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3. Here, we present a roadmap for designing and implementing multi-modal LLMs
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1 | INTRODUCTION

The Anthropocene offers novel and unprecedented challenges for
global biodiversity, public health and ecosystem stability (Bellard
et al., 2012; Doney et al., 2012; Willis & Bhagwat, 2009). While the
size and hierarchical complexity of ecological and social data have
increased rapidly, tools to investigate and communicate emerging
phenomena within these datasets remain time-consuming and spe-
cialised. Artificial intelligence (Al) data tools could allow a facilita-
tion of data analysis and the step change in pace required to identify
emerging trends and prompt rapid intervention responses. Large lan-
guage models (LLMs) are complex probabilistic generative Al natural
language processing (NLP) models adept at recognising meaning and
identifying semantic interconnectedness and patterns within text.
LLMs such as Google's BERT (Bidirectional Encoder Representations
from Transformers) and OpenAl's GPT (Generative Pretrained
Transformer), and DeepSeek, have been evolving exponentially
over the last decade (Google, 2024; Liu et al., 2024; OpenAl, 2024;
Topsakal & Akinci, 2023). While this expansive evolution may pose
challenges for long-term reproducibility, it also presents emerg-
ing opportunities for scientific efficiency. For instance, LLMs have
been used to auto-generate patient discharge forms based on basic
prompts provided by humans (Chatterjee et al., 2023), extract data
from survey responses from patients (Haag et al., 2023) and answer
complex questions about human genomics to a degree of profes-
sional accuracy (Jin et al., 2024). Within the field of ecology, LLMs
have been employed to scout bodies of academic text to recognise
and report meaningful occurrences of taxa names (Le Guillarme
& Thuiller, 2022), identify occurrences of pest control activity
(Scheepens et al., 2024), perform biodiversity literature searches
using keywords (Abdelmageed et al., 2023) and extract metadata
about pathogen hosts (Gougherty & Clipp, 2024).

There is untapped potential to use NLPs on structured environ-
mental and ecological quantitative datasets (or, matrix data such as
CVS, XLS files), for example, through the use of open-source soft-
ware libraries such as LangChain which allow a chat-based inter-
face between existing LLMs and data (Topsakal & Akinci, 2023), or
foundational transformer models such as TabPFN which are trained
directly on tabular data (Hollmann et al., 2025). Using both histori-
cal and ‘near-real time’ ecological and environmental data as a tex-
tual context for Al could offer researchers the opportunity to turn
real-time ecological observations into meaningful academic and pol-
icy deliverables (Pollock et al., 2025). For example, citizen science
data could be an ideal source for harnessing the potential of LLMs
(Enriquez-de-Salamanca, 2025). Large open-access global datasets
such as iNaturalist (2024) and eBird (Sullivan et al., 2014), constantly
updated by citizen scientists and moderated by subject experts, are
already essential tools for researchers studying global biodiversity
change, phenology and species invasion (Chandler et al., 2017; iNat-
uralist, 2024; Sullivan et al., 2014). By interpreting large amounts of
publicly available quantitative ecological data, LLMs could enable
us to effectively communicate with our datasets, fast-track data
interpretation and facilitate actionable conservation and research

outcomes (Ceccaroni et al., 2019, 2023; McClure et al., 2020; Pollock
et al., 2025). By combining LLMs with existing and robust statisti-
cal frameworks using bespoke NLP tools, it may be possible to cre-
ate custom multi-modal Al systems which can draw from multiple
data sources, which in turn can help ecologists inform conservation
decisions and fast-track communication between researchers and
policymakers.

In this paper, we present a roadmap for developing custom multi-
modal LLMs to serve as virtual data assistants—or ‘virtual quanti-
tative assistants'—designed to support ecologists in summarising,
visualising and exploring trends within complex ecological datasets.
These tools represent a timely opportunity for ecological research-
ers to interact with data in more intuitive and accessible ways. We
outline a novel and flexible protocol for integrating ecological and
environmental matrix data into tailored LLM systems. We showcase
a case study that applies this protocol to develop and iteratively
refine a LangChain-powered Al model. This model functions as an
interactive chatbot trained on the eBird citizen science database, al-
lowing users to ask natural language questions about near-real-time
bird observations—including species-specific trends and spatial dis-
tributions. Finally, we explore how multi-modal LLMs could be used
more broadly across ecological research and conservation practice.
We argue that now is a critical moment for ecologists to shape and
adopt these tools to bridge the gap between large, complex datasets

and timely, actionable insight.

