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ABSTRACT
Freshwater ecosystems are under increasing pressure from pollution, habitat degradation and climate change, highlighting the 
need for reliable biomonitoring approaches to assess ecosystem health and identify the causes of biodiversity and ecosystem 
service loss. Characterisation of freshwater microbiomes has the potential to be an important tool for understanding freshwater 
ecology, ecosystem health and ecosystem function. High-throughput sequencing technologies, such as Illumina short-read and 
Pacific Biosciences long-read sequencing, are widely used for microbial community analysis. However, the relative performance 
of these approaches for monitoring freshwater microbiomes has not been well explored. In this study, we compared the perfor-
mance of long- and short-read sequencing approaches to assess archaeal and bacterial diversity in 42 river biofilm samples across 
seven distinct river sites in England by targeting the 16S ribosomal RNA gene. Our findings demonstrated that longer reads gen-
erated by PacBio sequencing provide a higher taxonomic resolution, enabling the classification of taxa that remained unassigned 
in the short-read Illumina datasets. This enhanced resolution is particularly beneficial for biodiversity assessments because it 
improves species-level identification, which is crucial for ecological monitoring. Despite this, both sequencing methods produced 
comparable bacterial community structures regarding taxon relative abundance, suggesting that the sequencing approach does 
not profoundly affect the comparative assessment of community composition. However, while Illumina offers higher throughput 
and cost efficiency, PacBio's ability to resolve complex microbial communities highlights its potential for studies requiring pre-
cise taxonomic identification.

1   |   Introduction

DNA sequencing has transformed how we study the living 
world, opening new opportunities for understanding biodiver-
sity and ecosystem function (Shendure et al.  2017; Goodwin 

et  al.  2016). This technology has become an increasingly 
important tool in environmental research, particularly for 
studying complex multi-kingdom microbial communities 
(Thompson et  al.  2017). By revealing the breadth of micro-
bial diversity in environmental samples, DNA sequencing can 
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help researchers and environmental regulators make more in-
formed decisions regarding ecosystem management and con-
servation (Taberlet et  al.  2012; Porter and Hajibabaei  2018). 
Environmental DNA (eDNA) monitoring has emerged as a 
transformative method and an essential tool for biomoni-
toring, with diverse applications, including pathogen detec-
tion (Farrell et  al.  2021), tracking invasive species (Thomas 
et  al.  2020), monitoring endangered or cryptic species (Ota 
et  al.  2020), assessing biodiversity (Keck et  al.  2022) and 
identifying habitat connectivity (Littlefair et  al.  2023). The 
effectiveness of these approaches relies on several factors, 
including the ability to classify and identify DNA markers, 
including specific taxa of interest, such as pathogens and 
rare or invasive species, at the highest taxonomic resolution. 
Accurate and reliable sequencing technologies are pivotal for 
environmental monitoring because they provide a molecular 
lens through which researchers can detect and quantify bio-
diversity, track ecosystem changes and health, monitor inva-
sive species and their potential impacts, evaluate conservation 
efforts and unravel complex ecological interactions with un-
precedented precision and sensitivity.

Short-read sequencing platforms, such as Illumina, have be-
come widespread owing to their availability, cost-effectiveness 
and high-throughput capabilities (Bentley et al. 2008; Satam 
et  al.  2023). The < 600 bp reads (up to 2 × 300 bp) generated 
by Illumina technology are particularly effective for analysing 
hypervariable regions of the 16S rRNA gene (Yang et al. 2016). 
However, analyses using these shorter reads can struggle to re-
solve complex genomic regions and repetitive sequences (van 
Dijk et al. 2018). In contrast, long-read sequencing platforms, 
such as Pacific Biosciences (PacBio), can generate reads aver-
aging 10–25 Kb (Hon et al. 2020), offering improved resolution 
of structural variants and complex genomic regions (Rhoads 
and Au  2015; Logsdon et  al.  2020). Although these longer 
reads can span multiple repeat and hypervariable regions 
simultaneously and potentially provide more accurate taxo-
nomic classifications (Callahan et al. 2019), they are typically 
more expensive and have lower throughput (Amarasinghe 
et al. 2020).

