

From disaster to conservation: Geoheritage potential of the 2024 Wayanad landslide, India

V.K. Krishnapriya¹, A.S. Amrutha², A. Rajaneesh¹, G.S. Pradeep², G. Sankar², D. Nandakumar², C. Muraleedharan², D.P. Kanungo³, Ali P. Yunus⁴, Tapas R. Martha⁵, Girish Gopinath⁶, Thomas Oommen⁷, Nikhil N. Vasu⁸, K.S. Sajinkumar^{1,9*}

¹Department of Geology, University of Kerala, Thiruvananthapuram 695581, India

²Kerala State Disaster Management Authority, Thiruvananthapuram 695004, India

³Geotechnical Engineering and Geohazards Group, CSIR-Central Building Research Institute, Roorkee 247667, India

⁴Indian Institute of Science Education and Research, Mohali 140 306, Punjab, India

⁵National Remote Sensing Centre (NRSC), Indian Space Research Organisation (ISRO), Hyderabad, 500037, India

⁶Department of Climatic Variability and Aquatic Ecosystems, Kerala University of Fisheries and Ocean Studies (KUFOST), Kochi 682508, India

⁷Department of Geology and Geological Engineering, University of Mississippi, Oxford, MS 38677, USA

⁸British Geological Survey, Multi-hazard Risk and Resilience, Nottingham, United Kingdom of Great Britain

⁹Department of Geological and Mining Engineering and Sciences, Michigan Technological University, Houghton, MI 49931, USA

*email: sajinks@keralauniversity.ac.in

24

Abstract

25 The 2024 Wayanad landslide in the Western Ghats of India, which occurred on 30 July,
26 is one of the most significant and devastating landslides in India, and stands as a
27 compelling candidate for designation as a geoheritage site. This landslide, initiated as a
28 rockslide and transformed into a massive debris flow, travelled 8 km causing widespread
29 destruction across three villages, altering the course of the Punnappuzha River, and
30 resulting in over 266 fatalities. This tragic event underscores the urgent need for
31 management of natural hazards, particularly rain-induced landslides in the Western Ghats
32 region. Thus, the Wayanad landslide site offers a unique opportunity to establish a field
33 segment for guided exploration and a museum segment for research and education on
34 landslide dynamics and geological processes, benefiting students, researchers, and
35 disaster management professionals. Hence, this study evaluates the geoheritage
36 potential of the site through a combined approach of Strengths, Weaknesses,
37 Opportunities, and Challenges (SWOC) analysis, and a comprehensive stakeholder-
38 informed survey. Results from the survey revealed especially high educational and
39 tourism potential, despite major social, environmental, and economic disruptions.
40 Recommendations include establishing real-time monitoring systems, controlled public
41 access, and a digital platform to engage broader audiences. By recognizing the
42 geoheritage significance, it could serve as a platform for scientific investigation, public
43 awareness, and disaster risk reduction strategies. Furthermore, such a designation would
44 foster geotourism, supporting sustainable development and benefitting the local
45 community. Thus, this study aims to highlight the scientific value of the 2024 Wayanad
46 landslide site and its potential to educate future generations while promoting both

47 conservation and geotourism, aligning with UNESCO's initiatives to preserve dynamic
48 geomorphosites that reveal Earth's active geological history.

49 **Keywords:** Wayanad landslide, the Western Ghats, Geoheritage, Geotourism

50

51 **1 Introduction**

52 Geoheritage, often termed as geological heritage, refers to unique geological
53 formations, minerals, fossils, tectonic structures, and geomorphological landscapes that
54 hold significant scientific, educational, cultural, or aesthetic value (Reynard and Brilha,
55 2017; Coratza and Hobléa, 2018; Chandran et al., 2022; Chavan et al., 2022, Sajinkumar
56 et al., 2022). These natural features contribute not only to the understanding of the Earth's
57 history but also play a key role in geotourism and conservation efforts. The protection and
58 sustainable management of geoheritage sites provide opportunities for public education,
59 recreation, and economic benefits through geotourism (Bhargava et al., 2010; Hose,
60 2012; Gray, et al., 2013; Wadhawan et al, 2022). This focus on conservation, combined
61 with promoting awareness on geodiversity, supports both the intrinsic ecological value of
62 these sites and their broader societal value according to various UNESCO initiatives
63 (McKeever, 2015). Moreover, sites classified as geomorphosites (cf. Reynard, 2005), the
64 landforms with scientific, cultural, or historical significance, highlight the dynamic
65 processes such as erosion and tectonic activities. The landforms shaped by active
66 gravitational movements, such as landslides, rockslides, and debris flows, exemplify
67 dynamic geomorphosites, showcasing the Earth's active geological processes (Coratza
68 and Hobléa, 2018; Morino et al., 2022). Hence, landslides, which reshape landscapes,

69 offer huge potentiality as geoheritage sites due to their geological and geomorphic
70 significance.

71 Large-scale landslide events can reveal important insights into the Earth's dynamic
72 processes and act as natural laboratories for studying the interaction between geological
73 forces and ecosystems. Given the role landslides play in shaping terrains and influencing
74 biodiversity, recognizing such regions as geoheritage sites could contribute to both
75 scientific understanding and the conservation of fragile landscapes, particularly in areas
76 like the Western Ghats where the interplay of geology, climate, and ecology is critical to
77 sustain diverse ecosystems. Thus, recognizing large-scale landslides with significant
78 geological features and impacts as geoheritage sites is essential for public education and
79 awareness, as these sites provide insight into geological hazards, the processes shaping
80 landscapes and conservation efforts. For example, the 1963 Vajont landslide in Italy,
81 considered as one of the deadliest landslides in the European history, resulted from the
82 collapse of a massive rock mass into a reservoir, generating a wave that overtopped the
83 dam, caused catastrophic flood and led to nearly 2,000 fatalities (Barla and Paronuzzi,
84 2013). This tragic event, caused partly by human mismanagement of geological risks,
85 serves as a poignant reminder of the need for better understanding and respect for natural
86 processes (Coratza and De Waele, 2012; Morino et al., 2022). Another example is
87 Canada's Frank Slide, where an enormous landslide destroyed a part of the town of Frank
88 in 1903. Now preserved as a Provincial Heritage Site, the area educates visitors on the
89 geological risks and factors that contributed to the landslide, enhancing public
90 understanding of such hazards (Morino et al., 2022). Hence, by designating such
91 massive-devastating landslides as geoheritage sites, the landslide can be preserved as

92 educational resources, which can significantly improve risk perception among
93 communities. When interpreted and presented as part of geoheritage, these sites can
94 promote knowledge of Earth's history, encourage sustainable environmental planning,
95 and reinforce the importance of geomorphology in hazard mitigation efforts. Today, the
96 site serves as an educational resource, emphasizing the need for public awareness and
97 effective risk management (Coratza and De Waele, 2012; Morino et al., 2022).

98 Thus, the landslide at Wayanad, occurred on 30th July 2024 in the Western Ghats
99 of India, killing 266 people with 32 missing and covering an area of 1 km² through a
100 distance of 8 km, could be an ideal place for designating as a Geoheritage site, which
101 could eventually create a natural laboratory for students, researchers, and disaster
102 management professionals. This site could serve as a hands-on platform for studying
103 landslide mechanisms, soil profiles, and stability, offering experiential learning through
104 field studies, internships, and research projects. By fostering scientific research,
105 education, and public awareness, the area could contribute to improved disaster risk
106 reduction strategies and sustainable development. Additionally, recognizing the site's
107 geoheritage significance would support geotourism, benefiting the local community while
108 ensuring that the lessons from this tragic event are preserved for future generations.
109 Despite increasing awareness of disaster risk in this region, the integration of
110 geoconservation, public education, and community-based resilience strategies remains
111 limited in both practice and literature. Most studies tend to focus on technical
112 assessments or hazard mapping, with comparatively less emphasis on the long-term
113 cultural, educational, and geoheritage value of landslide sites. Moreover, there is a

114 notable absence of documented frameworks that translate post-disaster landscapes into
115 platforms for awareness, research, and sustainable development.

116 Thus, this paper proposes designating the 2024 Wayanad landslide site as a
117 geoheritage site to promote scientific research, education, and public awareness. Once
118 recognized, this site would serve as a valuable resource for studying landslide dynamics
119 and mechanisms, raising local awareness, and contributing to disaster risk reduction
120 strategies. The brief Strength, Weakness, Opportunities, and Challenges (SWOC)
121 analysis will highlight the importance of establishing this location as a geoheritage site. In
122 the aftermath of this landslide, this proposal aims to ensure that the area is acknowledged
123 not only for its scientific significance but also for its potential to support sustainable
124 development and geotourism.

125

126 **2 Objectives**

127 Based on the potentiality of Wayanad landslide as a geoheritage site, the following main
128 objectives are included in this study

- 129 i. To propose the 2024 Wayanad landslide site as a geoheritage site by showcasing its
130 geological, educational, and disaster risk reduction significance.
- 131 ii. To promote safe and sustainable geotourism at the Wayanad landslide site through
132 controlled public access, educational infrastructure, and real-time monitoring
133 systems.
- 134 iii. Suggestions to establish institutional and digital support through an expert committee
135 and a dedicated website for project planning, outreach, and educational engagement.

136 iv. To conduct SWOC analysis to the Wayanad landslide site, identifying its strengths,
137 weaknesses, opportunities, and challenges to guide geoconservation, education, and
138 community engagement strategies.

