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ABSTRACT

Freshwater ecosystems are under increasing pressure from pollution, habitat degradation and climate change, highlighting the
need for reliable biomonitoring approaches to assess ecosystem health and identify the causes of biodiversity and ecosystem
service loss. Characterisation of freshwater microbiomes has the potential to be an important tool for understanding freshwater
ecology, ecosystem health and ecosystem function. High-throughput sequencing technologies, such as Illumina short-read and
Pacific Biosciences long-read sequencing, are widely used for microbial community analysis. However, the relative performance
of these approaches for monitoring freshwater microbiomes has not been well explored. In this study, we compared the perfor-
mance of long- and short-read sequencing approaches to assess archaeal and bacterial diversity in 42 river biofilm samples across
seven distinct river sites in England by targeting the 16S ribosomal RNA gene. Our findings demonstrated that longer reads gen-
erated by PacBio sequencing provide a higher taxonomic resolution, enabling the classification of taxa that remained unassigned
in the short-read Illumina datasets. This enhanced resolution is particularly beneficial for biodiversity assessments because it
improves species-level identification, which is crucial for ecological monitoring. Despite this, both sequencing methods produced
comparable bacterial community structures regarding taxon relative abundance, suggesting that the sequencing approach does
not profoundly affect the comparative assessment of community composition. However, while Illumina offers higher throughput
and cost efficiency, PacBio's ability to resolve complex microbial communities highlights its potential for studies requiring pre-
cise taxonomic identification.

1 | Introduction et al. 2016). This technology has become an increasingly

important tool in environmental research, particularly for
DNA sequencing has transformed how we study the living studying complex multi-kingdom microbial communities
world, opening new opportunities for understanding biodiver- (Thompson et al. 2017). By revealing the breadth of micro-
sity and ecosystem function (Shendure et al. 2017; Goodwin bial diversity in environmental samples, DNA sequencing can
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help researchers and environmental regulators make more in-
formed decisions regarding ecosystem management and con-
servation (Taberlet et al. 2012; Porter and Hajibabaei 2018).
Environmental DNA (eDNA) monitoring has emerged as a
transformative method and an essential tool for biomoni-
toring, with diverse applications, including pathogen detec-
tion (Farrell et al. 2021), tracking invasive species (Thomas
et al. 2020), monitoring endangered or cryptic species (Ota
et al. 2020), assessing biodiversity (Keck et al. 2022) and
identifying habitat connectivity (Littlefair et al. 2023). The
effectiveness of these approaches relies on several factors,
including the ability to classify and identify DNA markers,
including specific taxa of interest, such as pathogens and
rare or invasive species, at the highest taxonomic resolution.
Accurate and reliable sequencing technologies are pivotal for
environmental monitoring because they provide a molecular
lens through which researchers can detect and quantify bio-
diversity, track ecosystem changes and health, monitor inva-
sive species and their potential impacts, evaluate conservation
efforts and unravel complex ecological interactions with un-
precedented precision and sensitivity.

Short-read sequencing platforms, such as Illumina, have be-
come widespread owing to their availability, cost-effectiveness
and high-throughput capabilities (Bentley et al. 2008; Satam
et al. 2023). The <600bp reads (up to 2x300bp) generated
by Illumina technology are particularly effective for analysing
hypervariable regions of the 16S rRNA gene (Yang et al. 2016).
However, analyses using these shorter reads can struggle to re-
solve complex genomic regions and repetitive sequences (van
Dijk et al. 2018). In contrast, long-read sequencing platforms,
such as Pacific Biosciences (PacBio), can generate reads aver-
aging 10-25 Kb (Hon et al. 2020), offering improved resolution
of structural variants and complex genomic regions (Rhoads
and Au 2015; Logsdon et al. 2020). Although these longer
reads can span multiple repeat and hypervariable regions
simultaneously and potentially provide more accurate taxo-
nomic classifications (Callahan et al. 2019), they are typically
more expensive and have lower throughput (Amarasinghe
et al. 2020).