The contrasting properties of short- and long-read sequencing 
technologies can substantially influence ecological inferences 
derived from molecular data. Illumina short-read platforms 
provide high-throughput, accurate sequences that are well 
suited for detecting dominant taxa but may under-represent 
rare or low-abundance species due to limited read length and 
amplification bias (Wang et  al.  2022). In contrast, PacBio 
long-read sequencing generates extended fragments that cap-
ture more genetic information, revealing cryptic diversity and 
providing higher taxonomic resolution (van Dijk et al. 2018). 
Consequently, choosing a sequencing platform has become a 
critical methodological consideration that can fundamentally 
alter the ecological interpretation of molecular biodiversity 
data. Previous comparative studies using Illumina and PacBio 
sequencing technologies have revealed significant variations 
in methodology and performance across different research 
contexts. However, most comparative studies have been con-
ducted on model organisms or within well-characterised 
ecosystems, limiting their applicability to diverse ecologi-
cal contexts (Ferrarini et al. 2013; Zhang et al. 2020; Galata 

et al. 2021; Barthélémy et al. 2024). Although Gao et al. (2024) 
described the utility of long-read data for characterising deep-
sea surface sediments, existing comparative analyses often 
fail to comprehensively address how different sequencing 
technologies might differentially represent complex ecologi-
cal interactions and biodiversity gradients. These limitations 
create a significant research opportunity to develop a more 
nuanced understanding of how sequencing technology perfor-
mance varies across different ecological contexts, particularly 
in understudied aquatic ecosystems.

Our study compared short-read (Illumina, ca. 235 bp) and long-
read (PacBio, ca. 1600 bp) sequencing to analyse epilithic river 
biofilm bacterial communities using 16S rRNA gene sequenc-
ing. We hypothesised that long-read sequencing would provide 
greater taxonomic resolution and a more comprehensive under-
standing of biodiversity than short-read sequencing, particu-
larly for distinguishing closely related bacterial species (Johnson 
et al. 2019; Tedersoo et al. 2018). To test this, we sequenced DNA 
from 42 biofilm samples using short- and long-read sequencing 
methods to compare community characteristics, including the 
overlap and uniqueness of bacterial taxa detected using each 
approach. By addressing the current knowledge gaps in the per-
formance and application of different sequencing approaches, 
this study enhances our understanding of the optimal use of se-
quencing technologies for environmental monitoring (Ruppert 
et al. 2019).

2   |   Methods

2.1   |   Sample Collection

Epilithic biofilm samples were collected from rivers across 
England as part of the Environment Agency's River Surveillance 
Network (RSN) monitoring program, following the standard 
sampling method described by Kelly et  al. (2020). The total 
sampling campaign encompassed 2101 river biofilm samples 
collected from 861 sites between 2021 and 2023; a detailed de-
scription of the methods for sample collection and short-read 
sequencing is available in the Environment Agency report 
(Environment Agency 2024). This study focused on a subset of 
42 samples collected from seven sites twice a year in 2021, 2022 
and 2023 (Figure  2). Land cover maps from UKCEH (Morton 
et al. 2021) were used to describe dominant land cover types for 
the upstream catchment of each site (Table S3). Samples were 
obtained by scraping five stones or macrophytes into a tray con-
taining 50 mL of river water. The upper surfaces were brushed 
with a clean toothbrush to remove biofilms. 5 mL of the biofilm 
suspension was removed using a pipette and preserved in 5 mL 
of DNA preservation buffer (3.5 M ammonium sulphate, 17 mM 
sodium citrate and 13 mM EDTA). Following collection, samples 
were concentrated by centrifugation at 3000× g for 15 ± 2 min at 
5°C ± 2°C, frozen and transported on dry ice to the UK Centre 
for Ecology & Hydrology (UKCEH), Wallingford, for subsequent 
analysis. Over a three-month period prior to biofilm sample col-
lection, up to five water chemistry samples were taken; this data 
was used to calculate the water chemistry means. Water quality 
measurements included nitrate, phosphorus and dissolved ox-
ygen levels, along with water temperature and pH. Full water 
chemistry data are available in Table S3, Figure S1.
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FIGURE 1    |    Primer positions on the 16S rRNA gene, showing the overlap of the Illumina 16SV4 primers within the 16S gene sequenced by the 
Kinnex primers.

FIGURE 2    |    (A) Map of the seven sites across England from which the biofilm samples were collected. Water chemistry data from the seven sites. 
Nitrate (mg L−1) (B), dissolved oxygen (mg L−1) (C), pH (D) and phosphorus (mg L−1) (E) levels at each sample point for each location. Water chemistry 
means were calculated using five chemistry samples collected over a three-month period prior to biofilm sample collection.
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2.2   |   DNA Extraction

DNA was extracted from 100 μL of biofilm suspension using 
the Quick-DNA Faecal/Soil Microbe Kit (Zymo Research, 
California, United States), with modifications to optimise the 
DNA yield (Newbold et al. 2025). The extraction protocol was 
adapted as follows: 500 μL of DNA/RNA Shield (Zymo Research) 
was added to each sample as lysis buffer. The samples were me-
chanically disrupted using a TissueLyser II (Qiagen, Germany) 
at 20 Hz for 20 min. 20 μL of recombinant Proteinase K (Roche, 
Switzerland) was added to the lysate and incubated at 65°C for 
20 min. The purified DNA was eluted in 100 μL of elution buf-
fer. A negative extraction control, without sample material, was 
used to monitor potential contamination. DNA concentration 
was quantified using the Qubit dsDNA High-Sensitivity kit (Life 
Technologies Limited) according to the manufacturer's protocol. 
The extracted DNA was stored at 4°C until PCR amplification. 
A detailed step-by-step extraction, PCR and library preparation 
protocol is available at https://​doi.​org/​10.​17504/​​proto​cols.​io.​
j8nlk​8em6l​5r/​v1.

