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A B S T R A C T

Mercury (Hg) is a neurotoxic element that can harm marine wildlife. Hg can reach the Southern Ocean through 
atmospheric and oceanic currents. However, data on Hg in Southern Ocean deep-sea fishes remain scarce. Our 
study assessed the influence of biological and ecological factors on Hg bioaccumulation in two deep-sea species, 
blue antimora (Antimora rostrata) and bigeye grenadier (Macrourus holotrachys), inhabiting the South Georgia 
region. Specifically, we aimed to: 1) analyse the habitat and trophic position of both species; 2) understand how 
Hg concentrations vary between tissues (muscle, brain, liver and gills); 3) evaluate how biological (length and 
weight) and ecological characteristics (trophic position (δ15N) and habitat (δ13C)) influence Hg concentrations. 
Muscle tissue had the highest Hg concentrations in both species, while the liver in A. rostrata and gills in 
M. holotrachys had the lowest. Overall, A. rostrata exhibited lower Hg concentrations (51.0 ± 9.0) than 
M. holotrachys (62.0 ± 11.0). No significant relationships were found between Hg concentrations and length, 
weight nor trophic position of A. rostrata. In contrast, M. holotrachys showed a positive relationship between Hg 
concentrations and habitat in all tissues, whereas for length and weight this positive relationship was observed in 
most tissues except the brain. A. rostrata is a pelagic feeder, whereas M. holotrachys mostly feeds near the sea 
bottom, highlighting how feeding strategy and habitat influence Hg bioaccumulation. It also reveals unexpected 
patterns of Hg distribution among tissues, particularly in the brain, where M. holotrachys exhibited one of the 
highest Hg concentrations.

1. Introduction

The Southern Ocean ecosystem is under several global threats, 
including the continuous influx of anthropogenic contaminants (Cossa 
et al., 2011; Constable et al., 2014; Szopińska et al., 2017). From these, 
mercury (Hg) is considered one of the most dangerous neurotoxic 

elements to wildlife (Miranda et al., 2007; Mieiro et al., 2009; Chu et al., 
2019; Teixeira et al., 2020). Hg has a great dispersion capacity, enabling 
it to reach all regions of the globe, including the Southern Ocean 
(Lamborg et al., 2014). Among the different forms of Hg, methylmercury 
(MeHg), its main organic form in biota, is considered the most toxic to 
living organisms, due to its high liposolubility and high affinity with 
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proteins (Miranda et al., 2007), bioaccumulating throughout the life of 
organisms (Polak-Juszczak, 2012), and biomagnifying along marine 
food webs including in the Southern Ocean (Gray, 2002; Polak-Juszczak, 
2012; Seco et al., 2021). Therefore, long-lived top predators usually 
contain high concentrations of Hg (McIntyre and Beauchamp, 2007; 
Cherel et al., 2018; Seco et al., 2021). Hg accumulation in organisms 
depends on several biological and ecological factors such as length, age, 
sex, trophic position and feeding habitat (Havelková et al., 2008). 
Furthermore, tissue composition also influences the accumulation 
pattern of marine organisms, with previous studies showing significant 
differences in Hg concentrations across tissues of the same individual 
(Łuczyńska et al., 2016; Lopes-Santos et al., 2025). Therefore, a thor
ough understanding of the biology and ecology of marine species, 
including in the Southern Ocean, is important to understand Hg con
centrations in marine food webs.

Studying inter-tissue Hg concentrations helps to understand bio
accumulation patterns and detoxification processes, as tissues accumu
late Hg at varying rates (Polak-Juszczak, 2018). It can also serve as an 
environmental and ecological indicator, as variations between tissues 
may reflect different exposure pathways, feeding behaviours, and 
environmental contamination levels (Mieiro et al., 2012). Additionally, 
it helps reveal species-specific metabolism, since different species pro
cess and store Hg differently (Mieiro et al., 2012; Polak-Juszczak, 2018).

