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Abstract 

Background  Identifying key areas of animal distribution using individual movement data is fundamental for con-
servation planning, threat mitigation, and spatial management. Methodologies which define these areas based 
on measures of high density and abundance may overlook spatial heterogeneity in behaviour-specific distributions. 
This is particularly relevant for behaviours that occur at lower densities but are associated with increased exposure 
to specific environmental threats. We used a dataset of 566 GPS tracked individuals and 14 colonies of a vulnerable 
species of seabird, the black-legged kittiwake (Rissa tridactyla), to compare two methods for delineating key areas. 
The first method applies kernel density estimates, based on 50% (‘core area’) utilisation distributions, to all movement 
data during an at-sea trip. This reflects a widely used density-based approach to identify high-use spatial areas. The 
second method incorporates hidden Markov modelling to classify movement data into three dominant behaviour 
states: resting, foraging, and transiting, to identify behaviour-specific high-use areas. We then compare population-
level estimates of key areas based on each method using the BirdLife International Key Biodiversity Area framework. 
We also explore how the selection of an intermediate (70%) and home range (95%) utilisation distribution influences 
the capture of different behaviours.

Results  We found that individual-level kernel density estimates based on core areas of all movement data fail to ade-
quately capture the core distribution of transiting, a widespread and dispersed behaviour. Moreover, population-level 
estimates of key areas derived from transiting behaviour are significantly larger than those identified using all tracking 
data, suggesting that conventional methods likely underestimate exposure to threats encountered during transit. 
Conversely, key areas for resting and foraging behaviour are more spatially constrained than those derived from all 
movement data, implying that behaviour-specific analyses may improve the precision of conservation planning. Both 
individual and population-level key area estimates based on larger utilisation distributions (i.e. 75% and 95%) better 
capture the distribution of transiting behaviour as these larger distributions probabilistically encompass a greater frac-
tion of observed movement trajectories.

Conclusion  These results highlight the importance of labelling movement data by behavioural state to enhance 
the utility of GPS data for conservation applications. By incorporating behavioural state differentiation into spatial 
analyses, threat exposure assessments can be refined to focus conservation resources more effectively. Furthermore, 
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this approach has direct implications for environmental impact assessments, particularly in the context of expanding 
marine industries such as offshore renewable energy developments.

Keywords  Biotelemetry, Animal distribution, Kernel density estimates, Hidden Markov model, Conservation planning

Background
Marine biodiversity is under growing pressure from the 
cumulative effects of anthropogenic activities [5, 16, 
23, 59, 69]. One way to mitigate biodiversity loss is the 
identification and protection of habitats critical to spe-
cies  persistence. For marine spatial planning, including 
the designation of protected areas, to be effective, it must 
balance conservation  with sustainable development  and 
secure support from all affected stakeholders [1, 2, 29, 
73, 74, 93]. Overly broad or poorly placed protections 
risk creating conflict with economic activities, reducing 
enforcement and compliance, and  delivering weak con-
servation outcomes [57]. By refining the identification of 
key areas that are critical for species persistence, conser-
vation practitioners can focus protection effort efficiently 
while minimising unnecessary restrictions on human 
activities [44].

Global Positioning System (GPS) tracking of free 
ranging individuals has become a  widely used tool for 
investigating movement and space use, providing criti-
cal insights for conservation strategies [17, 27, 62, 79, 
84]. Tracking data are often analysed with density-based 
methods to delineate high-use areas, such as breeding 
colonies and primary foraging sites [63, 72, 76, 78, 80]. 
In parallel, Hidden Markov models (HMMs) are widely 
used  in  behavioural ecology to classify movement into 
behavioural states, yet their outputs are rarely incorpo-
rated directly into conservation planning frameworks 
[12, 35, 58, 72, 83, 85, 94]. Areas of high spatial density 
may not align with regions where individuals are most 
exposed to environmental risks. Individuals may encoun-
ter impacts during periods of lower aggregation, or when 
exhibiting specific behaviours. For example, analyses of 
seabird tracking data have identified spatio-temporal 
overlaps between foraging activity and commercial fish-
ing zones, increasing bycatch risk  [26, 19]. Similarly, 
seabirds may be particularly vulnerable to collision and 
barrier effects from offshore wind energy  developments 
during transiting  flights [38, 52, 104]. Consequently, 
methods that identify key spatial areas solely  based on 
high density and abundance may underestimate exposure 
to environmental risks, with implications for conserva-
tion effectiveness.