139 v. To assess the geoheritage potential of the Wayanad landslide site by evaluating
140 social, environmental, economic, educational, tourism, and cultural impacts through
141 a stakeholder-informed survey.

142 vi. To promote sustainable development in the region through education, disaster
143 preparedness, conservation, and geotourism, aligning with national and UNESCO
144 geoheritage frameworks.

145

146 **3 Study Area**

147 The Western Ghats of India (Fig. 1a), having appeared on the UNESCO World
148 Heritage List in the year 2012 (Kurian and Vinodan, 2023), exemplifies the rich biological
149 diversity crucial to understand the Earth's ecological processes. The region is considered
150 as one of the world's eight 'hottest hotspots' for biological diversity while supporting
151 numerous threatened species (Laladhas et al., 2013). These unique characteristics make
152 the Western Ghats an essential site for conservation efforts on a global scale
153 (<https://whc.unesco.org/>). Older than the Himalayan Mountain range, the Western Ghats
154 play a vital role in regulating the Indian monsoon system and nurturing a variety of
155 ecosystems, including some of the world's most significant tropical evergreen forests
156 (Karuppusamy, 2024). This prominent physiographic feature facilitates the orographic
157 lifting of monsoon winds: both the southwest monsoon (June to September) and the
158 northeast monsoon (October to November), resulting in heavy rainfall. This heavy rainfall

159 frequently triggers catastrophic landslides on the highlands and steep slopes of the
160 Western Ghats (Sajinkumar et al., 2011; Mathew et al., 2021; Ajin et al., 2022; Sharma
161 et al., 2022; Yesubabu et al., 2024), especially debris flows (Thampi, 1997; Kuriakose et
162 al., 2009), which are known for their devastation, with frequent occurrences in the recent
163 years (Ajin et al., 2022; Vishnu et al., 2022). In 2018, Kerala (a southwestern state in
164 India, sharing its border with the Western Ghats) faced severe ecological, financial, and
165 humanitarian consequences due to the most extreme monsoon rainfall, which triggered
166 widespread landslides and floods, causing significant loss of life, widespread property
167 damage, ecological disruption, and major economic losses (Agarwal, 2018; Sankar, 2018;
168 Megha et al., 2019; Martha et al., 2019; Vishnu et al., 2019, 2020; Sajinkumar et al., 2022;
169 Parsa and Zehra, 2023). According to Hao et al. (2020), the state witnessed
170 approximately 4728 landslides in the single storm event of August 2018, with around 2800
171 of them being debris flows initiated by slope failures (Fig. 1a). This pattern continued in
172 the monsoon seasons of following years (Ajin et al., 2022).

173 Of these recent landslides, the 2024 Wayanad landslide stands as one of the most
174 catastrophic landslide events in recent Indian history (Fig. 1b), illustrating the severe risk
175 factors faced by the mountainous regions in Kerala, particularly during monsoon seasons.
176 This landslide was triggered by an intense rainfall of 572.8 mm over 48 hours (i.e., 572.8
177 litres of water to each square metre), with 372.6 mm recorded in a single day (recorded
178 July 30, 8:30 a.m.), which was the highest within that period (Fig. 1c). Originating at an
179 elevation of around 1620 m above the mean sea level (amsl) in the densely vegetated
180 region at the headwaters of the Chaliyar River, the landslide travelled over 8 km,
181 descending 768 m in elevation before reaching the low-lying villages, including

182 Punchirimattom, Mundakkai, and Choormala (Fig. 1b). The event stands out as one of
183 the most significant and devastating landslides in India, both in terms of volume,
184 estimated as 5.17×10^6 to 5.72×10^6 m³ (~0.5 million trucks full of soil) of depleted material
185 using DEM of difference and in terms of destruction (Yunus et al., 2025), with 1555
186 buildings reported destroyed. The landslide wiped out three villages and altered the
187 course of the Punnapuzha River. This high-velocity landslide caused widespread
188 devastation, resulting in over 266 fatalities and 32 people reported missing (official record
189 as on 29 July 2025), highlighting the critical need for improved understanding and
190 management of such natural disasters. It originated as a rockslide (Fig. 2a) and quickly
191 transformed into a massive debris flow (Fig. 2b,c), reshaping the landscape and
192 highlighting the vulnerability of this region to rain-induced landslides (Krishnapriya et al.,
193 2024, 2025). The event serves as a textbook example of mass movement types including
194 slumps (Fig. 2d), demonstrating the region's potential to be developed as a field museum
195 for research and education (Fig. 2). It captured global attention, not only due to the
196 magnitude of the disaster but also because of the efficient post-slide rescue and relief
197 operations (Business Standard, 2024).

198 The scale of this disaster makes it a compelling candidate for designation as a
199 Geoheritage site, where the geological features and the chain of events that unfolded
200 offer invaluable insights into the triggering mechanisms of landslides, exacerbated by
201 extreme climate events. The landslide site offers numerous opportunities for scientific
202 investigation, educational programs, and public awareness efforts, especially in terms of
203 understanding landslide dynamics and preventing future disasters, befitting the
204 characteristics for a geoheritage site.

205

206 **4 Methodology**

207 To propose the 2024 Wayanad landslide site as a geoheritage location, a systematic and
208 multidisciplinary methodology was adopted. Initial field investigations mapped the
209 landslide's geological and geomorphological features, from the crown failure zone to the
210 toe, highlighting key elements like the vanished Sitammakundu waterfall and identification
211 of shear zones. These features were evaluated for their scientific relevance and
212 educational value.

213 A general survey with local communities, geologists, and disaster management
214 authorities revealed the site's planning, ensuring both community engagement and
215 practical feasibility. In view of this, relevant case studies and UNESCO guidelines were
216 reviewed to align the proposal with international standards for geoheritage designation.

217 Based on the field and community insights, the landslide site was zoned into two
218 segments: a field segment for guided exploration and a museum segment in Chooralmala
219 for educational exhibits, research facilities, and public awareness. An integrated
220 monitoring plan was proposed, including real-time instrumentation (GPS, piezometers,
221 AWS) to support ongoing research and early warning systems. These instruments would
222 not only aid in future landslide prediction but also serve as a practical training resource
223 for students and researchers.

224 To guide implementation, the formation of a multidisciplinary expert committee was
225 recommended. This committee would be responsible for conducting a detailed feasibility
226 assessment and preparing a Detailed Project Report (DPR) addressing geological
227 significance, infrastructure needs, and potential collaborations. A SWOC analysis and a

228 comprehensive stakeholder-informed survey (includes socio, environmental, economic,
229 educational, tourism, and cultural aspects) were conducted to evaluate the proposal's
230 viability. This survey employed both field-based and online methods to capture through
231 the perspectives of these groups, the internal capacities and resources available and also
232 identify gaps and limitations. The field surveys targeting local natives directly impacted by
233 the disaster and online surveys aimed at gathering insights about potential opportunities
234 that can be addressed constructively and how the barriers and problems could be
235 resolved. Each group provided ratings for each parameter, which were then averaged to
236 yield a final score, reflecting the multidimensional impact and future potential of the site
237 for geoheritage recognition. Conservation measures, such as limiting vegetation
238 regrowth, maintaining the debris expanse in its current state, minimal site disturbance,
239 and seasonal visitor control, were integrated to preserve the site's integrity while
240 promoting education and sustainable geotourism.

241

242 **5 Results**

243 **5.1 Wayanad Landslide: a Geoheritage Site for landslide study**

244 The proposed geoheritage site could have two segments, including:

- 245 i. a field segment, and
- 246 ii. a museum segment

247 Together, they provide access to key geological features and dedicated infrastructure for
248 studying landslide mechanisms, impacts, and mitigation strategies. This categorization
249 ensures both preservation of sensitive field areas and wider accessibility for education

250 and outreach, accommodating varied visitor needs while maintaining scientific and
251 conservation integrity.

252 **5.1.1 Field segment**

253 The entire landslide area together with the villages of Punchirimattom, Mundakkai, and
254 Chooralmala, located on either side of Punnapuzha and Padavettipuzha, are considered
255 the field segments to serve as an informative and educational space for both tourists and
256 researchers. Since the area is susceptible to future landslides, no civil work should be
257 permitted except for the construction of a simple, non-invasive walkway up to the end of
258 Punchirimattom village, which is 2 km downstream from where the slide/flow originated.

259 This village provides a safe vantage point to view the scarp of the landslide. The walkway
260 would be constructed with the guidance and consent of geotechnical engineers after
261 thoroughly assessing the stability of the surrounding area. Additionally, a zip line could
262 offer visitors an aerial view of the landslide-affected zone, allowing for a unique and
263 immersive experience. Visitors can be guided by geology-trained volunteers of Aapda
264 Mitra or Kudumbasree. For researchers, controlled access to the landslide source area
265 should be allowed for in-depth studies, and geologists can volunteer as field guides,
266 drawing on examples like the Barringer Crater where geologists serve as site volunteers.
267 Trained field volunteers will be stationed at the site to ensure consistent maintenance and
268 conservation support. Thus, to support these efforts, two types of volunteers are
269 proposed: (a) guides for general visitors (trained in geology) and (b) guides for academic
270 researchers (geologists). While the guides for general visitors support visitor navigation
271 and provide interpretive information about the site, geologists and specially trained
272 volunteers can assist researchers in conducting field studies.