2.3   |   Sequencing

Two methods of sequencing were used to amplify the 16S rRNA 
gene (Figure  1). Illumina NextSeq for short-read sequencing 
(291 bp) and Pacific Biosciences Sequel II for long-read sequenc-
ing (1500 bp).

2.3.1   |   Pacific Biosciences

The V1-V9 region of the 16S rRNA gene was amplified by 
Novogene using the Kinnex protocol (Srinivas et  al.  2025) 
(primer sequences in Table S1, PCR amplification in Table S2). 
The PCR products of the barcoded V1–V9 amplicons were 
detected by agarose gel electrophoresis prior to process-
ing on a PacBio Sequel II sequencing platform (Novogene, 
Cambridge, UK).

2.3.2   |   Illumina

The V4 region of the 16S rRNA gene was amplified using spe-
cific primers (Table S1) modified to include Illumina adaptor se-
quences. In a UV-sterilised laminar flow hood, a master mix was 
prepared containing 0.5 μL of 2000 units mL−1 Q5 high-fidelity 
DNA polymerase, 10 μL of 5× reaction buffer, 10 μL of 5× high 
GC enhancer (New England Biolabs, UK), 1 μL of a 10 mM dNTP 
mix (Bioline, UK), 0.1 μL of each 100 μM forward and reverse 
primer pair (Table S1) and 26.3 μL of molecular grade water. The 
master mix (48 μL) was dispensed into each well of a 96-well 
plate, and 2 μL of template DNA was added per sample. Negative 
PCR controls were also included. The thermocycling conditions 
are presented in Table S2. Successful amplification was verified 
by 1.5% agarose gel electrophoresis using GelRed nucleic acid 
staining. PCR products were purified using a MultiScreen PCR 
filter plate, resulting in 35 μL of eluted product.

The second PCR step employed a dual-indexing approach to 
enable sample demultiplexing. Indexing primers were prepared 

using an Opentrons liquid-handling robot, each consisting of 
a forward (i5) or reverse (i7) Illumina adaptor sequence, an i5 
or i7 Nextera index and an Illumina pre-adaptor sequence. The 
second PCR mix contained 0.25 μL of Q5 DNA polymerase, 5 μL 
of reaction buffer, 5 μL of high GC enhancer, 0.5 μL of dNTPs, 
5 μL of the indexing primers (pre-prepared in the plate), 7.25 μL 
of molecular grade water and 2 μL of purified PCR product from 
the first PCR step. The cycling protocol is presented in Table S2. 
Amplification was confirmed using agarose gel electrophoresis.

The second-step PCR product was normalised using the NGS 
Normalisation kit (Norgen Biotek, Canada) to achieve a concen-
tration of approximately 5 ng μL−1. The samples were pooled by 
plate and quantified using a Qubit High-Sensitivity Assay Kit. 
The amplicon library was prepared by diluting and pooling the 
samples, followed by concentration and purification using gel 
extraction. The final libraries were quantified, diluted to 1000 
pM and sent to Illumina Cambridge for sequencing on a NextSeq 
2000 with a P1 flow cell and 40% PhiX control.

3   |   Data Analysis

Amplicon sequence reads were processed using the DADA2 
pipeline (Callahan et  al.  2019) implemented in R [version 4.4.2] 
(R Core team 2024). Short-read and long-read sequences under-
went distinct processing workflows, with full analysis scripts for 
short-read sequences available at https://​github.​com/​amyct​horpe/​​
ampli​con_​seq_​proce​ssing_​biofilms. For short-read analyses, 
raw sequences were demultiplexed, and adaptor sequences were 
trimmed using the Illumina FASTQ generation pipeline. Primers 
were removed using the ‘trimLeft’ parameter, and the quality pro-
files of the forward and reverse reads were examined. Reads were 
truncated when quality scores fell below Q30 and filtered using 
stringent criteria, including removing reads with ambiguous bases 
and a maximum expected error threshold of 2. The DADA2 algo-
rithm learned error rates from a 100 million base subset, with vi-
sualisations confirming the alignment of the estimated rates with 
the observed data. Reads were then dereplicated into unique se-
quences based on the error rate model, and the core sample infer-
ence algorithm was used to identify true sequence variants. Paired 
forward and reverse reads were aligned and merged, requiring a 
minimum of 12-base overlap. Chimeric sequences were identified 
and removed, resulting in an amplicon sequence variant (ASV) 
abundance table. Long-read analyses followed a modified proto-
col (https://​benjj​neb.​github.​io/​LRASM​anusc​ript/​LRASms_​fecal.​
html), with primers removed and reads trimmed to a minimum 
length of 1200 bp and a quality threshold of three (filterAndTrim(n-
ops2, filts2, minQ = 3, minLen = 1200, maxLen = 1600, maxN = 0, 
rm.phix = FALSE, maxEE = 2)). Subsequent demultiplexing gener-
ated a sequence table with sample-specific counts. Taxonomy was 
assigned to each ASV using the naive Bayesian classifier (Wang 
et al. 2022) with a minimum bootstrap confidence of 60 against the 
SILVA v138.1 reference database (Quast et al. 2012) for Illumina 
and PacBio 16S rRNA gene sequences.

