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Abstract

Sandy coasts are dynamic landscapes due to long-term processes and short-term events leading to changes at
various temporal and spatial scales. Coastal dune environments are well studied at a ‘micro’ scale, both
temporal and spatial, using detailed and costly in-situ surveys. However, understanding their dynamics at
medium and large spatial scales is fundamental for coastal management and conservation. This review gathers
recent progress on the use of satellite remote sensing to study coastal dune environments at medium and
large spatial scales (from beach scale to coastal landscape scale). It is motivated by the increasing availability of
satellite data at resolutions which, coupled with other coastal monitoring systems, can be applied to
understanding coastal processes at medium and large spatial scales and by the need to investigate the most
suitable satellite sensors and remote sensing methods for coastal studies, with a focus on dune detection,
characterisation and monitoring. The reader will obtain a range of useful information from practical
knowledge on landscape scale sandy coast mapping to discussions on linking plot and landform observations
to landscape scale. The outcomes of this review show an increasing availability of suitable satellite data and
methods that facilitate the exploration of coastal dune change at spatial and temporal resolutions that were
not possible until recently. Some of the benefits and challenges of using a range of satellite products to map
coastal dune landscape elements (e.g., vegetation cover, topography), and how this information can be used
in coastal management in general, are discussed.
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Introduction sediment exchanges form the basis of our current
understanding of short term beach-dune interaction and
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eco-morphodynamic adjustments of sandy shorelines
to coastal processes (Hesp and Martinez, 2007; Jackson
and Short, 2020; Sherman and Bauer, 1993). In the
medium-long term, sandy beaches adapt to changes in
sediment budgets and mean sea-level. Changes to the
amount of sediment available to littoral processes af-
fects the amount of sediment delivered, leading to
different dune morphologies and dynamics (Bauer and
Sherman, 1999; Psuty, 1988). The response of dunes on
sandy beaches to rising sea levels is complex because of
feedback mechanisms, sediment transport pathways,
and interactions between hydro and aerodynamic
processes and the ecosystem (Davidson-Amott and
Bauer, 2021). Given space landward, beaches and
dunes can migrate with rising sea levels, although the
rate and the mechanisms regulating this are still under
investigation (Davidson-Arnott, 2005).

Climate change, sea-level rise, and the adaptation of
coastal communities are global concerns. In Europe, up
to 41% of people live in coastal regions (Collet and
Engelbert, 2013), with coastal populations growing
fast (European Environment Agency, 2006). Increas-
ing human pressure has led to a loss of coastal envi-
ronments (Williams et al., 2022). Coastal dunes are
distributed along sandy shorelines (Doody, 2001) and
they sustain important coastal habitats (Martinez and
Psuty, 2004). Adequate monitoring of coastal dunes is
key for management in the context of climate change
and human impacts (Cooper et al., 2009; McLean
et al., 2001). This requires the capacity to under-
stand how coasts evolve at various interconnected
temporal and spatial scales (Farrell et al., 2024;
Sherman, 1995), including large, regional scales.

Scope and outline of this review

Coasts are dynamic and have been traditionally mon-
itored using field methods, which are costly and spa-
tially limited. Satellite remote sensing can complement
these and monitor beaches at various spatiotemporal
scales to understand coastal dynamics (Austrich et al.,
2021; Castelle et al., 2021; Cenci et al., 2021;
Munasinghe and Warnasuriya, 2023). Linking remote
sensing and field information bridges process-response
dynamics concepts and long-term, large-scale processes
influencing landform evolution in sand dune systems
(Walker et al., 2017; Zheng et al., 2022). It is also useful

for coastal management and planning by providing
large-scale, spatially explicit information (Al Ruheili
and Boluwade, 2021; Vallarino Castillo et al., 2022).

Walker et al. (2017) proposed a ‘scale aware’
conceptual framework to structure beach dune dy-
namics research, identifying three scales of interest: (1)
the ‘plot’ scale, at a scale of metres and over seconds to
days, focused on sediment transport and erosion/
deposition patterns at discrete locations; (2) the
‘landform’ scale, at a scale of hundreds of metres and
over months to years, focusing on shoreline erosion/
progradation, biogeography, foredune size and ge-
ometry, beach width and slope, surface characteristics,
wind characteristics, human influence, sediment
transport rate, and erosion/deposition patterns; and (3)
the ‘landscape’ scale, across a kilometre scale and over
decades to centuries, focusing on shoreline erosion/
progradation, biogeography, foredune size and ge-
ometry, and beach width and slope.