Seabirds are amongst the most threatened avian groups 
globally, with many species in long-term decline [10, 30, 
40]. Seabird conservation planning typically targets high-
density use areas, such as Key Biodiversity Areas (KBAs), 

to inform the designation of protected areas, such as Spe-
cial Protection Areas (SPAs) and Marine Protected Areas 
(MPAs) [9, 34, 55, 78]. One common method for delin-
eating high use areas is to use the 50% utilisation distri-
bution, the smallest area expected to contain 50% of all 
locations, irrespective of behaviour [6, 36, 78]. While the 
50% utilisation distribution is effective for delineating 
high-use areas [80, 90, 103, 116], it can miss behaviours 
expressed at lower spatial densities, such as transiting, 
when individuals move directionally between areas used 
for other higher aggregation behaviours, such as forag-
ing or breeding. These commuting corridors carry high 
energetic value, with route selection constrained by 
navigational efficiency, resource distribution and envi-
ronmental conditions. Barriers created by offshore wind 
developments can therefore  impose energetic costs of 
avoidance [28, 41, 43, 81, 86, 115].

The proportion of time seabirds spend in different 
behavioural states may vary between colonies and across 
different phases of the breeding season, particularly  as 
central place constraints associated with chick provision-
ing relax [15, 21, 70, 98]. Breeding seabirds may also alter 
their foraging strategies in response to adverse conditions 
[21, 46, 66, 71]. Larger utilisation distributions, such as 
95%, can provide broader home range estimates [47, 95, 
112],  yet may still fail to capture dispersed or infrequent 
behaviours, or areas of specific threats.

Hidden Markov models (HMMs) classify movement 
into behavioural states and are widely used in seabird 
behavioural ecology [12, 35, 58, 83, 85, 94], yet they 
remain rarely integrated into spatial planning [72]. Incor-
porating state-specific distributions into key-area identi-
fication could improve threat assessments at individual 
and population levels, highlight energetically efficient 
commuting corridors, and align management actions 
with periods of heightened exposure [86, 97, 100, 105].

To test whether behavioural-state classification can 
refine key area identification we utilised GPS track-
ing data from black-legged kittiwakes (Rissa tridactyla, 
hereafter kittiwake), a globally widespread and vulner-
able species of seabird. Approximately 6% of the global 
kittiwake population breeds in the UK and Ireland dur-
ing the boreal summer   [14]. During this period, kitti-
wakes act as central place foragers, repeatedly returning 
to nesting sites to incubate eggs and provision offspring 
[32]. Kittiwakes are of high conservation priority and 
categorised as Vulnerable on the IUCN Red List having 
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declined by 43%  in Britain and Ireland between census 
periods in 1998–2002 and 2015–2021 [14]. This decline 
has been primarily attributed to reductions in prey avail-
ability driven by overfishing and climate change [20, 32, 
33, 37, 50, 60, 89, 106, 114]. The rapid expansion of off-
shore renewable energy developments also poses a grow-
ing threat, with kittiwakes being particularly vulnerable 
to increased mortality from collisions with turbine blades 
[42, 49, 52, 96]. Given the cumulative pressures faced by 
long-lived seabird species, proactive conservation man-
agement is required [67, 68].

In this study, we examine how estimates of key spatial 
areas differ at the  individual and population-level when 
using (1) all at-sea movement data versus (2) track-
ing data classified into specific behavioural states. We 
hypothesise that defining key spatial areas based on 
movement data will underrepresent areas critical for 
behaviours  expressed at lower density and abundance, 
for example transiting between breeding and forag-
ing grounds. We discuss the implications of this bias for 
environmental impact assessments and conservation 
planning.

Methods
Tracking data
This study uses individual-based movement data col-
lected from kittiwakes breeding in the UK and Ireland. 
Movement data were collected between May and July 
from 2010 to 2015 as part of the FAME (Future of the 
Atlantic Marine Environment) and STAR (Seabird Track-
ing and Research) projects, led by the Royal Society for 
the Protection of Birds (RSPB) (for summary see suppl. 
info. Appendix  1, Table  S1.1). Data were collected from 
incubating and chick-rearing adult kittiwakes fitted with 
GPS loggers (i-GotU GT-120, Mobile Action). Loggers 
were programmed to record locations at 100-s intervals. 
Devices were affixed to the birds’ back feathers between 
the wings or to tail feathers using waterproof tape (Tesa 
SE, Norderstedt, Germany), with total instrument mass 
below 5% of body mass, or 3% where tail attachments 
using smaller batteries were used. Additional details of 
deployment procedures can be found in Wakefield et al., 
[113] and Trevail et al., [110]. Little evidence of tag effects 
have been identified by Cleasby et al., [25].