The contrasting properties of short- and long-read sequencing
technologies can substantially influence ecological inferences
derived from molecular data. Illumina short-read platforms
provide high-throughput, accurate sequences that are well
suited for detecting dominant taxa but may under-represent
rare or low-abundance species due to limited read length and
amplification bias (Wang et al. 2022). In contrast, PacBio
long-read sequencing generates extended fragments that cap-
ture more genetic information, revealing cryptic diversity and
providing higher taxonomic resolution (van Dijk et al. 2018).
Consequently, choosing a sequencing platform has become a
critical methodological consideration that can fundamentally
alter the ecological interpretation of molecular biodiversity
data. Previous comparative studies using Illumina and PacBio
sequencing technologies have revealed significant variations
in methodology and performance across different research
contexts. However, most comparative studies have been con-
ducted on model organisms or within well-characterised
ecosystems, limiting their applicability to diverse ecologi-
cal contexts (Ferrarini et al. 2013; Zhang et al. 2020; Galata

et al. 2021; Barthélémy et al. 2024). Although Gao et al. (2024)
described the utility of long-read data for characterising deep-
sea surface sediments, existing comparative analyses often
fail to comprehensively address how different sequencing
technologies might differentially represent complex ecologi-
cal interactions and biodiversity gradients. These limitations
create a significant research opportunity to develop a more
nuanced understanding of how sequencing technology perfor-
mance varies across different ecological contexts, particularly
in understudied aquatic ecosystems.

Our study compared short-read (Illumina, ca. 235bp) and long-
read (PacBio, ca. 1600bp) sequencing to analyse epilithic river
biofilm bacterial communities using 16S rRNA gene sequenc-
ing. We hypothesised that long-read sequencing would provide
greater taxonomic resolution and a more comprehensive under-
standing of biodiversity than short-read sequencing, particu-
larly for distinguishing closely related bacterial species (Johnson
et al. 2019; Tedersoo et al. 2018). To test this, we sequenced DNA
from 42 biofilm samples using short- and long-read sequencing
methods to compare community characteristics, including the
overlap and uniqueness of bacterial taxa detected using each
approach. By addressing the current knowledge gaps in the per-
formance and application of different sequencing approaches,
this study enhances our understanding of the optimal use of se-
quencing technologies for environmental monitoring (Ruppert
et al. 2019).

2 | Methods
2.1 | Sample Collection

Epilithic biofilm samples were collected from rivers across
England as part of the Environment Agency's River Surveillance
Network (RSN) monitoring program, following the standard
sampling method described by Kelly et al. (2020). The total
sampling campaign encompassed 2101 river biofilm samples
collected from 861 sites between 2021 and 2023; a detailed de-
scription of the methods for sample collection and short-read
sequencing is available in the Environment Agency report
(Environment Agency 2024). This study focused on a subset of
42 samples collected from seven sites twice a year in 2021, 2022
and 2023 (Figure 2). Land cover maps from UKCEH (Morton
et al. 2021) were used to describe dominant land cover types for
the upstream catchment of each site (Table S3). Samples were
obtained by scraping five stones or macrophytes into a tray con-
taining S0mL of river water. The upper surfaces were brushed
with a clean toothbrush to remove biofilms. 5mL of the biofilm
suspension was removed using a pipette and preserved in 5mL
of DNA preservation buffer (3.5M ammonium sulphate, 17 mM
sodium citrate and 13mM EDTA). Following collection, samples
were concentrated by centrifugation at 3000x g for 15+ 2min at
5°C+2°C, frozen and transported on dry ice to the UK Centre
for Ecology & Hydrology (UKCEH), Wallingford, for subsequent
analysis. Over a three-month period prior to biofilm sample col-
lection, up to five water chemistry samples were taken; this data
was used to calculate the water chemistry means. Water quality
measurements included nitrate, phosphorus and dissolved ox-
ygen levels, along with water temperature and pH. Full water
chemistry data are available in Table S3, Figure S1.

20f12

Molecular Ecology Resources, 2025

85UB017 SUOWIWOD 8A181D 3edl|dde 3y Aq peusenob 8 Ssole YO ‘SN JO'S3INJ o} Akeiq18UlUO A1 UO (SUORIPUOD-PUR-SWBHW0D A8 | 1M AeIq Ul Uo//:SdNy) SUORIPUOD pue swie | 81 88S *[6Z0z/TT/0T] uo Ariqiauliuo A8|1m ‘ABojoipAH 3 ABoj003 104 81ueD YN AQ G2002'8660-GSLT/TTTT OT/I0P/W0D A8 Areiq1jul|uo//Sdny woly papeojumod ‘0 ‘86605G.LT



Kinnex F 515f
=1
‘_’?Gr Kinnex R
297bp
1500bp

FIGURE1 | Primer positions on the 16S rRNA gene, showing the overlap of the Illumina 16SV4 primers within the 16S gene sequenced by the
Kinnex primers.
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FIGURE2 | (A)Map of the seven sites across England from which the biofilm samples were collected. Water chemistry data from the seven sites.
Nitrate (mg L) (B), dissolved oxygen (mg L") (C), pH (D) and phosphorus (mg L) (E) levels at each sample point for each location. Water chemistry
means were calculated using five chemistry samples collected over a three-month period prior to biofilm sample collection.
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2.2 | DNA Extraction