The landform scale acts as a link between the plot
and the landscape, requiring studies covering various
years (Walker et al., 2017). Remote sensing is ideal for
this purpose. This, together with the increasing
availability of remote sensing data sources and con-
stant development in computer science and image
analysis (Zheng et al., 2022) has motivated this review.
The main aim is to inform about the progress made in
remote sensing for coastal dune environments over the
last 15 years, assess the effectiveness of remote sensing
methods and datasets for coastal dune research, and
provide scientific guidelines regarding the use of these
technologies. A similar approach has been followed for
terrestrial inland dunefields by (Zheng et al., 2022), but
beach-dune environments are fundamentally different
from inland surfaces due to the nuances of sand
transport in the presence of water, which creates het-
erogeneous conditions over the spatial extent of the
beach (Walker et al., 2017).

This review is structured according to the frame-
work by Walker et al. (2017) (Table 1). As most of the
publications fall within the ‘landscape’ scale, this
category has been divided into three sub-categories.

Literature selection

Peer-reviewed journal articles and reviews pub-
lished between 2009 and 2024 were considered. A
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title and abstract search using two keyword sets
(Figure 1) was performed in Scopus. The first
search returned 466 publications, which were
reduced to 250 after reading their title, abstract and
keywords. This first filter excluded articles that
were not sufficiently related to coastal science or
satellite remote sensing, or that were not peer-
reviewed. The following criteria were applied to
rule out 36% of the remaining publications after
reading the full text: (1) focus was a social science
problem; (2) about inland environments; (3) about
rocky or gravel coasts; (4) satellite remote sensing
was only ancillary; (5) not written in English or
Spanish. Of the 160 articles remaining, 3 were
literature reviews and 157 were experimental
studies.

The increasing number of publications over the
last 15 years (Figure 2) shows a growing interest in
satellite remote sensing of coastal dune environ-
ments. Most publications were from journals on
coastal and marine sciences, including relevant
journals for coastal dune studies such as Aeolian
Research (Figure 3). Journals on remote sensing and
applied informatics and statistics, and on Earth
system science, physical geography and geomor-
phology were also present. A few more publications
are cited than those screened in the review, as they
helped setting up the context or explain basic tools
and data sources.

Satellite data sources for coastal
dune environments
Landsat missions and Sentinel-2 were the most widely

used data sources. These are freely available, medium
resolution optical data. Very high resolution (VHR)

imagery from online globes such as Google Earth is the
third most used source. Its limited spectral information
is compensated by its ease of use. Optical VHR data
from satellite platforms such as QuickBird, Pléiades or
RapidEye are also present. VHR data’s high spatial
resolution allows the detection of fine scale processes in
coastal environments. Despite its advantages such as
high atmospheric penetration (even through cloud) or
ability to measure topographic changes (through in-
terferometry), active synthetic aperture radar sensors
(Radarsat, ALOS-PALSAR, Sentinel-1, TerraSAR-X)
scarcely appear. A summary of all satellite data sources
present in the review is in the supplementary material
(Table A) (Alaska Satellite Facility, 2024; EO Portal,
2012; EO Portal, 2023; EO Portal, 2024a; EO Portal,
2024b; ESA, 2024a; ESA, 2024b; ESA, 2024c; ESA,
2024d; ESA, 2024e; ESA, 2024f; ESA, 2024g; ESA,
2024h; ESA, 2024i; ESA, 2024j; ESA, 2024k; ESA,
20241; ESA, 2024m; ESA, 2024n; ESA, 20240; ESA,
2024p; ESA, 2024q; ESA, 2024r; JPL, 2024; NASA,
2024; NIK, 2024; Satellite Imaging Corporation,
2022a; Satellite Imaging Corporation, 2022b;
Satellite Imaging Corporation, 2022c¢; Satellite Imaging
Corporation, 2022d; Krebs, 2023; Thome, 2024).

Remote sensing methods for coastal
dune environments

Beach-dune variables

Since shoreline progradation/erosion is the dominant
beach-dune variable in this review (Figure 4), most
methods were related to the retrieval of shoreline
positions. The most widely used tool is the Digital
Shoreline Analysis System (DSAS) (Abd-Elhamid
et al., 2023; Al Ruheili and Boluwade, 2021; Baral

Table 1. Organising framework of this literature review, adapted from the conceptual framework by Walker et al.

(2017).

Scale of interest

Spatial scale of study

Plot

Landform

Landscape Sub-regional
Regional

Super-regional

Microscale: m?

Mesoscale: Tens of m to less than | km?
1-10 km?

10100 km?

