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Abstract
1.	 The Anthropocene presents significant challenges for global biodiversity, pub-

lic health and ecosystem stability. The wealth of publicly available near-real-time 
ecology and climate data can be used to monitor these challenges and allow prac-
titioners to develop mitigation strategies.

2.	 There is untapped potential to apply large language models (LLMs) to quantitative 
ecological and environmental datasets, enabling researchers and practitioners to 
use natural language queries to transform ecological observations into actionable 
insights for both conservation action and communication of results to diverse 
audiences. Advances in artificial intelligence (AI), and particularly in LLMs, offer 
emerging opportunities to address these challenges. LLMs are increasingly pro-
ficient at identifying patterns and semantic relationships within textual data and 
are highly customisable. Accessible AI tools can facilitate communication across 
research and policy sectors.

3.	 Here, we present a roadmap for designing and implementing multi-modal LLMs 
to answer ecological research questions. To build robust ‘virtual quantitative as-
sistants’ capable of fast-tracking data interpretation, we advocate for strategic 
planning, data stewardship practices, careful prompt engineering and model eval-
uation as key steps in the LLM development process.

4.	 We discuss potential use-case examples that apply the LangChain framework to 
analyse citizen science data. Using our LLM roadmap, we highlight the importance 
of iterative and strategic prompt engineering and agent selection, in addition to it-
eratively evaluating model output. As LLM software continues to evolve, its inte-
gration into ecological and environmental research can empower ecologists with 
purpose-built tools that bridge the gap between data collection and actionable 
solutions.
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1  |  INTRODUC TION

The Anthropocene offers novel and unprecedented challenges for 
global biodiversity, public health and ecosystem stability (Bellard 
et al., 2012; Doney et al., 2012; Willis & Bhagwat, 2009). While the 
size and hierarchical complexity of ecological and social data have 
increased rapidly, tools to investigate and communicate emerging 
phenomena within these datasets remain time-consuming and spe-
cialised. Artificial intelligence (AI) data tools could allow a facilita-
tion of data analysis and the step change in pace required to identify 
emerging trends and prompt rapid intervention responses. Large lan-
guage models (LLMs) are complex probabilistic generative AI natural 
language processing (NLP) models adept at recognising meaning and 
identifying semantic interconnectedness and patterns within text. 
LLMs such as Google's BERT (Bidirectional Encoder Representations 
from Transformers) and OpenAI's GPT (Generative Pretrained 
Transformer), and DeepSeek, have been evolving exponentially 
over the last decade (Google, 2024; Liu et al., 2024; OpenAI, 2024; 
Topsakal & Akinci, 2023). While this expansive evolution may pose 
challenges for long-term reproducibility, it also presents emerg-
ing opportunities for scientific efficiency. For instance, LLMs have 
been used to auto-generate patient discharge forms based on basic 
prompts provided by humans (Chatterjee et al., 2023), extract data 
from survey responses from patients (Haag et al., 2023) and answer 
complex questions about human genomics to a degree of profes-
sional accuracy (Jin et al., 2024). Within the field of ecology, LLMs 
have been employed to scout bodies of academic text to recognise 
and report meaningful occurrences of taxa names (Le Guillarme 
& Thuiller,  2022), identify occurrences of pest control activity 
(Scheepens et  al.,  2024), perform biodiversity literature searches 
using keywords (Abdelmageed et  al.,  2023) and extract metadata 
about pathogen hosts (Gougherty & Clipp, 2024).