Data analysis was conducted using program R (v. 3.2.2, 
[101]). Colonies with fewer than eight tagged individu-
als with complete trips or fewer than three individu-
als tagged per year were excluded [111], resulting in a 
final dataset of 566 individuals and 14 colonies (Fig.  1). 
A breakdown of tracked individuals per site and year 
is provided in suppl. info. Appendix  1, Table  S1.2, and 
a full workflow for this study is given in suppl. info. 
Appendix 1, Fig. S1.1. The dataset was further refined by 

splitting GPS tracks into individual trips, removing sta-
tionary location fixes at colonies, and eliminating incom-
plete trips where birds failed to return to the colony. Trip 
segmentation was performed using the tripSplit function 
in the R package Track2KBA (v. 1.0.5, [6]), employing a 
500 m inner buffer to define colony locations and a 1 km 
return buffer with a minimum return duration of 14 min 
to delineate trips. This method has been validated for 
removing resting and washing behaviours near the col-
ony [111]. Trip metrics were calculated for each retained 
colony, including mean and standard deviation of trip 
distance, maximum trip distance, and trip duration.

Classifying movement behaviour
To classify movement behaviour, we applied hidden 
Markov models (HMMs) to the GPS data using the R 
package moveHMM (v. 1.8, [88]). We selected HMMs 
due to their ability to infer discrete behavioural states 
from continuous tracking data while accounting for tem-
poral autocorrelation [61, 83, 102]. Following a previous 
kittiwake study [110], tracking data were not interpolated 
and we employed a three-state HMM to classify move-
ment into resting, foraging, and transiting behaviours. 

Fig. 1  Tracking data used in this study was comprised of 1930 trips 
from 566 individuals across 14 colonies. Colonies are colour coded 
by number of tracked individuals
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Using three-state HMMs also reflects an established 
understanding of at-sea seabird behaviour and makes our 
analysis comparable to other seabird studies [11, 21, 22, 
35, 92, 99, 109]. We used the Viterbi algorithm to deter-
mine the most probable sequence of movement states 
[88, 117], and defined parameter distributions based on 
previously established values for kittiwakes [110] with a 
gamma distribution for step lengths and a von Mises dis-
tribution for turning angles, see suppl. info. Appendix 1, 
Table S1.3.

Comparing key area estimates using ‘all behaviour’ track 
data versus separated behaviours
We used a two-step process to compare key areas esti-
mated from total (‘all behaviour’) tracking data with those 
derived from behaviour-specific data. First, kernel den-
sity estimates (KDEs) were generated at the individual 
level for ‘all behaviour’ and each classified behaviour sep-
arately, then the spatial overlap between these estimates 
was calculated. Second, population-level key spatial areas 
were estimated and compared for ‘all behaviour’ and each 
behavioural state using the BirdLife International Key 
Biodiversity Area framework [6], for infographic of work 
pipeline (see suppl. info. Appendix  1, Fig. S1.1). KDEs 
were computed using the Track2KBA package, with a 
50% utilisation distribution threshold selected to deline-
ate ‘core areas’ of space use [6, 108, 113].

Individual‑based kernel density estimates
We calculated kernel density estimates at the individ-
ual-level using all complete trips [108]. Firstly, we cal-
culated utilisation distributions using an individual’s 
complete ‘all behaviour’ movement data (Fig. 2a). Sec-
ondly, we calculated utilisation distributions from an 
individual’s separated behaviours: resting, foraging, and 
transiting (Fig. 2b–d). Kernel density estimates require 
a smoothing parameter (h) to determine a probability 
surface of space use. We used the findScale function in 
the track2KBA package (v. 1.0.5, [6]) and the log of the 
median foraging range (mag, appropriate for central-
place foragers) to provide suitable values reflecting the 
scale of kittiwake movement bouts (see suppl. info. 
Appendix 3 Table S1.4 for values of mag found for each 
colony). Additionally, to examine potential changes in 
the kernel density area due to changes in the number 
of location fixes within each behaviour, i.e. some behav-
iours being more frequent than others, we also gener-
ated kernel density estimates for each individual using 
a random subsample of locations across a track. The 
number of locations in the subsample was equal to the 
number of locations of the most infrequently recorded 
behaviour for that individual (Fig.  2e). This control 

dataset is referred to as the ‘sample’ category from here 
on.

