

A National Assessment of Natural Flood Management and Its Contribution to Fluvial Flood Risk Reduction

¹Sayers and Partners LLP, Oxfordshire, UK | ²Newcastle University, Newcastle upon Tyne, UK | ³Tyndall Centre for Climate Change Research, School of Environmental Sciences, University of East Anglia, Norwich, UK | ⁴University of Manchester, Manchester, UK | ⁵UK Centre for Ecology & Hydrology, Wallingford, UK | ⁶School of Geography, Queen Mary University of London, London, UK

Correspondence: P. B. Sayers (paul.sayers@sayersandpartners.co.uk)

Received: 18 June 2025 | Revised: 13 September 2025 | Accepted: 21 October 2025

Funding: This work was supported by Natural Environment Research Council, NE/T013931/1, BB/Z516168/1; British Academy, IF\220114.

Keywords: climate change adaptation | flood risk reduction | future flood explorer | Great Britain | landscape-scale planning | national assessment | natural flood management | sustainable development

ABSTRACT

The desire to promote Natural Flood Management (NFM) has not yet been matched by implementation. In part, this reflects the lack of scientific evidence regarding the ability of NFM measures to contribute to risk reduction at the national scale. Broad scale understanding, as exemplified for Great Britain in this paper, is necessary evidence for policy development and a prerequisite for implementation at scale. This does not imply a lack of confidence in the wider benefits that NFM provide (for biodiversity, carbon sequestration, well-being and many others), but without credible quantified flood risk reduction evidence, progress has been slow. This paper integrates national-scale hydrological models (using SHETRAN and HBV-TYN) and fluvial flood risk analysis (using the Future Flood Explorer, FFE) to quantify the flood risk reduction benefits of NFM across Great Britain under conditions of future climate and socio-economic change. An optimisation of these benefits is presented considering alternative NFM policy ambitions and other demands on land (urban development, agriculture, and biodiversity). The findings suggest NFM has the potential to make a significant contribution to national flood risk reduction when implemented as part of a portfolio of measures. An optimisation through to 2100 suggests investment in NFM achieves a benefit-to-cost ratio of ~3 to 5 (based on the reduction in Expected Annual Damage (EAD) to residential properties alone). By the 2050s, this equates to an ~£80 m reduction in EAD under a scenario of low population growth and a 2°C rise in global warming by 2100. This increases to £110 m given a scenario of high population growth and a 4°C rise. Assuming current levels of adaptation continue in all other aspects of flood risk management, this represents ~9%-13% of the reduction in EAD achieved by the portfolio as a whole. By the 2080s, the contribution of NFM to risk reduction increases to ~£110 and ~£145 m under these two scenarios. These figures are based on the reduction in EAD to residential properties alone, and do not include the substantial co-benefits that would also accrue.

1 | Introduction

In recent years, Nature-based Solutions (NbS) have emerged as central to Sustainable Development (e.g., Seddon et al. 2021; UNEA 2022) and for fluvial flood management (Howarth

et al. 2025). Recognising that NbS provides simultaneous benefits for both people and nature, Natural Flood Management (NFM) aligns with this objective (e.g., Environment Agency 2018, 2025). Echoing similar international approaches like Engineering with Nature (Bridges et al. 2014), NFM in

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2025 The Author(s). Journal of Flood Risk Management published by Chartered Institution of Water and Environmental Management and John Wiley & Sons Ltd.

the UK includes methods such as restoring functional floodplains, enhancing soil infiltration, and modifying surface vegetation to increase roughness (Nicholson et al. 2020; Black et al. 2021; Cooper et al. 2021; Quinn et al. 2022). In all its forms, NFM strives to work with natural processes to 'slow the flow' (WWF 2007) and maintain the dynamic stability of landscapes essential for healthy ecosystems while providing wider benefits (e.g., Sayers et al. 2025).

The notion of resilience is increasingly positioned at the heart of flood risk management (FRM), recognising that 'resilience' is not the same as 'protection' (HM Government 2016). This reinforces the sentiment that to succeed as a society, we need to 'learn to manage risk and not simply seek to avoid it' (Walport and Craig 2014). This context is crucial in promoting NFM, given that NFM does not directly equate to conventional 'flood protection' but contributes to the management of flood risk and simultaneously other societal goals (e.g., Evans et al. 2004; Sayers et al. 2013).

The heuristics of this narrative are well established and reflected in framing natural capital assets and the value they provide. However, measures to compare interventions, such as costs and benefits calculations, are important in making policy decisions (Brown et al. 2018) and quantified evidence on the national-scale opportunity NFM affords remains elusive. In the absence of quantified evidence, progress towards implementation remains sporadic (e.g., Wells et al. 2020). Pilot schemes (e.g., Defra 2022) and FRM plans that seek to embed NFM alongside other measures (e.g., Jenkins et al. 2025) continue to gather pace.

The lack of national-scale evidence on the flood risk reduction afforded by NFM continues to act as a brake on uptake. This in turn limits our ability to transform FRM from an approach that embeds a 'bias to build' flood defences to one that promotes FRM as a multiple objective endeavour supporting Sustainable Development (e.g., Sayers et al. 2014, 2025). This paper addresses this important knowledge gap with a focus on fluvial flood risk in Great Britain. For the first time, the national scale flood risk reduction benefits of NFM across Great Britain under conditions of future change are presented. By focusing exclusively on NFM's role in economic flood risk reduction to residential properties, this paper deliberately excludes quantitative consideration of wider benefits such as biodiversity, carbon sequestration, and well-being. While these additional benefits are central to the philosophy of NFM, they are not considered here to maintain a clear focus on fluvial flood risk. If included, these additional benefits would add significantly to the case for implementation (Morris et al. 2024).

2 | Method

Flood risk responds to multiple drivers varying in space and time. This includes the existing pattern of land use and flood management measures but also climate change and development pressures. NFM will seldom be a complete solution in response to these risks but instead form part of a broader portfolio of measures that in combination seek to manage flood risk (e.g., Evans et al. 2004; Sayers et al. 2014). Equally, FRM choices are

always influenced by, and influence, other sectors and their priorities. Any credible assessment of the benefits of NFM needs to reflect these interactions. This is made difficult because of the continued challenges in representing the detail of any single NFM intervention on hydrological response (e.g., Dadson et al. 2017), the interactions between NFM and other measures within a portfolio of FRM measures, and the relative priority given to NFM and other land use demands. These difficulties are compounded when attempting to do so in the context of multiple future scenarios (e.g., Sayers et al. 2016).

The method developed here addresses these challenges and provides new insight into the role NFM may play in managing future fluvial flood risk as part of a national adaptation portfolio. To do so, a series of NFM implementation scenarios for Great Britain are developed that reflect four levels of policy ambition (maximum, high, moderate and low). These are developed based on consideration of not only the physical suitability of a catchment for NFM but also competing land use demands (such as urban development, biodiversity (conservation and restoration), and agricultural production). Two national scale hydrological models (SHETRAN and HBV-TYN) are used to assess the hydrological changes of the NFM implementation scenarios under different population growth and climate change futures (details are given in the 'Representation within the assessment of flood risk' section). The influence of NFM measures on flood flows is translated to a change in flood risk (using the Future Flood Explorer, FFE) and combined with an estimate of the wholelife implementation cost to support a spatial optimisation of the return on investment in NFM through to the 2080s (using the Adaptation Explorer). The FFE and associated Adaptation Explorer toolset have been developed to provide an emulation of the national flood risk system (sources, pathways, and receptors) that faithfully reflects present day hazard, exposure and vulnerability data from across Great Britain (Sayers et al. 2015, 2020, 2022). The structure of the emulation has been specifically designed to enable a credible exploration of how present-day flood risk may change under a range of alternative climate and socioeconomic projections, and how effective different adaptation policies may be in offsetting these changes. The workflow is summarised in Figure 1 and discussed in detail below.

2.1 | Exogenous Pressures

Climate change and socio-economic development are considered here as external pressures not influenced by flood management choices. However, NFM at scale has the potential to significantly contribute to carbon sequestration and climate mitigation (e.g., Environment Agency 2022). This paper focuses on climate adaptation and the role NFM plays in flood risk reduction.

2.1.1 | Climate Projections

Two climate scenarios are considered: a 2°C and 4°C rise in Global-Mean-Surface-Temperature (GMST) from pre-industrial times by 2100. A two-step approach determines the change in peak fluvial flows. The ability of NFM to moderate these changes is modelled using two national scale hydrological models (see later). Each model has been driven by the same UKCP18

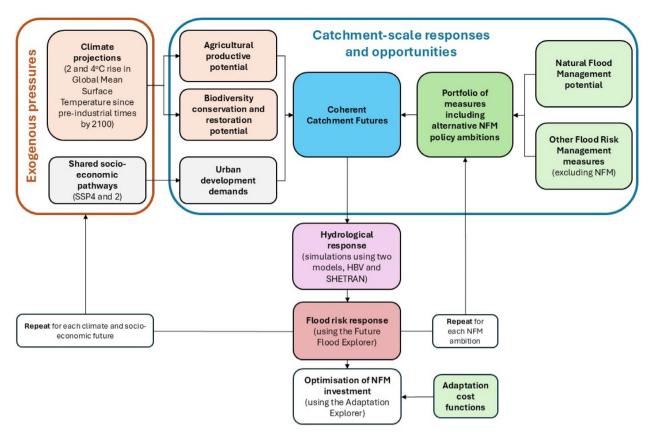


FIGURE 1 | Analysis framework—Workflow of scenarios and models used to assess the NFM flood risk reduction benefits and investment costs.

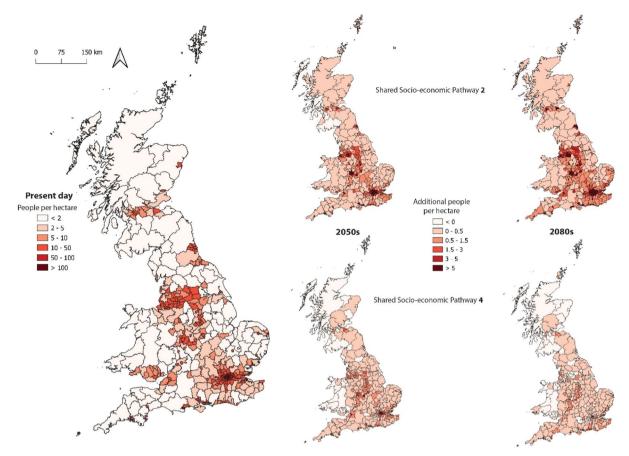
Regional Climate Model (RCM) ensembles (Murphy et al. 2018), as detailed by (Smith et al. 2024a, 2024b). The RCMs provide continuous daily timeseries of meteorological variables at a 12km spatial resolution to provide a spatially coherent assessment of the change in river flows under a range of future land use assumptions as discussed later in this paper.