There is untapped potential to use NLPs on structured environ-
mental and ecological quantitative datasets (or, matrix data such as 
CVS, XLS files), for example, through the use of open-source soft-
ware libraries such as LangChain which allow a chat-based inter-
face between existing LLMs and data (Topsakal & Akinci, 2023), or 
foundational transformer models such as TabPFN which are trained 
directly on tabular data (Hollmann et al., 2025). Using both histori-
cal and ‘near-real time’ ecological and environmental data as a tex-
tual context for AI could offer researchers the opportunity to turn 
real-time ecological observations into meaningful academic and pol-
icy deliverables (Pollock et al., 2025). For example, citizen science 
data could be an ideal source for harnessing the potential of LLMs 
(Enríquez-de-Salamanca,  2025). Large open-access global datasets 
such as iNaturalist (2024) and eBird (Sullivan et al., 2014), constantly 
updated by citizen scientists and moderated by subject experts, are 
already essential tools for researchers studying global biodiversity 
change, phenology and species invasion (Chandler et al., 2017; iNat-
uralist, 2024; Sullivan et al., 2014). By interpreting large amounts of 
publicly available quantitative ecological data, LLMs could enable 
us to effectively communicate with our datasets, fast-track data 
interpretation and facilitate actionable conservation and research 

outcomes (Ceccaroni et al., 2019, 2023; McClure et al., 2020; Pollock 
et al., 2025). By combining LLMs with existing and robust statisti-
cal frameworks using bespoke NLP tools, it may be possible to cre-
ate custom multi-modal AI systems which can draw from multiple 
data sources, which in turn can help ecologists inform conservation 
decisions and fast-track communication between researchers and 
policymakers.

In this paper, we present a roadmap for developing custom multi-
modal LLMs to serve as virtual data assistants—or ‘virtual quanti-
tative assistants’—designed to support ecologists in summarising, 
visualising and exploring trends within complex ecological datasets. 
These tools represent a timely opportunity for ecological research-
ers to interact with data in more intuitive and accessible ways. We 
outline a novel and flexible protocol for integrating ecological and 
environmental matrix data into tailored LLM systems. We showcase 
a case study that applies this protocol to develop and iteratively 
refine a LangChain-powered AI model. This model functions as an 
interactive chatbot trained on the eBird citizen science database, al-
lowing users to ask natural language questions about near-real-time 
bird observations—including species-specific trends and spatial dis-
tributions. Finally, we explore how multi-modal LLMs could be used 
more broadly across ecological research and conservation practice. 
We argue that now is a critical moment for ecologists to shape and 
adopt these tools to bridge the gap between large, complex datasets 
and timely, actionable insight.

2  |  METHODS

2.1  |  Designing robust and effective 
quantitative LLMs

This section outlines a structured approach to develop an application 
to integrate data processing, AI models and user interaction. The 
entire approach is represented as a visual roadmap in Figure 1 and 
is then used to showcase the design, implementation and evaluation 
of a working citizen science chatbot. In Phase 1 of our roadmap, we 
gather and preprocess relevant data, selecting appropriate sources 
and addressing any potential biases or gaps. Phase 2 involves 
designing and refining AI agents through prompt engineering, 
followed by iterative testing to ensure accurate and effective 
responses. In Phase 3, we focus on integrating and deploying 
the system, ensuring it performs reliably in real-world scenarios. 
Throughout each phase, continuous evaluation and refinement are 
conducted to optimise performance and ensure the system's overall 
effectiveness.

2.1.1  |  Creating retrieval augmented generation 
models in LangChain

As LLMs become increasingly integrated into various academic and 
commercial applications, there is a growing need for frameworks 
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    |  3GALLOIS et al.

that allow developers to connect these models with bespoke data 
sources and to create interactive systems. Retrieval augmented 
generation (RAG) models combine pretrained generative AI models 
with the retrieval of selected documents, such as PDF files, text 
from web searches and numerical matrix data (Jeong, 2024; Lewis 
et al., 2020). LangChain is an open-source RAG framework designed 
to enable users to integrate existing pre-trained LLMs (such as 
OpenAI's GPT models) with a variety of data sources, including 
matrix data, which can be stored as a CSV or SQL dataframe 
(LangChain,  2024). The LangChain framework also includes 
the LangSmith developer platform, which allows developers to 
trace runtimes of their models, and LangGraph, an orchestration 
framework that allows developers to build more complex agentic 
systems with self-reflective capabilities (LangGraph,  2024). 
The foundation of LangChain is built on ‘chains’, which function 
as chronological query-to-output pipelines. A user provides 
an informative prompt, along with data inputs (e.g. dataframes, 
PDFs or text scraped from web searches), memory inputs from 
previous model calls, the LLM and any additional custom tools. 
Non-academic use cases of LangChain include the development 
of AI-driven spreadsheets that optimise pricing and automating 
real-estate operation workflows (LangChain, 2024) and designing 
intelligent urban traffic control tools (Chen & Ding, 2025).