2 | METHODS

2.1 | Designing robust and effective
quantitative LLMs

This section outlines a structured approach to develop an application
to integrate data processing, Al models and user interaction. The
entire approach is represented as a visual roadmap in Figure 1 and
is then used to showcase the design, implementation and evaluation
of a working citizen science chatbot. In Phase 1 of our roadmap, we
gather and preprocess relevant data, selecting appropriate sources
and addressing any potential biases or gaps. Phase 2 involves
designing and refining Al agents through prompt engineering,
followed by iterative testing to ensure accurate and effective
responses. In Phase 3, we focus on integrating and deploying
the system, ensuring it performs reliably in real-world scenarios.
Throughout each phase, continuous evaluation and refinement are
conducted to optimise performance and ensure the system's overall

effectiveness.
2.1.1 | Creating retrieval augmented generation
models in LangChain

As LLMs become increasingly integrated into various academic and
commercial applications, there is a growing need for frameworks
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FIGURE 1 Anexample workflow for the development, evaluation and deployment of a retrieval-augmented generation large language
model (LLM) application. Phase 1 involves gathering your source data and selecting model parameters. Phase 2 involves designing and
testing prompts and agents. Phase 3 involves orchestrating multiple LLM agents into a multi-modal graph and deploying the chatbot online.

that allow developers to connect these models with bespoke data
sources and to create interactive systems. Retrieval augmented
generation (RAG) models combine pretrained generative Al models
with the retrieval of selected documents, such as PDF files, text
from web searches and numerical matrix data (Jeong, 2024; Lewis
etal.,2020). LangChainisan open-source RAG framework designed
to enable users to integrate existing pre-trained LLMs (such as
OpenAl's GPT models) with a variety of data sources, including
matrix data, which can be stored as a CSV or SQL dataframe
(LangChain, 2024). The LangChain framework also includes
the LangSmith developer platform, which allows developers to
trace runtimes of their models, and LangGraph, an orchestration
framework that allows developers to build more complex agentic
systems with self-reflective capabilities (LangGraph, 2024).
The foundation of LangChain is built on ‘chains’, which function
as chronological query-to-output pipelines. A user provides
an informative prompt, along with data inputs (e.g. dataframes,
PDFs or text scraped from web searches), memory inputs from
previous model calls, the LLM and any additional custom tools.
Non-academic use cases of LangChain include the development
of Al-driven spreadsheets that optimise pricing and automating
real-estate operation workflows (LangChain, 2024) and designing
intelligent urban traffic control tools (Chen & Ding, 2025).

2.1.2 | Prompt engineering and model
parameterisation

A ‘prompt’ is an input that is supplied to an LLM and includes the
query from the user in addition to additional instructions provided
by the developer and can therefore be understood as a ‘mission
statement’ for your RAG model. Prompts can also be adjusted to
include specific instructions for the LLM, such as scraping the
provided text for keywords, or to pay particular attention to data
features (Scheepens et al., 2024). ‘Chain-of-thought’ or ‘least-to-
most’ prompting strategies can provide a framework to decompose
a user query into a list of easier subquestions which can be
sequentially resolved until the model generates its final output
(Zhou et al., 2023). Furthermore, example question-and-answer
sets can be provided within the prompt to guide the model towards
an appropriate response (Topsakal & Akinci, 2023). When using
quantitative matrix data, the metadata descriptions of the field
can be provided in full as part of the prompt to ensure the model
is correctly selecting the appropriate variables for analysis based
upon the user query. Within LangChain, developers can efficiently
build prompts and attach them to their base models using ‘Prompt
Templates’ whereby the prompt instructions are included as a text
string (LangChain, 2024; Topsakal & Akinci, 2023). Prompts can be
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_
iteratively adapted during the development and evaluation stages

(Ambrogi, 2023; Figure 1) and are integral components to bespoke

and advanced RAG models.