2.1.2 | Population Change

Two of the five UK-scale Shared Socio-economic Pathways (UK-SSPs) (Cambridge Econometrics 2019) are used to determine future population growth and, by extension, urban development through to the 2080s. They are:

- UK-SSP2 (middle of the road): This scenario assumes a
 continuation of current trends without significant change.
 The UK's population is projected to increase from around
 64.2 million (today, defined here as 2019) to 76.6 million
 by 2050, and 83.2 million by 2080. The growing population and development tend result in increasingly dense
 cities.
- UK-SSP4 (inequality): This scenario reflects a future with increased social and economic inequalities. The UK's population is expected to reach 71 million by 2050, then decline to 68.8 million by 2080. The development distribution is more disparate than in SSP2, reflecting increasing inequality across the UK in terms of investment and economic opportunity, with an increasing divide between wealthier

and poorer regions. Development remains focused in and around densely populated urban areas.


The UK-SSP provides Local Authority scale population growth projections and is used here as the driver of residential development (Figure 2).

2.2 | Competing Land Use Demands

NFM often competes for land with urban development and agriculture. Conservation and restoration also require land, sometimes in collaboration with NFM but not always. To understand these competing demands high-resolution spatial projections for each are combined with a spatial understanding of suitability for NFM measures to create a set of coherent catchment development futures that prioritize NFM to a greater or lesser extent. These high-resolution projections of competing demands on land and how they are used to create alternative land-use futures (that reflect different scales of NFM policy ambition) are discussed below.

2.2.1 | Urban Demand—Land for Residential Development

New development is assumed to be needed when the population is projected to increase. The spatial distribution of that development will respond to local 'attractors' (such as proximity to transport hubs) and 'constraints' (such as the protection

FIGURE 2 | Present and future variation in population. *Left*: Present-day distribution of population by local authority. *Right top*: Additional people per hectare by Local Authority—Shared Socio-economic Pathway 2 for (a) 2050s and (b) 2080s. *Right bottom*: Additional people per hectare by Local Authority—Shared Socio-economic Pathway 4 for (a) 2050s and (b) 2080s. *Source*: After Cambridge Econometrics 2019.

of greenspace or floodplain development planning controls) of development. Both are included here within the coupled multicriteria evaluation and cellular-automata Urban Development Model (UDM, Ford et al. 2019; Lomax et al. 2022) to downscale the population projections at a Local Authority District (LAD) scale associated with SSP2 and SSP4 to spatial patterns of development (using policies consistent with the SSP narratives). The UDM is run twice for each population projection, firstly assuming development is unconstrained by floodplain, and secondly assuming the floodplain (defined by the 1in100 year undefended event) is avoided. These results are then combined within the FFE to reflect realistic floodplain development policies (as defined by Sayers et al. 2020). This enables the significant differences in floodplain development contexts across Local Authorities to be considered. For example, the City of Hull lies in the floodplain of the Humber, and hence future development (as in the past) is likely to be in the floodplain. Other Local Authorities have a much greater opportunity to avoid the floodplain, with less than 10% of new developments in recent years taking place in the floodplain. This combination of the UDM and FFE results in a highresolution (100 m grid) spatial distribution of future residential development under each of the SSP scenarios (Figure 3).

We note that not all UK SSPs suggest an increase in population from present day; some suggest a significant decrease for some LADs. Trends other than population may also lead to reduced demand for housing (such as occupancy rates). The opportunity provided for reclassifying land in response to a reducing population is, however excluded here. Expansion of non-residential property and municipal service infrastructure (rail, roads, power, schools, etc.) is also excluded.

2.2.2 \mid Agricultural Demand—Land to Maintain Food Production

Maintaining national food security is increasingly a significant influence within the debate on future land use (Defra 2021). Climate change influences both temperature and precipitation patterns and impacts the suitability for crop growth and alters potential yields across the UK (Warren et al. 2023). The results from the CropNet Wheat yield model (Hayman et al. 2024) are used here to provide insights into spatial variation in potential wheat yields (grown under rainfed conditions and subject to ideal agricultural management) given climate-driven changes in key meteorological inputs (e.g., solar radiation, temperature, and precipitation). The wheat results are used to produce a high-resolution spatial indication (on a 1 km grid) of where yields are likely to increase and decrease in the future (Figure 4). The absolute increase in yield is not important here. Instead, the direction of change is used to determine where agricultural land may or may not be suitable for conversion to NFM (see later). Although

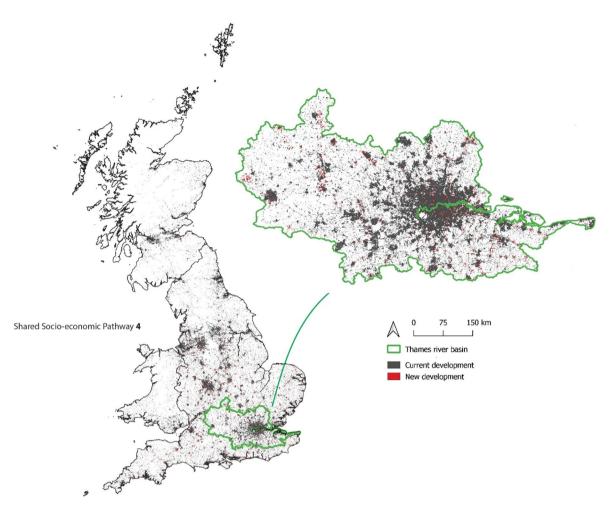
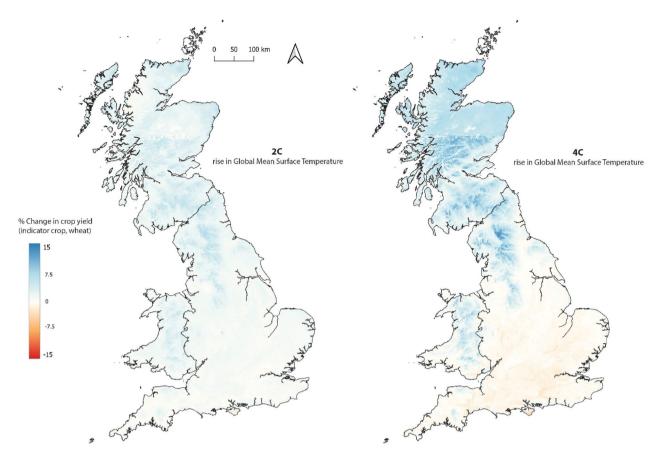


FIGURE 3 | Present and future variation in urban development—Great Britain and to illustrate at a large scale the Thames basin.

individual crops may respond to climate change in different ways, wheat is the UK's dominant arable crop by both area and total production (Defra 2023), and its response is likely to be an important indicator of the viability of many current arable rotations. When the climatic suitability of many of the UK's other major crops has been examined, many show a similar north–south polarization in the impacts of climate change (Redhead et al. 2025), such that the relative change in wheat yield is likely to be a reasonable proxy for future agricultural land priorities, outside of dramatic shifts in the type of crops the UK grows (Redhead et al. 2025).


2.2.3 | Biodiversity Demand—Land to Respond to Conservation and Restoration Priorities

Climate change has already impacted the geographical range of many species (Warren et al. 2023). Across Great Britain, continued loss of species richness is projected due to the decline in suitable climate space for insect pollinators, such as bees, wasps, butterflies, moths, and hoverflies (Warren et al. 2018). The location and size of refugia for terrestrial biodiversity (i.e., areas which remain climatically suitable for most taxa), including fungi, plants, invertebrates, and vertebrates, are also expected to change (and decrease) – Warren et al. 2018. Securing the 'right' land for conservation and restoration will be central in seeking

to arrest the decrease in biodiversity. High-resolution spatial projections of conservation and restoration suitability across Great Britain under conditions of climate change are used to influence the choices around NFM (see later). Each 1km grid is assigned a qualitative score of 1 to 100 reflecting its potential importance for conservation and restoration in each climate future (Warren et al. 2023). The importance scores across GB are ranked from the lowest to highest relative opportunities. These results are then used to enable priority biodiversity land demand to influence the choices around NFM (see later).

2.2.4 $\,\,\,|\,\,\,$ Hydrological Suitability of the Catchment for NFM

In some areas the opportunity to influence flood flows through NFM is more limited than in others due to the geology and topography of a catchment. This spatial variation is reflected in the 'NFM suitability' maps developed by various national agencies across Great Britain (e.g., based upon Environment Agency 2015a; Scottish Environment Protection Agency 2014; and recent updates from Natural Resources Wales 2022). These assessments focus on the physical hydrological suitability for storage (including riparian buffers) and afforestation (woodland) measures. The third UK Climate Change Risk Assessment future flood projections (Sayers et al. 2020), integrated these

FIGURE 4 | Percentage change in the yield (tonnes/year) from one hectare of wheat (as an indicator crop). *Left*: Given a 2°C rise in Global Mean Surface Temperature. *Right*: Given a 4°C rise in Global Mean Surface Temperature. *Source*: Image based on CropNet, Hayman et al. (2024).

data into the FFE and it is this data that is used here to provide a map of the physical hydrological suitability for NFM on a 1 km grid, with each grid attributed with the percentage opportunity for the creation of storage and the percentage opportunity for woodland planting.

2.2.5 | Natural Flood Management—Land Use Trade-Offs, Policy Ambitions, and Associated Implementation Scenarios

Hydrological suitability of the catchment alone does not determine the implementation of an NFM measure. The relative priority given to other land uses (as introduced above) and varying levels of policy ambition for NFM used here together with considerations of hydrological suitability to determine four spatially explicit 'NFM implementation scenarios', namely:

• NFM 'Max ambition': The 'NFM Max' scenario implements all woodland and storage as defined by the 'NFM suitability' maps outside of existing and projected urban areas. No consideration is given to agricultural or conservation/restoration priorities. Broader FRM policy, including raising existing defences in response to climate change, forecasting and warning, and take-up of property-level measures, continue in a way that reflects current adaptation policies (as set out in Sayers et al. 2020). The

only change is the enhanced focus on NFM. Innovative hybrid interventions, for example, the creation of major flood storage areas using a combination of built and natural infrastructure, are excluded for the purposes here. Given this context, this 'NFM Max Ambition' represents a reasonable upper bound to the NFM opportunity to manage fluvial flood risk.