To quantify whether the kernel density estimates for 
each individuals’ separate behaviours were captured 
within an individual’s ‘all behaviour’ kernel density 
estimate, we calculated the proportion of an individ-
ual’s resting, foraging and transiting kernel densities 
that occurred within their ‘all behaviour’ kernel den-
sity. As a control, we also did this using the ‘sample’ 
kernel densities in place of the separated behavioural 
kernel densities. To estimate whether the proportion 
of each behavioural kernel density captured by the 
total ‘all behaviour’ kernel density differed by behav-
iour, we used a mixed-effects beta-regression model 
fitted using the R package glmmTMB (v. 1.1.7, [13]). In 
this model, we included colony as a random effect and 
transformed the proportions to avoid strict 0 or 1 val-
ues ẋ =

x(N−1)+0.5

N
 where N  is sample size and x is the 

proportion of each behaviour captured within the ker-
nel density of ‘all behaviour’ (Smithson and Verkuilen, 
2006).

To explore how the choice of utilisation distribu-
tion might affect the representation of different behav-
iours within ‘all behaviour’ kernel density estimates, we 
conducted the analysis based on 50% (‘core area’), 75% 
(‘intermediate area’) and 95% (‘home range’) utilisa-
tion distributions. For some colonies the grid size cre-
ated within estSpaceUse in the Track2KBA package was 
too small to allow larger kernel density estimates to be 
mapped (e.g. 95%). In these cases, kernel density sur-
faces were created using adehabitat with grids increased 
from a 5% margin to a 20% margin using the function 
estSpaceUse.

Size estimates of population‑level key areas
Following the track2KBA workflow we estimated the 
size of population-level key areas for all behaviour, rest-
ing, foraging and transiting and the random sample. To 
calculate population-level key area estimates we followed 
BirdLife’s method which combines the kernel density 
estimates of all tracked individuals at a colony (based 
on utilisation distributions and calculated above). Using 
the findSite function in the track2KBA package (v. 1.0.5, 
[6]) the proportion of individual core areas overlapping 
in each grid cell were multiplied by the proportional 
representativeness of the tracking data to give a scaled 
estimate of the proportion of the source population pre-
dictably using the grid cells around each colony. Popula-
tion, or colony-level, key areas were then delineated by 
grouping together grid cells used by a threshold percent-
age of the source population (10%). To estimate the rep-
resentativeness of the datasets at each colony we used the 
repAssess function in the track2KBA package (v. 1.0.5, 



Page 5 of 14Wood et al. Animal Biotelemetry           (2025) 13:34 	

[6], see suppl. info. Appendix 2). Colonies were excluded 
from further analysis (n = 5) if sample size was too small 
to calculate representativeness, or representativeness was 
below the 70% threshold for making population-level 
estimates [78]. The mean value of representativeness 
for the remaining colonies was high for ‘all behaviour’ 
(95.65% ± 4.05), transiting (96.21% ± 4.03), and foraging 
(92.50% ± 10.23), but lower for resting (84.71% ± 8.77). 
Details of representativeness for each colony are pro-
vided in suppl. info. Appendix 2, Table S2.1.

To compare the spatial extent (km2) of colony-specific 
population-level key areas estimated from ‘all behaviour’ 
tracking data versus the tracking data split into separated 
behavioural states (resting, foraging, and transiting), 
we used a mixed effect model fitted using the R pack-
age lme4 (v. 1.1-36, Bates et. al., 2015). In this model, 
the size of colony-specific key areas transformed by 
log10 was included as the response variable, behaviour 
was included as a fixed effect, and colony was included 
as a random effect to account for unexplained variation, 

e.g. driven by colony size (model structure and outputs 
detailed in suppl. info. Appendix  5). Diagnostic plots 
were checked using the R package performance (v. 0.13.0, 
Lüdecke et  al., 2021) to ensure all model assumptions 
were met. To explore how the choice of utilisation distri-
bution might affect the representation of different behav-
iours, we repeated the analysis using 50% (‘core area’), 
75% (‘intermediate area’) and 95% (‘home range’) utilisa-
tion distributions.