2.1.3 | Custom LLM tools for data
summarisation and visualisation

One of the key advantages of LangChain is the ability to design
and attach custom tools and agents to an LLM application. Tools
are Python functions that perform a distinct action (e.g. producing
plots) and are executed when selected by an LLM ‘agent’ which
acts as a decision-making component that reads the user input and
predesigned prompt and routes the query to the appropriate tool
(Jeong, 2024; LangChain, 2024; Topsakal & Akinci, 2023). A suite
of toolkits and agents exists that can enhance the performance of
LLM apps designed to process quantitative data, including the CSV
and SQL toolkits that optimise agent interactions with quantitative
data and execute mathematical queries using Python or SQL code
(LangChain, 2024). The WolframAlpha tool can connect LLM chains
to the WolframAlpha computational search engine to facilitate
the computation of more complex mathematical tasks (Wolfram
Research, Inc, 2024). We recommend using agents and tools for
summarising, visualising and performing mathematical operations
on ecological and environmental matrix data within RAG LLM
models. R is a commonly used language in the field of ecology, and
Python workflows can also be embedded into R sessions using
the ‘reticulate’ interface (R Core Team, 2021; Ushey et al., 2025).
Combined with clear and informative prompts, agentic models
can receive a user query, design a workflow, assign quantitative
functions to either existing or custom-made toolkits and generate

output that is informed by existing metadata.

2.1.4 | Orchestration of multiple tools and text
sources in LangGraph

LangGraphis amodule released by LangChain that allows developers
to customise their LLM apps further using an orchestrated and cyclic
framework of agents (Jeong, 2024; LangGraph, 2024). Different
agents can interact through unconditional (direct, non-optional) or
conditional (optional, router-driven) nodes, with memory from the
previous agent carried across to the next until a reasonable query
has been generated and presented to the user. For quantitative
researchers, one key benefit of this system is the ability to draw upon
multiple data sources within one app. For example, the developer
can build a ‘query routing strategy’ tool that interprets the initial
user query and directs it to either an SQL or CSV agent connected
to quantitative data, a standard NLP agent drawing upon a bank
of academic literature stored as PDFs, or even direct it to a web-
scraping search tool such as Tavily (Ambrogi, 2023; Gao et al., 2024;
Jeong, 2024; LangGraph, 2024) or an open-source alternative such
as LLMLayer (2025) or the DuckDuckGo (2021) LangChain tool.

Through prompt engineering and the use of API pulls and real-time
web searches, this system provides ecologists and environmental
scientists with the opportunity to design, evaluate and deploy
advanced LLM models with conditional logic flows that could help
answer user queries about complex ecological phenomena.

2.1.5 | Roadmap to effective LLM app
development and implementation

There are currently no guidelines for the development and evaluation
of LLM RAG models for quantitative researchers. Here, we present
a full roadmap, split into three phases, for the development of such

an app (Figure 1).

Phase 1: Data gathering and strategic planning

a. Data gathering: Select the quantitative dataframe you would like
to provide as the key data source for your app. If available, collate
all relevant metadata explaining data provenance (e.g. eBird cita-
tion), variable names (e.g. observation counts) and units. You may
choose a static dataframe to upload manually to your coding en-
vironment or call ‘near-real-time’ data from an API (e.g. iNatural-
ist APl or the Global Health Observatory API—iNaturalist, 2024,
WHO, 2024) if you would like your app to analyse new data as
it is gathered. As part of this process, take note of any common
biases or data gaps that are known to exist in these products.

b. Data processing: To reduce unnecessary computation and to
streamline your app design, you may wish to include only vari-
ables of interest within your dataframe. Depending on the focus
of your app, you may also choose to filter your data to focus on
key areas, timeframes, species, etc. (Ambrogi, 2023). Thoroughly
document changes made during the data processing phase and
included this in any final reporting.

c. Selection of LLM parameters: Research and make decisions on the
pretrained LLM you would like to use for this app. Options in-
clude, but are not limited to, Llama, BERT or the OpenAl GPT
models. Make decisions about basic LLM parameters such as
scaling temperature (1=higher probability of more random an-
swers, O=more deterministic with low probability of random
answers) and verbosity (the length of the generated outputs).
Without adding any data or prompts at this stage, use the param-
eters above to test-run your app.