2.1.2  |  Prompt engineering and model 
parameterisation

A ‘prompt’ is an input that is supplied to an LLM and includes the 
query from the user in addition to additional instructions provided 
by the developer and can therefore be understood as a ‘mission 
statement’ for your RAG model. Prompts can also be adjusted to 
include specific instructions for the LLM, such as scraping the 
provided text for keywords, or to pay particular attention to data 
features (Scheepens et  al.,  2024). ‘Chain-of-thought’ or ‘least-to-
most’ prompting strategies can provide a framework to decompose 
a user query into a list of easier subquestions which can be 
sequentially resolved until the model generates its final output 
(Zhou et  al.,  2023). Furthermore, example question-and-answer 
sets can be provided within the prompt to guide the model towards 
an appropriate response (Topsakal & Akinci,  2023). When using 
quantitative matrix data, the metadata descriptions of the field 
can be provided in full as part of the prompt to ensure the model 
is correctly selecting the appropriate variables for analysis based 
upon the user query. Within LangChain, developers can efficiently 
build prompts and attach them to their base models using ‘Prompt 
Templates’ whereby the prompt instructions are included as a text 
string (LangChain, 2024; Topsakal & Akinci, 2023). Prompts can be 

F I G U R E  1  An example workflow for the development, evaluation and deployment of a retrieval-augmented generation large language 
model (LLM) application. Phase 1 involves gathering your source data and selecting model parameters. Phase 2 involves designing and 
testing prompts and agents. Phase 3 involves orchestrating multiple LLM agents into a multi-modal graph and deploying the chatbot online.
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4  |    GALLOIS et al.

iteratively adapted during the development and evaluation stages 
(Ambrogi, 2023; Figure 1) and are integral components to bespoke 
and advanced RAG models.

2.1.3  |  Custom LLM tools for data 
summarisation and visualisation

One of the key advantages of LangChain is the ability to design 
and attach custom tools and agents to an LLM application. Tools 
are Python functions that perform a distinct action (e.g. producing 
plots) and are executed when selected by an LLM ‘agent’ which 
acts as a decision-making component that reads the user input and 
predesigned prompt and routes the query to the appropriate tool 
(Jeong,  2024; LangChain,  2024; Topsakal & Akinci,  2023). A suite 
of toolkits and agents exists that can enhance the performance of 
LLM apps designed to process quantitative data, including the CSV 
and SQL toolkits that optimise agent interactions with quantitative 
data and execute mathematical queries using Python or SQL code 
(LangChain, 2024). The WolframAlpha tool can connect LLM chains 
to the WolframAlpha computational search engine to facilitate 
the computation of more complex mathematical tasks (Wolfram 
Research, Inc, 2024). We recommend using agents and tools for 
summarising, visualising and performing mathematical operations 
on ecological and environmental matrix data within RAG LLM 
models. R is a commonly used language in the field of ecology, and 
Python workflows can also be embedded into R sessions using 
the ‘reticulate’ interface (R Core Team,  2021; Ushey et  al.,  2025). 
Combined with clear and informative prompts, agentic models 
can receive a user query, design a workflow, assign quantitative 
functions to either existing or custom-made toolkits and generate 
output that is informed by existing metadata.