DNA was extracted from 100uL of biofilm suspension using
the Quick-DNA Faecal/Soil Microbe Kit (Zymo Research,
California, United States), with modifications to optimise the
DNA yield (Newbold et al. 2025). The extraction protocol was
adapted as follows: 500 L. of DNA/RNA Shield (Zymo Research)
was added to each sample as lysis buffer. The samples were me-
chanically disrupted using a TissueLyser II (Qiagen, Germany)
at 20Hz for 20min. 20 uL of recombinant Proteinase K (Roche,
Switzerland) was added to the lysate and incubated at 65°C for
20min. The purified DNA was eluted in 100 uL of elution buf-
fer. A negative extraction control, without sample material, was
used to monitor potential contamination. DNA concentration
was quantified using the Qubit dSDNA High-Sensitivity kit (Life
Technologies Limited) according to the manufacturer's protocol.
The extracted DNA was stored at 4°C until PCR amplification.
A detailed step-by-step extraction, PCR and library preparation
protocol is available at https://doi.org/10.17504/protocols.io.
j8nlk8em6l5r/vl.

2.3 | Sequencing

Two methods of sequencing were used to amplify the 16S rRNA
gene (Figure 1). Illumina NextSeq for short-read sequencing
(291 bp) and Pacific Biosciences Sequel II for long-read sequenc-
ing (1500 bp).

2.3.1 | Pacific Biosciences

The V1-V9 region of the 16S rRNA gene was amplified by
Novogene using the Kinnex protocol (Srinivas et al. 2025)
(primer sequences in Table S1, PCR amplification in Table S2).
The PCR products of the barcoded V1-V9 amplicons were
detected by agarose gel electrophoresis prior to process-
ing on a PacBio Sequel II sequencing platform (Novogene,
Cambridge, UK).

2.3.2 | Illumina

The V4 region of the 16S rRNA gene was amplified using spe-
cific primers (Table S1) modified to include Illumina adaptor se-
quences. In a UV-sterilised laminar flow hood, a master mix was
prepared containing 0.5pL of 2000 unitsmL~! Q5 high-fidelity
DNA polymerase, 10uL of 5x reaction buffer, 10uL of 5x high
GCenhancer (New England Biolabs, UK), 1uL ofa 10mM dNTP
mix (Bioline, UK), 0.1 uL of each 100uM forward and reverse
primer pair (Table S1) and 26.3 uL of molecular grade water. The
master mix (48uL) was dispensed into each well of a 96-well
plate, and 2 uL of template DNA was added per sample. Negative
PCR controls were also included. The thermocycling conditions
are presented in Table S2. Successful amplification was verified
by 1.5% agarose gel electrophoresis using GelRed nucleic acid
staining. PCR products were purified using a MultiScreen PCR
filter plate, resulting in 35 uL of eluted product.

The second PCR step employed a dual-indexing approach to
enable sample demultiplexing. Indexing primers were prepared

using an Opentrons liquid-handling robot, each consisting of
a forward (i5) or reverse (i7) Illumina adaptor sequence, an i5
or i7 Nextera index and an Illumina pre-adaptor sequence. The
second PCR mix contained 0.25uL of Q5 DNA polymerase, SuL
of reaction buffer, 5uL of high GC enhancer, 0.5uL of dANTPs,
5uL of the indexing primers (pre-prepared in the plate), 7.25uL
of molecular grade water and 2 uL of purified PCR product from
the first PCR step. The cycling protocol is presented in Table S2.
Amplification was confirmed using agarose gel electrophoresis.

The second-step PCR product was normalised using the NGS
Normalisation kit (Norgen Biotek, Canada) to achieve a concen-
tration of approximately 5nguL~!. The samples were pooled by
plate and quantified using a Qubit High-Sensitivity Assay Kit.
The amplicon library was prepared by diluting and pooling the
samples, followed by concentration and purification using gel
extraction. The final libraries were quantified, diluted to 1000
pM and sent to Illumina Cambridge for sequencing on a NextSeq
2000 with a P1 flow cell and 40% PhiX control.