Phase 2: Prompt engineering and agent evaluation

a. Create an Al agent to interact with your dataframe: If using
LangChain, create an agent to interact with the SQL or CSV tool-
kits and attach them to your cleaned dataframe. Test the chatbot
to ensure the agent is working correctly and answering user que-
ries based on the context you provided.

b. Prompt engineering: Design meaningful prompts to attach to your
agent. This should include a mission statement, metadata descrip-
tions, Q&A examples (i.e. few-shot prompting, whereby exam-
ples of inputs and expected outputs are provided to demonstrate
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expected responses from the model, Brown et al., 2020), and any
other meaningful instructions you wish to have attached to every
user query.

c. lterative testing: Users should build a prompt, run their model
through a predetermined set of questions, evaluate the correct-
ness and tone of the output and iteratively evaluate and adjust
their prompts accordingly until a desired threshold for correct-
ness is achieved for the bank of questions. For example, a bank
of 100 questions could be generated and answers precalculated
using non-Al-assisted analyses. These questions should be asked
in every iteration of the model, and evaluators could score each
answer for accuracy, helpfulness and tonal appropriateness.
These scores can then be visualised and statistically evaluated to
track the development of model performance as improvements
are iteratively made. Developers may also consider evaluating

the reproducibility of the answers to your test questions.

Phase 3: Application orchestration and deployment

a. Optional—multi-agent frameworks: If you would like to incorporate
more source texts into your LLM RAG app, you could build an
orchestrated graph app in a system such as LangGraph. Router
tools can enable the model to choose between whichever agent
deals with the most appropriate text source (e.g. a CSV or SQL
agent for matrix data, or a PDF reader for saved literature).
Additional tools can be added to evaluate the usefulness of these
text sources to the original user query.

b. Deployment and long-term tracing: Once you are satisfied with
the performance of your app, you can deploy it on a user inter-
face such as Gradio (2024) or Streamlit (2024). Upon deployment,
communicate on the Ul (and directly to any stakeholders) that the
app provides estimates and not certainties to avoid public misun-
derstanding about the tool's outputs. Once the app has been de-

ployed, continue to regularly run audits of its efficacy over time.

2.2 | eBird case study

We followed our proposed workflow to demonstrate a case study
example of the use of LangChain to build a query-answering
framework based on citizen science data. We used eBird data (Sullivan
et al., 2014), a global compilation of citizen science bird observations
collected by birders, conservationists and scientists and moderated
by ornithology experts. These data can be downloaded at different
spatial and temporal resolutions and contain metadata for each outing,
including bird species observed, abundance, sex, breeding or predatory
behaviours, exotic status and space for additional observer notes. The
data contain both numerical and textual input and therefore provide a
useful opportunity totest OpenAland LangChain's capacity to interpret
both qualitative and quantitative data and produce ecologically
meaningful LLM output. In Appendix S1, we outline the methodology
for the design and evaluation of this case study application, including
a bank of evaluation questions (Appendix S1: Lists 1 and 2) and full
model comparison results for different development stages of the

-
model (Appendix S1: Table Al). To test model performance against
different types of questions an ecological researcher may wish to
pose, we categorised the 100 questions into four query categories:
bird abundance, community ecology, metadata interpretation and bird

behaviour. The research questions associated with this case study are

as follows:

1. Can a chatbot app using LangChain and a pretrained OpenAl
LLM allow us to interact with citizen science matrix data in
a scientifically meaningful way?

2. How well does the model perform using different types of
ecological query topics?

We aimed to determine whether an LLM can generate accurate
and meaningful responses relating to bird abundance and commu-
nity structure, bird behaviours and likelihoods of occurrence across
different habitat types. In doing so, we also investigated whether
LLMs are more adept at one aspect of ecological interpretation over
another. All data and code used in this analysis are available to down-
load (Gallois, 2025).