Larger than 100 km?
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Figure |. Keyword combinations used for the literature search.

et al., 2018; Cenci et al., 2021; Cohn et al., 2022;
Dada et al., 2016; Dhanalakshmi et al., 2019; Duarte
et al., 2018; Elfadaly et al., 2023; ElKotby et al.,
2023; El-Zeiny et al., 2022; Emam et al., 2019;

Flores et al., 2020; Goémez et al., 2017; Hoque et al.,
2019; Hossain and Saha, 2024; Jolivet et al., 2019;
Kaliraj et al., 2014; Liu et al., 2020; Mann and
Westphal, 2014; Markose et al., 2016; Mbezi
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Figure 2. Number of publications by year.
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Other journals

Remote Sensing

Journal of Coastal Research
Geomorphology

Regional Studies in Marine Science

Ocean and Coastal Management

Marine Geology

Journal of Coastal Conservation

Earth Surface Processes and Landforms
Journal of Marine Science and Engineering
Journal of Geophysical Research: Earth Surface
Geocarto International

Estuarine, Coastal and Shelf Science
Environmental Monitoring and Assessment
Environmental Earth Sciences

Continental Shelf Research

Arabian Journal of Geosciences

Applied Geography

Water (Switzerland)

Science of the Total Environment
Oceanology

Journal of Earth System Science
Investigaciones Geograficas

Geo-Marine Letters

Environmental Geology

Egyptian Journal of Aquatic Biology and Fisheries
Ecological Indicators

Earth Science Informatics

Coastal Engineering

Aeolian Research
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Figure 3. Number of articles reviewed by journal.

et al., 2024; Mishra et al., 2021; Misra and Balaji,
2015; Misra and Ramakrishnan, 2020; Mondal et al.,
2020; Munasinghe and Warnasuriya, 2023; Nandi
et al., 2016; Natarajan et al., 2021; Natesan et al.,
2015; Osanyintuyi et al., 2022; Padma et al., 2024;
Pardo-Pascual et al., 2014; Shanmuga Priyaa and
Jena, 2021; Silva et al., 2021; Siyal et al., 2022;
Sundar et al., 2021; Trinida et al., 2024; Valderrama-
Landeros et al., 2022; Vallarino Castillo et al., 2022;
Xu et al., 2024; Zhang et al., 2024; Zhou et al.,
2024). DSAS calculates rate-of-change statistics and
uncertainty metrics from historical shoreline

positions. It has been widely used due to its user-
friendly interface (Himmelstoss et al., 2024). The
input shoreline positions are commonly generated
by visual photointerpretation of the satellite imagery
and manual digitisation of the shoreline.

CoastSat, which is also commonly used, au-
tomatises the process of shoreline delineation
(Adebisi et al., 2021; Angelini et al., 2024; Billet
etal.,2023; 2024; Castelle et al., 2021; Maneja et al.,
2021; McGill et al., 2022; Mu et al., 2024,
Valderrama-Landeros et al., 2022; Vos et al., 2020;
2023a). CoastSat uses Google Earth Engine (GEE),



Progress in Physical Geography 0(0)

Shoreline erosion/progradation
Biogeography
Foredune/dune size and geometry
Beach width and slope
Erosion/deposition patterns B
Dune migration B
Dune mapping ®
Coastal oceanography B
Sediment transport ®
Humaninfluences B

Fire impacts
Climatology 1

0 10 20

B Landsat ® Sentinel-2

VHR

30 40 50 60 70 80 90

Number of publications

100

Otheroptical mRadar

Figure 4. Number of reviewed publications by beach-dune variable and proportion of use of each satellite sensor type.
For interpretation of the references to colours in this figure legend, refer to the online version of this article.

image classification and sub-pixel border segmen-
tation to extract satellite derived shoreline (SDS)
positions at sandy coasts using Landsat or Sentinel-2
data (Vos et al., 2019). The method combines a
Neural Network supervised classification and a sub-
pixel resolution border segmentation using a Mod-
ified Normalized Difference Water Index (MNDWI).
SHOREX is another automatic SDS detection tool
which has been used in two studies (Bricefio de
Urbaneja et al., 2024; Cabezas-Rabadan et al.,
2019a; 2019b). It uses Landsat or Sentinel-2 satel-
lite data and an approximate pixel level shoreline
and then kernel analysis to extract a sub-pixel
shoreline position (Pardo-Pascual et al., 2012;
Sanchez-Garcia et al., 2020). The global shoreline
dataset ShorelineMonitor was used in one article
(Konlechner et al., 2020). ShorelineMonitor consists
in a global assessment of the presence of sandy
beaches and their rate of shoreline change since 1984
(Luijendijk et al., 2018). The assessment is based on
a supervised classification of Landsat and Sentinel-2
imagery. Aside from these tools, there is an in-
creasing number of SDS extraction algorithms, but
no algorithm outperforms the others in all cases (Vos

et al., 2023b). High-energy meso or macrotidal
beaches are particularly challenging (Vos et al.,
2023b). Active sensors, precisely interferometric
SAR (InSAR), were used to assess shoreline change
in Aly et al. (2012) and to map storm surges in
Terenzi et al. (2014) in study sites in Egypt and
Alaska, respectively.