The sequences were rarefied to a uniform sequencing depth by 
examining rarefaction curves and identifying the sequencing 
depth at which the richness plateaued (Figure S6). Both long- 
and short-read data were rarefied to 3000 reads per sample to 
conserve the majority of samples. All negative extraction and 

 17550998, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1755-0998.70075 by U

K
 C

entre For E
cology &

 H
ydrology, W

iley O
nline L

ibrary on [10/11/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.17504/protocols.io.j8nlk8em6l5r/v1
https://doi.org/10.17504/protocols.io.j8nlk8em6l5r/v1
https://github.com/amycthorpe/amplicon_seq_processing_biofilms
https://github.com/amycthorpe/amplicon_seq_processing_biofilms
https://benjjneb.github.io/LRASManuscript/LRASms_fecal.html
https://benjjneb.github.io/LRASManuscript/LRASms_fecal.html


5 of 12Molecular Ecology Resources, 2025

PCR controls and a small number of samples (five) did not meet 
the rarefaction depth and were therefore removed. Sequences 
assigned as mitochondria and chloroplasts were removed from 
the datasets. These accounted for 31% and 32% of the total reads 
in the short- and long-read data, respectively.

Downstream analyses were performed using R [version 4.4.2]. 
Counts, taxonomy and metadata files were loaded into Microeco 
(Liu et  al.  2021) for processing and visualisation. To assess dif-
ferences in the number of ASVs between sequencing technol-
ogies, we used a Wilcoxon signed-rank test followed by a linear 
mixed-effects model to evaluate the direction of the effect. 
Taxonomic assignment proportions across ranks were compared 
using the Mann–Whitney U test. Differences in the relative abun-
dance of taxa between sequencing platforms were tested using a 
Wilcoxon rank-sum test with Bonferroni correction for multiple 
comparisons.

To examine community composition similarities between sam-
ple types and sequencing platforms, Principal Coordinates 
Analysis (PCoA) based on Bray–Curtis dissimilarity at the 
genus level was performed, along with a Procrustes analysis to 
assess concordance between ordinations. Prior to analysis, ASV 
identifiers were replaced with their corresponding taxonomic 
names from the kingdom to genus level to ensure meaningful 
comparison of community structure between sequencing meth-
ods. Additionally, Deming regression was used to investigate 
the agreement between the number of reads assigned to each 
phylum across sequencing types. All statistical analyses were 
performed in R, with significance thresholds set at p < 0.05.

To compare short- and long-read ASVs in the sequence space and 
identify overlapping short- and long-read ASVs, we used NCBI 
BLAST (Camacho et al. 2009), with the following parameters: ‘–
id 80 –query-cover 90 –subject-cover 90 –more-sensitive –outfmt 
100’. The output was filtered to retain sequences with at least 
90% identity and a minimum length of 235 bp for subsequent 
analysis. This length threshold was chosen as it represents 10% 
below the median short-read length. Short-read ASVs that did 
not map to long-read ASVs were considered unique sequences.

To assess potential primer bias, the long-read sequences were 
trimmed using the specific primer sequences employed in the 
short-read protocol to isolate the corresponding amplicon re-
gion. These trimmed long-read sequences were then processed 
using the same DADA2 pipeline as the original long-read data. 
All subsequent analyses were conducted in R using the same 
workflow to ensure consistency and comparability.

The relevant code for the analysis and figures, and raw data 
can be found at: https://​doi.​org/​10.​5281/​zenodo.​17432155 and 
https://​www.​ncbi.​nlm.​nih.​gov/​biopr​oject/​​1353123.