3 | RESULTS: eBird CHATBOT CASE
STUDY

Prompt engineering testing revealed notable improvements to the
model when the prompt was iteratively updated (Figure 2). We
present the results of each of the seven model variations in detail
in Appendix S1, whereby we present the changing proportions of
‘Correct’, ‘Unsure’ and ‘Wrong’ answers (see links to the model
structure in Appendix S1: Table A1 and exact model prompts in the
available codebase). We started with a model with no additional
prompt (Model 1), and 46% of the answers fell into the category
of ‘Unsure’, whereby the model output stated that this information
could not be inferred from the dataframe provided. The models
provided greater accuracy when prompts were iteratively refined
(Model 2: basic metadata added to prompt, Model 3: detailed
metadata and variable descriptions added to prompt and Model
4: thorough prompt with example question-and-answer pairs and
further clarification for variables related to time), and when calculus
agents were added to the model workflow and when newer versions
of OpenAl models were integrated (Models 6 and 7). The final model
version, with thorough metadata in the prompt, OpenAl 40 Mini and
the Wolfram tool included, had 77% ‘Correct’ answers, 2% ‘Unsure’
answers and 36% ‘Wrong’ answers. We categorised our question
bank into four types of ecological query: bird abundance, community
dynamics, metadata interpretation and bird behaviour. The models
did not perform equally well across types of ecological query, with
higher accuracy scores reported for user questions relating to bird
abundance and community composition compared to user questions
relating to metadata reporting and bird behaviour. For the final
version of the model (Model 7), 82% of ‘community’ questions were
scored as ‘Correct’, 80% of ‘abundance’ questions were scored as
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The locations where Gray Herons and Black-headed Gulls are most commonly seen
together based on the dataset are:

1. Titchwell Marsh RSPB Reserve: 280 observations

2. WWT Welney Wetland Centre: 183 observations

3. Hickling Broad NNR--Hickling Marshes NWT NR: 159 observations

4. Hickling Broad NNR--Hickling Marshes NWT NR, Brendan's Marsh: 141 observations
5. Wild Ken Hill Estate—-Snettisham Coastal Park: 114 observations

These locations have a high frequency of observations where both Gray Herons and
Black-headed Gulls are seen together.

FIGURE 2 Evaluation of different prompts attached to a LangChain SQL agent. (a) The counts of correct, unsure and incorrect
answers generated by the different models, coloured by the different ecological query categories. (b)The changing proportion of
correct:unsure:incorrect over time as the model was iteratively improved. (c) A correct user query and model-generated answer from the

final version of the model, visualised in a Gradio Ul.

‘Correct’, 68% of ‘metadata’ questions were scored as ‘Correct’ and
67% of ‘behaviour’ questions were scored as ‘Correct’.

4 | DISCUSSION

We have devised a proposed workflow for building intelligent,
quantitative RAG LLMs adept at interacting with matrix datasets
(Figure 1). We showcased the design and evaluation procedure for

an example model that interacts with citizen science data from eBird
(Sullivan et al., 2014), highlighting the importance of iterative prompt
design, the use of quantitative agents and the adaptation to emerging
pretrained LLMs (Appendix S1; Figure 2). Adding detailed metadata
descriptions, few shot examples and mission statements to the
prompts improved the ability of the model to interpret user queries,
filter, summarise, perform mathematical functions on the data and
produce meaningful answers. Users can use the chatbot to generate
outputs which accessibly translate dense and complex datasets into
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FIGURE 3 Anexample multi-modal retrieval augmented generation large language model workflow which incorporates user queries,
pretrained natural language processing models, custom tools and dataframe agents and multiple data sources, with a variety of visual,

textual and numerical outputs.

accessible, plain language statements. However, our case study also
revealed that quantitative LLM tools do not necessarily produce
equally useful interpretations for all types of ecological queries.
For example, our models are more likely to be adept at questions
requiring data summarisation or questions about the geography and
timing of bird observations and less adept at questions requiring a
deeper understanding of animal behaviour such as hunting, mating
and migration. Our findings also revealed the rapid improvements
in model performance because of the rollout of a new LLM model
version (i.e. OpenAl 40 mini). Our case study provides an example
of how a researcher can iteratively improve their LLM ‘helper’ tool,
while also highlighting existing blind spots in LLMs.

Research to date has focused on the rapidly improving logic and
calculus capabilities of pretrained LLMs (Collins et al., 2024), and
the opportunity to design Al agents that can convert plain language
queries into mathematical statements and action them in code (Wu
et al., 2024). To date, no published LLMs have been trained to carry
out more complicated quantitative analyses. However, we predict
that these will become widespread as LLMs continue to develop at
a rapid rate. Bottlenecks may be encountered if researchers need
to devote additional time to learning Al methods alongside their ex-
isting workloads, particularly with a lack of existing guidance about
model design, quality assurance and output evaluation. For ecolo-
gists and environmental scientists working with big data, we recom-
mend keeping abreast of these developments and considering the
potential research opportunities that are likely to emerge as a result.
In this regard, we encourage researchers to incorporate frameworks

such as ours into their Al-supplemented workflows to ensure best
practice and minimise time-consuming mistakes.

