeholders), thus enabling centralized control, storage, and further processing toward DTO development.

scale. Integrating local observation nodes within broader geographic
networks can enhance the accuracy of video-observations by enabling
comprehensive comparisons, thus facilitating species abundance esti-
mations similarly to other mobile sampling methods over larger seabed
areas.

Local F-PTO data can be compared with similar data at larger
geographic scales provided by G-PTOs, hence addressing the benefits
and weaknesses of both monitoring strategies (see Fig. 1); notably, it is
important to both build and keep developing DTOs. For example, data
on species density, biomass, and overall biodiversity obtained via F-PTO
monitoring should be compared with more spatially broad data
collected by G-PTOs and nearby fishery operations for ecological
representativeness. These broader datasets include conventional
ecological monitoring methods such as echo sounder surveys to detect
fish schools (e.g., Simmonds and MacLennan, 2005), underwater visual
census techniques for assessing species presence and abundance in
shallow habitats (e.g., Colton and Swearer, 2010), and fishing surveys
which remain essential tools for estimating fish stock distributions and
community structure across large areas (e.g., Rufener et al., 2021).
Integrating these classical approaches with robotic-based monitoring
platforms enhances the capacity of DTO frameworks to capture both
fine-scale and regional ecological dynamics.

2.2. Technical limitations and solution affecting the use of F-PTOs in
ecological monitoring

A list of technical specifications for platforms and their sensors
related to local robotic networks for ecological monitoring (see Fig. 1) is

reported in Table 1. In that Table, we also reported the monitored policy
variables with the categories for the Essential Biodiversity Variables
(EBVs), Essential Oceanographic Variables (EOVs; Muller-Karger et al.,
2018) and Marine Strategy Framework Directive Good Environmental
Status Descriptors (MSFD GES; Directive 2008/56/EC). The deployment
capabilities of these platforms range from AUVs and deep-sea landers to
shallow-water cable observatories, each developed to meet specific
monitoring requirements. The specifications in Table 1 therefore outline
the technological and operational requirements of these platforms,
including their sensor configurations, power consumption, data acqui-
sition modes (continuous vs. time-lapsed), onboard processing capabil-
ities, and data transmission methods according to our late experience
(see Table 1 caption references). Furthermore, the Table provides in-
sights into deployment and maintenance costs, which are critical for
long-term ecological observation networks. The deployment cost col-
umn considers not only the price of the asset (platform) itself but also the
expenses associated with its transportation, personnel involvement, and
operational setup within the observation area. By integrating various
platforms, including cabled and non-cabled systems, data collection is
extended across a wide range of spatial and temporal scales, enhancing
the robustness of DTO initiatives. Continuous data acquisition refers to
real-time, uninterrupted measurements, which are essential for
capturing rapid environmental changes and dynamic biological activ-
ities. In contrast, time-lapsed data acquisition, typically recorded every
30 min, provides a more energy-efficient approach that allows for pe-
riodic sampling while still ensuring temporal resolution sufficient for
long-term monitoring trends.

Scientists and technologists are collaboratively developing a



Table 1

Technical details on operational specifications and costs for the establishment of ecological monitoring networks as F-PTOs. Commercially available platforms models can be very variable and specifications have been
tailored on the OBSEA cabled observatory (www.obsea.es) and its local network (Del-Rio et al., 2020; Falahzadeh et al., 2023; Masmitja et al., 2024) as well as at the Ocean Network Canada (ONC; Purser et al., 2013).
MANSIO-VIATOR specifications are presented in Flogel (2018), while for SLM are from Juva et al. (2020, 2021) and Biischer et al. (2024). Codes fand full policy variable names for EBVs and EOVs are reported in Appendix
1. For EBVs definitions are from https://geobon.org/ebvs/what-are-ebvs/; EOVs definitions are from https://goosocean.org/what-we-do/framework/essential-ocean-variables/; MSFD GES Descriptors definitions are
from https://environment.ec.europa.eu/topics/marine-environment/descriptors-under-marine-strategy-framework-directive_en.

Platform Installed Measured EBVs; EOVs; Type of  Fuel Cell Energy for Energy for  Energy for Onboard Time Acoustic Modem  Cost of Cost of
Sensors Variable MSFD GES Battery connectability ~Data Data displacement  Processing Requirements  Data Deployment Maintenance
(W/h) Collection Collection (W/h) of Processing Transmission © (month; €)
(Continuous;  (Time- (seconds)
W/h) Lapsed, 30
min; W/h)
Cabled Observatory HD Camera Animal counts EBV5-7,9- - - 7.5 0.02 NONE (Fixed) Animal 0.1 Not required 400,000 12,000
10,12-15, Classification (unless for data
17-18; and Counting exchange with
BE2-4,,6,12; non-wired,
MSFD1-4 satellite
CTD Temperature, P6,10,12 0.4 0.000024 None 0.01 platforms)
Salinity, Depth
AWAC Current Speed  P1,4,7-8; MSFD7 9 0.3 None 600
and Direction
and Wave
height,
direction and
period
Fluorescence  Chlorophyll-a, BGC5; BE1; 0.24 0.000001 None 0.1
/ turbidity Turbidity MSFD5
meter
Oy Oxygen BGC1 0.22 0.000001 None 0.1
concentration
Ph Acidity BGC3 1.02 0.00005 None 0.05
PAM Species Sound EBV5-6,9- 2.5 0.08 Animal 60
and Maritime 10,12-13, Identification
Noise 17-18; BE3-4,6; and Counting
CD3;
MSFD1-4,11
Lander HD Camera Animal counts EBV5-7,9- Li-ion Possible 0.045 0.045 NONE (Fixed) Animal 0.5 Not required 45,000 800
10,12-15, Classification (unless for data
17-18; BE2-3,12 and Counting exchange with
CTD Temperature, P6,10,12 0.001 0.000034 None 0.01 non-wired, seabed
Salinity, Depth platforms)
Fluorometer ~ Chlorophyll-a, BGCS5; BE1; 0.24 0.008 None 0.1
PAR MSFD5
PAM Species Sound EBV5-6,9- 1.2 0.04 None 60
and Maritime 10,12-13,
Noise 17-18;
BE3-4,10; CD3;
MSFD1-4,11
Satellite Lander CTD Temperature, P6,10,12 Primary  Possible 0.2565 0.01 324 None 0,01 Not required 120,000 900
Module (SLM) Salinity, Depth cells (Li- (unless for data
Fluorescence  Chlorophyll-a, BGC5; BE1; SOCI2) 0.6 0.02 None 0,1 exchange with
/ turbidity Turbidity MSFD5 non-wired, seabed
meter platforms)
ADCP Current Speed P8 3.78 0.126 None 600
and Direction
0O, Oxygen BGC1 0.21744 0.01 None 0,5

(continued on next page)
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Table 1 (continued)