2.1.4  |  Orchestration of multiple tools and text 
sources in LangGraph

LangGraph is a module released by LangChain that allows developers 
to customise their LLM apps further using an orchestrated and cyclic 
framework of agents (Jeong,  2024; LangGraph,  2024). Different 
agents can interact through unconditional (direct, non-optional) or 
conditional (optional, router-driven) nodes, with memory from the 
previous agent carried across to the next until a reasonable query 
has been generated and presented to the user. For quantitative 
researchers, one key benefit of this system is the ability to draw upon 
multiple data sources within one app. For example, the developer 
can build a ‘query routing strategy’ tool that interprets the initial 
user query and directs it to either an SQL or CSV agent connected 
to quantitative data, a standard NLP agent drawing upon a bank 
of academic literature stored as PDFs, or even direct it to a web-
scraping search tool such as Tavily (Ambrogi, 2023; Gao et al., 2024; 
Jeong, 2024; LangGraph, 2024) or an open-source alternative such 
as LLMLayer  (2025) or the DuckDuckGo  (2021) LangChain tool. 

Through prompt engineering and the use of API pulls and real-time 
web searches, this system provides ecologists and environmental 
scientists with the opportunity to design, evaluate and deploy 
advanced LLM models with conditional logic flows that could help 
answer user queries about complex ecological phenomena.

2.1.5  |  Roadmap to effective LLM app 
development and implementation

There are currently no guidelines for the development and evaluation 
of LLM RAG models for quantitative researchers. Here, we present 
a full roadmap, split into three phases, for the development of such 
an app (Figure 1).

Phase 1: Data gathering and strategic planning
a.	 Data gathering: Select the quantitative dataframe you would like 

to provide as the key data source for your app. If available, collate 
all relevant metadata explaining data provenance (e.g. eBird cita-
tion), variable names (e.g. observation counts) and units. You may 
choose a static dataframe to upload manually to your coding en-
vironment or call ‘near-real-time’ data from an API (e.g. iNatural-
ist API or the Global Health Observatory API—iNaturalist, 2024; 
WHO, 2024) if you would like your app to analyse new data as 
it is gathered. As part of this process, take note of any common 
biases or data gaps that are known to exist in these products.

b.	 Data processing: To reduce unnecessary computation and to 
streamline your app design, you may wish to include only vari-
ables of interest within your dataframe. Depending on the focus 
of your app, you may also choose to filter your data to focus on 
key areas, timeframes, species, etc. (Ambrogi, 2023). Thoroughly 
document changes made during the data processing phase and 
included this in any final reporting.

c.	 Selection of LLM parameters: Research and make decisions on the 
pretrained LLM you would like to use for this app. Options in-
clude, but are not limited to, Llama, BERT or the OpenAI GPT 
models. Make decisions about basic LLM parameters such as 
scaling temperature (1 = higher probability of more random an-
swers, 0 = more deterministic with low probability of random 
answers) and verbosity (the length of the generated outputs). 
Without adding any data or prompts at this stage, use the param-
eters above to test-run your app.

Phase 2: Prompt engineering and agent evaluation
a.	 Create an AI agent to interact with your dataframe: If using 

LangChain, create an agent to interact with the SQL or CSV tool-
kits and attach them to your cleaned dataframe. Test the chatbot 
to ensure the agent is working correctly and answering user que-
ries based on the context you provided.

b.	 Prompt engineering: Design meaningful prompts to attach to your 
agent. This should include a mission statement, metadata descrip-
tions, Q&A examples (i.e. few-shot prompting, whereby exam-
ples of inputs and expected outputs are provided to demonstrate 
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    |  5GALLOIS et al.

expected responses from the model, Brown et al., 2020), and any 
other meaningful instructions you wish to have attached to every 
user query.

c.	 Iterative testing: Users should build a prompt, run their model 
through a predetermined set of questions, evaluate the correct-
ness and tone of the output and iteratively evaluate and adjust 
their prompts accordingly until a desired threshold for correct-
ness is achieved for the bank of questions. For example, a bank 
of 100 questions could be generated and answers precalculated 
using non-AI-assisted analyses. These questions should be asked 
in every iteration of the model, and evaluators could score each 
answer for accuracy, helpfulness and tonal appropriateness. 
These scores can then be visualised and statistically evaluated to 
track the development of model performance as improvements 
are iteratively made. Developers may also consider evaluating 
the reproducibility of the answers to your test questions.