4   |   Results

4.1   |   River Surveillance Network Biofilms

At each sampling point (Figure  2a), epilithic biofilms were 
collected to assess bacterial biodiversity, complemented by the 
concurrent collection of relevant water chemistry and nutrient 

data (Figure 2b–e) to understand how biotic and abiotic factors 
shape the community composition of bacteria within the RSN. 
Water chemistry measurements, including pH, conductivity and 
nutrient concentrations (e.g., nitrate, phosphate), showed varia-
tion across sites, with each parameter displaying a broad distri-
bution (Table  S3). However, potential physicochemical drivers 
of sequencing technology differences were not further explored 
due to the limited number of sites (n = 7), which constrained our 
ability to draw statistical inferences.

4.2   |   Short- and Long-Read Taxonomic 
Compositions Are Similar

To compare the two sequencing approaches (short Illumina 
vs. long PacBio reads), we assessed community composition 
and the relative abundance of assigned taxa. While both meth-
ods recovered similar overall compositions at the phylum and 
genus levels, significant differences were observed in the rela-
tive abundance of several taxa based on a Wilcoxon rank-sum 
test with Bonferroni correction (Figure  3a,b). At the phylum 
level, Actinobacteriota (p = 0.0005), Myxococcota (p < 0.0001), 
Gemmatimonadota (p = 0.00012) and Chloroflexi (p = 0.014) 
were significantly more abundant in the short-read dataset. 
At the genus level, one notable difference was a significantly 
higher abundance of Ferruginibacter (p = 0.0038) in the long-
read dataset.

An ordination analysis to assess the similarity between short-
read and long-read results plot (Figure 3c) showed partial over-
lap between the two sequencing methods, indicating shared 
community composition. To further quantify the similarity be-
tween the two datasets, a Procrustes analysis was conducted 
(Figure 3d). The results showed a strong concordance between 
short-read and long-read sequencing compositions (R2 = 0.973, 
p = 0.0001), indicating that, despite methodological differ-
ences, both approaches captured comparable community 
structures. The Procrustes error plot visually represents the 
alignment between the datasets, with minimal deviation in 
most cases.

Furthermore, we assessed the number of reads assigned to bac-
terial phyla across sequencing methods to determine whether 
either approach exhibited taxonomic biases. We found a strong 
correlation (R2 = 1.02, Deming regression) between short-read 
and long-read sequencing abundances (Figure  3e). The rela-
tionship between short and long reads is based on a Deming 
regression analysis, which yielded a slope of 1.02 (95% confi-
dence interval (CI): 0.98–1.06), indicating that, for most phyla, 
short-read sequencing and long-read sequencing are highly 
comparable.

However, small phylum-specific trends were evident. 
Verrucomicrobiota, for example, exhibited higher read counts 
in the long-read dataset, whereas Cyanobacteria were relatively 
more abundant in the short-read dataset. These deviations sug-
gest that certain bacterial phyla may be differentially repre-
sented depending on the sequencing method, potentially due 
to differences in primer binding efficiency, amplified fragment 
length, error profiles or taxonomic classification accuracy be-
tween methods.
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FIGURE 3    |     Legend on next page.
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4.3   |   Improved Taxonomic Resolution With 
Long Reads

The number of ASVs was 62% higher in long-read sequenc-
ing (10,480 ASVs) than in short-read sequencing (6507 ASVs) 
after rarefaction; the difference between pre- and post-
rarefaction was not of note (Figure S5 and Table S4). At the 
per-sample level, paired analysis (Figure  4a) revealed a sig-
nificant difference in the number of ASVs produced by each 
sequencing method (Wilcoxon signed-rank test: V = 550.5, 
p = 0.0027), with the short-read method producing signifi-
cantly more ASVs.

A linear mixed-effects model (LMM) was used to assess the 
effect of sequencing type on the number of observed ASVs, 
while accounting for paired samples (Figure 4b). The model 
included sequencing type as a fixed effect and sample iden-
tity as a random effect to account for variations among sam-
ples. The model showed that short-read sequencing detected 
significantly more ASVs than long-read sequencing, with 
an estimated increase of 65.38 ASVs (±18.94 SE, t = 3.45, 
p = 0.00144) per sample. The random effect of sample identity 
had a variance of 10,155 (SD = 100.77), indicating a substantial 
between-sample variability. The residual variance was 6636 
(SD = 81.46), reflecting the within-sample variation after ac-
counting for sequencing type.

We assessed the proportion of taxonomic assignments across 
various ranks to determine whether the sequencing type af-
fected taxonomic resolution. At both the kingdom and phylum 
levels, there were no significant differences in the percentage 
of taxa assigned between the short- and long-read sequencing 
methods; 100% of the taxa were assigned at these ranks using 
both approaches. At the class level, 98.9% of the taxa were 
assigned using short-read sequencing, compared to 99.6% 
with long-read sequencing—a small but statistically signifi-
cant difference (p = 0.02; Mann–Whitney U test). More pro-
nounced differences were observed at lower taxonomic ranks. 
Long-read sequencing resulted in significantly higher pro-
portions of taxonomic assignment at the order (4.4% increase, 
p < 0.0001), family (5.8% increase, p < 0.0001) and genus 
(11.6% increase, p < 0.0001) levels compared to the short-read 
method (Figure 4c).