Biogeography was the second most frequent vari-
able (Figure 4). The assessment usually involved land
cover mapping using classification methods (Austrich
etal., 2021; Block et al., 2016; Cao et al., 2022; Giirkan
and Kayikei, 2017; Kozhoridze et al., 2022; Mahbub
et al., 2020; Nuyts et al., 2020; Ponnambalam et al.,
2012; Sambah et al.,, 2022; Timm and McGarigal,
2012; Touhami et al., 2022; Zhou et al., 2024) or
visual photointerpretation and manual digitisation
(Cohen et al., 2021; Goémez et al., 2017; Gorczynski
et al., 2024; Hamylton and East, 2012; Mendes and
Giannini, 2015; Misra and Balaji, 2015; Moulton et al.,
2019; Samanta and Paul, 2016; Thomas et al., 2018;
Toffani et al., 2024; Veettil et al., 2024). The use of
spectral indices such as the normalised difference
vegetation index (NDVI) was widespread (DaSilva
et al, 2021; 2023; Debaine and Robin, 2012;
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Gorczynski et al., 2024; Marzialetti et al., 2019; 2022;
Medina Machin et al., 2019; Petrova et al., 2023;
Scardino et al., 2023; Shumack et al., 2017; Taminskas
et al., 2020; Todaro et al., 2024; Veettil et al., 2020;
2024; Zhou et al., 2024). Sometimes, advanced bio-
geographic characterisation using landscape metrics or
habitat suitability models was used (Block et al., 2016;
Sambah et al., 2022; Todaro et al., 2024). Franklin et al.
(2024) used random forest and decision trees to model
shrub presence in relation to geomorphological vari-
ables in a barrier island site in USA. Delbosc et al.
(2021) highlighted the lack of data to assess the
conservation status of coastal habitats under the Eu-
ropean Union Habitats directive. A remote sensing
approach could help to homogenise conservation status
assessments.

Other frequently assessed variables were fore-
dune and dune size and geometry, beach width and
slope, and erosion and deposition patterns
(Figure 4). Dune morphology was mostly assessed
visually (Cabral and Castro, 2022; Havivi et al.,
2018; Hesp et al, 2022; Levin et al., 2009;
Manzolli et al., 2023; Nuyts et al., 2020; Patton et al.,
2019; Portz et al., 2021; Repkina and Yakovleva,
2023; Rodriguez Paneque, 2024; Toffani, 2020;
Toffani et al., 2024; Ozcan et al., 201 0). Beach width
and slope was usually analysed together with
shoreline erosion and progradation (Cabezas-
Rabadan et al., 2019a; 2019b; Munasinghe and
Warnasuriya, 2023; Schellekens and Amani, 2022;
Siyal et al., 2022; Vos et al., 2020; Xu et al., 2024).
Dune dynamics were measured by Havivi et al.
(2018) using InSAR coherence, and by Sam et al.
(2015) using satellite stereopairs taken 1 year apart.

Erosion and deposition patterns were often vi-
sually assessed (Levin et al., 2009; Nuyts et al.,
2020; Repkina and Yakovleva, 2023; Talavera et al.,
2024), sometimes aided by other methods such as
band combinations (Duarte et al., 2018) or edge
enhancement techniques (Baral et al., 2018).
Albuquerque et al. (2025) used the Normalized
Dune Difference Index (NDDI) to map dunefield
extent in a coastal zone of Rio Grande do Sul
(Brazil). NDDI is a spectral index specifically de-
signed to highlight the spectral characteristics of
sand dunes that uses a SWIR band and the coastal
aerosol band available in Landsat data. Roman-
Rivera and Ellis (2019) highlighted the potential
of spatially explicit predictive modelling using
satellite data to supply morphodynamic information.

Spatial scales

Most of the publications belonged to the landscape
scales (Figure 5). This is not surprising, since the
most used satellites were Landsat and Sentinel-2,
which have moderate spatial resolution (Table A,
Supplemental material). The amount of plot level
studies is limited due to the spatial resolution of
satellite data, which only reaches 20-30 cm pixel
size for the highest resolution sensors (WorldView-
3). The following sections describe only the most
relevant or innovative studies at each scale.