Platform Installed Measured EBVs; EOVs; Type of Fuel Cell Energy for Energy for  Energy for Onboard Time Acoustic Modem  Cost of Cost of
Sensors Variable MSFD GES Battery connectability Data Data displacement  Processing Requirements  Data Deployment Maintenance
(W/h) Collection Collection  (W/h) of Processing ~ Transmission ©) (month; €)
(Continuous;  (Time- (seconds)
W/h) Lapsed, 30
min; W/h)
Fuel Cell Lander CTD Temperature, P6,10,12 H202, 150,000 0.2565 0.01 NONE (Fixed None None Required for 220,000 3000
Salinity, Depth LiPo docking of mobile
platforms
Coastal Cabled HD Camera Animal counts EBV5-7,9- - Possible 7.5 0.02 57.6 Animal 0.1 Not required since 100,000 400
Crawler 10,12-15, Classification tethered to the
17-18; and Counting observatory of
BE2-4,6,12; when in stand-
CD2; alone fashion, it
MSFD1-4,6,10 operates with
CTD Temperature, P6,10,12 0.4 0.000024 None 0.01 WiFi surface buoy
Salinity, Depth (acoustic modem
ADCP Current Speed P8 9 0.3 None 600 can anyway be
and Direction required for data
Fluorometer ~ Chlorophyll-a, BGC5; BE1; CD1; 0.24 0.000001 None 0.1 exchange with
PAR MSFD5 other lander
platforms)
Deep-Sea untethered HD Camera Animal counts EBV5-7,9- LiPo Possible 1 0.016 150 Animal 0.2 Not required since 150,000 2000
Crawler Rossia 10,12-15, Classification tethered to the
17-18; and Counting observatory of
BE2-4,6,12; when in stand-
CD2; alone fashion, it
MSFD1-4,6,10 operates with
CTD Temperature, P6,10,12 0.5 0.00013 None 0.01 Junction box
Salinity, Depth within a cabled
ADCP Current Speed P8 2 0.35 None 600 observatory
and Direction
CHy4 Methane BGCS; BE11 6.25 0,1 None 0.1
concentration
Fluorescence  Chlorophyll-a, BGC5; BEI; 2.9 0.048 None 0.1
/ turbidity Turbidity MSFD5
meter
Particle Turbidity BGC5 1.04 0.02 Particle 0.1
Camera (particle size Counting and
>100 pm) Sizing
Mansio-Viator (deep- CTD Temperature, P6,10,12 LiPo Possible 0.2565 0.01 750 (Viator None 0,01 Required, if not it 300,000 2500
sea vessel- Salinity, Depth 8000 W/h can run fully
deployed crawler) Fluorescence  Chlorophyll-a, BGC5; BE1; LiPo 0.6 0.02 LiPo, Mansio None 0,1 autonomous (also,
/ turbidity Turbidity MSFD5 4000 W/h acoustic data
meter LiPo, with transfer possible)
ADCP Current Speed P8 LiPo 3.78 0.126 inductive None 600
and Direction transfer)
0, Oxygen BGC1 LiPo 0.21744 0.01 None 0,5
concentration
Camera/Line  Seabed EBV19-20; LiPo 6 0.5 Animal 300
laser morphology BE7-9; CD2; Classification
MSFD6,10 and Counting
Navigational ~IMU/acoustic =~ — LiPo 3 0.5 None 180
data navigation
Moored Buoy CTD Temperature, P6,10,12 LiPo Possible 0.4 0.000024 NONE (Fixed) None 0.01 Not required 60,000 600

Salinity, Depth

(unless for data
exchange with

(continued on next page)
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Table 1 (continued)

Platform Installed Measured EBVs; EOVs; Type of  Fuel Cell Energy for Energy for  Energy for Onboard Time Acoustic Modem  Cost of Cost of
Sensors Variable MSFD GES Battery connectability Data Data displacement  Processing Requirements  Data Deployment Maintenance
(W/h) Collection Collection  (W/h) of Processing ~ Transmission ©) (month; €)
(Continuous;  (Time- (seconds)
W/h) Lapsed, 30
min; W/h)
ADCP Current Speed P8 9 0.3 None 600 non-wired, seabed
and Direction platforms)
Fluorescence  Chlorophyll-a, BGC5; BE1; 0.24 0.000001 None 0.1
/ turbidity Turbidity MSFD5
meter
PAM Species Sound EBV5-6,9- 1.2 0.04 None 60
and Maritime 10,12-13,
Noise 17-18; BE3-4,6;
CD3;
MSFD1-4,11
AUV HD Camera Animal counts EBV5-7,9- Li Possible 7.5 0.02 200 Animal 0.1 Not required 200,000 1100
10,12-15, Classification (unless for data
17-20; BE2-4,6- and Counting exchange with
9,12; CD2; non-wired, seabed
MSFD1-4,6,10 platforms)
Optoacoustic ~ Seabed EBV5-6,17-20; 20 3.2 3D Habitat 0.04
Mosaics & Morphology BE3-4,7-9,12; Rendering
Mapping CD2; plus
MSFD1-4,6,10 Lebensspuren
Gliders CTD Temperature, P6,10,12 Alkaline, Impossible 0.4 0.000024 3.1 None 0.01 250,000 1250
Salinity, Depth Li
Fluorescence  Chlorophyll-a, BGC5; BE1; 0.24 0.000001 None 0.1
/ turbidity Turbidity MSFD5
meter
ASV HD Camera Animal counts EBV5-7,9- Li Impossible 7.5 0.02 200 Animal 0.1 400,000 1250
10,12-15, Classification
17-20; BE2-4,6- and Counting
9,12;
MSFD1-4,6,10
CTD Temperature, P6,10,12 0.4 0.000024 None 0.01
Salinity, Depth
Fluorescence  Chlorophyll-a, BGC5; BE1; 0.24 0.000001 None 0.1
/ turbidity Turbidity MSFD5
meter
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Fig. 2. Automated classification at OBSEA. An example of real-time, automated classification of coastal fishes by the OBSEA network as an example of an F-PTO,
which provides biological time series of data to an observatory cyber management infrastructure (Del-Rio et al., 2020; Martinez et al., 2023). Links to the datasets
and Al models are available at the Data Availability section.
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Fig. 3. BIIGLE for image and video annotation. Marine image and video data must be annotated, i.e., the localization and naming of objects of interest. Using modern
state-of-the-art online annotation tools such as BIIGLE, image and video data can be browsed, managed, shared, and annotated (e.g., with circles, as shown in (a) with
customized labels. Then, (b) quality control (c) or computational segmentation can be performed via incorporated deep learning algorithms such as the Segment
Anything Model (SAM) (Kirillov et al., 2023). This is shown for one hagfish (Eptatretus stoutii) and one rockfish (Sebastes spp.) in the middle of (a) with contour
descriptions on the basis of BIIGLE’s SAM result. The BIIGLE information visualization window (d) gives a compressed overview of the annotation results obtained by
a group of experts or Al tools. The images in (a) and (c) were collected by the crawler “Wally” (Chatzievangelou et al., 2022) at Ocean Networks Canada’s (ONC;
www.oceannetworks.ca) Barkley Canyon methane hydrate site (870 m depth).
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Processed Image

Fig. 4. Grafana visualization tool. Consecutive Al-processed images of the OBSEA artificial reef (see Fig. 2) are visualized to evaluate the performance of automation
in species classification and individual counting. Moreover, time series of counts can be generated to obtain species count trends. In the example, two common coastal
fish species (Chromis chromis in green and Coris julis in yellow) are automatically identified, and their time series are depicted over consecutive days. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. Data bubbles. DTO input data are represented by a set of data bubbles
(DBs) associated with any PTO component in a spatial monitoring network that
includes fixed and mobile platforms with different levels of vessel tele-
operations and nearby commercial operations (such as trawling fishing boats
catching shrimps in this example). Platforms and tools for data collection cover
a specific underwater volume during any specific time interval, so all biological
and environmental data are labelled with at least 4 metadata tags: latitude and
longitude (L,L), depth (D) and time (Tn). Therefore, storage in a common
database requires the same typology to be applied to any other type of archived
or contemporary data in nearby areas (e.g., trawler data for demersal crusta-
cean resources in this case).

spatially adaptive, non-invasive modular platform made up of vessel-
independent, wirelessly connected benthic stations and AUVs to
monitor and map marine ecosystems over extended periods, autono-
mously. One challenge is the mission duration, which limits the use of
landers and AUVs for ecological monitoring in remote areas without
cables to shore sources. Landers operativity can be increased with Fuel
Cells (Aguzzi et al., 2020) and that solution can also be extended to
AUVs by developing docking stations. These stations provide protection,
allow battery charging, and enable data transmission without adding
mechanical parts to the AUV. Although various types of docking stations
have been proposed in literature, funnel-based ones are the most pop-
ular for torpedo-shaped AUVs (Palomeras et al., 2018). Underwater
wireless recharging techniques for AUVs have been explored in recent
years, which offer a safe and reliable method for power transfer between
a charging station and a vehicle (Teeneti et al., 2019).