3 | Data Analysis

Amplicon sequence reads were processed using the DADA2
pipeline (Callahan et al. 2019) implemented in R [version 4.4.2]
(R Core team 2024). Short-read and long-read sequences under-
went distinct processing workflows, with full analysis scripts for
short-read sequences available at https://github.com/amycthorpe/
amplicon_seq_processing_biofilms. For short-read analyses,
raw sequences were demultiplexed, and adaptor sequences were
trimmed using the Illumina FASTQ generation pipeline. Primers
were removed using the ‘trimLeft’ parameter, and the quality pro-
files of the forward and reverse reads were examined. Reads were
truncated when quality scores fell below Q30 and filtered using
stringent criteria, including removing reads with ambiguous bases
and a maximum expected error threshold of 2. The DADA?2 algo-
rithm learned error rates from a 100 million base subset, with vi-
sualisations confirming the alignment of the estimated rates with
the observed data. Reads were then dereplicated into unique se-
quences based on the error rate model, and the core sample infer-
ence algorithm was used to identify true sequence variants. Paired
forward and reverse reads were aligned and merged, requiring a
minimum of 12-base overlap. Chimeric sequences were identified
and removed, resulting in an amplicon sequence variant (ASV)
abundance table. Long-read analyses followed a modified proto-
col (https://benjjneb.github.io/LRASManuscript/LRASms_fecal.
html), with primers removed and reads trimmed to a minimum
length of 1200bp and a quality threshold of three (filterAnd Trim(n-
ops2, filts2, minQ =3, minLen =1200, maxLen =1600, maxN =0,
rm.phix=FALSE, maxEE =2)). Subsequent demultiplexing gener-
ated a sequence table with sample-specific counts. Taxonomy was
assigned to each ASV using the naive Bayesian classifier (Wang
et al. 2022) with a minimum bootstrap confidence of 60 against the
SILVA v138.1 reference database (Quast et al. 2012) for Illumina
and PacBio 16S rRNA gene sequences.

The sequences were rarefied to a uniform sequencing depth by
examining rarefaction curves and identifying the sequencing
depth at which the richness plateaued (Figure S6). Both long-
and short-read data were rarefied to 3000 reads per sample to
conserve the majority of samples. All negative extraction and
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PCR controls and a small number of samples (five) did not meet
the rarefaction depth and were therefore removed. Sequences
assigned as mitochondria and chloroplasts were removed from
the datasets. These accounted for 31% and 32% of the total reads
in the short- and long-read data, respectively.

Downstream analyses were performed using R [version 4.4.2].
Counts, taxonomy and metadata files were loaded into Microeco
(Liu et al. 2021) for processing and visualisation. To assess dif-
ferences in the number of ASVs between sequencing technol-
ogies, we used a Wilcoxon signed-rank test followed by a linear
mixed-effects model to evaluate the direction of the effect.
Taxonomic assignment proportions across ranks were compared
using the Mann-Whitney U test. Differences in the relative abun-
dance of taxa between sequencing platforms were tested using a
Wilcoxon rank-sum test with Bonferroni correction for multiple
comparisons.

To examine community composition similarities between sam-
ple types and sequencing platforms, Principal Coordinates
Analysis (PCoA) based on Bray-Curtis dissimilarity at the
genus level was performed, along with a Procrustes analysis to
assess concordance between ordinations. Prior to analysis, ASV
identifiers were replaced with their corresponding taxonomic
names from the kingdom to genus level to ensure meaningful
comparison of community structure between sequencing meth-
ods. Additionally, Deming regression was used to investigate
the agreement between the number of reads assigned to each
phylum across sequencing types. All statistical analyses were
performed in R, with significance thresholds set at p <0.05.

To compare short- and long-read ASVs in the sequence space and
identify overlapping short- and long-read ASVs, we used NCBI
BLAST (Camacho et al. 2009), with the following parameters: ‘-
id 80 —query-cover 90 —subject-cover 90 -more-sensitive —outfmt
100’. The output was filtered to retain sequences with at least
90% identity and a minimum length of 235bp for subsequent
analysis. This length threshold was chosen as it represents 10%
below the median short-read length. Short-read ASVs that did
not map to long-read ASVs were considered unique sequences.

To assess potential primer bias, the long-read sequences were
trimmed using the specific primer sequences employed in the
short-read protocol to isolate the corresponding amplicon re-
gion. These trimmed long-read sequences were then processed
using the same DADAZ2 pipeline as the original long-read data.
All subsequent analyses were conducted in R using the same
workflow to ensure consistency and comparability.

The relevant code for the analysis and figures, and raw data
can be found at: https://doi.org/10.5281/zenodo.17432155 and
https://www.ncbi.nlm.nih.gov/bioproject/1353123.