Results
Tracking data including kittiwake trip metrics
After filtering our tracking data to remove incomplete 
trips, the dataset comprised 1930 trips from 566 indi-
viduals and 14 colonies (Fig.  1). The mean number of 
trips per individual was 3.41 (Standard Deviation ± 2.33). 
Mean trip characteristics were: total distance = 100.51 km 
(SD ± 103.97), maximum distance from colony = 31.90 km 
(SD ± 30.44), trip duration = 7.11  h (SD ± 7.29), and 
number of GPS fixes per trip = 226.42 (SD ± 314.5). 

Fig. 2  Example of kernel density estimates from kittiwake GPS tracks taken from birds breeding at Bempton Cliffs, England (Fig. 1). Total ‘all 
behaviour’ tracking data (A), Sample: control kernel density estimates based on random subsampling (B), and separated behaviours showing 
resting (C), foraging (D) and transiting (E). The 50% utilisation distribution of each individual is represented in a different colour
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Colony-specific metrics are provided in suppl. info. 
Appendix 3, Table S3.1.

Classifying movement behaviour
At-sea behaviour of kittiwakes was classified into rest-
ing, foraging and transiting behaviour. Resting behav-
iour was characterised by short step lengths (mean step 
length: 0.07 ± 0.03 km, standard deviation in step length: 
0.04 ± 0.02) and narrow turning angles (μ = 0 ± 0.01, con-
centration κ = 10.77 ± 10.69) indicative of low travelling 
speeds and little directionality. Foraging was catego-
rised as having short to medium step lengths (mean step 
length: 0.23 ± 0.10 km, standard deviation in step length: 
0.26 ± 0.10) and wide turning angles (μ = 0.03 ± 1.19, 
κ = 0.34 ± 0.20) indicative of medium travelling speeds 
and low directionality. Finally, transiting was defined 
by long step lengths (mean step length: 0.98 ± 0.11  km, 
standard deviation in step length: 0.32 ± 0.05) and narrow 
turning angles (μ = 0.00 ± 0.01, κ = 9.84 ± 6.59) indicative 
of fast travelling speeds and strongly directional move-
ment (Fig.  3, suppl. info. Appendix  3, Table  S3.2). Step 
lengths and turning angles for each behaviour showed lit-
tle variation across colonies (for individual colony break-
down suppl. info. Appendix  3, Table  S3.4). Behavioural 
proportions at sea remained consistent across colonies: 
kittiwakes spent almost half of their time (weighted 
grand mean for all colonies: 48, SD ± 6%) foraging, almost 
a third of their time transiting (29, SD ± 3%), and just 
less than a quarter of their time resting (23, SD ± 6%). 
Weighted means were calculated to account for differ-
ences in colony size, for details and separate values for 
each colony see suppl. info. Appendix 3, Table S3.4.

Comparing key area estimates using ‘all behaviour’ track 
data versus separated behaviours
Kernel density estimates
Kernel density estimates were created for the 50% uti-
lisation distribution of ‘all behaviour’, resting, foraging 
and transiting and the ‘sample’ category for each indi-
vidual (Fig. 4). The 50% kernel density estimates derived 
from ‘all behaviour’ tracking data adequately captured 
the 50% utilisation distributions of resting (grand mean 
and standard deviation for all colonies, weighted by num-
ber of individuals: 87%, SD ± 10%) and foraging (92%, 
SD ± 3%) but poorly represented the distribution of trans-
iting behaviour (40%, SD ± 8%). This pattern was consist-
ent across colonies (Appendix  4, Table  S4.1). Control 
kernel density estimates based on the ‘sample’ data were 
well captured within ‘all behaviour’ kernel density esti-
mates (92%, SD ± 1%), demonstrating that poor capture 
of behaviours is unlikely to reflect a reduced number of 
location fixes in separated behaviours. Statistical mod-
elling confirmed that the 50% kernel density estimates 