- NFM 'High ambition': The second scenario implements all
 woodland and storage opportunities (as in the NFM Max
 scenario) but avoid areas where agricultural yields are
 projected to increase (regardless of present-day agricultural potential) in addition to existing and projected urban
 areas.
- NFM 'Moderate ambition': The third scenario adds a further constraint to the NFM implementation by avoiding all present-day Best and Most Versatile Land (BMV, Class 1), as well as lower-grade agricultural land (BMV Class 2 and 3) projected to experience stable or increasing yields. Priority areas of conservation and restoration are also avoided. This assumes conservation and restoration activities are undertaken without accruing additional flood management benefits. This is recognised as a conservative simplification. Often such efforts are designed to reduce flood flows, but this is not necessarily the case (e.g., the recreation of permanent wetland areas may provide little additional flood storage during larger events compared to existing land use).

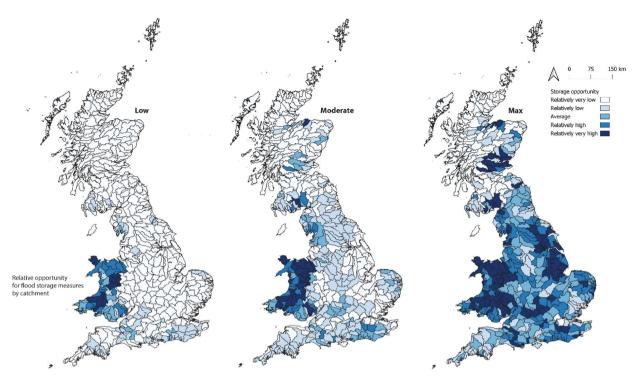


FIGURE 5 | Natural flood management—The spatial variation in storage opportunities by river catchment. *Left*: Low ambition scenario. *Middle*: Moderate ambition scenario. *Right*: Max ambition. The legend refers to the relative storage opportunity (by area) in each catchment area. The legend reflects the lowest to highest relative opportunities established by aggregating the areas of opportunity to a 1 km grid under the Max ambition assumption and determining the lowest 20 percentile (Relatively very low), 21–40 (Relatively low), 41–60 (Average), 61–80 (Relatively high), and above 80 (Relatively very high) percentile values. The same values are then applied to all levels of NFM ambition to enable visual comparison. High ambition is not shown.

• NFM 'Low ambition': The fourth scenario adapts the 'Moderate Ambition' scenario to avoid all areas of the Best and Most Versatile Land (Class 1 and 2) regardless of changes in yield, as well as lower-grade agricultural land (BMV 3) where yields are projected to be stable or increasing.

Each 'NFM Implementation scenario' is translated to a spatially explicit description (on a 1 km grid across Great Britain) that reflects the location and extent of land area converted to storage (Figure 5) and woodland (Figure 6). The variation in scale of NFM implementation between each level of ambition is significant, with the low ambition representing ~20% of the area of the max ambition (Table 1), These spatial narratives are taken forward to the assessment of flood risk (see later).

2.3 | Representation Within the Assessment of Flood Risk

2.3.1 | Hydrological Influences of NFM Measures

Hydrological modelling plays a crucial role in understanding how river catchments respond to change (He et al. 2013; Peel and McMahon 2020; Kumar et al. 2023). Broadly, hydrological models classify as empirical, conceptual, or physically based. Here, one physically based, spatially distributed hydrological model (SHETRAN, Abbott et al. 1986; Ewen et al. 2000) and one spatially distributed conceptual model (HBV, Bergström 1992;

Lindström et al. 1997, with the version used here referred to as HBV-TYN, He et al. 2022) are used to determine the changes in fluvial floods in each future scenario. Both models represent critical catchment processes, such as snowmelt, evapotranspiration, infiltration, overland flow, interflow, etc.

To enable comparison and credibly capture model structure uncertainties, both models use the same CAMELS-GB catchments (Coxon et al. 2020), the same spatial definition of NFM measures and development on the same 1 km grid, and the same meteorological forcings. Three of the CAMELS-GB catchments were excluded due to them being either a single cell or having a diagonal channel flow direction that cannot be modelled by SHETRAN. To maintain consistency, HBV-TYN also excluded them. This allows comparisons between the results of the two models. SHETRAN spatial resolution: 1×1km for catchments $< 2000 \,\mathrm{km^2}$, otherwise $5 \times 5 \,\mathrm{km}$. HBV-TYN uses $1 \times 1 \,\mathrm{km}$ for all CAMELS-GB catchments. Both models use the 1990-1999 discharge data for calibration and the 2000-2009 discharge data for validation with comparable results obtained compared with other models using the same datasets (Lane et al. 2019). Although the spatial description of each future is common across both models, each represents the associated NFM measures differently as outlined below (and described in detail in Smith et al. 2024a; Smith et al. 2024b).

2.3.1.1 | **Characterising Woodland Measures.** Woodland as an NFM measure involves establishing woodland on

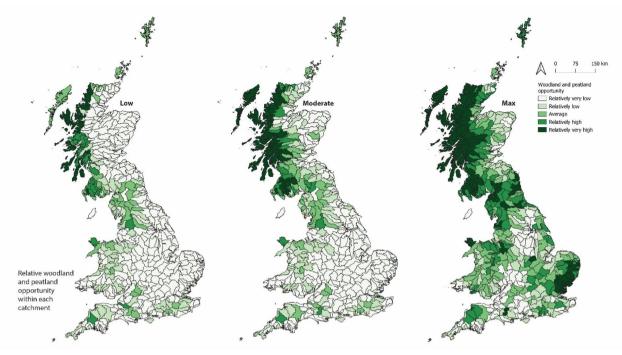


FIGURE 6 | Natural flood management—Spatial variation in woodland opportunities by river catchment. *Left*: Low ambition scenario. *Middle*: Moderate ambition scenario. *Right*: Max ambition. The legend refers to the relative NFM woodland opportunity (by area) in each catchment area. The legend reflects the lowest to highest relative opportunities established by aggregating the areas of opportunity to a 1 km grid under the Max ambition assumption and determining the lowest 20 percentile (Relatively very low), 21–40 (Relatively low), 41–60 (Average), 61–80 (Relatively high), and above 80 (Relatively very high) percentile values. The same values are then applied to all levels of NFM ambition to enable visual comparison. High ambition is not shown.

TABLE 1 | Summary comparison of the scale of NFM measures within each level of ambition.

Storage measures	1						
	Max	High	Moderate	Low			
Area (km²)	4284	2126	1420	711			
Percentage of max		50%	33%	17%			
Woodland and Peatland restoration							
	Max	High	Moderate	Low			
Area (km²)	75,350	46,237	31,060	15,683			
Percentage of max		61%	41%	21%			

land not currently used for this purpose. Woodland is a legitimate NFM measure as trees tend to use more water than shorter types of vegetation, and hence have the potential to reduce run-off and by extension river flow. This is mainly due to the increased interception of rainwater by their aerodynamically rougher canopies (Nisbet 2005). Large-scale hydrological models typically represent woodland measures by modifying interception, infiltration, and/or roughness to simulate land use changes like afforestation. Here, these techniques are applied as follows:

 SHETRAN: In SHETRAN, the main change in evapotranspiration in woodland is considered by increasing intercepted evaporation due to the taller canopy height, which promotes more turbulent airflows. The increase matches the fraction of woodland cover added under each NFM scenario for each 1 km grid cell. For instance, a 100% increase in woodland cover results in a 100% rise in potential intercepted evaporation; a 50% increase corresponds to a 50% rise. However, the actual intercepted evaporation depends on water availability at any given time and is typically lower than the potential increase. The approach has been validated on data from research at Plynlimon and Coalburn in the UK, which compares evapotranspiration from grassland and mature coniferous forest (Marc and Robinson 2007; Birkinshaw et al. 2014).

HBV-TYN: Woodland was expressed as a percentage within each 1 km grid cell. Increase of woodland increases the interception amount and the roughness of the surface. The interception increase was implemented in the same way as described above for SHETRAN. The increase in the surface roughness is represented by linearly reducing the overland flow recession coefficient by the increase in the woodland.

2.3.1.2 | Characterising Storage Measures. There are several NFM measures that can be used to add storage. This includes temporary attenuation ponds, reconnecting floodplain storage, riparian vegetation, and meanders. Temporary attenuation ponds make up 69% of all NFM measures in the UK (Quinn et al. 2022). These allow flood water to be temporarily stored, with the stored water then gradually released through the leaky

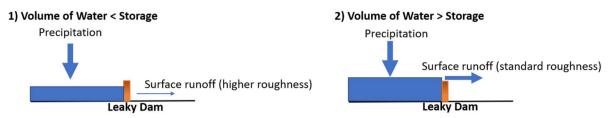
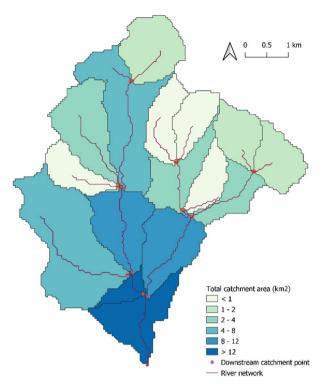


FIGURE 7 | Natural flood management representation of storage measures. *Left*: The stored volume is based on a maximum depth and an area that reflects the percentage opportunity locally defined by the NFM ambition. *Right*: The residence time of the storage corresponds to that found by Metcalfe et al. (2018) and if the volume of water in the cell exceeds that a standard roughness coefficient is applied.

barrier when the flood wave has passed, so there is then storage available for the next rainfall event. Within both models NFM measures are accounted for by allowing specific volumes of surface water to be stored in each model cell (Metcalfe et al. 2018). Within each cell, a 'threshold volume' is assigned according to the NFM scenario to represent the process of a pond filling and storing water during a rainfall event and then, once filled, allowing the excess water to flow through or out of the cell as it would if the pond were not there. An upper bound threshold volume of 100,000 m³ is assigned to align an extensive reconnected floodplain storage equivalent to a depth of 0.2 m across the cell or a large attenuation pond. This upper bound is then modified according to the fraction of additional storage specified for the 1km grid cell. If a 1km grid cell has 100% storage specified within a given NFM scenario, the total storage volume equals 100,000 m³ a 50% storage means the total storage volume is 50,000 m³. These large values are however usual. In the NFM max ambition scenario, 3.75% of cells have a storage volume between 10,000 and 100,000 m³ with 0.2% of the 1 km cells having a potential storage volume between 50,000 and 100,000 m³. Stored water is then released slowly via surface runoff (which corresponds to a pipe or a leaky barrier, Figure 7) or via infiltration. In SHETRAN, we mimic this process by reducing the overland flow Strickler coefficient (the inverse of Manning's roughness coefficient) from 2.0 (m1/3/s) to 0.2 (m1/3/s) until the required specific volume of surface water is stored in the cell. Beyond this volume, water is routed through the cell using the original Strickler coefficient. In HBV-TYN, additional storage increases the roughness of the surface and the storage capacity, which is represented through linearly reducing the overland flow and interflow recession coefficients by the increase in the storage. This approach, in both models, applies the increased roughness to the whole cell, scaling the depth threshold to generate the desired storage volume.