273 The key field components to be studied from the crown to the toe of the debris flow
274 include (Fig. 3a):

275 (a) *Planar failure at the landslide crown*: To analyze the nature of the failure mechanism
276 and investigate the structural features of the bedrock, providing insights into the
277 geological conditions that contributed to the landslide (Fig. 3b).

278 (b) *Sitammakundu waterfall site*: Once a tourist attraction, this vanished waterfall offers a
279 unique opportunity to study the topographic and geomorphic changes caused by the
280 landslide, revealing the impacts of the catastrophe on the landscape (Fig. 3c).

281 (c) *Bailey bridge*: After the landslide event, the Indian Army built a 58 m long Bailey bridge
282 at Choormala village, to rescue the stranded population in the Punchirimattom and
283 Mundakkai villages. This area, where flooding and damming impacted the downstream
284 Choormala village, provides an essential field segment for examining the hydrological
285 changes and flood risks in landslide non-susceptible zones. The affected area includes
286 the Mundakkai school (Fig. 3d).

287 (d) *Shear zones along the landslide run-out*: The flanks of the landslide's flow path expose
288 shear zones, which are critical for studying the lithological and structural features, helping
289 to understand the underlying geological forces that contributed to the event (Fig. 3e).

290 **5.1.2 Museum segment**

291 Museums, usually, form an integral part of a geoheritage site. Such a museum has
292 several implications when established in a natural hazard site. For example, the Pompeii
293 volcano site hosts an observatory museum 'Osservatorio Vesuviano' (Scandone and
294 Giacomelli, 2014; Di Vito et al., 2023), which aids in research activity as well as
295 entertaining tourists. Similarly, the Oso Slide Memorial in Washington, USA,

296 commemoates the 43 lives lost in the 2014 landslide, one of the deadliest in U.S. history,
297 through a thoughtfully designed space that combines remembrance, public education,
298 and awareness of landslide hazards and disaster preparedness. Spanning two acres, the
299 memorial honors the victims, the heroic efforts of first responders, and the grief and
300 resilience of survivors. Developed collaboratively by families, responders, scientists, and
301 local authorities, it features interpretive panels, reflection areas, and educational
302 elements, serving as both a tribute and a platform to promote understanding of landslide
303 risks and the geological event (<https://www.slidememorial.com/thememorial>). As far as
304 Wayanad is concerned, the museum unit should be located in a safer part, outside the
305 main landslide and run-out zones, ensuring both visitor accessibility and long-term safety.
306 This segment should require the following facilities:

307 (a) *Disaster Museum/Geoheritage Museum*: This museum will focus specifically on the
308 2024 Wayanad landslide and other major events in the region, documenting the extent of
309 destruction, number of lives lost, and stories of rescue and recovery. A dedicated section
310 to honour the victims of the landslide disaster, featuring tributes, memorials, and
311 information about the lives lost, ensuring that their stories are preserved with dignity and
312 respect. This will serve as a poignant reminder of the human loss owing to such natural
313 events, reinforcing the importance of disaster preparedness, risk awareness, and
314 resilience-building in vulnerable regions. An exclusive audio-visual can be included, which
315 will provide visitors with an audio-visual experience showcasing the landslide-affected
316 area before and after the event, using video presentations, news articles, and
317 photographs to illustrate the scale of the disaster and the recovery efforts. An adjoining
318 awareness hub will host regular programs and meetings for local residents, focusing on

319 disaster preparedness, risk reduction, and geoheritage conservation, thereby fostering
320 community resilience and informed engagement.

321 *(b) Interactive scientific museum with models, samples, and posters:* Exhibiting models,
322 geological samples, and informative posters, this scientific museum will offer an engaging
323 and educational experience about the scientific aspects of landslides, including their
324 triggers, causes, effects, warning signs, preventive measures, emergency response
325 strategies and the roles of key rescue and relief agencies. This will also highlight the
326 different types of landslides.

327 *(c) Research scholars' section:* A section where researchers and scholars can conduct
328 studies and further investigations into the geological, hydrological, and environmental
329 aspects of the region's landslide history.

330 *(d) Meteorological station:* Equipped with gadgets for real-time weather monitoring, this
331 station will track meteorological data relevant to landslide early warning systems.

332 *(e) Services section with cafeteria for refreshments and space for limited accommodation:*
333 This section will offer visitors refreshments and a space for limited accommodation,
334 ensuring a comfortable experience for both tourists and researchers. It will also provide
335 essential services to support the museum's operations.

336 **5.2 Other requirements**

337 *5.2.1 Preservation of the landslide site*

338 To preserve the landslide site for geotourism, the accumulated landslide debris and ruins
339 would remain undisturbed, with efforts made to prevent vegetation from regrowing - an
340 issue common in tropical climates where plants quickly reclaim disturbed areas. However,
341 during the monsoon season, tourism would be restricted due to safety concerns, limiting

342 access to the landslide site. Visitors would instead be directed to the on-site museum
343 dedicated to the landslide, featuring information on the event, geological context, and
344 ongoing efforts to study and preserve the area.

345 *5.2.2 Constitution of an Expert Committee*

346 A multidisciplinary team should be formed, comprising geologists, disaster management
347 experts, environmental scientists, civil engineers, and urban planners. This committee will
348 conduct a comprehensive survey of the landslide-affected area, assess its geological
349 value, and prepare a feasibility report for establishing the geoheritage site. The expert
350 committee will also create a Detailed Project Report (DPR) outlining the geological
351 significance of the area, its research potential, infrastructure requirements, and budget.
352 Additionally, this report will include a framework for collaboration with educational
353 institutions and disaster management agencies. This geoheritage site could be managed
354 by the Kerala State Disaster Management Authority (KSDMA), with technical and financial
355 support from the National Disaster Management Authority (NDMA) or any other
356 stakeholders like the Geological Survey of India (GSI).

357 *5.2.3 Installation of landslide monitoring equipments*

358 The Wayanad landslide is a significant event that provides a unique opportunity to study
359 the complex processes and mechanisms that lead to landslides in the Western Ghats
360 region. To better understand these processes and improve future landslide prediction and
361 mitigation strategies, it would be ideal to install a comprehensive monitoring system in the
362 affected area. This system will gather precise, real-time data on various environmental
363 and geological factors that influence landslide activity, including ground movement, soil

364 conditions, and rainfall patterns. Such a system will help to improve the early warning
365 systems and landslide prediction models.

366 (a) *Tiltmeters and GNSS Sensors*: These instruments can be strategically installed across
367 various critical locations within the landslide-prone area around the 2024 Wayanad
368 landslide zone. Site selection will be based on a combination of past landslide records,
369 current field assessments, slope failure precursors, and expert recommendations. These
370 will monitor minute changes in the angle of the slope and detect any movement or
371 deformation of the ground with respect to the coordinates. This data will help in identifying
372 early signs of slope failure and provide valuable insights into how the terrain responds
373 over time.

374 (b) *Piezometers*: This is deployed to measure the pore water pressure within the soil
375 layers. Elevated pore pressure can weaken soil strength and increase the likelihood of
376 landslides. Monitoring these pressure levels will allow us to understand the critical
377 thresholds that trigger landslide events and identify similar patterns in other areas. The
378 spatial distribution of piezometers will be carefully planned based on expert assessment,
379 site-specific geotechnical conditions, historical landslide activity, and the presence of
380 precursors such as tension cracks or persistent seepage zones. Instruments will be
381 strategically installed in areas with known instability to ensure representative and early
382 detection of potential failure zones.

383 (c) *Soil moisture sensor*: This can be installed at varying depths across the site in different
384 elevations, lithology, soil types and land use to monitor the saturation levels of the soil.
385 The spatial extent for sensor installation will be determined based on expert assessment
386 and the presence of landslide indicators. The soil moisture content is a key conditioning

387 factor that affects slope stability, and continuous monitoring will provide insights into how
388 water infiltration impacts the potential for slope failure.

389 *(d) Automated weather stations (AWS):* AWS with rain gauges can be placed at strategic
390 locations to collect data of temperature and humidity, along with monitoring the intensity
391 and duration of rainfall, which is a primary triggering factor for landslides in this region.
392 Given that landslides can occur across different areas, the placement of AWS will be
393 guided by expert assessment, historical landslide records, elevation gradients, and
394 hydrological catchment characteristics to ensure coverage of both active and high-risk
395 zones. The data will be used to correlate rainfall events with pore pressure, soil moisture
396 levels, and ground movements to better understand the direct role of precipitation in
397 landslide initiation.

398 Deploying the above instruments in the field will not only facilitate precise data
399 collection but also offer a valuable real-time learning experience for interns and
400 researchers with hands-on experience. It enhances their understanding of environmental
401 and geological factors, instrumentation, and data interpretation, which is crucial for future
402 research and mitigation efforts.

403 **5.2.4 A dedicated website**

404 A dedicated website for the geoheritage site would serve as a comprehensive platform
405 for booking as well as for providing detailed information about the landslide event, its
406 geological significance, including photos, videos, and virtual tours to allow visitors
407 worldwide to explore the site remotely. A critical component of the website would be the
408 early warning, displaying real-time data collected from monitoring stations in Wayanad
409 and its hinterland to inform and protect the local community and visitors. Additionally, the

410 website would include educational materials, interactive maps, and updates on
411 conservation efforts, serving as a helpful resource for locals, visitors, and researchers
412 creating awareness, education, and sustainable tourism.