In a cooperative network of fixed observatories with docked AUVs,
wireless communication is crucial. Acoustic systems have achieved
significant success underwater due to their ability to communicate over
many kilometres (Song et al., 2019). However, their performance is
influenced by the physical properties of the water environment, which
limit bandwidth, cause high latency, produce high transmission losses,
lead to time-varying multipath propagation, and create Doppler spread
(Stojanovic and Preisig, 2009). These limitations prevent AUVs from
transmitting real-time imaging products via acoustic communication.
Therefore, a complementary technology is necessary to achieve broad-
band underwater communications. Visible-Light Communication (VLC)
technology has the potential to address this issue. Nevertheless, VLC
systems are currently limited to short-range use, and only a few com-
mercial systems are available (e.g., BlueComm, www.sonardyne.com).

A complementary challenge in underwater communications is
achieving remote access to underwater platforms “from the office” (see
next section). Moored buoys can be used to monitor oceanic and near-
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Fig. 6. Norway lobster photomosaic. Segment of a photomosaic of a two-sided video transect during the Norway lobster (Nephrops norvegicus) 2018 stock assessment
surveys in the Kattegat area (~100 m depth; 57.86706-57.86694°N; 9.79335-9.79373°E) by the ICES Working Group on Nephrops (WGNEPS). The date, hour, and
frames stitched to create each part of the mosaic are provided in the upper part of the figure (right-hand side in the full vertical mosaic). The two green lines (70 cm in
distance) depict the useful area for data extraction. This approach allows for the geospatial and temporal referencing of biological data from video surveys (e.g.,
number of individuals and their burrow entrances) with all other data within a DTO database. (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)

surface atmospheric conditions and facilitate data transmission (e.g.,
Bahamon et al., 2011). However, these moored systems face limitations
such as deployment complexity, maintenance requirements, and
compliance with standards and governmental regulations. To obtain
reliable and real-time data for tracking and responding to rapidly
evolving environments, the use of Unmanned Surface Vehicles (USVs) is
becoming increasingly popular (Zhang et al., 2021). USVs can be rapidly
deployed and operate at sea for several weeks at very low operational
costs, offering a clear advantage over using crewed ships for monitoring
deployed instruments. Additionally, innovative pop-up buoys provide
complementary information. These buoys can be connected to landers
and released to the surface without any surface infrastructure, sending
information via satellite/GSM communications (Carandell et al., 2023).
These buoys can last more than three months, acting as Lagrangian
platforms for oceanographic purposes and transmitting their positions
for recovery. This is especially useful in areas where, due to weather or
security reasons, USVs are not a feasible option.

2.3. The control Centre for platform navigation and data collection

A DTO framework for ecological monitoring encompasses not only
on simulations of ecosystem dynamics but also on the PTO, which pro-
vides input data. A remote-control centre is valuable for the adaptive
modification of platform operations on the basis of simulations estab-
lished considering energy autonomy constraints in relation to the
quality of the acquired data. A control centre can streamline in situ data
transmission and mission planning and coordinate data collection
remotely. Mission changes can be made on the basis of real-time data
with a mission planning tool, such as the planning domain definition
language (PDDL) (Kootbally et al., 2015). Within such a framework, the
mission plan for each robotic platform can be generated on the basis of
the mission tasks and goals specified by the user and monitored by an
operator through a graphical interface. After checking the generated
plan, the operator can confirm it or alter it. Operators can record mission
execution information before deployment and assess the status of each
step as “not completed”, “in progress” or “completed”. Another func-
tionality of the control centre is the simulation of F-PTO platform op-
erations. The control architectures of the newest robotic platforms and
prototypes are based on the Robotic Operating System (ROS) (Macenski
et al., 2022; Quigley, 2009), an open-source software tool for control,
simulation, and planning. The mission goals for autonomous vehicles
are routine data collection, surveying specific areas to confirm DTO

predictions, and implementing reactive navigation schemes on the basis
of environmental variables. It is crucial to update planning algorithms’
knowledgebases with DTO predictions. Finally, deploying a ROS-based
architecture with nonrobotic F-PTO nodes (e.g., buoys, cabled obser-
vatories and landers) may improve intraplatform communication and
knowledgebase updates and enhance assessments of DTO planning
outcomes.

3. Al in image processing for extracting biological data

A critical portion of the ecological data input into DTOs currently
comes from imaging applications. Image-based methods for animal
detection, classification, and tracking (see e.g., Durden et al., 2016) are
relevant for the automated generation of biological data by both F-PTO
fixed infrastructures (e.g., cabled observatories and landers; Fig. 2) and
mobile platforms that deliver seabed mapping products (e.g., photo-
mosaics; see section 4). Deep learning (DL) and convolutional neural
networks (CNNs) have already proven useful in many different ecolog-
ical scenarios for partially or fully automatically classifying specific
marine animal species from large images and video sources (Cline et al.,
2009; Cuvelier et al., 2024; Garcia et al., 2020; Moller and Nattkemper,
2021; Purser et al., 2009; Salman et al., 2016; Schoening et al., 2022;
Villon et al., 2018, 2020; Xu and Matzner, 2018; Zurowietz et al., 2018).

Relevant consideration in image transference and processing can be
described in the case of the OBSEA network of ecological monitoring
(see Table 1). Images are collected by the observatory and transferred
for real-time processing through Al and machine learning approaches in
shore centralized facilities (see Table 1). The computational detection
and classification of species (e.g., fishes) requires an average time 0.1 s/
image for a 10 megapixels image (i.e., full HD) or video frame, consid-
ering a standard neural architecture as YOLO. An example of this
network for OBSEA can be seen in Banos Castello et al. (2025), where the
CNN was trained with images from 23 different classes. In case of larger
images (e.g., 20 megapixel), the processing would occur in tiles of 800 x
800 pixel and processing time would be N x 0.1 s. If other more so-
phisticated architectures are used, than the processing time can increase
to 1-10s. For all other non-cabled platforms (i.e., mobile of fixed; see
Fig. 1), edge-computing functionalities in onboard image treatment
would be required and the processing time and energy requirements will
depend upon resolution, tasks (animals’ detection and classification or
mapping), and available processing hardware (GPU power and number
of units available; Ortenzi et al., 2024).Automated biological
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classification models can be trained with archived imagery data and can
be periodically retrained or adapted to site-specific knowledge as new
PTO data are input into DTOs (e.g., Ottaviani et al., 2022). In essence,
imagery characterizing target communities or populations is needed
(Durden et al., 2024), and it can be sourced from available repositories
(e.g., Zenodo and datasets presented in Garcia et al., 2020), along with
associated ‘real-world conditions’ recorded during image acquisition or
metadata (depth, environmental light levels, changing seabed back-
ground and turbidity, among others). Marine imaging data typologies,
collection methods, and processing techniques can be highly diverse (e.
g., Durden et al., 2016), and the application of each of these methods for
automated classification can vary from small-scale approaches (e.g., for
model training) to extensive manual tagging efforts (Marini et al., 2018;
Ottaviani et al., 2022). Online initiatives are a step toward overcoming
data processing issues since they can facilitate interoperability across
institutions and quality control and data sharing methods, increasing the
image analysis capability and use efficiency of CNNs.

Server-stored or locally stored videos and images can be readily
annotated with available online software platforms such as BIIGLE
(equipped with computer vision tools such as DELPHI and MAIA)
(Fig. 3), FathomNet or RoboFlow (Katija et al., 2022; Langenkamper
et al., 2017; Schoening et al., 2015; Zurowietz et al., 2018; Zurowietz
and Nattkemper, 2020). In biological analyses, the term “annotation”
refers to (1) detection, the presence of an animal in a given location (a
point, line or circle in a georeferenced image or video frame), and (2)
classification, the assignment of an animal to a semantic or taxonomic
category (e.g., species) selected from a standardized image-based cata-
logue (a species list; see e.g., Simon-Lled¢ et al., 2023). Since the level of
taxonomic precision that can be achieved using imagery can vary (e.g.,
morphotypes, from species to family or order level) depending on the
collection methods (e.g., the platform characteristics, camera settings,
or resolution) and across animal groups (e.g., requiring physical exam-
ination for species determination), the use of an open taxonomic
nomenclature for image-based identification (aligned to the World
Register of Marine Species; e.g., Horton et al., 2021) can improve the
reliability of biological datasets and their usability and comparability
across DTOs. In both detection and classification, Al has played a vital
and growing role, as the volume of recorded data has, in most instances,
already exceeded the volume at which it can be effectively processed by
human domain experts (marine biologists or engineers/inspectors).