2.3.2 | Influence of Urban Development on Exposure and Run-Off

The urban development projections (introduced earlier) are used to modify the residential exposure within the FFE. To provide a focus on NFM catchment-based measures (rather than urban NFM) it is assumed the new development takes place using good practice sustainable urban drainage methods and hence the predevelopment run-off remains unchanged. In reality, the interaction between NFM measures and the management of surface water flows (through Sustainable Urban Drainage, SuDs, and


conventional piped drainage) is complex (e.g., Sayers et al. 2022) and future research (beyond the scope here) will be necessary to take these interactions into account.

2.3.3 | Influence of Climate Change

Each hydrological model is driven by the same climate model outputs. In both, the UKCP18 future climate scenarios (Lowe et al. 2018) are run for each of the 668 catchments for the period 1980–2080. Simulation results are presented in terms of changes from the baseline period using each of the 12 RCMs to provide a credible view of potential flow changes in response to NFM under conditions of climate change. These results are used to determine the change in the return period flows for the different warming levels and associated NFM ambition levels (as described for SHETRAN in Smith et al. 2024a; Smith et al. 2024b). The urban development and the climate change simulations were run for each RCM for the entire period from 1980 to 2080 in the absence of NFM measures to provide a comparative hydrological response assuming 'no NFM adaptation' (Table 2). These results are used later in this paper as the counterfactual against which risk reduction achieved by implementing NFM is compared.

2.4 | Optimising the Return on NFM Investment

To maximise the return on investing in NFM requires an assessment of both costs (including capital and maintenance costs) and benefits (defined here narrowly in terms of the reduction in direct damage to residential properties). The approach to NFM that delivers the highest benefit to cost ratio varies from location to location. This reflects the spatial variation portfolio of FRM measures that exist as well as the performance of the NFM. For example, the benefit of an NFM measure will reflect the ability of NFM to influence the flow, the subsequent influence of any change in flow on the downstream hazard, the influence of that change on the performance of downstream flood defences (where they exist), and change in exposure in response to a change in the hazard (taking account of the spatial distribution of residential properties). A spatially explicit economic optimisation is adopted within the FFE to capture this system scale interaction. that assumes a continuation of current levels of adaptation associated with all measures other than NFM (as detailed in the next section). The approach to determining and optimising the contribution of NFM is described below.

FIGURE 8 | The FFE tracks flow connectivity and river discharge through the river network to determine the significance of flow reductions in one location on the downstream system. In doing so the effect of a local change on river flow diminishes downstream as the flow reduction becomes an increasingly lower proportion of the river flow.

2.4.1 | Enabling Reductions in Flow Achieved in One Location to Persist Through the Downstream Catchment

Flow reductions achieved by NFM accrue both locally (within the area they are implemented) and persist through the downstream river network. The influence of local change on extreme water levels diminishes downstream as the flow reduction becomes an increasingly lower proportion of the river flow. The FFE tracks the connectivity and river discharge through the river network. This understanding of upstream to downstream connectivity enables the flow reduction achieved when NFM is implemented in one sub-catchment to be propagated through all downstream catchments. This enables the risk reductions accrued at a given location to be appropriately attributed to contributing NFM measures (including those implemented far upstream). This connectivity within nested catchments is illustrated in Figure 8.

2.4.2 $\,\,\,\,\,\,\,\,\,$ Accruing Risk Reduction Benefits and Costs Through the Catchment

Quantifying the reduction in 'risk' achieved by NFM measures is of course dependent on the choice of risk lens. Here we describe risk through the lens of Expected Annual Damages (EAD, based on direct property damage only). Focus on the reduction in EAD is widely used to determine the worthwhileness of an investment and hence aligns with the focus here. In this context 'risk' is often driven by frequent events;

events over which NFM has the greatest influence (e.g., Sayers et al. 2015; Dadson et al. 2017). To determine the change in EAD, the FFE translates the change in flow (due to the combined influence of upstream NFM measures, climate change, and development) to a change in the economic damage using a series of Impact Curves (constructed using the methods set out in Sayers et al. 2015, 2020). These are manipulated within the FFE to determine the change in EAD for each subcatchment across Great Britain (as defined by the catchment sections of the UKCEH Integrated Hydrological Unit, Kral et al. 2015). This enables the benefits associated with a given NFM measure (either woodland or storage) both locally and downstream to be readily accrued.

The associated costs of implementing NFM measures are also accrued through the catchment using simplified cost functions for woodland and storage measures reused from the third Climate Change Risk Assessment (CCRA3) (Table 2). These cost functions enable an indicative capital cost (associated with the initial creation of the measure) and revenue costs (of 5% of the capital cost) to be assessed. A further simplification is made here by assuming costs are incurred from year 1 (2025) through to year 10 and the benefits related to storage measures are accrued from the year of the investment. The benefits accrued from woodland measures are assumed to be delayed for 10 years from the year of investment, starting in 2035 onwards. This provides a basic adjustment to account for the time taken for woodland measures to mature (recognising this would vary depending on tree species and the detail of the woodland restoration scheme). Although simplified, and not appropriate for local project appraisal (as NFM costs are always context specific, Environment Agency 2015b), this approach provides a useful first-pass national assessment that is sensitive to the scale of the NFM ambition.

TABLE 2 | Cost functions—Woodland and storage natural flood management measures.

Woodlands				
Infiltration and roughness based	Lower	Central	Upper	Units
Capital	0.2	0.37	0.53	\pounds/m^2
Revenue assum expenditure	ed 5% of the	capital		£/m²/year
Storage				
Storage ponds reconnections	•			
etc	Lower	Central	Upper	Units
Capital	3.17	11.26	18.59	\pounds/m^2
Revenue assumed 5% of the capital expenditure $\pm \frac{fm^2}{year}$				
Assuming storage provides an average depth of $0.2\mathrm{m}$				
Note: Rates rebased to 2019 to be consistent with the baseline of the risk				

Note: Rates rebased to 2019 to be consistent with the baseline of the risk reduction benefits. The cost estimates here are indicative and will vary in each location.

Source: Based on Sayers et al. (2018).

TABLE 3 | Discount rates used to estimate present value costs and benefits.

Discount rate (%)	Year from year 0		
3.50%	0-30		
3.00%	31–75		
2.50%	76–125		
2.00%	126-200		
1.50%	≥201		

Source: HM Treasury 2022.

2.4.3 | Determining the Spatial Variation in the Utility of Investment

The costs of implementing and maintaining the NFM measures vary by sub-catchment and so do the accumulated benefits of those actions. The costs and benefits over the chosen appraisal period (from 2025 to 2085) are then discounted using standard discount rates set out by HM Treasury (Table 3).

The discounted stream of costs and benefits are used to estimates the Net Present Value (NPV) associated with acting in any sub-catchment to be estimated as follows:

$$NPV = \sum_{t=2020}^{2100} \frac{B_t - C_t}{(1+r)^t}$$

where B_t : Accumulated benefits in year t. C_t : Costs in year t. r: Discount rate. t: Time in years.

This process is repeated for each level of NFM ambition, climate, and development future. A ranking of the results (from those sub-catchments and ambition levels that achieve the highest NPV to the lowest) reveals the preferred approach to NFM within each sub-catchment across Great Britain (conditional on a given climate and development future).

It is recognized that the selection of the discount rate can have a material influence on the preferred investment approach. This is especially the case when a long-term perspective is important, as is the case under climate change where damages have the potential to increase over time. This issue is not explored here, and the standard rates are used directly.

2.4.4 | Placing NFM in the Context of a Portfolio of Measures

It is widely accepted that flood risk is best managed through a portfolio of measures (e.g., Sayers et al. 2014). A range of individual adaptation measures is typically used as part of this portfolio that relate to the management of the *sources* and *pathways* of the flood hazard, and the vulnerability of the exposed *receptors* (using the source-pathway-receptor framework set out in Sayers et al. 2002). This whole risk system framework is reflected within the FFE enabling individual adaptations and their collective performance to be assessed under conditions of change. Within the FFE, the modelled changes in flow at each river

confluence (as determined from the HBV-TYN and SHETRAN models) are translated to a change in the return period of inriver water level (using the Flood Estimation Handbook (FEH) statistical method (Kjeldsen et al. 2008) and catchment descriptors from the most appropriate 50 m FEH pixel, Kay et al. 2020, a method detailed in Sayers et al. 2020). This in turn is used to infer a change in the standard of protection provided by flood defences and natural banks and hence the change in probability of a flood occurring at a given location. Exposure and vulnerability measures, such as spatial planning, forecasting and warning, and property level measures are also represented in the FFE and act to reduce the impact should a flood occur. The detail of the approaches used to represent these wider adaptation measures is well covered by previous publications and is not repeated here (Sayers et al. 2020, 2022).

The FFE captures the benefits associated with each individual measure within a portfolio of measures through a hierarchical process of implementation. Here it is assumed NFM measures are given priority over conventional build flood defences. Other, non-structural, measures are implemented to manage the residual risk. This reflects the emerging rationale of using built infrastructure to supplement the performance of natural infrastructure and not vice versa (Sayers et al. 2025). The extent to which these other measures are implemented is assumed to reflect a continuation of Current Level Adaptation (CLA) as previously defined (CCRA3, Sayers et al. 2020). The 'portfolio benefit' refers to the reduction in EAD achieved by this portfolio (including the varying scale of NFM ambition) when compared to the counterfactual of a low adaptation future (in which defences remain but are not raised with limited maintenance). The contribution of NFM measures to risk reduction is then determined by considering the change in risk as the hierarchy of measures are progressively implemented within the FFE.