4 | Results

4.1 | River Surveillance Network Biofilms

At each sampling point (Figure 2a), epilithic biofilms were

collected to assess bacterial biodiversity, complemented by the
concurrent collection of relevant water chemistry and nutrient

data (Figure 2b-e) to understand how biotic and abiotic factors
shape the community composition of bacteria within the RSN.
Water chemistry measurements, including pH, conductivity and
nutrient concentrations (e.g., nitrate, phosphate), showed varia-
tion across sites, with each parameter displaying a broad distri-
bution (Table S3). However, potential physicochemical drivers
of sequencing technology differences were not further explored
due to the limited number of sites (n =7), which constrained our
ability to draw statistical inferences.

4.2 | Short- and Long-Read Taxonomic
Compositions Are Similar

To compare the two sequencing approaches (short Illumina
vs. long PacBio reads), we assessed community composition
and the relative abundance of assigned taxa. While both meth-
ods recovered similar overall compositions at the phylum and
genus levels, significant differences were observed in the rela-
tive abundance of several taxa based on a Wilcoxon rank-sum
test with Bonferroni correction (Figure 3a,b). At the phylum
level, Actinobacteriota (p=0.0005), Myxococcota (p<0.0001),
Gemmatimonadota (p=0.00012) and Chloroflexi (p=0.014)
were significantly more abundant in the short-read dataset.
At the genus level, one notable difference was a significantly
higher abundance of Ferruginibacter (p=0.0038) in the long-
read dataset.

An ordination analysis to assess the similarity between short-
read and long-read results plot (Figure 3c) showed partial over-
lap between the two sequencing methods, indicating shared
community composition. To further quantify the similarity be-
tween the two datasets, a Procrustes analysis was conducted
(Figure 3d). The results showed a strong concordance between
short-read and long-read sequencing compositions (R>=0.973,
p=0.0001), indicating that, despite methodological differ-
ences, both approaches captured comparable community
structures. The Procrustes error plot visually represents the
alignment between the datasets, with minimal deviation in
most cases.

Furthermore, we assessed the number of reads assigned to bac-
terial phyla across sequencing methods to determine whether
either approach exhibited taxonomic biases. We found a strong
correlation (R?=1.02, Deming regression) between short-read
and long-read sequencing abundances (Figure 3e). The rela-
tionship between short and long reads is based on a Deming
regression analysis, which yielded a slope of 1.02 (95% confi-
dence interval (CI): 0.98-1.06), indicating that, for most phyla,
short-read sequencing and long-read sequencing are highly
comparable.

However, small phylum-specific trends were evident.
Verrucomicrobiota, for example, exhibited higher read counts
in the long-read dataset, whereas Cyanobacteria were relatively
more abundant in the short-read dataset. These deviations sug-
gest that certain bacterial phyla may be differentially repre-
sented depending on the sequencing method, potentially due
to differences in primer binding efficiency, amplified fragment
length, error profiles or taxonomic classification accuracy be-
tween methods.
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FIGURE 3 | Comparison of bacterial taxon composition between short- (orange) and long-read (purple) sequences. Comparison of the top 15
abundant taxa at the phylum (A) and genus (B) levels for short- and long-read sequencing. Significant levels indicated by * show significant differenc-
es between long- and short-read relative abundances for each taxa. PCoA of paired samples for short- and long-read sequencing (C). (D) Procrustes
error plot for paired short- and long-read samples (p =0.00001). (E) Scatter plot showing the relationship between short- and long-read abundance
for each phylum across all the samples. The top eight phyla are colour-coded, and the circle size is proportional to the mean number of reads per

phylum in each paired sample. The dashed black line represents the line of perfect fit (1:1), and the blue line depicts the Deming regression line, with

a slope of 1.02.

4.3 | Improved Taxonomic Resolution With
Long Reads

The number of ASVs was 62% higher in long-read sequenc-
ing (10,480 ASVs) than in short-read sequencing (6507 ASVs)
after rarefaction; the difference between pre- and post-
rarefaction was not of note (Figure S5 and Table S4). At the
per-sample level, paired analysis (Figure 4a) revealed a sig-
nificant difference in the number of ASVs produced by each
sequencing method (Wilcoxon signed-rank test: V'=550.5,
p=0.0027), with the short-read method producing signifi-
cantly more ASVs.