Grafana is an interactive web application for data visualization that
can be used to plot time series of detected species counts in real time via
image processing on the basis of a trained machine learning algorithm
for animal classification and counting (Fig. 4). Once the camera source
and a particular species have been selected, consecutive Al-processed
images can be visualized along with time series of counts. Time series
visualization can be performed for multiple species at once, providing a
clear representation of dynamics.

4. Big data management with data bubbles

Effective data management is a critical component in the develop-
ment of DTOs, particularly when handling high-frequency, multi-modal
data streams originating from heterogeneous sensor platforms, such as
fixed-local (F-PTOs) and geographically expanded physical twins ob-
servers (G-PTOs). These platforms generate large volumes of structured
and unstructured data in various native formats (e.g., ASCIL, BIN, NMEA,
JPEG, WAV). To ensure interoperability, long-term usability, and
seamless integration into modelling and visualization systems, these
data streams are harmonized and standardized across institutions and
platforms.

Structured datasets are converted into the Network Common Data
Form (NetCDF) format (Rew and Davis, 1990), following the widely
adopted Climate and Forecast (CF) metadata conventions (Eaton et al.,
2023). These standards enforce consistency in variable naming, units,
coordinate reference systems, and temporal structures. Depending on
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the characteristics of the data, the appropriate CF feature type is
assigned:

e Point - Instantaneous, discrete observations (e.g., single sensor
readings)

e TimeSeries — Repeated measurements at a fixed location (e.g.,

moored sensors)

Profile — Vertical sampling at a single time point (e.g., CTD casts)

Trajectory — Time-stamped data along a horizontal path (e.g.,

drifters)

e TimeSeriesProfile — Repeated vertical profiles at a fixed site (e.g.,

moored profilers)

TrajectoryProfile — Vertical profiles along a moving platform path (e.

g., gliders)

e Grid — Spatially continuous data gridded over a region (e.g., remote
sensing or model outputs)

Each NetCDF file is enriched with metadata describing deployment
context, sensor specifications, calibration parameters, quality control
flags, and standardized attributes, conforming to INSPIRE and SeaDa-
taNet guidelines. This enables semantic interoperability and enhances
machine readability. Standardized datasets are made accessible through
an ERDDAP server Simons, 2017), which supports RESTful and OPeN-
DAP API access, facilitating remote data retrieval, real-time integration,
and downstream applications in forecasting or DTO visualization
frameworks.

4.1. The application of data bubbles to merge multiparametric data

A DTO should be able to acquire, store and process multiparametric
biological and environmental data in a spatiotemporally collated
fashion. The diversity of sensor types and data formats calls for formal
frameworks that allow datasets to be interoperable and machine-
readable. Semantic interoperability among heterogeneous sensing sys-
tems is essential for the effective integration and interpretation of
ecological big data. In this context, dedicated ontologies (e.g., Bio-
divOnto; Abdelmageed et al., 2021), can play a central role by providing
shared vocabularies and defining relationships among biological and
environmental variables collected in different areas at different time.
This creates the need for a spatiotemporal sampling unit (referred to as a
data bubble), which can be treated as a semi-independent DTO element
used to merge data (i.e., standardize and homogenize data). The term
“data bubbles” is not standard in oceanographic literature, which more
commonly refers to “data cubes” for a posteriori organizing large-scale
spatiotemporal datasets (e.g., Montero et al., 2024). While data cubes
are well suited for post-hoc integration and retrospective analysis across
broad spatial domains, we introduce “data bubbles” as a novel and
complementary concept tailored to in-situ ecological monitoring. Data
bubbles represent localized, multi-parametric datasets collected
dynamically by monitoring platforms within a known radius their im-
mediate environment, effectively capturing information in a 360-degree
horizontal and vertical sphere. Each bubble encapsulates high-
resolution physical, chemical, biological, and behavioural data, rooted
in the real-time context of ecological processes.

A data bubble (Fig. 5) is a geospatially defined location (including
depth), within which all relevant biological and environmental data are
collated and stored with appropriate time stamps. The operational
metadata labels associated with each type of biological and environ-
mental information can be obtained via the precise geo-referencing of
platform positions with active acoustic communication tools (reviewed
by Aguzzi et al., 2024).

While fixed platforms such as cabled observatories and landers
provide synchronous biological and environmental data (e.g., counts of
individuals of different species) within the same imaged seascape of a
few cubic metres (e.g., HD and multibeam acoustic imaging can reach a
distance from 2 to 3 to 12-15 m of field projection) at minute time
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Fig. 7. DTO flow chart for relevant information processing. Ecological information flow processing (bottom-up) from the F-PTO (on the left) and G-PTO (on the right,
with different types of societal data) at the core of the DTO structure. Data bank activities associated with pre-processing, storage, processing, visualization, and
analysis are based on Al functionalities. CPUE is the catch per unit effort, and VMS is the vessel monitoring system.

intervals, mobile platforms can generate image-based data for ecosys-
tems ranging from a few hundred metres to tens of kilometres (Aguzzi
et al.,, 2019). Thus, biological data can be extracted by mapping the
occurrence and detailed positions of megafaunal samples per unit of
video-captured surface in created photomosaics to derive, for example,
the spatial range or standing stock of an animal (Fig. 6). Since mobile
platforms provide temporally continuous imaging products, the ob-
tained biological information can be processed into standardized time-
-lapse intervals for comparison with data from other platforms (e.g., by
subdividing transects into subsections of video-captured seabed surfaces
and by estimating species densities at certain intervals (e.g., minutes)
(Chatzievangelou et al., 2020).

The georeferenced and time-stamped biological and environmental
data collected by the F-PTO and G-PTO platforms can be synchronized
with other historical and up-to-date oceanographic and biogeochemical
data from both public and private sources (see section 4.2). In this
process, datasets provided by societal actors should have the same
metadata labels and nomenclature typology as the PTO data, including a
range of essential data collection parameters, ranging from the time and
exact positioning of an observation to the sampling platform type and
the measuring sensor/tool used (as described in Fig. 5).
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4.2. The architecture for data storage and management

A DTO requires an infrastructure for data storage and management,
as well as computational tools, to automatically compose data work-
flows on the basis of ecological information. That architecture should be
built with a bottom-up approach. The base layer should be able to
process a very diverse range of biological and environmental data from
multiple sources, such as in situ PTOs (with their platforms and sensors;
see Fig. 1), as well as any other locally collected data. Then, workflows
capable of automated data processing should be embedded for the
computation of ecological metrics, such as indicators (Aguzzi et al.,
2019, 2020), yielding new scientific knowledge for a diversified class of
end-users, spanning from scientists to citizens and stakeholders.

The workflow for data treatment, which influences the final DTO
architecture, is presented in Fig. 7. A central repository should be
created to store all biological (including image-based), oceanographic
and geochemical data with associated metadata (see the data bubble
labelling requirements in Fig. 5). The data bubbles associated with PTO
platforms need to be temporarily stored with other previously and
continuously obtained similar information. Example of such information
are the catch per unit effort of nearby commercial fishing boats,
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Overview of data characteristics and standardization strategies for representative sensing platforms integrated into the DTO framework. File formats, data structures,
sampling rates, daily volumes, and harmonization methods (e.g., NetCDF feature types and metadata standards) are based on existing deployments, including OBSEA
(www.obsea.es), Ocean Network Canada (Purser et al., 2013), and Sentinel/Planet satellite data services. Posidonia mapping formats and rates reflect Sentinel-2

(Copernicus) and PlanetScope (Planet Labs) usage.