3 | Results

Changes in flood risk are assessed for 10 alternative futures. Each future is defined by the scale of the NFM policy ambition, climate change and population growth (Table 4). To focus on the benefits of NFM flood risk, management policies (excluding NFM), they are assumed to continue as in the recent past (as defined by the continuation of Current Levels of Adaptation defined by Sayers et al. 2020) and the changing risks are compared to a counterfactual assuming no NFM measures are implemented. At a national scale GMST and population growth can be considered decoupled (Sayers et al. 2015). This assumption is made here and underpins the rationale of linking the 2°C rise in GMST with a lower population growth (SSP4) and a 4°C rise in GMST with a higher population projection (SSP2). This helps capture some of the uncertainty in the exogenous pressures (although not all and the inclusion of additional combinations will be a useful future extension).

3.1 | Ability of NFM to Reduce Fluvial Flows

SHETRAN and HBV-TYN suggest similar influences on flood flows with a reduction of between 0% and 10% in the 3-year return period. This compares well to (limited) available

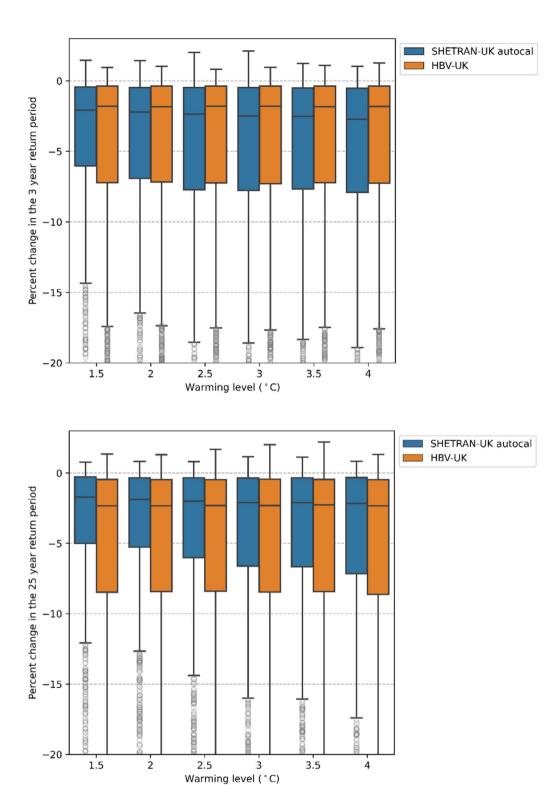
TABLE 4 | Future scenario definitions.

NFM policy ambition	Assumed approach to other flood risk management measures	Climate change (rise in GMST since pre- industrial times)	Shared socio- economic pathway (population growth)	Future
No NFM (counterfactual)		2°C	UK-SSP4	1
		4°C	UK-SSP2	2
'Max'		2°C	UK-SSP4	3
		4°C	UK-SSP2	4
High (HBV-TYN only)	Continuation of current levels of adaptation (as defined in Sayers et al. 2020)	2°C	UK-SSP4	5
		4°C	UK-SSP2	6
Moderate		2°C	UK-SSP4	7
		4°C	UK-SSP2	8
Low (HBV-TYN only)		2°C	UK-SSP4	9
		4°C	UK-SSP2	10

empirical evidence, representing an estimate that is a smaller change than the 30% reduction in peak flows observed when significant additional storage was added to the small (5.7 km²) Belford catchment (Nicholson et al. 2020), but similar to those reviewed in Roberts et al. (2023) that correspond to the similar volumes of additional storage represented here. Both models suggest an increase in the performance of NFM as climate change increases (Figure 9). There are some differences between the models, with SHETRAN suggesting a slightly higher effectiveness of NFM during very frequent events (1in3 year return period) than HBV-TYN, and vice versa at given slightly more extreme events (1in25 years). The similarity of the comparison however suggests a robust agreement on the ability of NFM to influence (reduce) flows, particularly in more frequent events. Differences may reflect SHETRAN's explicit simulation of groundwater and unsaturated zone processes, which can enhance infiltration and storage under warming, attenuating peak flows. HBV-TYN, in contrast, is more responsive to surface runoff. Further work is needed to assess how model structure influences hydrological responses to climate change.

A spatial comparison of the influence of an 'NFM Max' on the 1in10-year (using the ensemble mean outputs) highlights influences of NFM between the models and by return period (Figure 10). Both models project larger flow reductions in the South and East, where baseline conditions are drier and rainfall intensities lower than in the wetter West and North. Under warming, winter precipitation increases are smaller here, summer rainfall declines more sharply, and higher temperatures drive greater evapotranspiration and soil moisture deficits, reducing runoff generation. Consequently, these catchments become more sensitive to antecedent moisture and less likely to produce high flows. Lower extreme rainfall and the influence of NFM on runoff coefficients make NFM measures relatively more effective in these regions under climate change. Figure 10 also shows that SHETRAN produces larger reductions in flow than HBV. These changes (and those assessed for all return periods through to 1in100 years) are carried forward to the assessment of risk below.

3.2 | Ability of NFM to Reduce Flood Risk


Figure 11 shows the reduction in fluvial EAD achieved for each level of NFM ambition when implemented as part of a portfolio of measures (with all other measures reflecting a continuation of current levels of adaptation as defined by Sayers et al. 2020). The reduction in EAD is shown to vary both spatially and with increasing policy ambition. In some catchments, 'Low ambition' policies are shown to yield large annual returns (> £1.5 million), whereas elsewhere, higher policy ambitions are needed to reduce EAD. The influence of NFM on fluvial flows within the CAMELS-GB catchment is assumed to persist to the coast with no further reductions. This enables the full benefit of the NFM measures within these catchments, to be captured through to the river mouth.

Maps presented here show the benefit of the NFM measures implemented within the CAMEL-GB catchments summed to each Local Authority (2019). The results shown are based on the HBV-TYN and FFE. Similar analysis has been undertaken with SHERTRAN (Moderate and Max NFM scenarios only) and the FFE but is not presented here. The analysis includes fluvial risks only and excludes coastal and tidal influences.

The results indicate that NFM has the potential to contribute significantly to flood risk reduction in many catchments. By the 2050s in some more rural catchments, with limited existing flood defence infrastructure, NFM is projected to provide $\sim\!80\%$ of the benefits achieved by the portfolio (assuming a continuation of current levels of adaptation in all other measures). In most catchments, it is much less than this but remains significant (Figure 12).

3.3 | National Optimal Investment in NFM

The return on a single unit of investment tends to reduce as more is invested (the law of diminishing returns). Investment in NFM measures (and FRM more generally) is shown to reflect this principle, with the marginal return on investment in NFM measures reducing as more is spent (Figure 13). The economic optimum level of investment in NFM measures is

FIGURE 9 A comparison of the influence of NFM Max scenario on fluvial flows from SHETRAN and HBV-TYN. A comparison of the influence of NFM Max scenario on the 1in3 year return period flows across all CAMELS-UK catchments for SHETRAN and HBV-TYN. The Boxplots show the 25th, 50th and 75th quartiles of the data, with 'whiskers' stretching to the data point that is greatest or smallest but still within 1.5 times the interquartile range from its respective upper or lower quartiles, and points representing values beyond this range. A comparison of the influence of NFM Max scenario on the 1in25 year return period flows across all CAMELS-GB catchments for SHETRAN and HBV-TYN. The mean change, and the X percentiles are shown.

represented by the combination of NFM actions that return the maximum NPV across Great Britain. The results suggest higher optimal returns are accrued under a 2°C future when compared to a 4°C future, with greater benefits accrued in

both cases under higher population growth population projections. This may be a function of the increased exposure given higher population and the greater ability for NFM to accommodate (and moderate) the increase in flow under a 2° C

FIGURE 10 | Natural flood management—Spatial variation in the reduction in the 1in10 year return period flow. *Top*: Based on results from HBV-TYN. *Bottom*: Based on results from SHETRAN. This provides a spatial comparison between the hydrological model outputs. The legend is based on the percentage reduction in the peak flow assessed at each downstream point of a catchment.

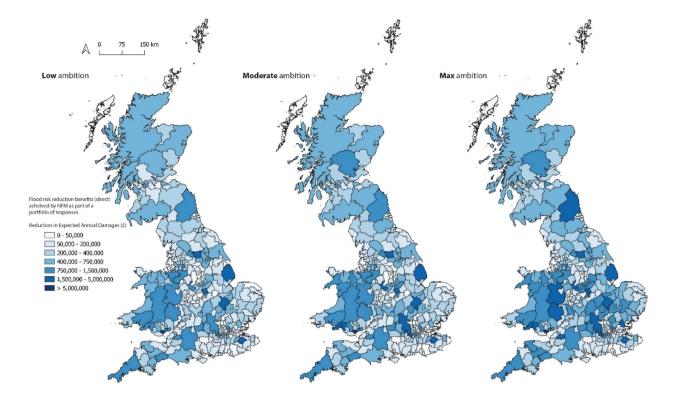


FIGURE 11 | Reduction in expected annual damage achieved by different levels of NFM ambition in the 2050s under a 2°C climate future and low population growth (SSP4) future. Maps presented here show the benefit of the NFM measures implemented within the CAMEL-GB catchments summed to each Local Authority (2019). The results shown are based on the HBV-TYN and FFE. Similar analysis has been undertaken with SHERTRAN (Moderate and Max NFM scenarios only) and the FFE but is not presented here. The analysis includes fluvial risks only and excludes coastal and tidal influences.

future compared to a 4°C climate future. Disaggregating these drivers however remains an issue of continued exploration. The positive case of investment in NFM measures is however robust in both futures tested. In both significant investment of between £550 and 775 m (Value) is justified, achieving a Benefit to Cost Ratio (BCR) of \sim 5 (Table 5). This is based solely on benefits accrued through the reduction in direct property damage. Inclusion of the wider benefits NFM provides would significantly increase this estimate.

The chart presents the relationship between Present Value Cost (to 2100) and the Net Present Value achieved (the difference between Present Value Benefits and Costs). The results shown represent the mean of the values achieved based on the two hydrological models (SHETRAN and HBV-TYN). The figure illustrates both the economic optimum investment (the investment that achieves the maximum NPV) and the law of diminishing returns as the NPV achieved reduces as the Present Value investment increases. The results shown are for a 2°C rise in GMST by 2100 and low population growth (SSP4), and a 4°C rise in GMST by 2100 and high population growth (SSP2) are shown.