413 **5.3 Expected outcomes**

414 Once the 2024 Wayanad landslide site is declared as a geoheritage site, it would attract
415 not only geoenthusiasts but also scientists and students interested in studying landslides
416 and related natural processes. By preserving the area as it is and promoting sustainable
417 tourism, the site could serve as a living laboratory for geological research and education.
418 The zip line and viewing points would offer a safe, controlled way to experience the power
419 and aftermath of such a natural event, while the museum would provide a wealth of
420 information on landslide mechanisms, local geology, and climate factors.

421 Designating this site as a geoheritage site would highlight its exceptional
422 educational and scientific value, as one of the few such sites in the world, and is likely to
423 attract significant interest from the international scientific community across various
424 disciplines. This recognition could foster greater collaboration, unlock new research
425 opportunities, and ensure its long-term conservation. Moreover, it would create
426 opportunities for local economic development through responsible tourism, while
427 ensuring minimal environmental impact. By restricting tourism to the non-monsoon
428 season and focusing on controlled, educational visits, the area would remain safe for
429 tourists while serving as a crucial resource for understanding natural hazards.

430 In addition to the provisions mentioned above, it should be ensured that any
431 buildings or constructions on-site are eco-friendly, with an architect who specializes in
432 sustainable design being engaged. Unskilled jobs should be offered to people from the

433 affected area. The maintenance of such areas will require field staff, for which local
434 residents can be employed. A few youths, preferably those who have worked as Aapda
435 Mitra, can be trained to serve as guides. Through Kudumbashree's community-driven
436 model, more opportunities for social empowerment and economic support can be
437 provided to local women, helping build resilience and sustainable livelihoods in the
438 affected community.

439 **5.4 Geotourism**

440 Wayanad district, characterized by distinctive geological formations, holds immense
441 potential for geotourism, a form of tourism that emphasizes the appreciation and
442 preservation of significant geological features. By establishing this region as a
443 geoheritage site, Wayanad can offer visitors a unique perspective into the Earth's
444 geological history and processes, promoting both educational and environmental
445 awareness.

446 The Moyar (Bhavani) shear zone, crossing through Wayanad district, has several
447 emplacements like the Kalpetta Granite, Amabalavayal Granite, and Kartikulam Gabbro
448 (Fig. 4a-e). These geological emplacements represent key magmatic events associated
449 with the region's tectonic evolution, influenced by continental collision, subduction,
450 different phases of Precambrian magmatism and mid-Neoproterozoic magmatism and
451 shear-related processes (Kumar, 1986). The granites and gabbro serve as geological
452 markers of the shear zone's reactivation and tectonic history in the Southern Indian shield
453 (Rajesh, 2000), which shaped its unique geological character (Santosh & Nair, 1985;
454 Kurian et al., 2001). The Kalpetta Granite (Fig. 4a), an elliptical pluton with an oblique
455 crustal exposure, reveals evidence of a deep-level emplacement, with its arcuate contacts

456 and inward dipping surfaces suggests a diapiric origin (Kurian et al., 2001). Similarly, the
457 Ambalavayal Granite (Fig. 4b,c), a high-temperature emplacement characterized by the
458 presence of molybdenite, further enriches the area's geological appeal. This Pan-African
459 granite, emplaced within high-grade metamorphic terrain and associated with significant
460 lineaments, reveals two distinct compositional zones that suggest an A-type granite,
461 indicative of extensive crystal fractionation and partial melting processes (Rajesh, 2000).
462 The Kartikulam Gabbro (KG) (Fig. 4d,e) is a key site with tholeiitic characteristics and
463 subduction-modified mantle origins (Kumar, 1986). The presence of rare trace element
464 patterns, including large-ion lithophile elements (LILE) enrichment and high field strength
465 elements (HFSE) depletion, showcases its subduction-related tectonic history where the
466 mantle was metasomatized by subducting slab-derived fluids or melts (Prabhakaran &
467 Prasannakumar, 2015; Uthup et al., 2020). Each of these formations provides insights
468 into the area's tectonic events and magmatic processes, forming an integral narrative of
469 Earth's history that, if supported by interpretive resources and guided access, could foster
470 sustainable tourism and a greater appreciation of the region's natural geological heritage.

471 Apart from the geological significance of Wayanad, there are several cultural,
472 historical, social, and environmental characteristics that make this region unique. The
473 nearby attractions such as Cheengeri Mala and the historically significant Edakkal Caves
474 (Fig. 4f,g), which contain ancient petroglyphs, add to the cultural richness of Wayanad.
475 Meenmutty Waterfalls (Fig. 4h) offers a stunning, multi-tiered cascade reached through a
476 scenic trek, and Pookode Lake (Fig. 4i), an ideal site for boating, is surrounded by serene
477 green forests. Banasura Hill, part of the Western Ghats, is a popular trekking destination
478 and offers panoramic views of the region's high-altitude terrain. It is situated near the

479 Banasura Sagar Dam (Fig. 4j), India's largest earthen dam, offering insights into both
480 natural and human-engineered environments. Another significant site is the Soochipara
481 Waterfalls (Fig. 4k), 3 km from Chooralmala village, where layered rock formations and
482 cascading waterfalls provide an example of natural erosion and rock weathering
483 processes. Trekkers are drawn to Chembra Peak, where they can find a unique heart-
484 shaped lake near the top (Fig. 4l). Adding to Wayanad's spiritual significance, the
485 Thirunelli Temple offers insight into the area's sacred history. Kuruvadweep (Fig. 4m), a
486 group of uninhabited islands, located in the Kabini River delta, is famous for diverse flora
487 and fauna. Lakkidi Pass, with its steep, winding roads, offers beautiful views of
488 surrounding mountains and valleys. The Wayanad Wildlife Sanctuary is rich in
489 biodiversity, providing a safe habitat for elephants, tigers, and other species. Additionally,
490 the Phantom Rock in Ambalavayal, resembling a human skull, is a popular tourist site.
491 Lastly, the Pazhassi Raja Tomb honors a local freedom fighter and adds a historical
492 dimension to Wayanad's rich heritage (Fig. 4n). Wayanad also hosts indigenous tribal
493 communities like Paniyas, Kurumas, Adiyars, Kurichyas, Ooralis, Kattunaikkans and
494 Uraali Kurumas (Fig. 4o), who have their own traditional dance, music, and crafts. Thus,
495 altogether, these sites make Wayanad an ideal place for exploring nature, culture, and
496 history. All these geological and non-geological attractions can convert the proposed
497 Wayanad geoheritage site to a geopark, which can be further upgraded to the Global
498 Geopark Network of the UNESCO.

499 **5.5 SWOC Analysis**

500 A SWOC analysis is an essential tool for evaluating the internal and external factors,
501 supporting strategic alignment and resource allocation within an organization's

502 environment (Aithel and Kumar, 2015). It identifies strengths, weaknesses, opportunities,
503 and challenges; guiding institutions like educational and conservation organizations in
504 planning and decision-making (Shahabadkar et al., 2019). When strengths focus on
505 intrinsic site qualities, weaknesses reveal limitations, opportunities highlight external
506 growth potential, and challenges assess barriers. A SWOC analysis is applied for the
507 Wayanad landslide site to assess its unique geological attributes, potential for geotourism
508 and education, while addressing challenges like accessibility and preservation needs.
509 This analysis highlights pathways for promoting geoconservation and community
510 engagement, positioning the site as a valuable hub for scientific study. The SWOC
511 analysis is given in Table 1.

512 The social impact (score: 45) (Fig. 5a,b) has been devastating due to the landslide
513 event, with numerous fatalities, injuries, mental health issues, and a significant
514 demographic collapse due to migration. The environmental impact (score: 20) is
515 extensive, with landscape changes, ecological loss, and destruction of forested areas.
516 The environment has been heavily altered. Economically, with a score of 25, the area
517 faces challenges, as locals have lost livelihoods in agriculture and small businesses. Loss
518 of breadwinners adds to the economic distress. Educationally, the area scored high (85),
519 indicating its strong potential as an educational hub for geological studies, training
520 programs, and disaster preparedness, offering learning opportunities for youth and
521 researchers. With a score of 70 in tourism, the site holds long-term potential for
522 geotourism despite an initial decline due to safety concerns; a well-developed
523 geoheritage site could become a significant draw for tourists. The cultural score of 50
524 reflects the loss of some religious and cultural sites; however, the community retains its

525 cultural identity, and the area's rich tribal culture remains significant. Community pride
526 would be fostered by involving residents as custodians of their heritage. Cultural
527 preservation would also be prioritized, with resources to restore and celebrate religious
528 and tribal heritage, showcasing Wayanad's unique traditions to visitors.

529 Geoheritage recognition would promote conservation efforts and stabilize affected
530 areas, enabling the landscape to recover and minimize future risks. Although the impact
531 on the social aspect is severe, designating the Wayanad landslide area as a geoheritage
532 site could benefit local residents by fostering a sense of local pride and create new
533 employment opportunities. Additionally, it would provide a platform for locals to share their
534 unique cultural heritage with visitors, thereby contributing to improved socio-economic
535 conditions. The designation would attract tourism, drive economic revitalization, and
536 create job opportunities in conservation, hospitality, and guiding. This, in turn, would
537 diversify income sources for locals. Overall, transforming Wayanad into a geoheritage
538 site could elevate the community from the aftermath of disaster by fostering resilience,
539 enhancing cultural pride, and promoting sustainable growth, ultimately positioning
540 Wayanad as a landmark of both natural and cultural significance. The entire process of
541 converting this disaster site into a geoheritage site is shown in the form of a flow chart
542 (Fig. 6).