Plot scale. Two studies assessed variables at this
scale. Repkina and Yakovleva (2023) classified and
analysed Holocene aeolian deposits. Through visual
photointerpretation of images extracted from online

Landscape: super-regional
Landscape: regional
Landscape: sub-regional
Landform

Plot

o

10

20 30 40 50 60
Number of publications

Figure 5. Number of reviewed publications by scale of interest.
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globes (Google Earth and SAS Planet), they assessed
the morphology and distribution of the dunes and the
erosion and deposition patterns in a site in the White
Sea coast (Russia). Scardino et al. (2023) used
Landsat 8/9 and Sentinel-2 to monitor vegetation
heath and water stress on coastal dunes in a study
area in the Chiatona coast (Italy) using spectral
indices. This vegetation assessment was then linked
to erosion and accretion processes using in-situ
surveys.

Landform scale. Castelle et al. (2021); McGill et al.
(2022); Maneja et al. (2021) and Silva et al. (2021)
assessed shoreline erosion and progradation or
beach widths. Three of these studies used CoastSat.

The study by Castelle et al. (2021) is especially
interesting, as they compared SDS extracted using
CoastSat over a 35 year-long period with field data
spanning over 10 years in Truc Vert beach (France).
Both Landsat and Sentinel-2 datasets were used. They
found that SDS using CoastSat can be improved in
high-energy meso-macrotidal beaches such as Truc
Vert by taking wave runup into account, choosing a
different shoreline proxy, or training CoastSat’s Neural
Network classifier to the site-specific characteristics.

Bentze et al. (2023); DaSilva et al. (2023);
Marzialetti et al. (2022); Mendes and Giannini
(2015) and Timm and McGarigal (2012) studied
biogeographical characteristics of coastal areas.

Marzialetti et al. (2022) used Sentinel-2 and VHR
PlanetScope data to upscale drone surveys of the
invasive tree Acacia saligna in a coastal environ-
ment in Italy. They calculated 18 spectral indices as
remote sensing variables to build an 4. saligna in-
vasion model. They modelled A. saligna occurrence
using a Random Forests machine learning algorithm
(Breiman, 2001). Timm and McGarigal (2012) also
used Random Forests, but for classification instead
of regression. They created detailed maps of coastal
dune and salt marsh ecosystems in Cape Cod Na-
tional Seashore (USA) using VHR QuickBird im-
agery combined with orthophotography and a digital
elevation model (DEM). They used a supervised
approach, designing a classification scheme, build-
ing a set of 34 predictor variables (including spectral
indices and topographic variables) and collecting
training samples.

Dune morphology was assessed by Hesp et al.
(2022) in Australia and Levin et al. (2009) in Brazil.
They both used VHR satellite imagery (RapidEye
and QuickBird, respectively), visual photointerpre-
tation and manual delineation to identify aeolian
landforms.

Landscape scale

Sub-regional. Shoreline erosion and progradation
or beach width were analysed by Amaro et al.
(2015); Baral et al. (2018); Billet et al. (2024);
Chang et al. (2015); Cohn et al. (2022); Duarte et al.
(2018); Fairley et al. (2020); Garcia-Rubio et al.
(2015); Mahbub et al. (2020); Mu et al. (2024);
Munasinghe and Warnasuriya (2023); Rajagopalan
(2011); Repkina et al. (2024); Samanta and Paul
(2016); Smith et al. (2021); Sundar et al. (2021);
Trinida et al. (2024); Vallarino Castillo et al. (2022)
and Xu et al. (2024). Most relied on manual digi-
tisation of shorelines, sometimes aided by spectral
indices or visual image enhancement techniques
such as band combinations, followed by further
analysis of shoreline trends using DSAS. CoastSat
was sometimes used.

Fairley et al. (2020) used Sentinel-2 data to assess
intertidal bar shape and migration and relate it to
coastal dune behaviour in Crymlyn Burrows (United
Kingdom). Although this is not the main intended
use for CoastSat, these authors adapted the workflow
by extracting the pre-processed images before
shoreline detection. These were then transformed to
grayscale and the sandbars were extracted using
histogram thresholding, manually finding a thresh-
old value which separates land and water properly.

Biogeography was assessed by Bonte et al.
(2021); Cohen et al. (2021); Ettritch et al. (2018);
Mahbub et al. (2020); Marzialetti et al. (2019);
Medina Machin et al. (2019); Samanta and Paul
(2016); Sambah et al. (2022); Taminskas et al.
(2020); Thomas et al. (2018) and Touhami et al.
(2022); Cohen et al. (2021); Samanta and Paul
(2016) and Thomas et al. (2018) mainly relied on
visual photointerpretation and manual digitisation.
The NDVI index was a key part of the methods by
Marzialetti et al. (2019) and Taminskas et al. (2020).

Ettritch et al. (2018) used linear spectral un-
mixing (LSU) on a time series of Landsat imagery to
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quantify bare soil over time in a stabilised dune
system in the Kenfig Burrows National Nature
Reserve (United Kingdom). LSU is a technique to
analyse the spectral mixture within pixels. It infers
sub-pixel pure spectral signatures (endmembers)
weighted by their abundances (Garg, 2020) within
each pixel.