3.4 | Contribution of NFM to the Portfolio of FRM Measures

Assuming the hierarchy of adaptation choice that prioritizes NFM measures ahead of investment in built flood defenses and the other non-structural FRM measures (such as property level protection and flood forecasting and warning) the results

suggest NFM measures have the potential to contribute significantly to the reduction in EAD (Figure 14).

4 | Discussion

The analysis presented highlights that there is a strong economic case to invest in NFM based on fluvial flood risk reduction benefits alone, without recourse to arguments based on the wider benefits NFM provides. As with all national scale analyses, and in the context of the emerging understanding of the performance of NFM measures. these issues, including important caveats, are discussed below.

4.1 | A Strong Case for Increasing Investment and Wider Take Up of NFM

NFM measures are shown to offer a significant contribution to flood risk reduction when implemented as part of a portfolio of measures. The benefits achieved are shown to be robust to climate change, suggesting NFM is likely to provide a 'good' choice regardless of the climate future. Well-targeted investments in NFM (based on optimizing the location and ambition of the NFM measures taken) can play a significant role in managing risk, with the analysis suggesting that by the 2050s, an optimal approach to NFM would reduce the EAD (associated with direct property damage only) by ~£75 m (~£70 m based on HBV-TYN and £80 m based on SHETRAN, respectively) given a 2°C and low population growth (SSP4) future. This increases under 4°C

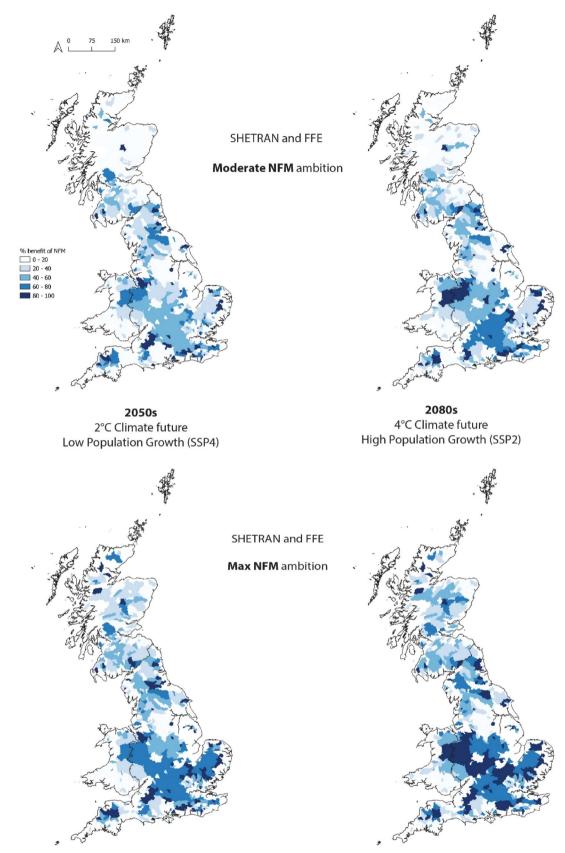


FIGURE 12 | Spatial variation in the contribution of 'moderate' and 'maximum' ambition NFM approaches to the reduction in Expected Annual Damages achieved by the portfolio of risk management responses by the 2050s and 2080s given a SSP4/2°C rise and SSP2/4°C rise in GMST from pre-industrial times. *Top left*: Moderate NFM ambition, 2°C, low population growth future (SSP4). *Top right*: Moderate NFM ambition, 4°C, high population growth future (SSP4). *Bottom left*: 'Max' NFM ambition, 4°C, high population growth future (SSP4). The results are based on SHETRAN and the FFE.

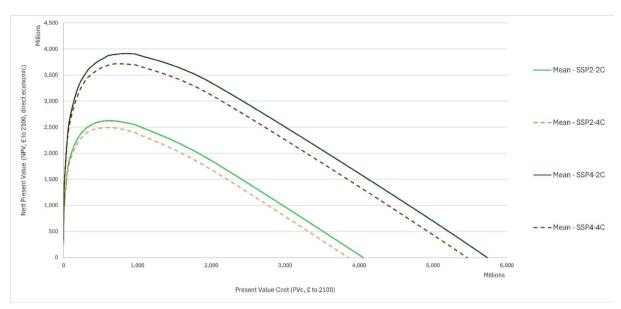


FIGURE 13 | The relationship between investment and risk reduction achieved by NFM measures at the scale of Great Britain. The chart presents the relationship between Present Value Cost (to 2100) and the Net Present Value achieved (the difference between Present Value Benefits and Costs). The results shown represent the mean of the values achieved based on the two hydrological models (SHETRAN and HBV-TYN). The figure illustrates both the economic optimum investment (the investment that achieves the maximum NPV) and the law of diminishing returns as the NPV achieved reduces as the Present Value investment increases. The results shown are for 2°C rise in GMST by 2100 and low population growth (SSP4), and 4°C rise in GMST by 2100 and high population growth (SSP2) are shown.

TABLE 5 | Economic optimal benefits of NFM across Great Britain.

Climate change (rise in GMST by 2100 from pre-industry)	2°C		4°C	
Development future	SSP2	SSP4	SSP2	SSP4
Single criteria optimised Present Value investment	(£)			
Central	600,000,000	550,000,000	775,000,000	750,000,000
HBV	550,000,000	450,000,000	650,000,000	700,000,000
SHETRAN	650,000,000	650,000,000	900,000,000	800,000,000
Single criteria optimised Present Value benefit (£, re	eduction in Expected	d Annual Damage, r	esidential direct)	
Central	2,032,619,515	1,947,674,108	3,140,543,455	2,972,344,307
HBV	1,562,084,314	1,54,35,95,403	2,363,812,235	2,147,626,489
SHETRAN	2,503,154,715	2,351,752,812	3,917,274,675	3,797,062,125
Whole life Benefit Cost Ratio (residential flood risk	reduction benefits o	nly)		
Central	3.3	3.5	4.0	3.9
HBV	2.8	3.4	3.6	3.1
SHETRAN	3.9	3.6	4.4	4.7

Note: Based on a contribution to Flood Risk Management assuming a continuation of Current Levels of Adaptation for all other aspects of the portfolio as defined in Sayers et al. (2020). Bold values highlight a simple central estimates based on the results from two models.

and a high population growth (SSP2) future to $\sim £105-120\,\mathrm{m}$, representing between $\sim 9\%$ and 13% of the risk reduction achieved by the portfolio of FRM measures (within NFM applied within a broader portfolio that assumes all other adaptation measures continue based on current levels of activity). By the 2080s the contribution increases further to $\sim £110\,\mathrm{m}$ in a 2°C and low population growth (SSP4) future and $\sim £145\,\mathrm{m}$ under 4°C and high population growth (SSP2) future. The relative contribution as

part of the portfolio remains similar (~11%–13%). The similarity of the economic optimum investment based on both SHETRAN/FFE and HBV-TYN/FFE improves confidence that the results are robust. Most of these benefits are accrued through the modification of more frequent in-river water levels and the influence NFM has on flood hazards in undefended downstream areas and modifying the loads experienced by downstream defences (and hence the chance of ultimate or serviceability limit state failure).

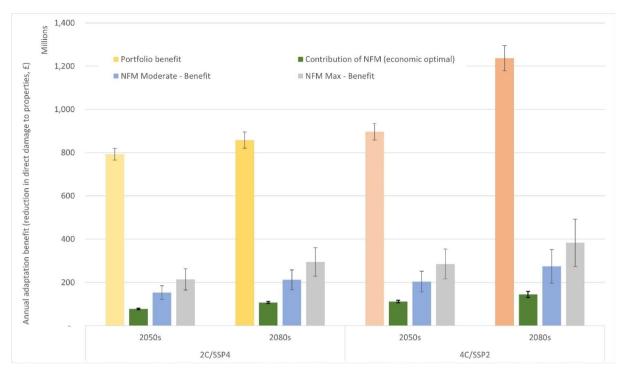


FIGURE 14 | NFM contribution to flood risk reduction as part of a wider portfolio of measures—Single criteria optimised, *NFM Max* and *Moderate* ambitions. The 'economic optimal' contribution is determined by the optimisation process described earlier and is shown as the average optimal contribution determined using HBV-TYN/FEE and SHETRAN/FFE results. The error bars reflect the model uncertainty associated with the use of the HBV-TYN and SHETRAN results. All other aspects of the modelling chain and data used are common. HBV-TYN/FFE runs have been undertaken to determine the contribution associated with the Low, Moderate, High and Max ambition. SHETRAN/FFE runs are only available for the Moderate and Max NFM ambition scenarios and hence only the optimum, Max, and Moderate ambitions scenarios are shown.

4.2 | Local Credibility of the Analysis

The hydrological representation of the NFM measures here is necessarily an approximation. No single measure is represented in detail. To do so remains an active area of research not only in terms of large-scale models (as here) but also in support of local analysis. The estimates of costs are broadscale and do not offer insights into any single NFM scheme. Nonetheless these caveats do not detract from the thrust of the analysis that brings together nationally calibrated hydrological models, the representation of NFM measures and their performance, the influence of climate change and development, and the assessment of risk in a meaningful way at a national scale.

4.3 | The Assumed Portfolio of Measures

It is assumed here that the varying levels of NFM ambition are implemented as part of a portfolio of measures, where all other measures continue to be adapted in line with the Current Level of Adaptation (CLA) scenario set out in CCRA3 (Sayers et al. 2020). If significantly more investment is directed toward conventional flood defences the contribution of NFM would reduce, and it would increase if investment in conventional defences reduced. Similar changing approaches to spatial planning (either increasing or reducing the percentage of new properties built in flood plain compared to the recent past) would influence the contribution of NFM. It is important to see the results presented here as the contribution of NFM within this context.

4.4 | The Impact on the Risk Profile

Flood risk is presented here in terms of an EAD. EAD represents an integration of probability and consequence across all possible events. The estimate of EAD is biased toward the consequences of frequently occurring events. Analysis of the hydrological response of the NFM measures suggests that their influence is greatest during frequent events and tends to zero with increasing return period of the fluvial flood flow. This performance signature is reflected in the significant reduction in EAD observed here. This does not however suggest the impact of NFM on more extreme events is significant. This reinforces the importance of 'designing for exceedance' (Digman et al. 2014) and ensuring FRM strategies are effective in managing residual risks will inevitably remain (Sayers et al. 2002).