543

544 **6 Discussions**

545 **6.1 Geoheritage - based Conservation strategy for the Wayanad Landslide**

546 The Wayanad landslide is notable for its large scale, composite type, and the significant
547 impact. While eco-restoration could be considered for the affected area, such efforts

548 would leave the riverbed, its banks, and the adjacent land characterized by steep slopes,
549 shear zones, and intense weathering still vulnerable to future catastrophic landslides
550 during heavy downpours or cloudbursts, putting lives at risk. A government appointed
551 committee has recommended designating go and no-go zones within the affected area
552 (Mathai et al., 2024). This would result in large sections of land lying idle without proper
553 upkeep or maintenance.

554 But by establishing a geoheritage site with systematic maintenance, the area could
555 be transformed into a valuable platform for scientific research and education. It would
556 offer on-site opportunities for earth scientists, students, and disaster managers to study
557 landslide dynamics and disaster mitigation strategies. It would also benefit prospective
558 students and disaster managers by helping them understand every aspect of a disaster -
559 from hazard and risk to mitigation. Additionally, geoparks and geoheritage sites worldwide
560 have successfully engaged the public, and the success stories of various global geoparks
561 and geoheritage sites highlight the potential of such initiatives to support the local
562 economy through sustainable development (Farsani, 2012; Morino et al., 2022). In the
563 case of Wayanad, this could also create livelihoods for the landslide-displaced population,
564 making it a pioneering initiative in the country. For e.g., the Aapda Mitra scheme,
565 introduced by the National Disaster Management Authority (NDMA) in 2016 to enable
566 volunteers for assisting affected communities after disasters (Kaur, 2024), can be
567 effectively utilized to deploy the specially trained volunteers at geoheritage sites for
568 immediate response and support in times of need. Another success story is of
569 Kudumbashree (a poverty eradication and women empowerment programme
570 implemented by the State Poverty Eradication Mission (SPEM) of the Government of

571 Kerala) in disaster management efforts during the COVID-19 pandemic, which is evident
572 through its wide range of community-driven initiatives, such as mask and sanitizer
573 production, care for the elderly, and agricultural support, a testament to the empowerment
574 of women across Kerala to become a resilient support system (Thomas and Prakash,
575 2020). This accomplishment highlights Kudumbashree's potential for deployment in
576 geoheritage sites, where its community-based approach could foster social
577 empowerment and support sustainable economic development.

578 **6.2 Challenges**

579 Designating the landslide site in Wayanad as a geoheritage site also comes with
580 significant challenges, with fast-growing vegetation being a primary concern. Wayanad,
581 being part of the Western Ghats Ecosystem, has a tropical climate that promotes rapid
582 plant growth, particularly after disturbances like landslides. While this resilience reflects
583 the area's natural ecological progression, it complicates the preservation of the site's
584 geological features, which are essential for its value as a geoheritage site. The exposed
585 soil surfaces provide fertile ground for vegetation—plants that are the first to colonize
586 disrupted environments—quickly establish themselves on these open landscapes. By the
587 consistent monsoon rainfall that creates ideal growing conditions, plant life can cover
588 significant portions of landslide-affected areas within a matter of months. Shrubs, and
589 grasses often proliferate, and invasive species may even accelerate this process by
590 monopolizing open ground, further speeding up vegetative coverage (Sajinkumar, 2015).
591 Previously, using NDVI as proxy, studies have shown that vegetation growth in landslide-
592 affected sites takes less than a year to reach 40% recovery, while full recovery can take
593 over 18 years (e.g., Lin et al., 2004; Yunus et al., 2020; Aman et al., 2024). If vegetation

594 obscures the site, the visibility of strata, slip surfaces, and rock fractures—which are
595 essential to understand the landslide's cause and dynamics—diminishes the site's
596 scientific and educational value.

597 One another challenge is the development of gullies and sediment erosion that
598 alter the original geomorphology of the landslide site (Dou et al., 2024). Without plant
599 cover, the site may experience erosion from rain and running water, exposing it further to
600 downcutting and landsliding. A balance would have to be struck between preserving
601 geological features and allowing natural vegetation process. Therefore, for a viable
602 project implementation, policy support, combined with community engagement, would be
603 essential for sustainable management that respects both the geoheritage significance
604 and the ecological needs of the area.

605 A key challenge lies in the region's continued vulnerability to landslides, which
606 could pose risks to any geoheritage infrastructure. However, this can be addressed
607 through careful site selection, hazard zonation, and resilient construction. Rather than
608 deterring the initiative, this highlights the opportunity to develop a model for disaster-
609 resilient heritage preservation and community-based risk management. In fact, the
610 presence of such infrastructure could enhance local preparedness and scientific
611 understanding, making the site a living example of adaptive and sustainable development
612 in a hazard-prone region.

613

614 **7 Conclusions**

615 The 2024 Wayanad landslide, characterized by its long run-out debris flow and the
616 immense impact on both landscape and community, holds significant potential for being

617 designated as a geoheritage site. As a geoheritage site, the area would not only serve as
618 a living laboratory for geoscientific research but also as a focal point for education,
619 awareness, and sustainable geotourism. This designation would promote the
620 conservation of signatures of this unique geological event, ensuring that the lessons
621 learned from the landslide contribute to future risk mitigation strategies while fostering
622 socio-economic benefits for the local community through responsible geotourism.
623 Recognizing the 2024 Wayanad landslide as a geoheritage site is thus a step forward
624 towards blending scientific study with heritage conservation, benefiting both current and
625 future generations.

626

627 **Acknowledgements**

628 VKK acknowledges the National Fellowship for Scheduled Caste Students (NFSC) of the
629 Department of Social Justice and Empowerment, Government of India, for providing the
630 Ph.D. fellowship. KSS and APY acknowledges ISRO-DMSP grant.

631

632 **Declaration of competing interest**

633 The authors declare that they have no known competing financial interests or personal
634 relationships that could have appeared to influence the work reported in this paper.

635

636 **References**

637 1. Agarwal, R. (2018). Lesson Learned from Killer Floods in Kerala: Time for
638 Retrospection. *Manag Econ Res J*, 4(2018).

639 2. Aithal, P. S., & Kumar, P. M. (2015). Applying SWOC analysis to an institution of
640 higher education. *International Journal of Management, IT and Engineering*, 5(7),
641 231-247.

642 3. Ajin, R. S., Nandakumar, D., Rajaneesh, A., Oommen, T., Ali, Y. P., & Sajinkumar, K.
643 S. (2022). The tale of three landslides in the Western Ghats, India: lessons to be
644 learnt. *Geoenvironmental Disasters*, 9(1), 16.

645 4. Aman, M. A., Chu, H. J., & Yunus, A. P. (2024). Exploration of Multi-Decadal Landslide
646 Frequency and Vegetation Recovery Conditions Using Remote-Sensing Big
647 Data. *Earth Systems and Environment*, 1-17.

648 5. Barla, G., Paronuzzi, P. (2013) The 1963 Vajont Landslide: 50th Anniversary. *Rock
649 Mechanics and Rock Engineering*, 46, 1267-1270

650 6. Bhargava, O. N., Kumbkarni, S., & Ahluwalia, A. D. (2010). Geomorphology and
651 landscapes—illustrations from Himalayas.

652 7. Business Standard (2024) Kerala landslides: rescue continues on 5th day, over 1,300
653 rescuers at work. [https://www.business-standard.com/india-news/kerala-landslides-
654 rescue-continues-on-5th-day-over-1-300-rescuers-at-work-124080300136_1.html](https://www.business-standard.com/india-news/kerala-landslides-rescue-continues-on-5th-day-over-1-300-rescuers-at-work-124080300136_1.html).
655 Accessed 6 Aug 2024

656 8. Chandran, R. S., James, S., Aswathi, J., Padmakumar, D., Kumar, R. B., Chavan, A.,
657 Bhore, V., Kajale, K., Bhandari, S. & Sajinkumar, K. S. (2022). Lonar Impact Crater,
658 India: the Best-Preserved Terrestrial Hypervelocity Impact Crater in a Basaltic Terrain
659 as a Potential Global Geopark. *Geoheritage*, 14(4), 130.

660 9. Chavan, A., Sarkar, S., Thakkar, A., Solanki, J., Jani, C., Bhandari, S., Bhattacharya,
661 S., Desai, B.G., Ray, D., Shukla, A.D. and Sajinkumar, K.S., Mitra, S., Gupta, S.,

662 Chauhan, G. & Thakkar, M. G. (2022). Terrestrial Martian Analog Heritage of Kachchh
663 Basin, Western India. *Geoheritage*, 14(1), 33.

664 10. Coratza, P., & De Waele, J. (2012). Geomorphosites and natural hazards: teaching
665 the importance of geomorphology in society. *Geoheritage*, 4, 195-203.

666 11. Coratza, P., & Hobléa, F. (2018). The specificities of geomorphological heritage. In
667 *Geoheritage* (pp. 87-106). Elsevier.

668 12. Di Vito, M. A., Sparice, D., de Vita, S., Doronzo, D. M., Ricciardi, G. P., & Uzzo, T.
669 (2023). The Museum of the Osservatorio Vesuviano: inviting the public to explore the
670 geoheritage of the world's first volcano observatory. *Bulletin of Volcanology*, 85(8),
671 45.