Bonte et al. (2021); Mahbub et al. (2020);
Marzialetti et al. (2019); Medina Machin et al.
(2019); Touhami et al. (2022) and Sambah et al.
(2022) used land cover classification methods based
on random forests, decision tree, support vector
machines (SVM) or maximum likelihood algorithms
in study sites in France, Belgium, Netherlands,
United Kingdom, Bangladesh, Italy and Spain.

Dune and foredune morphology and patterns
were assessed by Baral et al. (2018); Bonte et al.
(2021); Cabral and Castro (2022); Duarte et al.
(2018); Knight and Burningham (2021); Manzolli
et al. (2023); Ozcan et al. (2010); Patton et al.
(2019); Portz et al. (2021); Povilanskas et al.
(2009) and Van Kuik et al. (2022). The remote
sensing methods used tended to be based on visual
photointerpretation or very simplistic.

Knight and Burningham (2021) and Portz et al.
(2021) measured transverse dunes migration. Knight
and Burningham (2021) used Sentinel-2 data and
GEE in South Africa. They extracted the reflectance
along a shore-parallel, dune-crossing transect. The
inflection points in reflectance between the illumi-
nated and shaded sides of the dunes allowed the
identification of dune crests. Portz et al. (2021) used
visual photointerpretation on VHR imagery in La-
goa Do Peixe National Park (Brazil).

Van Kuik et al. (2022) quantified surface-area
development of foredune trough blowouts and their
associated parabolic dunes. They used GEE to au-
tomatically assess blowout surface area and shape
using Landsat and Sentinel-2 imagery. They applied
it to blowout systems in the Netherlands, Denmark
and United States. First, a normalized difference
water index (NDWI) and the Otsu thresholding al-
gorithm were used to separate land and water. They
minimised classification errors using morphological
dilation and erosion. Then, a Canny edge detection
algorithm was used on the land pixels to identify the
transitions between sand and vegetation pixels.

These edges were then buffered to determine an area
where an Otsu thresholding of NDVI values would
be applied to separate sand from vegetation pixels
within the blowouts. Since the land cover mosaic in
coastal areas is often fine grained causing a medium
resolution pixel to contain more than one land cover
type, LSU was used then to determine the proportion
of each land cover type within a pixel. Land pixels
with less than 50% vegetation cover were assigned
to blowout.

Regional. Shorelines and beach width at the re-
gional scale were studied by Aadland and Helland-
Hansen (2019); Alves and Rossetti (2017); Angelini
et al. (2024); Bergsma et al. (2020); Billet et al.
(2023); Bricefio de Urbaneja et al. (2024); Cabezas-
Rabadan et al. (2019a, 2019b); Cenci et al. (2021);
Demir et al. (2019); Dhanalakshmi et al. (2019);
Duvat et al. (2017); ElKotby et al. (2023); Flores
et al. (2020); Foti et al. (2023); Gzam et al. (2013);
Hagenaars et al. (2018); Jolivet et al. (2019);
Kazhukalo et al. (2023); Kefi et al. (2024); Liu et al.
(2020); Mann and Westphal (2014); Markose et al.
(2016); Mondal et al. (2020); Nandi et al. (2016);
Natarajan et al. (2021); Natesan et al. (2014; 2015);
Tappin et al. (2012); Valderrama-Landeros et al.
(2022); Veettil et al. (2020); Webb and Kench
(2010); Zhang et al. (2024, 2021). Again, most re-
lied on visual photointerpretation and manual
digitisation of shorelines. CoastSat was used by
Billet et al. (2023) in a coastal area near Buenos
Aires (Argentina). SHOREX was used by Cabezas-
Rabadan et al. (2019a, 2019b) in Spain. Hagenaars
et al. (2018) automatically generated SDS from
Landsat and Sentinel-2 imagery with a method
similar to the already mentioned by Van Kuik et al.
(2022). They applied it to the case study of the Sand
Motor mega-scale nourishment project in the
Netherlands.

Zhang et al. (2021) propose a NDWI based
method to assess shoreline evolution from Landsat
imagery using CASPRS (Computer-aided shoreline
position recognition software), which uses beach
transects and sub-pixel recognition. CASPRS in-
terpolates a point every 1 m of each transect, using
bilinear interpolation to calculate the value of each
point as a function of the four adjacent pixels.
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Subsequently, they used the interpolated transects to
generate a NDWI index. The point with the sharpest
change in NDWI indicates the waterline within each
transect. They applied it to Haiyang beach (China).