Phase 3: Application orchestration and deployment
a.	 Optional—multi-agent frameworks: If you would like to incorporate 

more source texts into your LLM RAG app, you could build an 
orchestrated graph app in a system such as LangGraph. Router 
tools can enable the model to choose between whichever agent 
deals with the most appropriate text source (e.g. a CSV or SQL 
agent for matrix data, or a PDF reader for saved literature). 
Additional tools can be added to evaluate the usefulness of these 
text sources to the original user query.

b.	 Deployment and long-term tracing: Once you are satisfied with 
the performance of your app, you can deploy it on a user inter-
face such as Gradio (2024) or Streamlit (2024). Upon deployment, 
communicate on the UI (and directly to any stakeholders) that the 
app provides estimates and not certainties to avoid public misun-
derstanding about the tool's outputs. Once the app has been de-
ployed, continue to regularly run audits of its efficacy over time.

2.2  |  eBird case study

We followed our proposed workflow to demonstrate a case study 
example of the use of LangChain to build a query-answering 
framework based on citizen science data. We used eBird data (Sullivan 
et al., 2014), a global compilation of citizen science bird observations 
collected by birders, conservationists and scientists and moderated 
by ornithology experts. These data can be downloaded at different 
spatial and temporal resolutions and contain metadata for each outing, 
including bird species observed, abundance, sex, breeding or predatory 
behaviours, exotic status and space for additional observer notes. The 
data contain both numerical and textual input and therefore provide a 
useful opportunity to test OpenAI and LangChain's capacity to interpret 
both qualitative and quantitative data and produce ecologically 
meaningful LLM output. In Appendix S1, we outline the methodology 
for the design and evaluation of this case study application, including 
a bank of evaluation questions (Appendix S1: Lists 1 and 2) and full 
model comparison results for different development stages of the 

model (Appendix  S1: Table  A1). To test model performance against 
different types of questions an ecological researcher may wish to 
pose, we categorised the 100 questions into four query categories: 
bird abundance, community ecology, metadata interpretation and bird 
behaviour. The research questions associated with this case study are 
as follows:

1.	 Can a chatbot app using LangChain and a pretrained OpenAI 
LLM allow us to interact with citizen science matrix data in 
a scientifically meaningful way?

2.	 How well does the model perform using different types of 
ecological query topics?

We aimed to determine whether an LLM can generate accurate 
and meaningful responses relating to bird abundance and commu-
nity structure, bird behaviours and likelihoods of occurrence across 
different habitat types. In doing so, we also investigated whether 
LLMs are more adept at one aspect of ecological interpretation over 
another. All data and code used in this analysis are available to down-
load (Gallois, 2025).

3  |  RESULTS:  eBird CHATBOT C A SE 
STUDY

Prompt engineering testing revealed notable improvements to the 
model when the prompt was iteratively updated (Figure  2). We 
present the results of each of the seven model variations in detail 
in Appendix  S1, whereby we present the changing proportions of 
‘Correct’, ‘Unsure’ and ‘Wrong’ answers (see links to the model 
structure in Appendix S1: Table A1 and exact model prompts in the 
available codebase). We started with a model with no additional 
prompt (Model 1), and 46% of the answers fell into the category 
of ‘Unsure’, whereby the model output stated that this information 
could not be inferred from the dataframe provided. The models 
provided greater accuracy when prompts were iteratively refined 
(Model 2: basic metadata added to prompt, Model 3: detailed 
metadata and variable descriptions added to prompt and Model 
4: thorough prompt with example question-and-answer pairs and 
further clarification for variables related to time), and when calculus 
agents were added to the model workflow and when newer versions 
of OpenAI models were integrated (Models 6 and 7). The final model 
version, with thorough metadata in the prompt, OpenAI 4o Mini and 
the Wolfram tool included, had 77% ‘Correct’ answers, 2% ‘Unsure’ 
answers and 36% ‘Wrong’ answers. We categorised our question 
bank into four types of ecological query: bird abundance, community 
dynamics, metadata interpretation and bird behaviour. The models 
did not perform equally well across types of ecological query, with 
higher accuracy scores reported for user questions relating to bird 
abundance and community composition compared to user questions 
relating to metadata reporting and bird behaviour. For the final 
version of the model (Model 7), 82% of ‘community’ questions were 
scored as ‘Correct’, 80% of ‘abundance’ questions were scored as 
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6  |    GALLOIS et al.