4.4   |   Unique Features of Sequencing Type

Given the substantial taxonomic overlap between the se-
quencing methods, we evaluated the sequence similarity of 
the short- and long-read ASVs to determine which were truly 
unique. Using NCBI BLAST (Camacho et al. 2009), we found 

that on average 83.8% (58%–96%) of short-read ASVs aligned 
with long-read ASVs (Figure  S4a) within the expected 350–
750 bp region of the long-read 16S sequences, corresponding 
to the V4 primers used for short-read amplicon sequencing 
(Figure S3).

To test whether sequence identity cutoffs in BLAST influence 
mapping of short-read ASVs to long-read sequences, we exam-
ined the alignments at different identity thresholds. At a relaxed 
identity cutoff (90%), over 95% of short-read ASVs had a corre-
sponding long-read match, whereas at a stringent 100% identity 
cutoff, this proportion dropped to ~60% (Figure S4a). Notably, 
short-read ASV length (230 bp vs. 253 bp) did not affect mapping 
success, as both lengths exhibited comparable match percent-
ages (Figure  S4c). These lengths were selected based on the 
minimum and median short-read ASV lengths.

Importantly, we analysed the composition of unique short-read 
ASVs that had no matches in the long-read dataset and found 
that they were distributed across multiple phyla. Interestingly, 
these short-read ASVs were predominantly associated with taxa 
of low prevalence (percentage found in all samples, average 
5.6%) and abundance (percentage occurring in total ASVs, av-
erage 0.004%) (Figure 5b). The reverse was also true for unique 
long-read ASVs that had no matches to the short-read dataset. 
These long-read ASVs are mainly associated with taxa of low 
prevalence (average 3.5%) and abundance (average 0.006%) 
(Figure 5a).

A comparison of taxonomic annotations revealed that 977 taxa 
were shared between the short-read and long-read datasets, 
while 84 taxa (~7% of the whole dataset) were unique to short-
read sequencing and 136 taxa (~11% of the whole dataset) were 
unique to long-read sequencing (Figure 5c). These counts were 
based on full taxonomic annotations from each dataset.

5   |   Discussion

The dynamic spatial and temporal complexity of river ecosys-
tems creates habitats that drive the remarkable diversity and 
ecological richness of aquatic microbial communities. Epilithic 
river biofilms represent intricate ecological niches where many 
environmental parameters may influence the structure and 
composition of microbial communities (Shibabaw et  al.  2021). 
Consequently, the accurate characterisation of these microbial 
communities requires molecular approaches that can capture 
the subtle taxonomic and functional diversity inherent in these 
dynamic systems. To comprehensively investigate the microbial 
landscape across seven distinct river sites in England, we used 
two sequencing technologies, Illumina short-read and PacBio 

FIGURE 3    |    Comparison of bacterial taxon composition between short- (orange) and long-read (purple) sequences. Comparison of the top 15 
abundant taxa at the phylum (A) and genus (B) levels for short- and long-read sequencing. Significant levels indicated by * show significant differenc-
es between long- and short-read relative abundances for each taxa. PCoA of paired samples for short- and long-read sequencing (C). (D) Procrustes 
error plot for paired short- and long-read samples (p = 0.00001). (E) Scatter plot showing the relationship between short- and long-read abundance 
for each phylum across all the samples. The top eight phyla are colour-coded, and the circle size is proportional to the mean number of reads per 
phylum in each paired sample. The dashed black line represents the line of perfect fit (1:1), and the blue line depicts the Deming regression line, with 
a slope of 1.02.
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long-read sequencing, targeting the 16S ribosomal RNA (rRNA) 
gene. This approach enabled a comparative assessment of the 
microbial community structure, providing the opportunity to 
distinguish the capabilities of each sequencing platform in re-
solving complex bacterial assemblages embedded within river 
biofilm environments.

Our analysis revealed that, for 16S rRNA-based taxonomic as-
sessments of river biofilms, the choice of sequencing method 
(Illumina short-read or PacBio long-read) did not significantly 

influence the relative abundance of taxa within bacterial com-
munities. Despite the disparity in read length and taxonomic 
resolution, both sequencing platforms produced broadly com-
parable abundance profiles across major taxonomic groups. 
This suggests that short-read sequencing, although limited in 
its ability to resolve taxa at deeper levels, still captures reliable 
patterns in community structure. Consequently, it remains 
a practical and informative approach for studies focused on 
broad-scale surveys or relative abundance patterns. These find-
ings are consistent with previous studies (e.g., Butt et al. 2022; 