Demir et al. (2019) use radar together with optical
data. They present a nonparametric fuzzy shoreline
extraction method based on Sentinel-1 and RASAT
data and use it in two coastal sites in Turkey. They
start with a binary classification of the optical
RASAT imagery. Then, a fuzzy clustering algorithm
is applied to the radar Sentinel-1 data. The fuzzy
membership parameters were calculated based on
the statistics of all pixels belonging to each of the
classes (land and water).

Biogeographical variables were assessed by Block
et al. (2016); Franklin et al. (2024); Giirkan and
Kayike¢i (2017); Marzialetti et al. (2021); Moulton
et al. (2019); Nuyts et al. (2020); Timm et al.
(2014); Todaro et al. (2024) and Veettil et al. (2020).

(Franklin et al., 2024) modelled shrub presence in
relation to geomorphological variables using ma-
chine learning algorithms in a barrier island envi-
ronment in Virginia (United States). Shrub presence
was identified on Landsat imagery, and the geo-
morphological variables were derived from Landsat
and LiDAR data.

Marzialetti et al. (2021) explored vegetation
biodiversity in relation to remotely sensed spectral
heterogeneity in a coastal dune environment in the
Tyrrhenian coast (Italy) using VHR PlanetScope
imagery. They used linear regressions to investigate
the relationship between field alpha biodiversity and
spectral variability in the remote sensing data. Beta
biodiversity was also assessed through a distance
decay model relating field indices and spectral
measurements. For the spectral diversity analysis, a
dataset of pixels with the same location and date of
acquisition as the field data was collected. Spectral
heterogeneity was found to be correlated with
species diversity. More similar plots were also
spectrally closer.

Dune and foredune morphology and erosion and
deposition patterns were assessed in the studies by
da Motta et al. (2015); Durai et al. (2021a, 2021b);
(Franklin et al., 2024); Havivi et al. (2018);
Marzialetti et al. (2020); Nuyts et al. (2020) and
Toffani et al. (2024).

Marzialetti et al. (2020) used monthly Sentinel-2
imagery to map coastal dunes in a coastal envi-
ronment in central Italy. They used a supervised
iterative approach based on hierarchical clustering
and Random forests. The input variables for clas-
sification were the per-pixel yearly diversity repre-
sented by the Rao’s Q index, and three spectral
indices representing land cover temporal variability,
vegetation biomass, and presence of water and bare
surfaces.

Havivi et al. (2018) used InSAR coherence to
map dune dynamics in a coastal site in Israel. The
data used was TerraSAR-X. InSAR coherence is a
method based on the phase difference between two
InSAR datasets acquired at a different time. A high
coherence between the two datasets indicates high
similarity and thus, lack of change. In aeolian en-
vironments, InSAR decorrelation occurs rapidly
because of erosional and depositional processes. The
authors were able to characterise the stability of
different dune features (crests, different orientation
slopes).

Super-regional. Shoreline  erosion/progradation
was studied by Anwar and Rahman (2021);
Besset et al. (2017); Chu et al. (2013); Dada et al.
(2016); Danchenkov et al. (2023); Di Stefano et al.
(2013); El Banna and Frihy (2009); Elewa and El
Nahry (2009); Elfadaly et al. (2023); El-Zeiny et al.
(2022); Emam et al. (2019); Feng et al. (2015);
Gomez et al. (2017); Gorczynski et al. (2024);
Hamylton and East (2012); Haque et al. (2024);
Herlekar et al. (2023); Hoque et al. (2019); Hossain
and Saha (2024); Kaliraj et al. (2014); Konlechner
et al. (2020); Levin et al. (2017); Liu et al. (2013);
Mao et al. (2021); Mbezi et al. (2024); Mishra
et al. (2021); Misra and Balaji (2015); Mohd
et al. (2018); Osanyintuyi et al. (2022); Padma
et al. (2024); Pardo-Pascual et al. (2014); Pourkerman
et al. (2018); Schellekens and Amani (2022);
Septiangga and Mutaqin (2021); Shanmuga Priyaa
and Jena (2021); Siyal et al. (2022); Sylaios et al.
(2012); Veettil et al. (2024); Vos et al. (2023a);
Zhang et al. (2018); Zhou et al. (2024). Again,
most of these relied on visual assessment, spectral
index calculation or already mentioned approaches
like various supervised land cover classification
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algorithms, histogram thresholding, or tools such as
CoastSat or ShorelineMonitor.

Mao et al. (2021) measured very large-scale
shoreline change in Australia employing Landsat
data and GEE. They began by building a yearly
composite of Landsat data. This was used to cal-
culate the automatic water extraction index (AWEI),
which was segmented into water and land using
histogram thresholding. This, together with a DEM,
were used to create a mask of land area at high tide,
which was overlapped with a vector file of shoreline
buffers created previously from ancillary data. With
this information, the authors calculate the average
shoreline position and the land pixel count within
each buffer.