‘Correct’, 68% of ‘metadata’ questions were scored as ‘Correct’ and 
67% of ‘behaviour’ questions were scored as ‘Correct’.

4  |  DISCUSSION

We have devised a proposed workflow for building intelligent, 
quantitative RAG LLMs adept at interacting with matrix datasets 
(Figure 1). We showcased the design and evaluation procedure for 

an example model that interacts with citizen science data from eBird 
(Sullivan et al., 2014), highlighting the importance of iterative prompt 
design, the use of quantitative agents and the adaptation to emerging 
pretrained LLMs (Appendix S1; Figure 2). Adding detailed metadata 
descriptions, few shot examples and mission statements to the 
prompts improved the ability of the model to interpret user queries, 
filter, summarise, perform mathematical functions on the data and 
produce meaningful answers. Users can use the chatbot to generate 
outputs which accessibly translate dense and complex datasets into 

F I G U R E  2  Evaluation of different prompts attached to a LangChain SQL agent. (a) The counts of correct, unsure and incorrect 
answers generated by the different models, coloured by the different ecological query categories. (b)The changing proportion of 
correct:unsure:incorrect over time as the model was iteratively improved. (c) A correct user query and model-generated answer from the 
final version of the model, visualised in a Gradio UI.
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    |  7GALLOIS et al.

accessible, plain language statements. However, our case study also 
revealed that quantitative LLM tools do not necessarily produce 
equally useful interpretations for all types of ecological queries. 
For example, our models are more likely to be adept at questions 
requiring data summarisation or questions about the geography and 
timing of bird observations and less adept at questions requiring a 
deeper understanding of animal behaviour such as hunting, mating 
and migration. Our findings also revealed the rapid improvements 
in model performance because of the rollout of a new LLM model 
version (i.e. OpenAI 4o mini). Our case study provides an example 
of how a researcher can iteratively improve their LLM ‘helper’ tool, 
while also highlighting existing blind spots in LLMs.

Research to date has focused on the rapidly improving logic and 
calculus capabilities of pretrained LLMs (Collins et  al.,  2024), and 
the opportunity to design AI agents that can convert plain language 
queries into mathematical statements and action them in code (Wu 
et al., 2024). To date, no published LLMs have been trained to carry 
out more complicated quantitative analyses. However, we predict 
that these will become widespread as LLMs continue to develop at 
a rapid rate. Bottlenecks may be encountered if researchers need 
to devote additional time to learning AI methods alongside their ex-
isting workloads, particularly with a lack of existing guidance about 
model design, quality assurance and output evaluation. For ecolo-
gists and environmental scientists working with big data, we recom-
mend keeping abreast of these developments and considering the 
potential research opportunities that are likely to emerge as a result. 
In this regard, we encourage researchers to incorporate frameworks 

such as ours into their AI-supplemented workflows to ensure best 
practice and minimise time-consuming mistakes.

By combining LLMs with existing and robust statistical frame-
works, and by using bespoke AI agents and toolkits, it is becoming 
possible to create scalable custom RAG systems that can inform 
real-time conservation, climate adaptation (e.g. Juhasz et al., 2024) 
and public health actions (e.g. Ng et al., 2025). LLMs can identify and 
understand patterns across a diverse array of data types and have al-
ready been successfully used to extract useful scientific data in dis-
ciplines such as genomics and ecology (Jin et al., 2024; Le Guillarme 
& Thuiller, 2022; Scheepens et al., 2024). LLMs' ability to interpret 
and analyse structured matrix data using tools like LangChain (par-
ticularly the multi-modal LangGraph) offers new possibilities for 
environmental and ecological research (Topsakal & Akinci,  2023). 
Data-driven tools could incorporate multi-modal orchestrations (e.g. 
using LangGraph, see example in Figure  3) to draw upon multiple 
data types, including academic literature, near-real-time matrix data 
using API pulls and web-scraping operations. Such tools, if designed 
carefully and with adequate evaluation, could empower policymak-
ers to transform scientific data into actionable interventions at pace.