By combining LLMs with existing and robust statistical frame-
works, and by using bespoke Al agents and toolkits, it is becoming
possible to create scalable custom RAG systems that can inform
real-time conservation, climate adaptation (e.g. Juhasz et al., 2024)
and public health actions (e.g. Ng et al., 2025). LLMs can identify and
understand patterns across a diverse array of data types and have al-
ready been successfully used to extract useful scientific data in dis-
ciplines such as genomics and ecology (Jin et al., 2024; Le Guillarme
& Thuiller, 2022; Scheepens et al., 2024). LLMs' ability to interpret
and analyse structured matrix data using tools like LangChain (par-
ticularly the multi-modal LangGraph) offers new possibilities for
environmental and ecological research (Topsakal & Akinci, 2023).
Data-driven tools could incorporate multi-modal orchestrations (e.g.
using LangGraph, see example in Figure 3) to draw upon multiple
data types, including academic literature, near-real-time matrix data
using API pulls and web-scraping operations. Such tools, if designed
carefully and with adequate evaluation, could empower policymak-
ers to transform scientific data into actionable interventions at pace.

One clear benefit of integrating LLMs into the analysis of eco-
logical data is the increased timeliness of response time between
initial data collection and data-informed action (Marvin et al., 2016).
Camera trapping and audio monitoring are increasingly becoming
enhanced by Al neural network technology, bridging the gap be-
tween in situ data monitoring and species identification and geo-
location (Wall et al., 2008; Ware et al., 2012). Likewise, by pairing
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" [BEi Methodsin Ecology and Evoluion
guantitative LLMs with near-real-time environmental data and cit-
izen science data, Al technology could help reduce repetitive data
wrangling tasks and accelerate early-stage analyses, enabling
quantitative ecologists to devote more time to model design, inter-
pretation and broader scientific inquiry, while also facilitating col-
laboration and generating or editing content for further outreach
(Lamba et al., 2019; McClure et al., 2020). Furthermore, integrat-
ing LLMs and citizen science data may boost engagement between
the public (particularly data contributors) and science, especially if
the gap between data publication and analysis is facilitated by Al
frameworks (Pecl et al., 2019; Theobald et al., 2015). Accessible
Al tools can promote communication across research and policy
sectors by helping transform raw ecological data into actionable
insights, but their outputs should undergo transparent quality assur-
ance and control checks (i.e. for factual accuracy, bias reduction and
tonal appropriateness) by domain experts prior to (and following)
the public deployment of any LLM tool. The rapid uptake of neural
network technology in the sphere of ecological research (McClure
et al., 2020; Torney et al., 2019; Willi et al., 2019) indicates that re-
searchers are willing to explore the analysis capabilities of other Al
tools as and when they develop (Christin et al., 2019). It is therefore
important to build and uphold robust and sustainable development
and evaluation frameworks for these tools.

We recommend that quantitative researchers building RAG
LLMs consider the concept of ‘garbage in, garbage out’ when choos-
ing the data to include within their model, to the same extent one
would when building a traditional statistical framework (Kilkenny
& Robinson, 2018). As with any quantitative analysis, the quality of
the output is contingent on the quality of the data input. Ecological
monitoring data can be prone to issues of selective bias towards
charismatic species, misidentification and inclusion of data entry er-
rors. For example, GBIF data have high degrees of spatial bias, which
in turn can skew the results of species distribution models (Beck
et al., 2014). Furthermore, citizen science databases which are com-
piled by non-expert observers can be messy, biased by site selection,
weather conditions and selective observation of particular species
and behaviours (Dobson et al., 2020; Thornhill et al., 2016; Tulloch
et al., 2013). Researchers can adjust their statistical model designs to
reflect such biases, for example through standardising observation
counts between sites and building multilevel hierarchical models
(Bird et al., 2014). However, these data transformation methods may
be less reliably actioned using LLM agents alone. We recommend
that any vital data processing and preparation is conducted before
non-inferential analysis is performed by LLMs (Figure 1; Phase 1),
and critically that human researchers lead the design and implemen-
tation of any inferential statistics.