4.5 | Long Term Performance

The performance of NFM measures changes autonomously over time. This change in performance exhibits significant hysteresis, with the preceding sequence of events (over days, months or even years) influencing run-off and storage potential. NFM 'assets' also mature over time (trees grow and soil structures change). The modelling chain presented here seeks to capture these issues in simplified ways, but nonetheless there remains a lack of theoretical and empirical understanding of these changes (e.g., Sayers et al. 2014; Dadson et al. 2017; Kay et al. 2019). No consideration is given here, for example, to the viability of woodland planting under conditions of climate

change (heat and water stress) or invasive species that may influence performance over the longer term. Addressing these knowledge gaps will be a pre-requisite in advancing the analysis presented here.

4.6 | Aligned Catchment Planning and Policy Priorities

Developing a *whole system response* to managing flood risk, including NFM, requires an understanding of the interactions within, and beyond, FRM. The analysis here starts this narrative by considering the influence of development choices, food security (through the priority given to agricultural yield), and biodiversity (through the priority given to conservation and restoration). Exploration of types of afforestation and water storage that align with conservation and restoration would allow synergies with NFM to be explored and quantified. The approach is however a first pass and more nuanced and wider-ranging catchment planning processes will be needed to make strategic progress towards more integrated landscape-scale planning and management.

The National Flood and Coastal Erosion Risk Management (FCERM) Strategy (Environment Agency 2020) identifies NFM as an important part of the resilience framework that it sets out. The third National Adaptation Programme (NAP3) published in 2023 also suggests wider action is needed to implement NFM in relation to highways (i.e., integrating NFM into National Highways' climate risk management plans) and land management (i.e., supporting NFM implementation through environmental land management schemes (ELMs)).

At the local level where these schemes are implemented, Russell et al. (2024) have shown only 10 of the 152 Local FRM Strategies in England include more than passing references (or no references) to NFM (or similar). This limited progress highlights the significant work to be done at the national and local levels (in England at least) to integrate NFM as a central component of FRM. To be successful, landowners will need to be supported and encouraged to implement NFM on their land. This will continue to require co-design and financial support, but also reinforces the importance of the evidence gap this paper responds to.

4.7 | NFM Delivers More Than Flood Risk Reduction

Flood risk reduction benefits represent only one narrow focus and ignore the numerous wider benefits of NFM. These include carbon sequestration, amenity, biodiversity, water resources (including the potential to improve low flows) and many others. As introduced earlier, the analysis here deliberately excludes these, but their inclusion, on balance, would only add further to the positive case for NFM. There are also potential disbenefits in terms of opportunity losses (preventing alternative development or productive uses) and in some instances NFM may reduce low flows and negatively impact water resources (e.g., Elliott and Giritharan 2023; Sayers et al. 2025).

5 | Conclusion

Natural Flood Management seeks to work with natural processes to restore the natural functions of rivers and aligns with this shift in emphasis. The multiple benefits of doing so are well known and intuitive, including biodiversity gains, amenity, carbon sequestration, but there is limited quantified understanding of the scale of the contribution NFM could make to reducing *fluvial* flood risk across Great Britain, and how this contribution many vary with climate change. This paper, for the first time, projects national scale NFM scenarios reflecting various policy ambitions and considering competing land use demands (urban development, agriculture and biodiversity demands) and presents an assessment of the contribution of NFM to fluvial flood risk reduction.

The results of the analysis confirm NFM as a legitimate supporting measure in fluvial FRM. The use of two national-scale hydrological models (SHETRAN and HBV-TYN) to assess changes in flood flows and the use of a flood risk system emulation to translate these changes into a change in risk (using the FFE) are shown to enable the benefits of NFM actions to be disaggregated from the wider set of measures that form the overall FRM portfolio.

The results show NFM robustly contributes to the FRM portfolio under conditions of climate and socio-economic change, suggesting that well-targeted investment in NFM measures has the potential to significantly reduce overall flood risk. The broad estimate of costs suggests implementing these well-targeted actions would cost approximately £550–775 m through to the 2080s, equivalent to an annual spend of around £20–30 m.

The analysis presented is only a first step. There is potential for future analysis to provide integrated insights into catchment development (including interactions across the rural/urban interface) and the best mixture of FRM measures, delivering wider benefits for people and nature. Realising all these benefits, and the broader opportunities NFM provides (not quantified here), will require proactive strategic landscape-scale planning that looks beyond flood management alone to develop aligned investment incentives that support sustainable outcomes for people and nature.

Acknowledgements

The research was supported by the Open CLimate IMpacts modelling framework (OpenCLIM) project funded by the Natural Environment Research Council award number NE/T013931/1, designed to increase understanding of climate risk and adaptation needs in the UK. Development of the paper has been supported by the Open Evaluation of Climate-Resilient Interventions for Land Management, Soil Health and Net Zero (OpenLAND) project funded by the Biotechnology and Biological Sciences Research Council, award number BB/Z516168/1. Policy context was supported by Andrew and Paul's work funded by the British Academy grant number IF\220114. The underlying HBV and SHETRAN results are available on DAFNI for registered users. Further datasets continue to be added.

Conflicts of Interest

The authors declare no conflicts of interest.

Data Availability Statement

The underlying HBV and SHETRAN results are available on DAFNI. Other data sets are restricted under third-party licences. Please contact the authors.

References

Abbott, M. B., J. C. Bathurst, J. A. Cunge, P. E. O'Connell, and J. Rasmussen. 1986. "An Introduction to the European Hydrological System—Systeme Hydrologique Europeen, "SHE", 1: History and Philosophy of a Physically-Based, Distributed Modelling System." *Journal of Hydrology* 87, no. 1-2: 45–59.

Bergström, S. 1992. *The HBV Model-Its Structure and Applications*. SMHI, Research Department, Hydrology.

Birkinshaw, S. J., J. C. Bathurst, and M. Robinson. 2014. "45 Years of Non-Stationary Hydrology Over a Forest Plantation Growth Cycle, Coalburn Catchment, Northern England." *Journal of Hydrology* 519: 559–573.

Black, A., L. Peskett, A. MacDonald, et al. 2021. "Natural Flood Management, Lag Time and Catchment Scale: Results From an Empirical Nested Catchment Study." *Journal of Flood Risk Management* 14, no. 3: e12717.

Bridges, T. S., J. Lillycrop, J. R. Wilson, et al. 2014. "Engineering With Nature Promotes Triple-Win Outcomes." *Terra Et Aqua* 135, no. 2: 17–23.

Brown, K., M. DiMauro, D. Johns, et al. 2018. "Turning Risk Assessment and Adaptation Policy Priorities Into Meaningful Interventions and Governance Processes." *Philosophical Transactions of the Royal Society A* 376: 20170303.

Cambridge Econometrics. 2019. "A Consistent Set of Socioeconomic Dimensions for the CCRA3 Evidence Report Research Projects."

Cooper, M. M., S. D. Patil, T. R. Nisbet, H. Thomas, A. R. Smith, and M. A. McDonald. 2021. "Role of Forested Land for Natural Flood Management in the UK: A Review." *WIREs Water* 8, no. 5: e1541.

Coxon, G., N. Addor, J. P. Bloomfield, et al. 2020. "CAMELS-GB: Hydrometeorological Time Series and Landscape Attributes for 671 Catchments in Great Britain." *Earth System Science Data Discussions* 2020: 1–34.

Dadson, S. J., J. W. Hall, A. Murgatroyd, et al. 2017. "A Restatement of the Natural Science Evidence Concerning Catchment-Based 'Natural' Flood Management in the UK." *Proceedings of the Royal Society A, Mathematical, Physical and Engineering Sciences* 473: 20160706.

Defra. 2021. "United Kingdom Food Security Report." Published by Department of Environment, food, and Rural Affairs, England. See this discussed in the Environment Journal here: UK food security and land use are the next climate battlegrounds – Environment Journal.

Defra. 2022. "Natural Flood Management Programme: Evaluation Report." Published by Department of Environment, food, and Rural Affairs, England.

Defra. 2023. "Agriculture in the United Kingdom 2023 – Chapter 7 Crops." Published by Department of Environment, Food, and Rural Affairs, England.

Digman, C., R. Ashley, P. Hargreaves, and E. Gill. 2014. "Managing Urban Flooding From Heavy Rainfall-Encouraging the Uptake of Designing for Exceedance." CIRIA Report C738a Construction Industry Research and Information Association, London.

Elliott, J., and A. Giritharan. 2023. Going With the Flow: Policy Implications of New Natural Flood Management Research. Green Alliance.

Environment Agency. 2015a. "Mapping Potential for Working With Natural Processes." https://environment.data.gov.uk.

Environment Agency. 2015b. "Cost Estimation for Land Use and Run-Off – Summary of Evidence." Heading 1 (publishing.service.gov.uk).

Environment Agency. 2018. "Working With Natural Processes – Evidence Directory." https://assets.publishing.service.gov.uk/media/6036c5468fa8f5480a5386e9/Working_with_natural_processes_evidence_directory.pdf.

Environment Agency. 2020. National Flood and Coastal Erosion Risk Management Strategy for England. Environment Agency.

Environment Agency. 2022. "Investment Requirements for England's River Basin Management Plans. Appendix E: Natural Capital Approach." https://www.gov.uk/government/publications/investment-requirements-for-englands-river-basin-management-plansV.UK.

Environment Agency. 2025. "Working with Natural Processes – Evidence Directory Update." https://assets.publishing.service.gov.uk/media/67c6e14c68a61757838d2265/FRS21232_Research_report.pdf.

Evans, E. P., R. Ashley, J. W. Hall, et al. 2004. Foresight Future Flooding, Scientific Summary: Volume 2: Managing Future Risks. Office of Science and Technology.

Ewen, J., G. Parkin, and P. E. O'Connell. 2000. "SHETRAN: Distributed River Basin Flow and Transport Modeling System." *Journal of Hydrologic Engineering* 5, no. 3: 250–258.

Ford, A., S. Barr, R. Dawson, J. Virgo, M. Batty, and J. Hall. 2019. "A Multi-Scale Urban Integrated Assessment Framework for Climate Change Studies: A Flooding Application." *Computers, Environment and Urban Systems* 75: 229–243.

Hayman, G., J. W. Redhead, M. Brown, et al. 2024. "A Framework for Improved Predictions of the Climate Impacts on Potential Yields of UK Winter Wheat and Its Applicability to Other UK Crops." *Climate Services* 34: 100479. https://doi.org/10.1016/j.cliser.2024.100479.