A linear mixed-effects model (LMM) was used to assess the
effect of sequencing type on the number of observed ASVs,
while accounting for paired samples (Figure 4b). The model
included sequencing type as a fixed effect and sample iden-
tity as a random effect to account for variations among sam-
ples. The model showed that short-read sequencing detected
significantly more ASVs than long-read sequencing, with
an estimated increase of 65.38 ASVs (+18.94 SE, t=3.45,
p=0.00144) per sample. The random effect of sample identity
had a variance of 10,155 (SD =100.77), indicating a substantial
between-sample variability. The residual variance was 6636
(SD =81.46), reflecting the within-sample variation after ac-
counting for sequencing type.

We assessed the proportion of taxonomic assignments across
various ranks to determine whether the sequencing type af-
fected taxonomic resolution. At both the kingdom and phylum
levels, there were no significant differences in the percentage
of taxa assigned between the short- and long-read sequencing
methods; 100% of the taxa were assigned at these ranks using
both approaches. At the class level, 98.9% of the taxa were
assigned using short-read sequencing, compared to 99.6%
with long-read sequencing—a small but statistically signifi-
cant difference (p=0.02; Mann-Whitney U test). More pro-
nounced differences were observed at lower taxonomic ranks.
Long-read sequencing resulted in significantly higher pro-
portions of taxonomic assignment at the order (4.4% increase,
p<0.0001), family (5.8% increase, p<0.0001) and genus
(11.6% increase, p <0.0001) levels compared to the short-read
method (Figure 4c).

4.4 | Unique Features of Sequencing Type

Given the substantial taxonomic overlap between the se-
quencing methods, we evaluated the sequence similarity of
the short- and long-read ASVs to determine which were truly
unique. Using NCBI BLAST (Camacho et al. 2009), we found

that on average 83.8% (58%-96%) of short-read ASVs aligned
with long-read ASVs (Figure S4a) within the expected 350-
750bp region of the long-read 16S sequences, corresponding
to the V4 primers used for short-read amplicon sequencing
(Figure S3).

To test whether sequence identity cutoffs in BLAST influence
mapping of short-read ASVs to long-read sequences, we exam-
ined the alignments at different identity thresholds. At a relaxed
identity cutoff (90%), over 95% of short-read ASVs had a corre-
sponding long-read match, whereas at a stringent 100% identity
cutoff, this proportion dropped to ~60% (Figure S4a). Notably,
short-read ASV length (230bp vs. 253 bp) did not affect mapping
success, as both lengths exhibited comparable match percent-
ages (Figure S4c). These lengths were selected based on the
minimum and median short-read ASV lengths.

Importantly, we analysed the composition of unique short-read
ASVs that had no matches in the long-read dataset and found
that they were distributed across multiple phyla. Interestingly,
these short-read ASVs were predominantly associated with taxa
of low prevalence (percentage found in all samples, average
5.6%) and abundance (percentage occurring in total ASVs, av-
erage 0.004%) (Figure 5b). The reverse was also true for unique
long-read ASVs that had no matches to the short-read dataset.
These long-read ASVs are mainly associated with taxa of low
prevalence (average 3.5%) and abundance (average 0.006%)
(Figure 5a).

A comparison of taxonomic annotations revealed that 977 taxa
were shared between the short-read and long-read datasets,
while 84 taxa (~7% of the whole dataset) were unique to short-
read sequencing and 136 taxa (~11% of the whole dataset) were
unique to long-read sequencing (Figure 5c). These counts were
based on full taxonomic annotations from each dataset.

5 | Discussion

The dynamic spatial and temporal complexity of river ecosys-
tems creates habitats that drive the remarkable diversity and
ecological richness of aquatic microbial communities. Epilithic
river biofilms represent intricate ecological niches where many
environmental parameters may influence the structure and
composition of microbial communities (Shibabaw et al. 2021).
Consequently, the accurate characterisation of these microbial
communities requires molecular approaches that can capture
the subtle taxonomic and functional diversity inherent in these
dynamic systems. To comprehensively investigate the microbial
landscape across seven distinct river sites in England, we used
two sequencing technologies, Illumina short-read and PacBio
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FIGURE 4 | Comparison of taxonomic assignment and ASV detection between long-read (purple) and short-read (orange) sequencing methods.
(A) Paired comparison of ASV counts per sample, analysed using the Wilcoxon signed-rank test (V=550.5, p=0.0027). (B) Relationship between

ASV counts detected by short- and long-read sequencing, where the dashed black line represents a 1:1 ratio (perfect agreement), and the red line

represents the fitted linear model (LLM). Short-read sequencing detected significantly more ASVs per sample than long-read sequencing, with an

estimated increase of 65.38 ASVs (£18.94 SE, t=3.45, p=0.00144) per sample. (C) Percentage of assigned taxa at different taxonomic levels for long-

and short-read sequencing, Mann-Whitney U test to test for significant difference between sequencing types, p values are represented by *.

long-read sequencing, targeting the 16S ribosomal RNA (rRNA)
gene. This approach enabled a comparative assessment of the
microbial community structure, providing the opportunity to
distinguish the capabilities of each sequencing platform in re-
solving complex bacterial assemblages embedded within river
biofilm environments.