Aly et al. (2012) and Al Fugura et al. (2011) used
SAR (ERS-1 and 2 and RADARSAT-1, respec-
tively). Al Fugura et al. (2011) worked in Malaysia
and used edge detection methods, followed by a
median filter on a moving window to smooth the
image. Thresholding was used for the final seg-
mentation. More effective is the method by Aly et al.
(2012), which used InSAR coherence in Egypt to
quantify erosion/accretion.

Biogeographic variables were assessed by
Austrich etal. (2021); Cao et al. (2022); Debaine and
Robin (2012); Gémez et al. (2017); Gorczynski et al.
(2024); Hamylton and East (2012); Kozhoridze et al.
(2022); Petrova et al. (2023); Ponnambalam et al.
(2012); Misra and Balaji (2015); Shumack et al.
(2017); Veettil et al. (2024) and Zhou et al. (2024).
Most of them used methods very similar to the ones
already mentioned or relied heavily on simplistic
approaches such as manual digitisation.

The most interesting assessment was the one by
Austrich et al. (2021). They studied landscape
change and habitat fragmentation in dune barriers of
the Buenos Aires province (Argentina). They used
Landsat imagery and a maximum likelihood su-
pervised classification to identify coastal dune
habitat classes based on vegetation cover. Then, they
analysed landscape change and structure using
landscape metrics in R.

Dune morphological characteristics were as-
sessed by Danchenkov et al. (2023); Levin et al.
(2017); Rodriguez Paneque (2024); Sam et al.
(2015) and Toffani (2020); Levin et al. (2017)

studied coastal dune activity and foredune forma-
tion on Moreton Island (Australia) between the years
1944 and 2015 using a wide range of remote sensing
data sources, including aerial photographs, LiDAR
datasets, and satellite imagery (Corona and Ziyuan-
3), together with wind information. They used a
minimum distance supervised classification to detect
bare sand surfaces in each of the satellite and aerial
images. Then, post-classification change detection
was performed. This method enables the quantifi-
cation of area of bare sand, dune movement rate,
number and length of foredunes, and coastline po-
sition changes. Sam et al. (2015) extracted 3-
dimensional information from Cartosat-1 stereo-
pairs of a site in Rajasthan.

Concluding remarks

Satellite remote sensing has a transformative role in
monitoring coastal dune environments, offering
scalable and repeatable methods. The integration of
remote sensing with field methods enhances the
understanding of dune dynamics across spatial and
temporal scales. The increasing availability of sat-
ellite data, and the advances in machine learning and
cloud-based platforms have expanded the analytical
capabilities.

However, the review underscores research gaps,
particularly in leveraging SAR data and automati-
cally addressing high-energy coasts. Future studies
should focus on refining existing workflows and
incorporating artificial intelligence for automated
feature detection. Strengthening interdisciplinary
approaches and validating with field observations
remain essential for robust coastal research.

Coastal areas are dynamic, requiring effective
monitoring methods. This review discusses the in-
tegration of remote sensing with traditional field
methods, the suitability of various scales of analysis,
the growing availability of satellite data, and ad-
vancements in computational tools. Our approach
emphasizes the importance of a scale-aware
framework, as proposed by Walker et al. (2017),
which divides research into plot, landform, and
landscape scales. As expected, the review points to
limited studies at the plot scale and the predomi-
nance of studies at the landscape scales (sub-
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regional, regional and super-regional). Very large-
scale, global studies remain scarce due to data
limitations.

In this paper, we have identified widely used
satellite datasets such as Landsat missions and
Copernicus Sentinel-2, which are favoured for their
medium resolution, global coverage, and free
availability. VHR data from sources like QuickBird
and Pléiades are employed for finer spatial analyses,
although their application is often constrained by
cost and accessibility. SAR data, despite its ad-
vantages in atmospheric penetration and its sensi-
bility to land deformation, appears underutilized
compared to optical imagery.

The review points to main trends in terms of tools
and research applications. Remote sensing methods
and tools predominantly focus on shoreline detec-
tion and vegetation mapping. DSAS and CoastSat
tools are prominent for shoreline monitoring, and
spectral indices and land cover classification algo-
rithms lead vegetation cover analyses. Visual pho-
tointerpretation and manual digitisation are still
common.

Crucial limitations remain for the application of
remote sensing tools to the study of coastal dunes,
such as the need to identify methodologies to extract
topographic data in this highly dynamic environ-
ment (Binetti et al., 2024). However, the increasing
availability of satellite images, coupled with im-
provements in temporal and spatial resolutions,
could lead to improved monitoring of coastal dunes,
which in turn could enhance our understanding of
coastal dune adaptations to sea-level rise and climate
change.
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