672 13. Farsani, N. T. (2012). Sustainable tourism in geoparks through geotourism and
673 networking. Unpublished Doctoral dissertation, Universidade de Aveiro, Portugal.

674 14. Jie, D., Xiang, Z., Wang, X., Zheng, P., Avtar, R., Xinyu, C., ... & Yunus, A. P. (2024).
675 Post-seismic topographic shifts and delayed vegetation recovery in the epicentral
676 area of the 2018 Mw 6.6 Hokkaido Eastern Iburi earthquake. *Progress in Physical
677 Geography: Earth and Environment*, 48(4), 595-614.

678 15. Gray, M., Gordon, J. E., & Brown, E. J. (2013). Geodiversity and the ecosystem
679 approach: the contribution of geoscience in delivering integrated environmental
680 management. *Proceedings of the Geologists' Association*, 124(4), 659-673.

681 16. Hao, L., Rajaneesh, A., Van Westen, C., Sajinkumar, K. S., Martha, T. R., Jaiswal, P.,
682 & McAdoo, B. G. (2020). Constructing a complete landslide inventory dataset for the
683 2018 monsoon disaster in Kerala, India, for land use change analysis. *Earth system
684 science data*, 12(4), 2899-2918.

685 17. Hose, T. A. (2012). 3G's for modern geotourism. *Geoheritage*, 4(1), 7-24.

686 18. Karuppusamy, S. (2024). Physiography and Climatology of the Western Ghats. In

687 Biodiversity Hotspot of the Western Ghats and Sri Lanka (pp. 5-23). Apple Academic

688 Press.

689 19. Kaur, K. (2024). Role of Community in Management of Disaster. *International Journal*

690 for Multidisciplinary Research (IJFMR), Vol. 6.

691 20. Krishnapriya, V. K., Rajaneesh, A., Sajinkumar, K. S., Oommen, T., Yunus, P.A., Vasu,

692 N.N., Binoj Kumar, R.B., Adarsh, S. (2024) A rapid run-out assessment methodology

693 for the 2025 Wayanad debris flow. *npj Nat. Hazards* 1, 41 (2024).

694 <https://doi.org/10.1038/s44304-024-00044-5>

695 21. Krishnapriya, V.K., Rajaneesh, A., Pradeep, G.S., Amrutha, A.S., Sajinkumar, K.S.,

696 Yunus, P. A., Oommen, T., Vasu, N.N., Banks, V.J., Anilkumar, Y., Muraleedharan, C.,

697 Sankar, G., Nandakumar, D., Binoj Kumar, R.B. (2025). Wayanad Landslide of 2024,

698 India: Interplay of Geological and Climatic Factors. *Journal of the Geological Society*

699 of India (Accepted).

700 22. Kumar, G. R. (1986). The petrology and geochemistry of massif anorthosites and

701 gabbros of the Bavali fault zone, North Kerala. *Proceedings of the Indian Academy*

702 of Sciences-Earth and Planetary Sciences

95, 117-130.

703 23. Kuriakose, S. L., Sankar, G., & Muraleedharan, C. (2009). History of landslide

704 susceptibility and a chorology of landslide-prone areas in the Western Ghats of

705 Kerala, India. *Environmental geology*, 57, 1553-1568.

706 24. Kurian, A. L., & Vinodan, C. (2023). World heritage tag and genealogy of WGEEP

707 report: The intricacies in Western Ghats conservation. *India Review*, 22(3), 309-332.

708 25. Kurian, P. J., Krishna, M. R., Nambiar, C. G., & Murthy, B. V. S. (2001). Gravity field
709 and subsurface geometry of the Kalpatta granite, South India and the tectonic
710 significance. *Gondwana Research*, 4(1), 105-111.

711 26. Laladhas, K. P., Preetha, N., & Oommen, O. V. (2013). Culture, Heritage and
712 Biodiversity Register. In Kerala Environment Congress (p. 15).

713 27. Lin, C. Y., Lo, H. M., Chou, W. C., & Lin, W. T. (2004). Vegetation recovery
714 assessment at the Jou-Jou Mountain landslide area caused by the 921 Earthquake
715 in Central Taiwan. *Ecological Modelling*, 176(1-2), 75-81.

716 28. Martha, T. R., Roy, P., Khanna, K., Mrinalni, K., & Kumar, K. V. (2019). Landslides
717 mapped using satellite data in the Western Ghats of India after excess rainfall during
718 August 2018. *Current Science*, 117(5), 804-812.

719 29. Mathai, J., Pradeep, G. S., Sreevals, K., Drissia, T. K., Manoharan, T., Shinu, A.
720 (2024). Mundakkai-Chooralmala Landslide, Wayanad district: A Comprehensive
721 Study. (For restricted use only).

722 30. Mathew, M. M., Sreelash, K., Mathew, M., Arulbalaji, P., & Padmalal, D. (2021).
723 Spatiotemporal variability of rainfall and its effect on hydrological regime in a tropical
724 monsoon-dominated domain of Western Ghats, India. *Journal of Hydrology: Regional
725 Studies*, 36, 100861.

726 31. McKeever, P. J. (2015, September). International geoscience and geoparks
727 programme. In Responsible use of natural and cultural heritage. *Proceedings of the
728 13th Geoparks Conference* (pp. 3-6).

729 32. Megha, V., Joshi, V., Kakde, N., Jaybhaye, A., & Dhoble, D. (2019). Flood Mapping
730 and Analysis using Sentinel Application Platform (SNAP)—A Case Study of Kerala.
731 Int. J. Res. Eng. Sci. Manage, 2, 486-488.

732 33. Morino, C., Coratza, P., & Soldati, M. (2022). Landslides, a key landform in the global
733 geological heritage. Frontiers in Earth Science, 10, 864760.

734 34. Oso Slide Memorial: <https://www.slidememorial.com/thememorial>

735 35. Parsa, P. S. A., & Zehra, K. (2023). Disaster Risk Reduction with Special Reference
736 to 2018 Kerala Floods and Approaches to Reduce Flood Vulnerability at River Basin.
737 In International Handbook of Disaster Research (pp. 903-925). Singapore: Springer
738 Nature Singapore.

739 36. Prabhakaran, P., & Prasannakumar, V. (2015). Geochemical signature of the
740 Kartikulam Gabbro: A prominent mafic pluton from the Cauvery Suture Zone (CSZ),
741 South India. Goldschmidt 2015 Abstracts.

742 37. Rajesh, H. M. (2000). Characterization and origin of a compositionally zoned
743 aluminous A-type granite from South India. Geological Magazine, 137(3), 291-318.

744 38. Reynard, E., & Brilha, J. (Eds.). (2017). Geoheritage: assessment, protection, and
745 management. Elsevier.

746 39. Sajinkumar, K. S., Anbazhagan, S., Pradeepkumar, A. P., & Rani, V. R. (2011).
747 Weathering and landslide occurrences in parts of Western Ghats, Kerala. Journal of
748 the Geological Society of India, 78, 249-257.

749 40. Sajinkumar, K. S. (2015) *Trema orientalis*: a suspected indicator plant for palaeo-
750 landslides in tropical areas. Natural Hazards, 78, 2169–2174.

751 41. Sajinkumar, K. S., Arya, A., Rajaneesh, A., Oommen, T., Yunus, A. P., Rani, V. R.,
752 Avtar, R. & Thrivikramji, K. P. (2022). Migrating rivers, consequent paleochannels:
753 The unlikely partners and hotspots of flooding. *Science of the Total Environment*, 807,
754 150842.

755 42. Sajinkumar, K. S., Santosh, M., Rani, V. R., Anand, S., Pradeepkumar, A. P., Chavan,
756 A., Thrivikramji, K.P. & Ramachandran, P. V. (2022). The Tertiary sequence of Varkala
757 coastal cliffs, southwestern India: An ideal site for Global Geopark. *International*
758 *Journal of Geoheritage and Parks*, 10(2), 308-321.

759 43. Sankar, G. (2018). Monsoon Fury in Kerala—a geo-environmental appraisal. *Journal*
760 *of the Geological Society of India*, 92, 383-388.

761 44. Santosh, M., & Nair, N. G. K. (1985). Petrochemistry related mineralization and
762 genesis of the Ambalavayal granite and assoiated pegmatites, Wynad district, Kerala
763 (Doctoral dissertation, Cochin University of Science and Technology).

764 45. Scandone, R. and Giacomelli, L. (2014) Vsuvius, Pompei, Herculaneum: a lesson in
765 natural history. *Journal of research and didactics in geography*, 2-3, 33-41.

766 46. Shahabadkar, P., Joshi, A., & Nandurkar, K. (2019). Developing IT enabled
767 mechanism for SWOC analysis: A case study. In *Proc. of the 2nd International*
768 *Conference on Manufacturing Excellence (ICMAX-2019)* (pp. 158-164).

769 47. Sharma, U., Ray, Y., & Pandey, M. (2022). Topography and rainfall coupled landscape
770 evolution of the passive margin of Sahyadri (Western Ghats), India. *Geosystems and*
771 *Geoenvironment*, 1(4), 100100.

772 48. Thampi, P. K. (1997). Evaluation study in terms of landslide mitigation in parts of
773 western Ghats Kerala, India. *Centre for Earth Science Studies*.

774 49. Thimm, T., & Karlaganis, C. (2020). A conceptual framework for indigenous
775 ecotourism projects—a case study in Wayanad, Kerala, India. *Journal of Heritage
776 Tourism*, 15(3), 294-311.