Pretrained Al models update at a high frequency, though at a
cost to reproducibility for developers building upon these base mod-
els (Ma et al., 2024). We experienced such a shift ourselves during
the testing of our eBird case study model, whereby ‘GPT-40-Mini’
was introduced towards the end of our investigation—helpfully
highlighting both the iterative improvements of new LLM releases
and also the rapid pace of development (Figure 2). We predict that

the high deprecation rate of LLM releases will remain high as their
capabilities are tested and that any prospective developers keep
abreast of new updates. In designing our roadmap for building and
evaluating LLM apps (Figure 1), we aimed to frame our suggestions
broadly enough that they may be applied across new and unfore-
seen software developments. Many of the most popular pretrained
LLM tools (such as OpenAl GPTs—Anthropic, 2024; Google, 2025)
are not open source, with source code privately secured by devel-
opers. Users of these pretrained LLMs typically must purchase low-
cost tokens to run these tools as part of their own code and are at
risk of models being permanently pulled by developers. Another
common issue faced by developers using pretrained LLMs is the
high level of stochasticity and non-determinism of results when the
model temperatures are higher and that the ‘black box’ nature of
pretrained LLMs can make transparency, reproducibility and quality
testing difficult (Ceccaroni et al., 2019; McClure et al., 2020; Ollion
et al., 2024; Ouyang et al., 2024). These issues highlight the need to
(a) design thorough prompts which ask your model to report its logic
when generating an answer and (b) ensure that the deployed version
of your LLM apps clearly state that the model is Al and has the pro-
pensity to make mistakes (Figure 1, Phases 2 and 3).

Although our framework indicates that LLMs can interact suc-
cessfully with quantitative data, we do not advocate that these tools
‘replace’ quantitative ecologists, who are critically needed for de-
signing and implementing rigorous statistical modelling. Unlike other
Al tools, such as neural networks or image classifiers, LLMs are de-
signed to understand and reproduce language patterns and have not
been explicitly trained for inferential analyses at this stage. Our pilot
case study suggests that LLMs can be adapted to query and sum-
marise quantitative data. LLMs can also visualise trends in datasets
and communicate numerical output in plain English. Quantitative
ecologists are essential for identifying meaningful knowledge gaps
and designing statistical models, interpreting results and ensuring
good practice and quality control throughout scientific inquiry. We
see LLMs as complementary virtual assistants, which can help re-
duce data interpretation bottlenecks and workloads if integrated
into a researcher's workflow. We also acknowledge that unneces-
sary or excessive use of resource-intensive Al carries its own envi-
ronmental footprint (Dhar, 2020; Pollock et al., 2025), and ecologists
should weigh these risks carefully against potential benefits. The
role of ecologists is therefore not replaced by LLMs. Instead, ecolo-
gists may now include critical testing of Al inputs and contextualis-
ing LLM outputs as part of their work.

5 | CONCLUSION

There is strong potential to enhance the accessibility, speed and
effectiveness of ecological and environmental data analysis through
the development of quantitative RAG LLMs. By integrating advanced,
pretrained Al LLMs with existing ecological and environmental
data, ecologists can build customisable ‘virtual statisticians’ that
streamline data analysis, making trend detection and actionable
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insights more readily available and fast-tracking the route from data
collection through to communication to policymakers. Through
our demonstration of the eBird chatbot, we show how researchers
can integrate Al tools to empower them to ask nuanced questions
about biodiversity patterns and trends. Ecologists may wish to take
advantage of the emerging research capabilities of Al, but we urge
them to do so with an awareness of the risks inherent across LLM
models. We have provided a roadmap for developing multimodal
LLM apps responsibly and transparently, while leveraging ongoing
model updates. As Al technologies continue to advance, the
opportunities to bridge the gap between data collection and data-
driven interventions will proliferate. LLM innovations may be the
key to transforming raw data into rapid insights that drive ecological
and environmental solutions. It is therefore the responsibility
of ecologists now to develop, promote and pursue sustainable
Al research frameworks to guide the future of responsible and
impactful science.
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