derived from ‘all behaviour’ tracking data represented a 
lower proportion of transiting behaviour (model esti-
mates: 0.4; 95% CI 0.36–0.45, p < 0.001) compared to 
the ‘sample’ category. The proportion of resting (model 
estimate: 0.91; 95% CI 0.90–0.93, p < 0.001) and foraging 
(model estimate: 0.91; 95% CI 0.89–0.92, p < 0.001) were 
better represented. The control kernel density estimates 
based on the ‘sample’ category showed an estimated over-
lap of 0.86 (95% CI 0.84–0.88; p < 0.001). For full model 
details see suppl. info. Appendix 4, Table S4.3 to S4.4, and 
Fig. S4.1 and S4.2. We note that the component behav-
iours of the total ‘all behaviour’ kernel densities are non-
independent. For example, if one behaviour was highly 
clustered, one of the other behaviours would necessarily 
have to be diffuse to give the observed ‘all behaviour’ dis-
tribution, and we discuss this further in the supplemen-
tary materials (suppl. info. Appendix  4, Fig. S4.1). We 
repeated this analysis with tracking data which had been 
interpolated to 100 s and found minimal difference from 
non-interpolated results (Appendix 4, Tables S4.6–S4.8).

Kernel density estimates of ‘all behaviour’ created using 
75% and 95% utilisation distributions better captured 
each of the separate behaviours than those using a 50% 
utilisation distribution. Transiting remained less well 
captured compared to resting, foraging and the ‘sample’ 
category, however the overall proportion of transiting 
captured within the ‘all behaviour’ kernel density esti-
mate improved with increasing utilisation distribution 
(50% utilisation distribution (UD) = 0.4, 75% UD = 0.61, 
95% UD = 0.86). For kernel density estimates based on a 
75% utilisation distribution, transiting behaviour was the 
least well captured behavioural state (model estimates: 
0.61; 95% CI 0.58–0.64), compared to resting (model esti-
mate: 0.96; 95% CI 0.95–0.96) and foraging (model esti-
mate: 0.95; 95% CI 0.95–0.96) and the ‘sample’ category 
(model estimate: 0.90; 95% CI 0.88–0.91). For kernel 
density estimates based on a 95% utilisation distribu-
tion, transiting behaviour was still the least well captured 
behavioural state (model estimates: 0.86; 95% CI 0.85–
0.88) compared to resting (model estimate: 0.97; 95% CI 
0.97–0.98) and foraging (model estimate: 0.97; 95% CI 
0.96–0.97) and the ‘sample’ of all behaviour (model esti-
mate: 0.95; 95% CI 0.94–0.95). For full model outputs 
see suppl. info. Appendix 4, Tables S4.5 to S4.11, and Fig. 
S4.3 and S4.4.

Size estimates of population‑level key areas
The estimated size of population-level key areas was 
larger for transiting behaviour (mean average across 
colonies: 681 km2) than for ‘all behaviour’ (380.11 km2), 
resting (133.89 km2) and foraging (249.56km2, individual 
colony values in suppl. info. Appendix  5, Table  S5.1). 
The results of our mixed effect model indicated that 



Page 7 of 14Wood et al. Animal Biotelemetry           (2025) 13:34 	

Fig. 3  Example of GPS tracks taken from kittiwakes breeding at Bempton Cliffs, England (Fig. 1). The tracks have been separated into resting (green), 
foraging (orange) and transiting (blue) behaviours (A), based on the distribution of step lengths (B) and turning angles (C)

Fig. 4  Violin plots of the proportion overlap of the kernel density estimates (based on a 50% utilisation distribution) of each separated behaviour 
and the random sample of locations, with the kernel density estimates based on all behaviour. Example taken from Coquet, England. Box 
and whiskers show the overall mean and interquartile range in the proportion of overlap for each behaviour. Each circle within the violins 
represents an individuals’ kernel density estimate
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population-level key areas for transiting were signifi-
cantly different, and nearly 30% larger than those esti-
mated using ‘all behaviour’ data (0.28; 95% CI 0.12, 0.45 
p = 0.001). By contrast, key areas for resting (− 0.48; 95% 
CI − 0.65, − 0.31; p < 0.001) behaviour were smaller than 
those derived from ‘all behaviour’ data (Fig. 5). The extent 
of the key area for kernel density estimates of foraging 
(− 0.16; 95% CI − 0.33, − 0.00; p > 0.05) and the ‘sample’ 
of locations did not differ from key areas based on ‘all 
behaviour’ data (− 0.02; 95% CI − 0.19, − 0.15; p > 0.05, 
Marginal R2 0.314, Conditional R2 0.846). Full model 
results are detailed in suppl. info. Appendix 5, Table S5.2, 
Table S5.3 and Fig. S5.1 and S5.2.