Sensor type Measured variables File format Data Sampling rate Volume/ Storage requirement Standardization format
(s) structure day (GB/day)

HD Camera (stills) Images (Biodiversity, JPEG Unstructured 1 image/min ~720 MB 0.72 GB NetCDF (metadata + Al
Richness) (1440/day) detections)

HD Camera (videos) Short videos (faunal MP4 Unstructured 1 video/min (10s, ~14,400 14.4 GB NetCDF (metadata + Al
behaviour) (H.264) 1440/day) MB detections)

CTD Temperature, Salinity, ASCII, BIN Structured 1Hz ~2 MB 0.002 GB NetCDF (Point,
Depth TimeSeries)

ADCP Currents, Wave height/ BIN Structured 1 Hz ~5 MB 0.005 GB NetCDF (TimeSeries)
direction

FTU (Chlorophyll/ Fluorescence, Turbidity ASCII, CSV Structured Every 5 min ~1-2 MB 0.001-0.002 GB NetCDF (TimeSeries)

Turbidity)
PAM Hydrophone Marine noise, species calls ~ FLAC Unstructured Continuous @96 Raw: ~8 GB NetCDF (metadata +
kHz, 16-bit ~15.5 GB FLAC)
Oxygen Sensor (02) Dissolved oxygen ASCII, CSV Structured 1 reading/5 min ~1MB 0.001 GB NetCDF (TimeSeries)
Particle Camera Sediment & particle sizes JPEG, CSV Mixed ~200 images/day ~2GB 2GB NetCDF (metadata +
imagery)
Seafloor Crawler HD Video, CTD, Mapping MP4, BIN, Mixed Continuous mission ~5-10 GB 5-10 GB NetCDF
ASCII (8 h/day) (TrajectoryProfile)

Gliders / AUVs CTD, Video, Currents, BIN, ASCII, Mixed Mission-dependent 0.5-2 GB 0.5-2 GB NetCDF
Mapping MP4 (TrajectoryProfile)

Satellite Habitat cover (e.g., GeoTIFF (. Gridded 5-10 scenes/day ~0.5-2 GB 0.5-2 GB NetCDF (Grid)
Posidonia), RGB/NIR tif) Raster (3-5 mres.)

Satellite Remote SST, Altimetry, Ocean NetCDF, Gridded Daily pass (~4-8/ ~1-10 GB 1-10 GB NetCDF (Grid)

Sensing colour (global) HDF5 day)

information for commercial species size classes, sex and maturity, as
obtained via government- or EU-funded monitoring programs (e.g., the
Data Collection Framework), or the results of citizen science (e.g.,
SCUBA diving images and information from recreational fishing
activities).

Acquiring a high volume of data from various F-PTO and G-PTO
components, at times with latency, and harmonizing them over time are
notable challenges. To illustrate the diversity of data sources, formats,
and standardization strategies across the monitoring infrastructure,
Table 2 summarizes representative sensor types and platforms inte-
grated into the DTO framework. The table includes key information such
as measured variables, native file formats, underlying data structures,
sampling rates, and typical daily data volumes. Additionally, it outlines
the harmonization formats applied during data processing—such as
NetCDF feature types and CF-compliant metadata standards—used to
ensure semantic interoperability and long-term usability. This overview
highlights the heterogeneity of the data ecosystem and the necessity of a
robust standardization pipeline to support integration into downstream
analysis, modelling, and visualization systems.

These data-specific standardization strategies constitute the foun-
dational layer of our DTO architecture, enabling scalable and harmo-
nized data ingestion pipelines that support downstream Al-driven
analysis as well as spatiotemporal modelling workflows. In our frame-
work, Al routines embedded in a central DTO data infrastructure are not
only used for basic tasks such as data cleaning, temporal alignment, and
outlier removal, but are also central to more advanced processes like
predictive modelling and inferential gap filling. We particularly support
the view that probabilistic approaches are essential when direct obser-
vations are incomplete or sporadic (Price et al., 2025). For example,
spatiotemporal models informed by time series of species detections and
associated environmental parameters allow for the forecasting of likely
presence or abundance in unsampled intervals or locations. These pre-
dictions can be strengthened by leveraging data from ecologically
analogous areas, using transfer learning or environmental similarity
metrics. This is not merely a workaround for data limitations, but a
functional feature of the DTO, which aims to produce actionable
ecological indicators even in data-sparse contexts.

The application of FAIR (Findability, Accessibility, Interoperability,
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and Reusability) data principles can facilitate data retrieval by the sci-
entific community (Wilkinson et al., 2016). To ensure sustainable
multimodal data collection, integration, and interpretation, metadata
standards such as iFDO (Schoening et al., 2022), DublinCore (Weibel
and Koch, 2000), Audubon (Morris et al., 2013), SmartarID (Howell
et al.,, 2019), and PDS4 (Hughes et al., 2014) have been created and
applied.

Finally, the DTO architecture should be presented to the public via
web visualization interfaces as interactive windows to visualize all types
of biological and environmental information. Synthetic graphic outputs
from different multivariate statistics and time series analysis approaches
can be selected and displayed for different combinations of data and
spatiotemporal frameworks (Aguzzi et al., 2020).

The storage, open-access querying, and downloading of data from
PTO platforms should be managed by an associated Application Pro-
gramming Interface (API) (Martinez et al., 2023) that is connected to
other portals and applications. For organizations that carry out specific
experiments or target surveys and host their own data, metadata har-
vesting mechanisms (using standard APIs) can be established, facili-
tating the discovery of datasets stored at distributed nodes via a search
of the central catalogue. This interconnection capability can be upgra-
ded by employing the SensorThings API to provide an Open Geospatial
Consortium (OGC) standard (Liang et al., 2021), resulting in an open
and unified framework to interconnect different platforms and sensors,
data, and applications via the SensorThings APIL.

4.3. Graphical user interfaces

A DTO offers worldwide end-users the opportunity to investigate
ecological processes through Graphical User Interfaces (GUIs) as central
parts of web visualization interfaces (Fig. 8). These interfaces should
support the visualization of complex ecological (biological and envi-
ronmental) information within a spatially simulated representation of
the monitored marine environment, where the trends of changes in
different biological and environmental variables can be assessed. The
graphic outputs used should highlight significant trends for ecological
components in a given space, supported by the relevant Al tools for data
treatment, sensor integration, and data banking (Chen et al., 2023).
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Fig. 8. OBSEA visualization interface as GUI. Web visualization interface for the OBSEA F-PTO, incorporating a surface meteorological buoy, a seabed-cabled
multiparametric video observatory, a docked video crawler in front of an artificial reef, namely, a slag reef of recycled metal compounds, and a satellite lander
(link to the GUI https://cgi-dto.github.io/OBSEA/ and link to the source code of the GUI https://github.com/BlueNetCat/OBSEA). This 3D GUI allows the spatial
representation of the dynamics of ecological variables on the basis of the selection of time windows for different time series of data in the bottom panel (i.e., the
columns with red arrows indicate the current direction components). Descriptions of the crawler and OBSEA platforms were presented by Del-Rio et al. (2020) and
Falahzadeh et al. (2023). While the current interface primarily displays physical oceanographic parameters such as sea temperature, salinity, wave height, wave
direction, and air temperature, it forms a foundational layer of the broader DTO framework. The integration of ecological variables such as species presence,
abundance, and activity, is currently under development, supported by the implementation of Al-driven image and acoustic analysis pipelines. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)

GUIs can be developed to visualize trends in environmental param-
eters by selecting various data time series collected over different tem-
poral windows (Llorach-Té et al., 2023) (see Fig. 8). For example, the
occupancy of each spatial subunit by individuals of different species can
be monitored and modelled. Although this approach is relatively
straightforward in 2D space (e.g., the heatmap approach of Chatzie-
vangelou et al., 2020 and Doya et al., 2016), 3D benthopelagic habitats
can make this process challenging. Multiple imaging tools operating
simultaneously and focusing on the same areas can provide information
to help assess not only the presence but also the trajectory of megafauna.