777 50. Thomas, J., & Prakash, P. (2020). Kudumbashree mission and COVID-19: A success
778 story from the state of Kerala. *International Journal of Research and Review*, 7 (11),
779 385-91.

780 51. UNESCO: <https://whc.unesco.org/>

781 52. Uthup, S., Tsunogae, T., Rajesh, V. J., Santosh, M., Takamura, Y., & Tsutsumi, Y.
782 (2020). Neoarchean arc magmatism and Paleoproterozoic granulite-facies
783 metamorphism in the Bhavani Suture Zone, South India. *Geological Journal*, 55(5),
784 3870-3895.

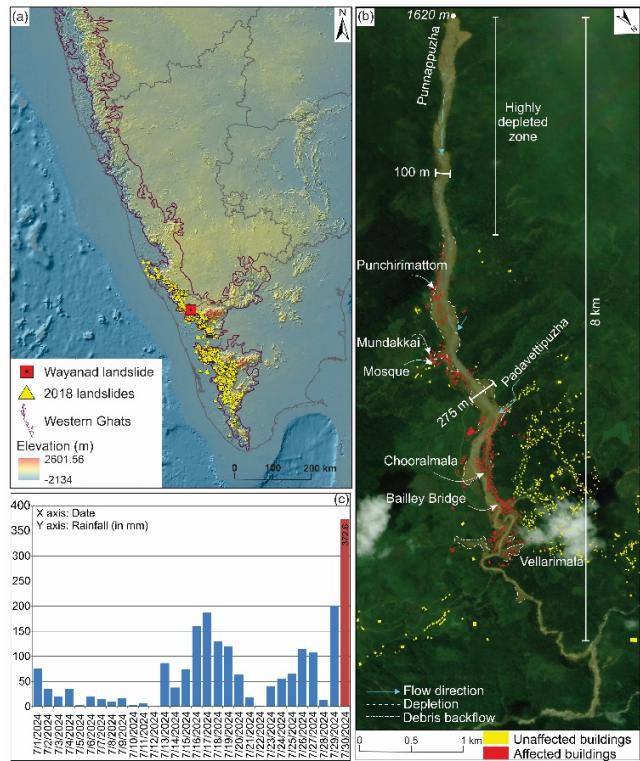
785 53. Vishnu, C. L., Oommen, T., Chatterjee, S., & Sajinkumar, K. S. (2022). Challenges of
786 modeling rainfall triggered landslides in a data-sparse region: A case study from the
787 Western Ghats, India. *Geosystems and Geoenvironment*, 1(3), 100060.

788 54. Vishnu, C. L., Rani, V. R., Sajinkumar, K. S., Oommen, T., Bonali, F. L., Pareeth, S.,
789 ... & Rajaneesh, A. (2020). Catastrophic flood of August 2018, Kerala, India: Study of
790 partitioning role of lineaments in modulating flood level using remote sensing data.
791 *Remote Sensing Applications: Society and Environment*, 20, 100426.

792 55. Vishnu, C. L., Sajinkumar, K. S., Oommen, T., Coffman, R. A., Thrivikramji, K. P.,
793 Rani, V. R., & Keerthy, S. (2019). Satellite-based assessment of the August 2018
794 flood in parts of Kerala, India. *Geomatics, Natural Hazards and Risk*.

795 56. Wadhawan, S. K., Singh, B., Kumar, M. N., Vasudevan, N., & Ramesh, M. V. (2022).
796 Potential Geotourism and the Prospect of Raising Awareness about Geoconservation

797 of Landslides as Geomorphosites in Munnar-Rajamala Areas, Idukki District, Kerala,
798 India. SGAT Bulletin Vol. 23, , pp. 20-31.


799 57. Yesubabu, V., Thomas, B., Srinivas, C. V., Basha, G., & Kunchala, R. K. (2024).
800 Impact of Western Ghats orography on the simulation of extreme precipitation over
801 Kerala, India during 14–17 August 2018. *Atmospheric Research*, 299, 107211.

802 58. Yunus, A. P., Fan, X., Tang, X., Jie, D., Xu, Q., & Huang, R. (2020). Decadal
803 vegetation succession from MODIS reveals the spatio-temporal evolution of post-
804 seismic landsliding after the 2008 Wenchuan earthquake. *Remote Sensing of*
805 *Environment*, 236, 111476.

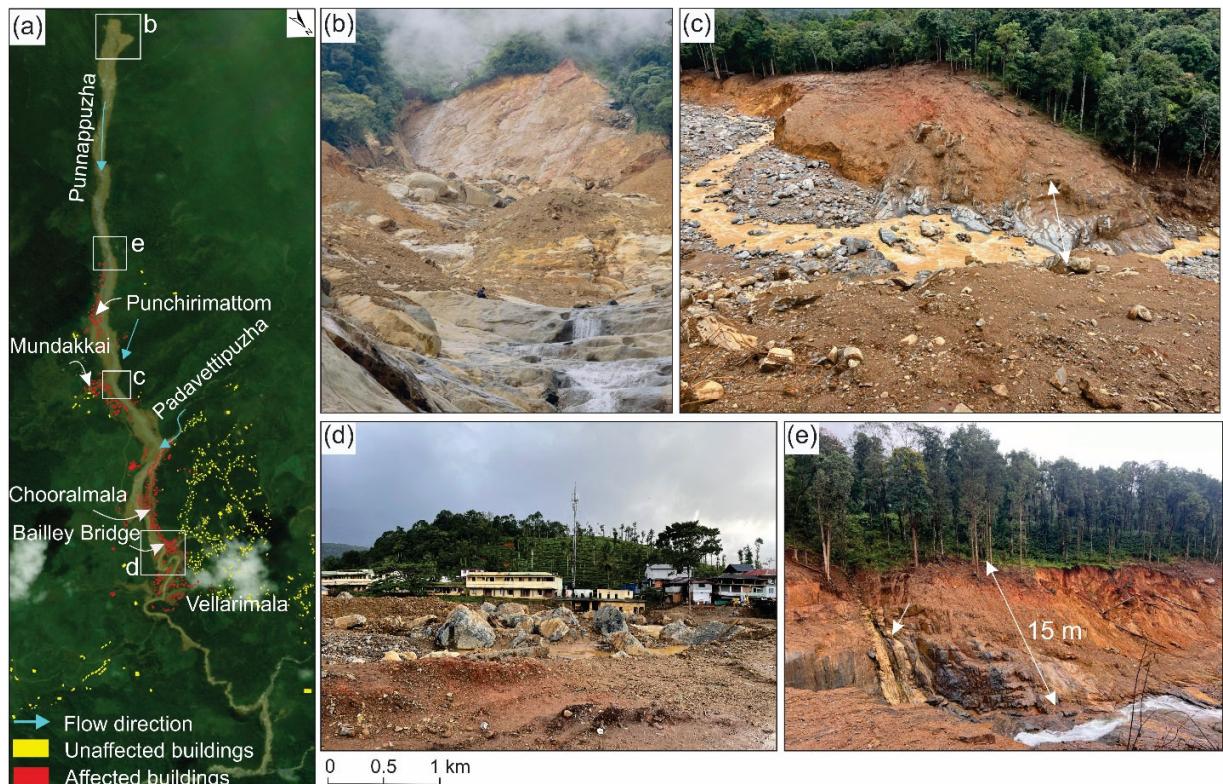
806 59. Yunus, A. P., Sajinkumar, K.S., Gopinath, G., Subramanian, S. S., Kaushal, S.,
807 Thanveer, J., Achu, A.L., Ul Islam, S. M., Ishan, A., Krishnapriya, V.K., Rajaneesh, A.,
808 Oommen, T., Nedumpallile-Vasu, N., Narayana, A.C., Ambili, V., Pradeep, G.S.,
809 Kuriakose, S. L. (2025) Documenting the most disastrous landslide of 30th July 2024
810 Wayanad, India. *Landslides*, 22, 1891–1908.

811

812 **List of Figures**

813

814

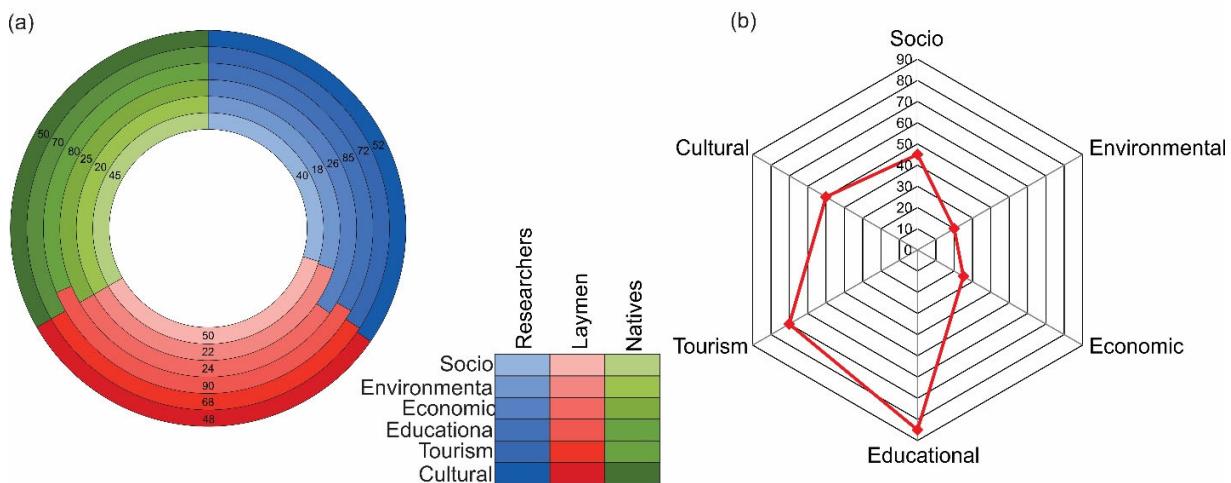

815 **Figure 1** (a) The Western Ghats in Peninsular India showing the Wayanad landslide
 816 location along with the 2018 landslide inventory (Source of 2018 landslide
 817 inventory: Hao et al., 2020) (b) the affected villages of the 2024 Wayanad
 818 landslide: Punchirimattom, Mundakkai and Choormala (Background image:
 819 Planet Lab) (c) One month rainfall data from the Kalladi rain gauge, which is
 820 the nearest rain gauge to the Wayanad landslide location