He, Y., M. Desmond, R. Warren, et al. 2022. "Quantification of Impacts Between 1.5 and 4°C of Global Warming on Flooding Risks in Six Countries." *Climatic Change* 170, no. 1: 15. https://doi.org/10.1007/s10584-021-03289-5.

He, Y., F. Pappenberger, D. Manful, et al. 2013. "Flood Inundation Dynamics and Socioeconomic Vulnerability Under Environmental Change." In *Climate Vulnerability*, edited by R. Pielke. Elsevier Sciences. https://doi.org/10.1016/B978-0-12-384703-4.00508-6.

HM Government. 2016. National Flood Resilience Review. HM Government.

HM Government. 2022. The Green Book. HM Government.

Howarth, M., E. A. Smithwick, L. McPhillips, and A. Mejia. 2025. "Scaling Nature-Based Solutions for Fluvial Floods: A Worldwide Systematic Review." *WIREs Water* 12, no. 2: e70011.

Jenkins, K., R. Nicholls, P. Sayers, et al. 2025. "An Innovative Multi-Hazard Climate Change Risk Assessment Framework: Evidence from a Place-Based Assessment of Challenges and Solutions in the UK Fens. Article EGU25-18584, EGU General Assembly 2025." https://doi.org/10.5194/egusphere-egu25-18584.

Kay, A. L., G. H. Old, V. A. Bell, H. N. Davies, and E. J. Trill. 2019. "An Assessment of the Potential for Natural Flood Management to Offset Climate Change Impacts." *Environmental Research Letters* 14, no. 4: 44017

Kay, A. L., E. J. Stewart, H. N. Davies, A. C. Rudd, G. Vesuviano, and P. Sayers. 2020. "CCRA3 Flooding Projections, Task 2a: High Resolution Climate Change Projections—Fluvial." Technical note. https://nora.nerc.ac.uk/id/eprint/529919/1/N529919CR.pdf.

Kjeldsen, T. R., D. A. Jones, and A. C. Bayliss. 2008. "Improving the FEH Statistical Procedures for Flood Frequency Estimation." Joint Defra/EA Flood and Coastal Erosion Risk Management R&D Programme, Science Report SC050050, 137pp.

Kral, F., M. Fry, and H. Dixon. 2015. *Integrated Hydrological Units of the United Kingdom: Hydrometric Areas Without Coastline*. NERC Environmental Information Data Centre. https://doi.org/10.5285/3a4e9 4fc-4c68-47eb-a217-adee2a6b02b3.

Kumar, V., K. V. Sharma, T. Caloiero, D. J. Mehta, and K. Singh. 2023. "Comprehensive Overview of Flood Modeling Approaches: A Review of Recent Advances." *Hydrology* 10, no. 7: 141.

Lane, R. A., G. Coxon, J. E. Freer, et al. 2019. "Benchmarking the Predictive Capability of Hydrological Models for River Flow and Flood Peak Predictions Across Over 1000 Catchments in Great Britain." *Hydrology and Earth System Sciences* 23, no. 10: 4011–4032.

Lindström, G., B. Johansson, M. Persson, M. Gardelin, and S. Bergström. 1997. "Development and Test of the Distributed HBV-96 Hydrological Model." *Journal of Hydrology* 201, no. 1–4: 272–288.

Lowe, J. A., D. Bernie, P. Bett, et al. 2018. "UKCP18 Science Overview Report." Tech. rep., Met Office.

Marc, V., and M. Robinson. 2007. "The Long-Term Water Balance (1972–2004) of Upland Forestry and Grassland at Plynlimon, Mid-Wales." *Hydrology and Earth System Sciences* 11, no. 1: 44–60.

Metcalfe, P., K. Beven, B. Hankin, and R. Lamb. 2018. "Simplified Representation of Runoff Attenuation Features Within Analysis of the Hydrological Performance of a Natural Flood Management Scheme." *Hydrology and Earth System Sciences* 22: 2589–2605.

Morris, M., B. Horton, A. de Haldevang, et al. 2024. "Assessing the Multiple Benefits of Natural Flood Management." A report published by the Royal Society of Wildlife Trusts Commissioned in Partnership With RSA, an Intact Company.

Murphy, J. M., G. R. Harris, D. M. H. Sexton, et al. 2018. "UKCP18 Land Projections: Science Report." Tech. rep., Met Office.

National Resources Wales. 2022. "Working With Natural Processes (WWNP) in Wales Data Portal." https://metadata.naturalresources.wales/.

Nicholson, A. R., G. M. O'Donnell, M. E. Wilkinson, and P. F. Quinn. 2020. "The Potential of Runoff Attenuation Features as a Natural Flood Management Approach." *Journal of Flood Risk Management* 13: e12565.

Nisbet, T. 2005. "Water Use by Trees." In *Information Note no.65*, 8. Forestry Commission - Forest Research CABI Digital Library and Forestry Commission Archives.

Peel, M. C., and T. A. McMahon. 2020. "Historical Development of Rainfall-Runoff Modeling." *Wiley Interdisciplinary Reviews: Water* 7, no. 5: e1471.

Quinn, P. F., C. J. Hewett, M. E. Wilkinson, and R. Adams. 2022. "The Role of Runoff Attenuation Features (RAFs) in Natural Flood Management." *Water (Basel)* 14, no. 23: 3807.

Redhead, J. W., M. Brown, J. Price, et al. 2025. "National Horizon Scanning for Future Crops Under a Changing UK Climate." *Climate Resilience and Sustainability* 4, no. 1: e70007. https://doi.org/10.1002/cli2.70007.

Roberts, M. T., J. Geris, P. D. Hallett, and M. E. Wilkinson. 2023. "Mitigating Floods and Attenuating Surface Runoff With Temporary Storage Areas in Headwaters." *WIREs Water* 10, no. 3: e1634.

Russell, A., A. J. McCue, and A. D. Patel. 2024. "Developing an Audit Framework for Local Flood Risk Management Strategies: Is Increasing Surface Water Flood Risk in England Being Adequately Managed?" *Climate* 12, no. 7: 106. https://doi.org/10.3390/cli12070106.

Sayers, P. B., G. Galloway, E. Penning-Rowsell, et al. 2013. Flood Risk Management: A Strategic Approach. UNESCO/Water Publishing/General Institute of Water Design and Planning/Asian Development

Sayers, P. B., G. Galloway, E. Penning-Rowsell, et al. 2014. "Strategic Flood Management: Ten 'Golden Rules' to Guide a Sound Approach."

International Journal of River Basin Management 13, no. 2: 137–151. https://doi.org/10.1080/15715124.2014.902378.

Sayers, P. B., M. S. Horritt, E. Penning-Rowsell, and A. Mckenzie. 2015. *Climate Change Risk Assessment 2017: Projections of Future Flood Risk in the UK*, 125. Sayers and Partners LLP Report for the Committee on Climate Change.

Sayers, P., M. Horritt, E. Penning-Rowsell, A. McKenzie, and D. Thompson. 2016. "The Analysis of Future Flood Risk in the UK Using the Future Flood Explorer (FFE)." *Proceedings of Floodrisk 2016. E3S Web Conference* 7: 21005. https://doi.org/10.1051/e3sconf/20160721005.

Sayers, P. B., R. Brisley, S. Wingfield, et al. 2018. "A National Analytics Toolset to Support an Exploration of Alternative Investments in the Flood Risk Management Infrastructure." A report for the National Infrastructure Commission by JBA and Sayers and Partners, July 2018. https://www.nic.org.uk/wp-content/uploads/Sayers-Flood-consultanc y-report.pdf.

Sayers, P. B., J. W. Hall, and I. C. Meadowcroft. 2002. "Towards Risk-Based Flood Hazard Management in the UK." *Proceedings of the Institution of Civil Engineers* 150, no. 5: 36–42.

Sayers, P. B., R. Ashley, S. Carr, et al. 2022. "Surface Water – Risk and Investment Needs." A report by Sayers and Partners for the National Infrastructure Commission, London.

Sayers, P. B., M. Horritt, S. Carr, A. Kay, and J. Mauz. 2020. *Third UK Climate Change Risk Assessment (CCRA3): Future Flood Risk*. Sayers and Partners and the Committee on Climate Change (Using the Future Flood Explorer).

Sayers, P. B., Y. Li, D. Tickner, et al. 2025. Sustainable Water Infrastructure: A Strategic Approach to Combining Natural and Built Infrastructure. UNESCO, Paris on Behalf of WWF.

Scottish Environment Protection Agency. 2014. Natural Flood Management Summary: Methodology and Mapping. SEPA.

Seddon, N., A. Smith, P. Smith, et al. 2021. "Getting the Message Right on Nature-Based Solutions to Climate Change." *Global Change Biology* 27, no. 8: 1518–1546.

Smith, B. A., S. J. Birkinshaw, E. Lewis, E. McGrady, and P. Sayers. 2024a. "Corrigendum: Physically-Based Modelling of UK River Flows Under Climate Change." *Frontiers in Water* 7: 1544878. https://doi.org/10.3389/frwa.2025.1544878.

Smith, B. A., S. J. Birkinshaw, E. Lewis, E. McGrady, and P. Sayers. 2024b. "Physically-Based Modelling of UK River Flows Under Climate Change." *Frontiers in Water* 6: 1468855.

UNEA. 2022. "Nature-Based Solutions for Supporting Sustainable Development." UNEA Resolution 5/5., A report by United Nations Environment Assembly.

Walport, M., and C. Craig. 2014. "Innovation: Managing Risk, Not Avoiding It." Annual Report of the Government Chief Scientific Adviser.

Warren, R., K. Jenkins, M. Brown, et al. 2023. What Climate Impacts to the UK Would be Avoided by Limiting Global Warming to 1.5°C, as Compared to Higher Levels of Warming? Climate Services for a Net Zero Resilient World. UK Government.

Warren, R., J. Price, E. Graham, et al. 2018. "The Projected Effect on Insects, Vertebrates and Plants of Limiting Global Warming to 1.5°C Rather Than 2°C." *Science* 360: 791–795.

Wells, J., J. C. Labadz, A. Smith, and M. M. Islam. 2020. "Barriers to the Uptake and Implementation of Natural Flood Management: A Social-Ecological Analysis." *Journal of Flood Risk Management* 13, no. S1: e12561.

WWF. 2007. Slowing the Flow. WWF Scotland.