Our analysis revealed that, for 16S rRNA-based taxonomic as-
sessments of river biofilms, the choice of sequencing method
(Illumina short-read or PacBio long-read) did not significantly

influence the relative abundance of taxa within bacterial com-
munities. Despite the disparity in read length and taxonomic
resolution, both sequencing platforms produced broadly com-
parable abundance profiles across major taxonomic groups.
This suggests that short-read sequencing, although limited in
its ability to resolve taxa at deeper levels, still captures reliable
patterns in community structure. Consequently, it remains
a practical and informative approach for studies focused on
broad-scale surveys or relative abundance patterns. These find-
ings are consistent with previous studies (e.g., Butt et al. 2022;
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(purple) data, and the overlap of the datasets.

Buetas et al. 2024), which reported largely concordant diversity
measures between sequencing platforms, and support the use
of either method depending on the specific ecological question
being asked.

Although long-read sequencing improved taxonomic res-
olution, particularly at finer levels, it did not significantly
alter per-sample richness or diversity estimates (e.g., Chaol
or Shannon; Figure S2). It must, however, be noted that the
environmental gradients are the likely selecting factors re-
flected in the Procrustes analysis, which may be a stronger
driver compared to technical variabilities in read length.
Interestingly, while the total number of unique ASVs across
the dataset was higher in the long-read data, individual sam-
ples contained significantly more ASVs in the short-read data.
This likely reflects greater sequencing depth in the short-read
dataset, allowing detection of more low-abundance variants
per sample. In contrast, the higher resolution of long-read data
can split similar sequences into more distinct ASVs across
the dataset, inflating the total count. This inflation of total
ASV count in the long-read data highlights how sequenc-
ing platform choices must be considered when interpreting

ASV-based metrics. Further research will be needed to deter-
mine whether the higher per-sample ASV counts observed in
the Illumina dataset reflect genuine biological diversity, such
as improved detection of rare taxa resulting from greater se-
quencing depth. It is also possible that these higher counts are
partially inflated by technical artefacts inherent to short-read
data, including residual sequencing errors or undetected chi-
meras that denoising algorithms like DADA2 may not com-
pletely resolve (Haas et al. 2011).

Importantly, our findings demonstrate that long-read sequenc-
ing provides superior taxonomic resolution compared to short-
read methods for analysing microbial communities within river
biofilms. This aligns with a report by Gao et al. (2024), who also
reported an increased taxonomic resolution of ASVs, including
precision at the species and strain levels. However, we did not
perform species-level taxonomic comparisons, as only a small
proportion of ASVs could be confidently assigned to species
across both sequencing methods. This limited resolution likely
stems from incomplete reference databases for freshwater mi-
crobes, combined with the challenges of accurate species-level
classification using current algorithms, especially for short-read
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data. Consequently, we focused our comparisons on higher
taxonomic ranks where assignments were more robust and
informative.

PacBio's ability to generate longer contiguous sequences facili-
tated a more accurate taxon classification, particularly at deeper
taxonomic levels, such as genera and species. This was also re-
cently shown by Buetas et al. (2024), who found that all species
were correctly identified using PacBio sequencing compared to
Illumina short reads using a mock community. This advantage
is particularly evident in complex microbial assemblages, where
short-read sequences often fail to resolve ambiguities owing to
their limited length and reliance on overlapping fragments for
their assembly. To retrieve as much taxonomic information as
possible we used lower bootstrap values which may have con-
tributed to inflated assignment rates. Irrespective of this, our
analyses revealed that many sequences that remained unclassi-
fied in the short-read data matched successfully identified taxa
in the long-read dataset. This improved classification makes the
long-read dataset inherently more robust and reliable for the
comprehensive assessment of biodiversity. This increase in the
number of classified taxa is important for biodiversity assess-
ments, as it allows for a more comprehensive understanding of
community composition and structure. Such detailed insights
are essential for applications such as biomonitoring and ecolog-
ical research, where understanding the full spectrum of biodi-
versity is a priority.