In population-level estimates of key areas estimated 
using 75% utilisation distributions, key transiting areas 
were still larger than for ‘all behaviour’ (0.18; 95% CI 
0.07–0.29; p < 0.01), with areas of resting (− 0.36; 95% 
CI − 0.47–− 0.25; p < 0.001), and foraging (− 0.20 95% 
CI − 0.32–− 0.09; p < 0.01), smaller that for ‘all behav-
iour’, and no difference in the sample (− 0.04; 95% 
CI − 0.15–− 0.07; p > 0.01). In estimates based on 95% 
utilisation distributions, population-level key areas for 
transiting were not significantly different from key areas 
based on ‘all behaviour’ (0.03; 95% CI 0.12–0.50; p > 0.01). 
Key areas of resting (− 0.37; 95% CI − 0.49–− 0.25; 
p < 0.001) and foraging (− 0.25; 95% CI − 037–− 0.13; 
p < 0.001) were smaller than ‘all behaviour’ and there 
was no difference in the size of the ‘sample’ key area 
(− 0.04; 95% CI 0.16–0.08; p > 0.01). Full model results are 
detailed in suppl. info. Appendix  5, Tables S5.4 to S5.9 
and Figs. S5.3 and S5.4.

Discussion
Effective identification of key areas that are critical for 
species persistence is essential for protected area desig-
nation, mitigation of anthropogenic threats, and sustain-
able land- and sea-use management [18, 45, 62, 77, 82]. 
A common method for delineating these conservation 
areas is to identify regions where animals occur in high-
density [4, 6, 78, 108]. This approach  does not account 
for variation in threat exposure associated with different 
behavioural states, and risks underestimating threats that 
occur during periods of lower aggregation. The present 
study demonstrates that individual-based kernel density 
estimates derived from composite “all behaviour” move-
ment data effectively capture resting and foraging behav-
iours in part by delineating an area larger than the areas 
required for each of these behaviours. In contrast, the 
composite “all behaviour”  data fails to accurately repre-
sent around half of the area required for transiting behav-
iours and the area required for transiting alone tends to 
be larger than the composite “all behaviour” area. These 
findings suggest that incorporating behavioural-state 

analysis into key area assessments can enhance conser-
vation planning by more precisely identifying locations 
where individuals are more susceptible to different kinds 
of threats.

The results presented here indicate that standard meth-
odologies for identifying key areas, which do not differ-
entiate behavioural modes, may underestimate the extent 
to which kittiwakes are exposed to threats whilst trans-
iting. While key areas for foraging and resting were well 
captured within individual-level  “all behaviour” kernel 
density estimates, those for transiting behaviour were 
spatially distinct. Additionally, when estimates were 
scaled up to the population-level, key areas of transiting 
behaviour were larger than those for other behaviours, as 
well as for all behaviours combined. Kittiwakes have been 
found to be particularly vulnerable to collisions with off-
shore wind farms due to their flight heights and relatively 
high proportion of time spent flying [52, 54]. The spa-
tial distribution of transiting behaviour along ‘commut-
ing corridors’ between breeding and foraging locations 
may therefore necessitate separate consideration during 
marine spatial planning, especially  given the projected 
expansion of offshore renewable energy infrastructure, 
particularly in the United Kingdom (from 8 GW in 2020 
to a targeted 40 GW by 2030 [8,65]).

For kittiwakes, key population-level areas for resting 
and foraging were smaller than those identified from the 
“all behaviour” tracking dataset (across all utilisation dis-
tributions), indicating potential to refine targeted areas 
for behaviour-specific threat mitigation. In some species, 
these densely distributed behaviours can increase expo-
sure to specific threats. For example, foraging northern 
gannets (Morus bassanus) face an elevated risk of col-
lision when plunge-diving near wind turbines, whilst 
benthic foraging and deep-diving species (e.g. auks) are 
particularly vulnerable to tidal and wave energy devices 
[24, 51]. The results of this study indicate that both indi-
vidual and population-level key area estimates based on 
larger utilisation distributions (i.e. 75% and 95%, rather 
than 50%), better capture the distribution of transiting 
behaviour. For species which are particularly vulner-
able when transiting (e.g. kittiwakes) or where transiting 
is the dominant behaviour (e.g. species which forage on 
the wing or disperse widely), larger utilisation distribu-
tions may be more suitable for capturing key areas and 
estimating threat exposure. While adopting a broader 
spatial scale for protection may better encapsulate trans-
iting behaviour, it necessitates a trade-off between scale 
and resolution of conservation effort. As allocation of 
conservation resources is constrained by financial and 
logistical limitations, prioritising the most ecologically 
significant habitats is essential to ensuring effective 
management [2, 93]. Conservation interventions that 
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fail to align with ecological needs risk misallocation of 
resources, stakeholder resistance, and suboptimal con-
servation outcomes [48, 56]. Behavioural-state analysis, 
selection of utilisation distributions at an appropriate 
scale, and an understanding of species-specific responses 
to threats can therefore support marine spatial planning 
through the design of more targeted conservation zones 
with mitigation strategies that prioritise essential behav-
iours while minimising spatial conflict with other marine 
industries [1, 39, 57, 97, 100].