One clear benefit of integrating LLMs into the analysis of eco-
logical data is the increased timeliness of response time between 
initial data collection and data-informed action (Marvin et al., 2016). 
Camera trapping and audio monitoring are increasingly becoming 
enhanced by AI neural network technology, bridging the gap be-
tween in  situ data monitoring and species identification and geo-
location (Wall et al., 2008; Ware et al., 2012). Likewise, by pairing 

F I G U R E  3  An example multi-modal retrieval augmented generation large language model workflow which incorporates user queries, 
pretrained natural language processing models, custom tools and dataframe agents and multiple data sources, with a variety of visual, 
textual and numerical outputs.
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quantitative LLMs with near-real-time environmental data and cit-
izen science data, AI technology could help reduce repetitive data 
wrangling tasks and accelerate early-stage analyses, enabling 
quantitative ecologists to devote more time to model design, inter-
pretation and broader scientific inquiry, while also facilitating col-
laboration and generating or editing content for further outreach 
(Lamba et  al.,  2019; McClure et  al.,  2020). Furthermore, integrat-
ing LLMs and citizen science data may boost engagement between 
the public (particularly data contributors) and science, especially if 
the gap between data publication and analysis is facilitated by AI 
frameworks (Pecl et  al.,  2019; Theobald et  al.,  2015). Accessible 
AI tools can promote communication across research and policy 
sectors by helping transform raw ecological data into actionable 
insights, but their outputs should undergo transparent quality assur-
ance and control checks (i.e. for factual accuracy, bias reduction and 
tonal appropriateness) by domain experts prior to (and following) 
the public deployment of any LLM tool. The rapid uptake of neural 
network technology in the sphere of ecological research (McClure 
et al., 2020; Torney et al., 2019; Willi et al., 2019) indicates that re-
searchers are willing to explore the analysis capabilities of other AI 
tools as and when they develop (Christin et al., 2019). It is therefore 
important to build and uphold robust and sustainable development 
and evaluation frameworks for these tools.

We recommend that quantitative researchers building RAG 
LLMs consider the concept of ‘garbage in, garbage out’ when choos-
ing the data to include within their model, to the same extent one 
would when building a traditional statistical framework (Kilkenny 
& Robinson, 2018). As with any quantitative analysis, the quality of 
the output is contingent on the quality of the data input. Ecological 
monitoring data can be prone to issues of selective bias towards 
charismatic species, misidentification and inclusion of data entry er-
rors. For example, GBIF data have high degrees of spatial bias, which 
in turn can skew the results of species distribution models (Beck 
et al., 2014). Furthermore, citizen science databases which are com-
piled by non-expert observers can be messy, biased by site selection, 
weather conditions and selective observation of particular species 
and behaviours (Dobson et al., 2020; Thornhill et al., 2016; Tulloch 
et al., 2013). Researchers can adjust their statistical model designs to 
reflect such biases, for example through standardising observation 
counts between sites and building multilevel hierarchical models 
(Bird et al., 2014). However, these data transformation methods may 
be less reliably actioned using LLM agents alone. We recommend 
that any vital data processing and preparation is conducted before 
non-inferential analysis is performed by LLMs (Figure  1; Phase 1), 
and critically that human researchers lead the design and implemen-
tation of any inferential statistics.