5. DTO framework for ecosystem monitoring via ecological
indicators and socioecological modelling

5.1. Computation of ecological indicators

Ecological indicators are at the centre of current management and
conservation policy frameworks (Danovaro et al., 2020; Miloslavich
et al., 2018) as per the information presented in Table 1. A description of
how to implement a DTO based on a combination of different F-PTO and
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G-PTO platforms (and their sensors) is presented in Table 3 in relation to
three different categories of ecological monitoring indicators and their
objectives.

5.1.1. Biodiversity in data bubbles

The measurement of marine biodiversity is strategically important
for conservation and management policies (Duarte et al., 2020; Mokany
et al., 2020) and is thus a key aspect of DTO functionality. This func-
tionality is based on several key operational assumptions for both
assessing the present status of DTOs and modelling changes at different
spatiotemporal scales.

First, F-PTO and G-PTO platforms can support data collection over
different temporal scales, allowing the precise characterization of the
ecological niches of species. The abiotic niches of individuals are rep-
resented by “imaged spaces” (i.e., data bubbles; see Fig. 5), with habitat
features that are synchronously monitored by oceanographic and
geochemical sensors installed near platform cameras (Aguzzi et al.,
2020). Increasing the number of sensors utilized by platforms in a given
area can enhance the precision of niche delineation. This precision is
fundamental to analyses and modelling (Fig. 9): locally acquired
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Table 3

Ecological indicators. The different ecological indicators calculated with data collected by F-PTOs (cabled observatories, satellite landers, crawlers, moored buoys, and docked AUVs for surveying, as described in Fig. 1,

plus sensor payloads), by G-PTOs (ROVs, towed sledges and drop cams), by shore-deployed ASVs with coupled AUVs and drones, are combined with various types of data collected by the public to facilitate DTO
monitoring and enhance the modelling capacity. PAM is passive acoustic monitoring; ADCP is an acoustic Doppler current profiler; CTD is conductivity, temperature and depth; and eDNA is environmental DNA.

How to implement the DTO

Ecological monitoring strategy

PTO

Monitoring objective

Description

Ecological
indicator

components

Build multiparametric data repositories where species

Day-night time-lapse optoacoustic imaging

F-PTOs

Understand the role of community turnover

based on activity rhythms and their
influences on species abundance and

community composition and

Variations in abundance, richness and

Temporal

abundance and biomass data from PTOs in nearby areas are

temporally collated with equivalent institutional and

(species counts fluctuations and co-presence as

evenness of mobile megafauna over 24-

h and seasonal scales

biodiversity

proxy of food web interactions), plus eDNA and

PAM sampling to enhance richness

determination

governmental actions (e.g., research cruise programs),
entries from logbooks of local fishery associations and

information from SCUBA diving centres (imaging material

and citizen science observations)

Understanding the effects of G-PTOs Kilometer-scale video-transecting and photo
mosaicking plus eDNA sampling to enhance

Variations in abundance, richness and

Spatial

geomorphology and oceanography on the

species distribution, incrementing

evenness of mobile megafauna across

spatial intervals of ecological
heterogeneity (a, p, and y biodiversity)

biodiversity

richness and biomass determination on the basis

of local F-PTOs

monitoring and modelling the predictive

capacity of

Identify geographic corridors for the dispersal of individuals
across variable seascapes using global animal tagging/

Larval, DNA, and eDNA sampling across depth
strata plus data collection with animal-borne

Estimate the contribution from the

Flux of gametes, larvae, and adults at
different levels of development that

Connectivity

transformation of individuals at different

levels of development to the local

tracking data (e.g., the acoustics solutions obtained by the

Ocean Tracking Network)

data loggers including physical (e.g., plastic) and

acoustic tagging

contribute to the local demography and

genetic diversity

demography and genetic diversity
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knowledge of species presence and abundance can be inferred for any
other area for which only some in situ data on seascape conditions are
available (e.g., discrete or gridded data stored in EMODNet). This im-
plies the capacity to relate the status of biological data with the status of
habitat variables and identify conditioning drivers (e.g., via multivariate
statistics) to be used for further inference.

Second, F- and G-PTO data can be used to interpret the temporal
trends for species in historical datasets at large geographic ranges (with
different types of archived data). For motile species, for example, time
series of species counts, with peaks and troughs at 24-h and seasonal
scales, as recorded by cabled observatories and landers, can be
compared to concomitant changes in species densities over larger sur-
rounding areas derived via ROV and AUV direct inspection and even
from the reports of commercial fishing operations (e.g., the established
case of the Norway lobster as seen in Aguzzi et al., 2022).

On the basis of both assumptions, the fusion of real-time monitoring
data with those historically archived for the same PTO zones would
provide a homogenized and detailed dataset for the spatiotemporal
modelling of biodiversity on the basis of the detection of cause-effect
relationships for species and community responses (abundance fluctu-
ations) under changing environmental conditions. From a perspective
encompassing species assemblages and biodiversity, the Joint Species
Distribution Model (JSDM) (Franklin, 2023) is a valuable tool for
interpreting geographic patterns of biodiversity by correlating known
species occurrence or abundance records with environmental conditions
(Warton et al., 2015; Wilkinson et al., 2021). The modelling strategy,
along with multivariate statistical approaches, can be used to identify
functional relationships among biological and environmental parame-
ters, hence identifying key drivers of the observed conditions and sup-
porting forecasting methods for diverse scenarios. The JSDM supports
the upscaling of environmental and occurrence data after the adequate
treatment of boundary predictors (Meynard et al., 2023; Wilkinson
et al., 2021) beyond the data bubbles associated with a DTO.

5.1.2. The DTO for marine functional connectivity

Marine functional connectivity refers to the flux of individuals (and
their genes) at any level of development (i.e., from gametes to adult
stages) across three-dimensional spatial scales (Darnaude et al., 2024).
For highly motile organisms, measuring connectivity at the DTO scale is
challenging, as it requires tracking specific individuals via electronic
devices (Espinoza et al., 2015), intrinsic biomarkers or photo-
identification processes (Ferreira et al., 2021). For low-motility organ-
isms, oceanographic factors play pivotal roles in dispersing individuals
in weak pelagic early-life stages away from their natal origins. Assessing
the connectivity of these species can be achieved through an ecological
modelling approach on the basis of an individual-based model (IBM). In
IBMs, oceanographic data are used to estimate the potential dispersion
pathways of organisms, integrating ecological parameters such as
spawning times, larval durations, and vertical displacement (Clavel-
Henry et al., 2020; Fobert et al., 2019; Matos et al., 2024; Sciascia et al.,
2022).

DTOs should encompass in situ hydrodynamics and gridded ocean-
ographic information from external datasets (e.g., COPERNICUS), thus
providing minimum inputs for running the applications associated with
an IBM. These applications can be explored to obtain connectivity in-
sights regarding DTO through the utilization of metrics and indicators
derived from an approach adapted within the IBM context and consid-
ering the IBM objectives. For example, these approaches involve simple
dispersal metrics (e.g., the number of particles arriving at a DTO and the
dispersed distance from a DTO), metrics related to connectivity between
sites (e.g., links between deployed PTO sites) via a graph theory
approach (Treml et al., 2008), and indicators of temporal variability
regarding connectivity between sites (Clavel-Henry et al., 2024).

The real-time and forecasted hydrodynamic products provided
through a DTO can be used to explore development in the computing of
operational connectivity; e.g., automating the estimates of particle
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Fig. 9. Site-specific ecological knowledge obtained via multiparametric monitoring, which is spatially scaled for predictions of species distributions and abundances.
The presence and abundance of benthic species can be tracked over time at any monitored and mapped site (by F-PTOs, via the combination of different imaging
approaches). The results can be compared with similar data from nearby areas (e.g., fishery-dependent trawl data, with commercial vessels being a part of the G-PTO
framework). Predictions of species presence and abundance can then be formulated for any other non-surveyed area for which only seascape data are available.

transport on the basis of the most recent hydrodynamic data if the
simulated period of the trajectories can be assessed. This approach,
rooted in numerical modelling, can also be expanded to other key pro-
cesses for conservation and management, such as the dispersion of
contaminants (Keramea et al., 2022) and sediment clouds due to
trawling and mining (Weaver et al., 2022). Recent studies have sub-
stantiated the efficacy of such approaches (Andruszkiewicz et al., 2019;
Cordova and Flores, 2022; Payo-Payo et al., 2017), highlighting their
importance in advancing environmental monitoring and response

capabilities. Moreover, adopting an operational approach would allow
DTO managers to swiftly respond to authorities during emergencies such
as human rescues, ship drifts, and oil spills within the scope of a given
(Keramea et al., 2022; Pereiro et al., 2021).