FIGURE 4    |    Comparison of taxonomic assignment and ASV detection between long-read (purple) and short-read (orange) sequencing methods. 
(A) Paired comparison of ASV counts per sample, analysed using the Wilcoxon signed-rank test (V = 550.5, p = 0.0027). (B) Relationship between 
ASV counts detected by short- and long-read sequencing, where the dashed black line represents a 1:1 ratio (perfect agreement), and the red line 
represents the fitted linear model (LLM). Short-read sequencing detected significantly more ASVs per sample than long-read sequencing, with an 
estimated increase of 65.38 ASVs (±18.94 SE, t = 3.45, p = 0.00144) per sample. (C) Percentage of assigned taxa at different taxonomic levels for long- 
and short-read sequencing, Mann–Whitney U test to test for significant difference between sequencing types, p values are represented by *.
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Buetas et al. 2024), which reported largely concordant diversity 
measures between sequencing platforms, and support the use 
of either method depending on the specific ecological question 
being asked.

Although long-read sequencing improved taxonomic res-
olution, particularly at finer levels, it did not significantly 
alter per-sample richness or diversity estimates (e.g., Chao1 
or Shannon; Figure  S2). It must, however, be noted that the 
environmental gradients are the likely selecting factors re-
flected in the Procrustes analysis, which may be a stronger 
driver compared to technical variabilities in read length. 
Interestingly, while the total number of unique ASVs across 
the dataset was higher in the long-read data, individual sam-
ples contained significantly more ASVs in the short-read data. 
This likely reflects greater sequencing depth in the short-read 
dataset, allowing detection of more low-abundance variants 
per sample. In contrast, the higher resolution of long-read data 
can split similar sequences into more distinct ASVs across 
the dataset, inflating the total count. This inflation of total 
ASV count in the long-read data highlights how sequenc-
ing platform choices must be considered when interpreting 

ASV-based metrics. Further research will be needed to deter-
mine whether the higher per-sample ASV counts observed in 
the Illumina dataset reflect genuine biological diversity, such 
as improved detection of rare taxa resulting from greater se-
quencing depth. It is also possible that these higher counts are 
partially inflated by technical artefacts inherent to short-read 
data, including residual sequencing errors or undetected chi-
meras that denoising algorithms like DADA2 may not com-
pletely resolve (Haas et al. 2011).

Importantly, our findings demonstrate that long-read sequenc-
ing provides superior taxonomic resolution compared to short-
read methods for analysing microbial communities within river 
biofilms. This aligns with a report by Gao et al. (2024), who also 
reported an increased taxonomic resolution of ASVs, including 
precision at the species and strain levels. However, we did not 
perform species-level taxonomic comparisons, as only a small 
proportion of ASVs could be confidently assigned to species 
across both sequencing methods. This limited resolution likely 
stems from incomplete reference databases for freshwater mi-
crobes, combined with the challenges of accurate species-level 
classification using current algorithms, especially for short-read 

FIGURE 5    |    The prevalence (the % of total samples detected in) and abundance (the % of total reads detected in) of (A) long-read (LR) ASVs that 
did not have a ≥ 98% match to any short-read ASVs in the whole dataset and (B) short-read (SR) ASVs that did not have a ≥ 98% match to any long-read 
ASVs in the whole dataset, coloured by the top genera. (C) Venn diagram showing the number of unique taxa in the short-read (orange) and long-read 
(purple) data, and the overlap of the datasets.
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data. Consequently, we focused our comparisons on higher 
taxonomic ranks where assignments were more robust and 
informative.

PacBio's ability to generate longer contiguous sequences facili-
tated a more accurate taxon classification, particularly at deeper 
taxonomic levels, such as genera and species. This was also re-
cently shown by Buetas et al. (2024), who found that all species 
were correctly identified using PacBio sequencing compared to 
Illumina short reads using a mock community. This advantage 
is particularly evident in complex microbial assemblages, where 
short-read sequences often fail to resolve ambiguities owing to 
their limited length and reliance on overlapping fragments for 
their assembly. To retrieve as much taxonomic information as 
possible we used lower bootstrap values which may have con-
tributed to inflated assignment rates. Irrespective of this, our 
analyses revealed that many sequences that remained unclassi-
fied in the short-read data matched successfully identified taxa 
in the long-read dataset. This improved classification makes the 
long-read dataset inherently more robust and reliable for the 
comprehensive assessment of biodiversity. This increase in the 
number of classified taxa is important for biodiversity assess-
ments, as it allows for a more comprehensive understanding of 
community composition and structure. Such detailed insights 
are essential for applications such as biomonitoring and ecolog-
ical research, where understanding the full spectrum of biodi-
versity is a priority.