Pretrained AI models update at a high frequency, though at a 
cost to reproducibility for developers building upon these base mod-
els (Ma et al., 2024). We experienced such a shift ourselves during 
the testing of our eBird case study model, whereby ‘GPT-4o-Mini’ 
was introduced towards the end of our investigation—helpfully 
highlighting both the iterative improvements of new LLM releases 
and also the rapid pace of development (Figure 2). We predict that 

the high deprecation rate of LLM releases will remain high as their 
capabilities are tested and that any prospective developers keep 
abreast of new updates. In designing our roadmap for building and 
evaluating LLM apps (Figure 1), we aimed to frame our suggestions 
broadly enough that they may be applied across new and unfore-
seen software developments. Many of the most popular pretrained 
LLM tools (such as OpenAI GPTs—Anthropic, 2024; Google, 2025) 
are not open source, with source code privately secured by devel-
opers. Users of these pretrained LLMs typically must purchase low-
cost tokens to run these tools as part of their own code and are at 
risk of models being permanently pulled by developers. Another 
common issue faced by developers using pretrained LLMs is the 
high level of stochasticity and non-determinism of results when the 
model temperatures are higher and that the ‘black box’ nature of 
pretrained LLMs can make transparency, reproducibility and quality 
testing difficult (Ceccaroni et al., 2019; McClure et al., 2020; Ollion 
et al., 2024; Ouyang et al., 2024). These issues highlight the need to 
(a) design thorough prompts which ask your model to report its logic 
when generating an answer and (b) ensure that the deployed version 
of your LLM apps clearly state that the model is AI and has the pro-
pensity to make mistakes (Figure 1, Phases 2 and 3).

Although our framework indicates that LLMs can interact suc-
cessfully with quantitative data, we do not advocate that these tools 
‘replace’ quantitative ecologists, who are critically needed for de-
signing and implementing rigorous statistical modelling. Unlike other 
AI tools, such as neural networks or image classifiers, LLMs are de-
signed to understand and reproduce language patterns and have not 
been explicitly trained for inferential analyses at this stage. Our pilot 
case study suggests that LLMs can be adapted to query and sum-
marise quantitative data. LLMs can also visualise trends in datasets 
and communicate numerical output in plain English. Quantitative 
ecologists are essential for identifying meaningful knowledge gaps 
and designing statistical models, interpreting results and ensuring 
good practice and quality control throughout scientific inquiry. We 
see LLMs as complementary virtual assistants, which can help re-
duce data interpretation bottlenecks and workloads if integrated 
into a researcher's workflow. We also acknowledge that unneces-
sary or excessive use of resource-intensive AI carries its own envi-
ronmental footprint (Dhar, 2020; Pollock et al., 2025), and ecologists 
should weigh these risks carefully against potential benefits. The 
role of ecologists is therefore not replaced by LLMs. Instead, ecolo-
gists may now include critical testing of AI inputs and contextualis-
ing LLM outputs as part of their work.

5  |  CONCLUSION

There is strong potential to enhance the accessibility, speed and 
effectiveness of ecological and environmental data analysis through 
the development of quantitative RAG LLMs. By integrating advanced, 
pretrained AI LLMs with existing ecological and environmental 
data, ecologists can build customisable ‘virtual statisticians’ that 
streamline data analysis, making trend detection and actionable 
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insights more readily available and fast-tracking the route from data 
collection through to communication to policymakers. Through 
our demonstration of the eBird chatbot, we show how researchers 
can integrate AI tools to empower them to ask nuanced questions 
about biodiversity patterns and trends. Ecologists may wish to take 
advantage of the emerging research capabilities of AI, but we urge 
them to do so with an awareness of the risks inherent across LLM 
models. We have provided a roadmap for developing multimodal 
LLM apps responsibly and transparently, while leveraging ongoing 
model updates. As AI technologies continue to advance, the 
opportunities to bridge the gap between data collection and data-
driven interventions will proliferate. LLM innovations may be the 
key to transforming raw data into rapid insights that drive ecological 
and environmental solutions. It is therefore the responsibility 
of ecologists now to develop, promote and pursue sustainable 
AI research frameworks to guide the future of responsible and 
impactful science.
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