Ecological modelling on the basis of F-PTO and G-PTO data allows
the visualization and prediction of species distributions and dispersal in
the ocean. Modelling methods can be added to DTO frameworks,
assuming that ecological models such as IBMs or the JSDM (see section
5.1.1) have been established (Fig. 10). Moreover, ecological predictions

F-PTO G-PTO
oo | —\\Vﬁ/\
SEA SURVEY
mavarssos | DATA ASSIMILATION o *
MODELL ED \ L] f
KIDRODYNAMICS C—a !
DRIFT PREDICTION - AUV
\ .
Ecological INPUTS
REGIONAL modelling TAGGED
PREDICTION ANIMALS

Fig. 10. Ecological modelling flow chart. The ecological modelling approach is based on an individual-based model (IBM, for larval transport) and, to a lesser extent,
a JSDM. F-PTO and G-PTO data are used as follows: data assimilation for modelling local marine ecosystem features, assessing the deployment of mobile observatory

tools, and validating model outputs.
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can be produced at a local scale (i.e., at the site of real-time measure-
ments) or at a regional scale (i.e., when PTO data are assimilated into
oceanographic models) and can be directly validated with the data
collected at observatories (see Fig. 1). The overall output can be infor-
mative for the initiation of seawater sampling activities, whether
autonomously or mechanically implemented, and for enhancing model
reliability (see Table 2).

5.2. Socioecological modelling

A holistic DTO requires the implementation of socioecological ap-
proaches and models to capture the complexity of the interactions be-
tween nature and people. The social dimension of socioecological
systems includes a diversity of actors, institutions, cultures, and econ-
omies, whereas the ecological dimension includes the relevant species
and the ecosystems they inhabit (IPBES, 2024).

Socioecological systems typically consist of three inextricable di-
mensions: (1) the environment, (2) society, and (3) the economy. Each
dimension interacts in many ways over time based on a hierarchical
dimensional scale, now widely accepted in the holistic approach of
ecological economics (Daly and Farley, 2011). This means that in the
socioecological approach, the interactions between human behaviour
and the environment are considered part of a complex socioecological
system.

The goal of introducing a socioecological approach and corre-
sponding modelling into a DTO is to identify the socioeconomic com-
ponents of marine and coastal systems in relation to different ecological
and environmental components (Davies et al., 2016). A socioecological
approach requires the development of a conceptual model in which the
different components can interact, potential interactions (positive,
neutral, or negative) can be identified and the weights of these com-
ponents can be determined. The interactions can produce emergent
properties, and the aggregate result may differ from what it would be if
each agent were isolated from others.

One of the tools used to develop socioecological models is the Agent-
Based Model (ABM), which is a computational model populated by
many heterogeneous agents independently interacting with each other
(a bottom-up approach, without a coordinator), without feedback or
externalities (Caiani et al., 2016). The strength of an ABM is its ability to
assess emergent patterns that result from the dynamic behaviour,
adaptation, and learning of each individual independently. As such,
questions about how a system would react to a certain stimulation are
explored, as are the corresponding outcomes, and new hypotheses
regarding the functioning of a system for which not all data are available
can be investigated (Heckbert et al., 2010). ABMs have been widely

Ecological
variables

Species
abundance

/‘Q

/\ -\.
Environmental /
Qiy
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applied in economics (Gallegati et al., 2017; Hamill and Gilbert, 2015)
but are also gaining popularity in ecological assessments, land-use de-
cision-making (Matthews et al., 2007), fishery management (Lindkvist
et al., 2020; Moran et al., 2021), pollutant emission assessments (Ghazi
et al., 2014; Newth and Gunasekera, 2012), and natural resource man-
agement (Loomis et al., 2009), among other fields.

Integrating the socioecological approach with a DTO can signifi-
cantly enhance the understanding of the marine environment and its
impacts on society, and vice versa, in various ways: (1) models can be
used to assimilate the data obtained during fishing activities and fishing
catch observations with microdata collected from the fishery community
to consequently inform policies and strategies related to marine con-
servation, sustainable use of fishing resources, ecosystem restoration,
the rebuilding of depleted stocks, and planning and management stra-
tegies at multiple spatial scales; (2) multivariate statistical analyses can
be performed to answer questions about the efficiency and benefits of
integrated coastal and marine management actions related to the miti-
gation of anthropogenic impacts on ecosystems (caused by overfishing,
pollution, or habitat destruction) or, conversely, the impacts of changing
ecosystems on human life; and (3) fluctuations in fish populations can be
predicted, and direct impacts on the fishing industry and coastal com-
munities can be determined.

The integration of socioeconomic data, gathered at the microscale
via ABMs, into a DTO can be useful for the development of recom-
mendations and guidelines in the context of various objectives:

e Mapping human activities and ocean use patterns: Socioeconomic
data can be used to map human activities in the ocean. Shipping,
fisheries, marine tourism, resource extraction, and coastal infra-
structure are some of the sectors that can be investigated. Data may
include information regarding fleet sizes, the geographic distribution
of activities, and changes over time. The environmental data
modelled by a DTO can be combined with socioeconomic data to
understand how changes in ocean conditions affect local and
regional economies.

Increasing the forecasting ability of a DTO through the use of
regional oceanographic, environmental, and biological/fishery data
can be accomplished via the mapping of areas with F-PTOs and an-
alyses of spatial and temporal biological community structures in
addition to environmental characteristics. This process relies on
available databases with information regarding marine environ-
mental conditions from remote (e.g., satellites) and in situ (e.g.,
moored buoys and ship-borne sensors) observations.

The resulting data can be used within a DTO framework to construct

*

Fishery
Landings

-

Fishermen’s
income

Restrictive /
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+ policies

Fig. 11. Causal loop diagram of fishery socio-ecological dynamics and interactions. Arrows indicate causal relationships between variables, with their respective

effects (positive, negative, or neutral).
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an operating model that projects the future dynamics of marine eco-
systems to assess the possible impacts on society under different man-
agement scenarios; e.g., a reduction in fish catches could result in
reduced disposable income for households relying on the fishery
economy.

While the integration of socioecological models into DTOs offers
significant potential benefits, the actual implementation process faces
substantial challenges. These include limited access to comprehensive
socioeconomic datasets across different geographical regions, hetero-
geneity of information across different fisheries categories, and dis-
crepancies between monitoring observations and fisheries data (Addison
et al., 2017; Leenhardt et al., 2015; Saunders et al., 2015). These data
integration issues can affect consistent estimation of socioecological
impacts. However, once socioecological models are established and
validated with appropriate data inputs, their technical integration into
DTOs should follow similar protocols as other types of models (species
population, distribution, connectivity and hydrodynamic models), albeit
with necessary adjustments for human dimension components. Fig. 11
illustrates a causal loop diagram depicting the complex relationships
between ecological variables, fishery activities, and socioeconomic
impacts.

Implementation will likely follow an iterative process (Gallegati
et al., 2024), beginning with data collection and integration from
demonstration sites. These sites will serve as test cases for developing
methodologies to bridge the gap between environmental and socioeco-
nomic domains, with continuous refinement based on stakeholder
feedback and evolving technical capabilities. The development of soci-
oecological DTOs therefore represents not only a technical data inte-
gration challenge, but a complex socio-technical effort that requires
careful consideration of human behaviour, policy and governance
structures along with technical implementation aspects that will be
addressed by systems engineers and data scientists.