Both methodologies, as highlighted previously by existing re-
search, have advantages and disadvantages (Buetas et al. 2024; 
Eisenhofer et  al.  2024; Gao et  al.  2024). For example, Buetas 
et al. (2024) highlighted that Illumina provided an 8-fold higher 
throughput and lower cost than PacBio. Although in their 
study and ours, we identified a higher number of ASVs at the 
per-sample level in the Illumina data, and the overall increase 
in ASVs was not exponential in relation to the cost. This was 
similarly reported by Cook et al. (2024), who reiterated the need 
for deeper sequencing with long reads to achieve parity with the 
short-read methodology. This is further supported by the obser-
vation of unique taxa within the Illumina samples compared 
to the PacBio samples in our study. Similar to the findings of 
Buetas et al. (2024), the unique ASVs identified by the short-read 
method were of relatively low abundance (~0.004%) and preva-
lence (~5.6%). We found the same trend in the long-read dataset, 
where unique ASVs had an average abundance of ~3.5% and 
prevalence of just ~0.006%. In terms of taxonomic assignments, 
84 taxa were unique to short-read sequencing, 136 were unique 
to long-read sequencing, and 977 were shared between both 
methods. These unique taxa represented a small proportion of 
the total detected diversity—approximately 7% for short-read 
and 11% for long-read data. The higher number of unique taxa 
in the long-read dataset likely reflects the increased sequence 
length, which enhances the ability to resolve subtle differences 
between closely related organisms. Despite these differences, 
the substantial overlap in taxonomic composition demonstrates 
that both methods capture broadly consistent community pro-
files. From a biomonitoring perspective, this highlights the 
utility of long-read sequencing for enhancing taxonomic reso-
lution without compromising comparability with established 
short-read approaches. Based on our findings, even at the genus 
level, there was a large inconsistency between the PacBio and 

Illumina taxonomic assignments (Figure  S4b). This is likely 
due to the current state of databases, which are varied and not 
yet fully standardised or validated. For example, bespoke data-
bases were developed by Lo et al. (2023) for aquatic pathogens. 
Similarly, others have reported that despite PacBio sequencing 
annotating more reads to the species level, the vast majority 
were taxonomically unassigned because of the possible under-
representation of species in databases (Pasolli et al. 2019). With 
the increase in long-read methods for biomonitoring, database 
selection will have a critical impact. Our findings are in concor-
dance with other reports, as highlighted above; therefore, the 
availability of curated databases in the future will play a major 
role (Sierra et al. 2020).

Collectively, our findings comparing the utility of short- and 
long-read methods for biomonitoring across the RSN revealed 
the accuracy and possible pitfalls of each sequencing technology. 
We acknowledge several limitations exist, including but not lim-
ited to primer bias, differences in the amplified 16S rRNA gene 
regions and potential error/correction rates across the two meth-
odologies. Primer bias, in particular, can affect which taxa are 
preferentially amplified, potentially skewing community com-
position. To mitigate this, we trimmed the long-read sequences 
to match the same region amplified by the short-read primers 
and re-analysed the data using the DADA2 pipeline with the 
same downstream processing, where ordinations revealed that 
the trimmed long reads overlapped across both the original 
long-read dataset and the short-read dataset (Figures  S8, S9). 
Furthermore, taxonomic assignment and ASV richness in the 
trimmed dataset were similar to those from the short-read data 
(Figure S7). These findings confirm that primer bias and the se-
quenced regions potentially contribute to observed differences 
in community composition. However, this bias is an expected 
feature of amplicon sequencing, and our study was specifically 
designed to assess the impact of sequencing technology, rather 
than primer performance, on taxonomic resolution and com-
munity profiling. PCR primer sets can introduce variability in 
taxonomic recovery, as different regions of the 16S rRNA gene 
(e.g., V4 versus other variable regions) capture distinct portions 
of microbial diversity. Consequently, primer choice can influ-
ence apparent community composition and relative abundance 
patterns. These effects are well documented in microbial ecol-
ogy studies using short-read sequencing approaches (Apprill 
et al. 2015; Klindworth et al. 2013). The existing workflows per-
taining to error corrections are still in their infancy with long 
reads and these areas require future research to understand the 
nuances of user choices in influencing outcomes of eDNA anal-
ysis (Bylemans et al. 2025).

Despite this, we showed an increased resolution of taxonomic 
assignment using PacBio long-read sequence data, while simul-
taneously highlighting the possible inadequacy of sequencing 
depth using this platform, which can currently be achieved more 
cost-effectively using short-read technologies such as Illumina. 
It is important to reiterate that the optimal sequencing strategy 
depends on the research question, and that the specific goals or 
priorities of the study may dictate which method is chosen as 
appropriate. Overall, our data provide critical insights into the 
current molecular biomonitoring landscape and may serve as a 
valuable resource for future comparisons and subsequent bench-
marks, particularly in environmental and ecological contexts.
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