Separating movement data by behaviour supports the 
delineation of targeted areas for conservation, however 
the distribution of specific behaviours may change over 
time as a result of intrinsic and extrinsic factors. This 
variation may be caused by seasonal, diurnal or circadian 
changes [15, 70, 98], underlying individual variation in 
decision making and habitat preferences [91, 111], or in 
response to environmental change [21, 46, 71]. Addition-
ally, distribution may change with population structure, 
as behaviours can be exhibited unequally by different sex 
or age classes [3, 7, 75]. To ensure that spatial and tem-
poral limits for conservation efforts are future proof, 

conservation practitioners must account for these fac-
tors when planning protective actions. An understand-
ing of species-specific site and route fidelity can support 
marine spatial planning decisions and threat assessment 
through the choice of appropriate utilisation distribu-
tions (e.g. larger where spatial distribution is more vari-
able or transiting is dominant). Dynamic conservation 
measures that incorporate real-time environmental data 
and behaviour-specific distribution models could allow 
spatial planners and policy makers to respond accord-
ingly, adapting protection to track changes in the distri-
bution of key areas [31, 53, 104].

Incorporating behavioural-state into estimates of 
space use can help guide not just the spatial placement 
of static (place-based) protected areas, but also the tim-
ing and location of seasonal or spatially dynamic protec-
tion. By recognising variation in space-use by behaviour, 
conservation practices can be tailored to reflect changes 
in threat exposure, minimise negative ecological con-
sequences and stakeholder conflict, and maximise 
conservation resources [3, 7, 87, 97]. For example, imple-
menting spatial restrictions on industrial fishing within 

Fig. 5  Violin plots of the spatial extent of population-level key area estimates (based on a 50% utilisation distribution) for ‘all behaviour’, a random 
sample of ‘all behaviour’, and tracking data separated into resting, foraging, and transiting behavioural states. Each circle within the violins represents 
a different colony, box and whiskers show the overall mean and interquartile range
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seabird foraging zones during the breeding season when 
individuals are constrained by central place foraging [64] 
or wind turbine curtailment during peak migratory peri-
ods or if adverse environmental conditions increase spa-
tial overlap with key foraging areas.

Conclusion
Our study highlights the importance of incorporating 
behavioural-state differentiation when identifying key 
spatial areas for wide-ranging species such as seabirds. 
Standard approaches that rely on aggregated movement 
data may fail to capture transiting behaviour, thereby 
underestimating exposure to anthropogenic threats. 
Using movement data from black-legged kittiwakes, we 
demonstrate that key areas derived from total movement 
datasets do not fully represent the distribution of differ-
ent at-sea behaviours. While adopting a broader spatial 
scale for protection may better encapsulate transiting 
behaviour, it necessitates a trade-off between scale and 
resolution of conservation effort. As individuals may 
be more susceptible to specific threats while exhibiting 
certain behaviours, incorporating behavioural data into 
the designation of protected areas and environmental 
impact assessments could help minimise negative inter-
actions between seabirds and human activities, focusing 
conservation resources while minimising stakeholder 
spatial conflict with marine industries. For instance, the 
planning of offshore wind farm developments should pri-
oritise avoidance of key transiting areas to reduce mor-
tality risks associated with turbine collisions. Our results 
have immediate applications for spatial planning and 
the designation and management of effective protected 
areas, particularly in the context of mitigating siting and 
operational  risks associated with offshore wind energy 
developments. More broadly, the findings highlight the 
need for a nuanced understanding of species-specific 
behaviour to refine conservation strategies and improve 
ecological impact assessments. A better understanding 
of spatiotemporal overlap between seabird behaviours 
and environmental stressors could improve the effective-
ness of regulatory frameworks governing marine spatial 
planning.
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