6. Conclusion

This study outlines a comprehensive and forward-looking strategy
for marine ecosystem monitoring based on the development of a Digital
Twin of the Ocean (DTO). Current robotic platforms, such as those we
describe, can generate high-resolution data, however, challenges remain
in achieving adequate spatial coverage, temporal continuity, and
ecological representativeness. One of the key messages of our manu-
script is that technological capability alone is not sufficient. It must be
coupled with adaptive monitoring strategies, data integration protocols,
and modelling approaches to effectively address the complexity of ma-
rine ecosystems. We therefore do not claim that existing systems are
universally sufficient, but rather that they represent a foundational step
toward more robust and scalable monitoring frameworks. A concise
Strengths, Weaknesses, Opportunities, Threats (SWOT) analysis can be
proposed as follows. Strengths of the elaborated DTO concept rely on its
highly innovative and integrative approach for data collection grounded
in robotic platforms and Al-driven image analysis. Its strength lies in the
interdisciplinary and modular design, including fixed and mobile ro-
botic monitoring assets operating at local and larger geographic scales,
and producing data that can be homogenized based on data bubbles,
where biological data on species presence and abundance can be
constantly updated (as core functionality for monitoring) via Al pipe-
lines for image processing. The detailed technological roadmap and the
potential for real-time, spatially explicit ecological monitoring position
this approach as a future-proof solution for marine conservation and
policy implementation, with in situ collected data usable for species
distribution and environmental modelling. Despite its conceptual
robustness, the proposed framework faces weaknesses as practical lim-
itations regarding the heterogeneity and interoperability of data from
diverse platforms, particularly in areas with low infrastructure or
inconsistent monitoring protocols. Additionally, high initial costs for
deployment and maintenance (especially for cabled observatories and
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deep-sea platforms) might hinder widespread adoption, especially in
developing regions. Notwithstanding, there are opportunities because
the proposed technological development in platforms deployment, data
collection and treatment meet the ongoing EU strategies for resource
management and ecosystems conservation (e.g., EU Biodiversity Strat-
egy 2030). The framework offers an opportunity to standardize marine
monitoring, improve ecological forecasting, and foster socioecological
integration via agent-based modelling. Finally, hidden threats are
associated to the DTO implementation itself that relies on stable funding
to continue producing real-world data and updating its datasets through
the PTO, thus avoiding cumulative overreliance on Al-generated infor-
mation. In addition, maintaining of it, functionality also relies on tech-
nological readiness, and data-sharing agreements. Moreover, the
dependence on advanced Al and high-volume data processing may limit
resilience in case of system failures. The potential ecological disturbance
by increased deployment of mobile units in sensitive habitats could also
raise environmental concerns if not managed properly.
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Appendix A. Codes and names for the different EBVs, EOVs and MSFD GES Descriptors reported in Table 1

N EBV P (EOV - Physics) BGC (EOV BE (EOV - Biology and CD (EOV —Cross- MSFD GES descriptors
—Biogeochemistry) Ecosystems) disciplinary)
1 Genetic diversity (richness and Sea state Oxygen Phytoplankton biomass and Ocean colour Marine biodiversity
heterozygosity) diversity
2 Genetic differentiation (number of Ocean surface stress Nutrients Zooplankton biomass and Marine debris Non-indigenous species
genetic units and genetic distance) diversity (*pilot)
3 Effective population size Sea ice Inorganic carbon Fish abundance and Ocean sound Commercial fish and
distribution shellfish
4 Inbreeding Sea surface height Transient tracers Sea turtles abundance and Food webs
distribution
5 Species distributions Sea surface Particulate matter Seabirds abundance and Eutrophication
temperature distribution
6 Species abundances Subsurface Nitrous oxide Marine mammal abundance Seabed integrity
temperature and distribution
7 Morphology Surface currents Stable carbon isotopes Coral cover and composition Hydrographical
conditions
8 Physiology Subsurface currents Dissolved organic Seagrass cover and Contaminants
carbon composition
9 Phenology Sea surface salinity Macroalgal canopy cover and Contaminants in
composition seafood
10  Movement Subsurface salinity Mangrove cover and Marine litter
composition
11  Reproduction Ocean surface heat Microbe biomass and diversity Energy, including
flux (*pilot) underwater noise
12 Community abundance Ocean bottom Benthic invertebrate
pressure abundance and distribution

13 Taxonomic/phylogenetic diversity Turbulent diapycnal
fluxes (*pilot)

14  Trait diversity

15  Interaction diversity

16  Primary productivity

17  Ecosystem phenology

(*pilot)

(continued on next page)
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(continued)
N EBV P (EOV - Physics) BGC (EOV BE (EOV - Biology and CD (EOV —Cross- MSFD GES descriptors
—Biogeochemistry) Ecosystems) disciplinary)
18  Ecosystem disturbances
19  Live cover fraction
20  Ecosystem distribution
21  Ecosystem Vertical Profile

Data availability

Raw and processed data and metadata presented here is public, on-
line and free following FAIR principles.-

Physical data from Obsea sensors is available ato

https://data.obsea.es/erddap/tabledap/index.html?
page=1&itemsPerPage=1000-

Raw images, labelled images and AI models are available hereo

Banos Castell6, P., Prat Bayarri, O., Martinez Padr6, E., Frances-
cangeli, M., Aguzzi, J., & del Rio, J. (2025). Labelled Images at OBSEA
for Object Detection Algorithms [Data set]. Zenodo. https://doi.
org/10.5281/zenodo.148883280

Martinez Padrd, E., Prat i Bayarri, O., Banos Castelld, P., Frances-
cangeli, M., Toma, D. M., Nogueras-Cervera, M., Artero-Delgado, C.,
Carandell Widmer, M., Cadena munoz, F. J., Bghiel Bensalah, I., Batet
Xaus, G., Aguzzi, J., & del Rio, J. (2025). Al-based fish detections at
OBSEA Underwater Observatory [Data set]. Zenodo. https://doi.
org/10.5281/zenodo.149164510

Banos Castelld, P., Prat I Bayarri, O., Martinez Padrd, E., Frances-
cangeli, M., & del Rio, J. (2025). Underwater images from OBSEA fish
detection training dataset (YOLO) [Data set]. Zenodo. https://doi.
org/10.5281/zenodo.148884400

Pol, B., Oriol, P., Martinez Padrd, E., & del Rio, J. (2025). OBSEA fish
detector Al model (YOLO). Zenodo. https://doi.
org/10.5281/zenodo.14910365-

Abyssal NE Pacific Seafloor Megafauna Dataset is available at:o

Erik Simon-Lled6, Amon, D. J., Bribiesca-Contreras, G., Daphne
Cuvelier, Jennifer M. Durden, Sofia P. Ramalho, Katja Uhlenkott, Pedro
Martinez Arbizu, Noélie Benoist, Jonathan Copley, Thomas G. Dahlgren,
Adrian G. Glover, Bethany Fleming, Tammy Horton, Se-Jong Ju, Ale-
jandra Mejia-Saenz, Kirsty McQuaid, Ellen Pape, Chailinn Park, ...
Daniel O. B. Jones. (2023). Abyssal NE Pacific Seafloor Megafauna
Dataset (Versién 1) [Data set]. Zenodo. https://doi.
org/10.5281/zenodo.7982462-

Source code of the GUI visualization tool is available ato

https://github.com/BlueNetCat/OBSEA
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Glossary

ROVs: remotely operated vehicles

AUVs: autonomous underwater vehicles

ASVs: autonomous surface vessels

DTO: digital twin of the ocean

PTO: physical twin observer

F-PTOs: fixed, local physical twin observer

G-PTOs: geographically expanded physical twin observer
EMSO: European Multidisciplinary Seafloor and Water-column Observatories
PDDL: planning domain definition language

ROS: Robotic Operating System

CNNs: convolutional neural networks

DBs: data bubbles

WGNEPS: Working Group on Nephrops norvegicus

FAIR: findability, accessibility, interoperability, and reusability
API: application programming interface

OGC: open geospatial consortium

GUISs: graphical user interfaces

eDNA: environmental DNA

JSDM: Joint Species Distribution Model

IBM: individual-based model
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