821

822

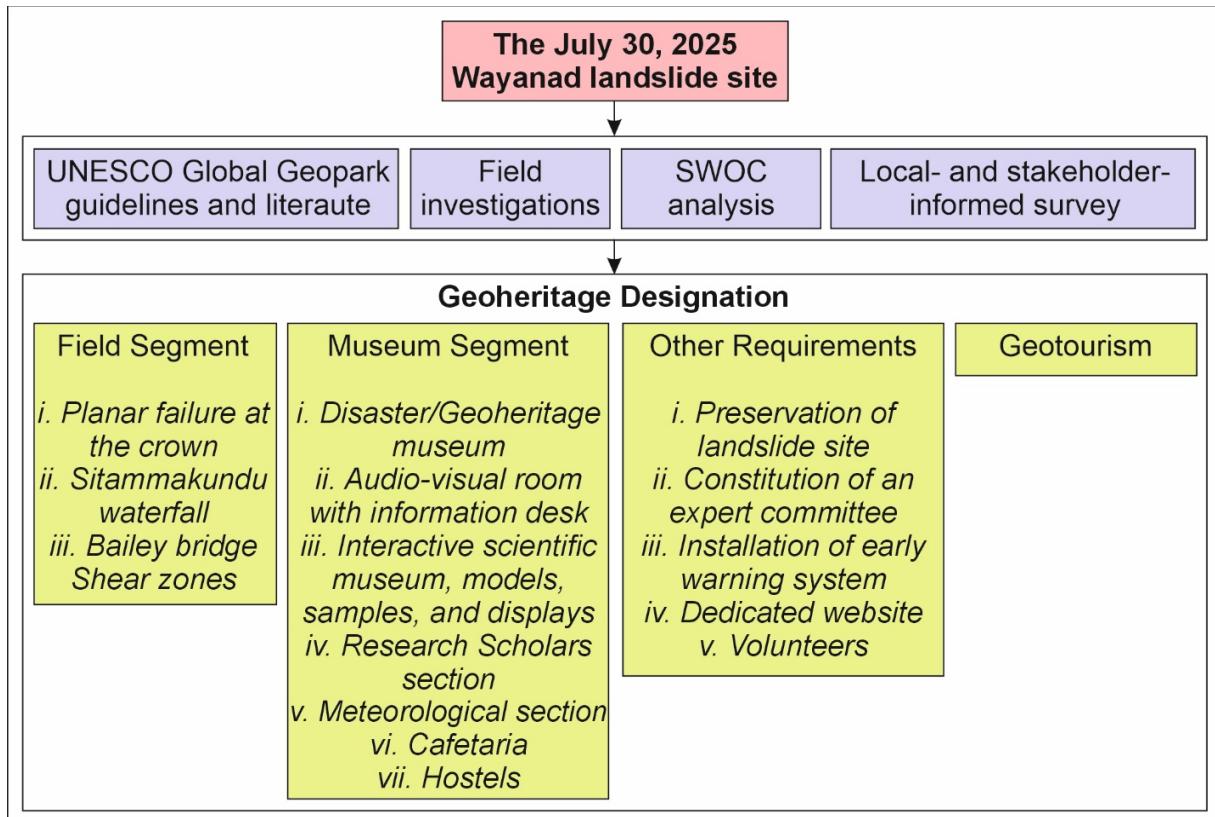
823 **Figure 2** Field photographs showing (a) the crown part of the landslide, which is planar
 824 rock slide (b,c,d) the subsequent debris flow depletion zone

825


826

827 **Figure 3** Figure showing the key field components throughout the flow path (a) Planet
828 Lab image of the 2024 Wayanad landslide showing the affected villages and
829 other details (b) Crown of the landslide (c) the vanished Sitammakundu
830 waterfall (white arrow) (d) the zone of accumulation with the Mundakkai school
831 in the backdrop (e) A thickness of 15 m debris was eroded by this landslide.
832 Highlighted part is a shear, manifested as the weathered hornblende gneiss
833 (white arrow).

835


836 **Figure 4** Figure showing the major geological and non-geological attractions in the
 837 Wayanad district (a) Kalpetta granite (b,c) Ambalavayal granite (d,e)
 838 Kartikulam gabbro (f,g) Edakkal caves (h) Meenmutty Waterfalls (i) Pookode
 839 lake (j) Banasura Sagar dam (k) Soochipara Waterfalls (l) Chembra Peak with
 840 its heart-shaped lake (m) Kuruvadweep (n) Pazhassi Raja Tomb (o) a hamlet
 841 of indigenous people in Wayanad (Photo courtesy: Shamil, Deeju, Sanjayan,
 842 Ramith).

843

844

845 **Figure 5** (a) Pie chart showing the score given for six parameters through the survey of
 846 researchers, laymen, and natives, (b) Qualitative analysis showing the
 847 average score of the six parameters – Socio, Environmental, Economic,
 848 Educational, Tourism, and Cultural

849

850

851 **Figure 6** Flow chart showing the schema of converting the disaster prone Wayanad
852 landslide site to a geoheritage site

853

854

List of Tables

855 **Table 1** SWOC analysis for the Wayanad landslide as Geoheritage site

SI No	Criteria & Indicators	Assessment
1	Strength	
1.1	Scientific and educational Value	Natural laboratory for earth science research and education.
1.2	Rarity	The landslide Geoheritage site would be the first of its kind in the country
1.3	Location	Landslide geoheritage site is located in the high ranges of the Western Ghats, the UNESCO World Heritage Site, recognized for their exceptional biodiversity, unique ecosystems, and status as one of the world's

		eight 'hottest hotspots' of biological diversity, which are vital for environmental sustainability in India. The site is having an elevation ranging from 700 to 2100 m.
1.4	Representation	Unique blend of geological and geomorphological processes coupled with a rich assemblage of flora and fauna. An opportunity to learn from the field joint patterns, foliation, and lineaments that could provide critical insights into the area's instability, which aids in understanding the mechanics of such composite landslides.
1.5	Showcase	Comprehensive documentation of fatalities and damages supports effective resource allocation and disaster response planning. The systematic response and documentation after the disaster show the region's ability to manage post-disaster efforts, including rescue, relief, and rehabilitation.
2		Weaknesses
2.1	Vulnerability	The entire landslide affected area is still recovering from the massive landslide and the threat of minor slides are not ruled out.
2.2	Lack of Infrastructure	The terrain is characterized by steep slopes, weathered rock, and dense vegetation, makes the area susceptible to frequent landslides, posing a persistent challenge for infrastructure and settlement planning.
2.3	Inadequate local awareness	Many local communities lack awareness or preparedness for the scale and frequency of such composite landslides, making evacuation and safety measures difficult to implement effectively.
2.4	Weak structural resilience	The destruction of 259 buildings indicates that construction practices may not be well adapted to withstand landslide impacts in such high-risk areas.
3		Opportunities
3.1	Preservation and showcasing	Preserve Wayanad landslide as a landslide geoheritage site to promote scientific research, education, and public awareness
3.2	Implementation of early warning systems	Installation of monitoring equipments could collect data on various geological and environmental factors of landslides and they can be analysed in real time. Information centre at the landslide geoheritage site could educate public how leveraging modern technologies such as remote sensing, real-time rainfall data monitoring, and ground

		sensors can provide early warning, helping to reduce fatalities and damage in future events.
3.4	Reinforcement of community resilience	Educating and training local populations about landslide risks, evacuation protocols, and disaster preparedness could minimize loss of life and property in future events.
3.5	International collaboration	Sharing and integrating global knowledge on landslide mitigation (such as successful models from Japan or Nepal) can help Kerala and other landslide prone areas around the world develop more effective mitigation and rehabilitation strategies.
4	Challenges	
4.1	Recurring landslides	The region remains vulnerable to future landslides, especially with overhanging colluvium, dislodged boulders, and newly formed gorges that could trigger subsequent slides or debris flows.
4.2	Climate change	Rainfall in the area has become extremely erratic. Increasing rainfall intensity could severely cause landslides, threatening both human settlements and ecological balance.
4.3	Environmental degradation	Promoting plantation in the vulnerable slopes, unchecked tourism and licensing quarrying could exacerbate the intensity of landslide impacts.
4.4	Biodiversity loss	Repeated landslides could result in loss of flora and fauna in the Western Ghats, a biodiversity hotspot, impacting the local ecosystem and livelihoods dependent on natural resources.