Both methodologies, as highlighted previously by existing re-
search, have advantages and disadvantages (Buetas et al. 2024;
Eisenhofer et al. 2024; Gao et al. 2024). For example, Buetas
et al. (2024) highlighted that Illumina provided an 8-fold higher
throughput and lower cost than PacBio. Although in their
study and ours, we identified a higher number of ASVs at the
per-sample level in the Illumina data, and the overall increase
in ASVs was not exponential in relation to the cost. This was
similarly reported by Cook et al. (2024), who reiterated the need
for deeper sequencing with long reads to achieve parity with the
short-read methodology. This is further supported by the obser-
vation of unique taxa within the Illumina samples compared
to the PacBio samples in our study. Similar to the findings of
Buetas et al. (2024), the unique ASVs identified by the short-read
method were of relatively low abundance (~0.004%) and preva-
lence (~5.6%). We found the same trend in the long-read dataset,
where unique ASVs had an average abundance of ~3.5% and
prevalence of just ~0.006%. In terms of taxonomic assignments,
84 taxa were unique to short-read sequencing, 136 were unique
to long-read sequencing, and 977 were shared between both
methods. These unique taxa represented a small proportion of
the total detected diversity—approximately 7% for short-read
and 11% for long-read data. The higher number of unique taxa
in the long-read dataset likely reflects the increased sequence
length, which enhances the ability to resolve subtle differences
between closely related organisms. Despite these differences,
the substantial overlap in taxonomic composition demonstrates
that both methods capture broadly consistent community pro-
files. From a biomonitoring perspective, this highlights the
utility of long-read sequencing for enhancing taxonomic reso-
lution without compromising comparability with established
short-read approaches. Based on our findings, even at the genus
level, there was a large inconsistency between the PacBio and

Illumina taxonomic assignments (Figure S4b). This is likely
due to the current state of databases, which are varied and not
yet fully standardised or validated. For example, bespoke data-
bases were developed by Lo et al. (2023) for aquatic pathogens.
Similarly, others have reported that despite PacBio sequencing
annotating more reads to the species level, the vast majority
were taxonomically unassigned because of the possible under-
representation of species in databases (Pasolli et al. 2019). With
the increase in long-read methods for biomonitoring, database
selection will have a critical impact. Our findings are in concor-
dance with other reports, as highlighted above; therefore, the
availability of curated databases in the future will play a major
role (Sierra et al. 2020).

Collectively, our findings comparing the utility of short- and
long-read methods for biomonitoring across the RSN revealed
the accuracy and possible pitfalls of each sequencing technology.
We acknowledge several limitations exist, including but not lim-
ited to primer bias, differences in the amplified 16S rRNA gene
regions and potential error/correction rates across the two meth-
odologies. Primer bias, in particular, can affect which taxa are
preferentially amplified, potentially skewing community com-
position. To mitigate this, we trimmed the long-read sequences
to match the same region amplified by the short-read primers
and re-analysed the data using the DADA?2 pipeline with the
same downstream processing, where ordinations revealed that
the trimmed long reads overlapped across both the original
long-read dataset and the short-read dataset (Figures S8, S9).
Furthermore, taxonomic assignment and ASV richness in the
trimmed dataset were similar to those from the short-read data
(Figure S7). These findings confirm that primer bias and the se-
quenced regions potentially contribute to observed differences
in community composition. However, this bias is an expected
feature of amplicon sequencing, and our study was specifically
designed to assess the impact of sequencing technology, rather
than primer performance, on taxonomic resolution and com-
munity profiling. PCR primer sets can introduce variability in
taxonomic recovery, as different regions of the 16S rRNA gene
(e.g., V4 versus other variable regions) capture distinct portions
of microbial diversity. Consequently, primer choice can influ-
ence apparent community composition and relative abundance
patterns. These effects are well documented in microbial ecol-
ogy studies using short-read sequencing approaches (Apprill
et al. 2015; Klindworth et al. 2013). The existing workflows per-
taining to error corrections are still in their infancy with long
reads and these areas require future research to understand the
nuances of user choices in influencing outcomes of eDNA anal-
ysis (Bylemans et al. 2025).

Despite this, we showed an increased resolution of taxonomic
assignment using PacBio long-read sequence data, while simul-
taneously highlighting the possible inadequacy of sequencing
depth using this platform, which can currently be achieved more
cost-effectively using short-read technologies such as Illumina.
It is important to reiterate that the optimal sequencing strategy
depends on the research question, and that the specific goals or
priorities of the study may dictate which method is chosen as
appropriate. Overall, our data provide critical insights into the
current molecular biomonitoring landscape and may serve as a
valuable resource for future comparisons and subsequent bench-
marks, particularly in environmental and ecological contexts.
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