Within the Southern Ocean, South Georgia is considered one of the 
most productive regions due to its cold and nutrient-rich waters 
(Atkinson et al., 2001; Murphy et al., 2013). These waters support the 
development of large zooplankton biomass and provide habitat for vast 
colonies of top predators, such as seals and seabirds (Murphy et al., 
2007). Additionally, it is considered a highly important region for the 
commercial fishing of Antarctic krill (Euphausia superba) and the long
line fishery for Patagonian toothfish (Dissostichus eleginoides) (Atkinson 
et al., 2001; Collins et al., 2010).

The blue antimora (Antimora rostrata) and the bigeye grenadier 
(Macrourus holotrachys) are two common species in the Southern Ocean 
deep-sea (Gon et al., 2021), commonly caught as bycatch in South 
Georgia toothfish fisheries (Collins et al., 2010; Hollyman et al., 2022). 
They are present in the diet of several top predators, such as the Pata
gonian toothfish, seals and albatrosses (Morley et al., 2004; Xavier et al., 
2004; Stevens et al., 2014; Queirós et al., 2024). Despite some similar
ities, these fish species present distinct biological and ecological char
acteristics: A. rostrata (Family: Moridae) is a cosmopolitan species that is 
found across all oceans, from shallow to deep waters (Cohen et al., 
1990). In the Southern Ocean, A. rostrata can be found in the Scotia Sea, 
Ross Sea, Amundsen Sea and Weddell Seas (Orlov et al., 2020). It is a 
bathypelagic species, inhabiting between 350 and 3000 m (Cohen et al., 
1990), slow-growing and long-lived species and can reach more than 60 
cm in total length (Cohen et al., 1990). Additionally, A. rostrata presents 
a sexual dimorphism with females being larger than males (Horn and 
Sutton, 2015).

Macrourus holotrachys (Family: Macrouridae) is the most abundant 
macrourid species in many sub-Antarctic island's bycatches (McMillan 
et al., 2012; Romanelli, 2017). In contrast to A. rostrata, its distribution 
is limited to the Patagonian shelf and to the Southern Ocean, with its 
abundance decreasing further south (Hanchet et al., 2008; McMillan 
et al., 2012). It is a bathy-demersal fish species, being found between 
200 and > 2000 m depth (Cohen et al., 1990; Laptikhovsky, 2005; 
Pinkerton et al., 2012). As adults, individuals of M. holotrachys can reach 
over 80 cm in total length and can be found living close to the seafloor, 
and present life-history traits of a deep-sea species (e.g. long lifespan and 
late maturation) (Morley et al., 2004; Laptikhovsky, 2005).

According to FishBase (Froese and Pauly, 2025), A. rostrata occupies 
a mid-trophic position (δ15N: 3.6 ± 0.47) and feed mainly on mesope
lagic and benthopelagic invertebrates, such as crustaceans and cepha
lopods, although small fishes are also part of its diet. In contrast, 
M. holotrachys is positioned slightly higher in the food web (δ15N: 3.7 ±
0.64), reflecting its benthic feed habits, and preys predominantly on 

benthic invertebrates and small demersal fishes.
While information on the ecology of M. holotrachys in the Southern 

Ocean is limited, less is known about the ecology of A. rostrata. Filling 
this gap of scientific knowledge is crucial due to its importance as a prey 
species for top predators and as an important bycatch in toothfish fish
eries (Horn and Sutton, 2015; Ñacari et al., 2022).

Despite their ecological importance and potential role as a Hg 
pathway to top predators in the Southern Ocean, only one study re
ported Hg concentrations in A. rostrata in the Southern Ocean (Hanchet 
et al., 2012), while no studies exist for M. holotrachys. Hg concentrations 
in A. rostrata muscle caught on the Ross Sea continental slope averaged 
0.19 μg g− 1 dw, ranging from 0. 04 to 0.68 μg g− 1 dw (Hanchet et al., 
2012). Furthermore, this study found that Hg concentrations increased 
with fish length, and were influenced by the location, with fish found 
further south exhibited lower Hg concentrations (Hanchet et al., 2012). 
Despite this study, major gaps remain regarding how Hg concentrations 
in A. rostrata are influenced by its biology and ecology, including in 
other Antarctic regions (other than the Ross Sea), as well as how these 
are distributed across the different tissues. Carbon stable isotopes (δ13C) 
helps identify feeding habitats and primary productivity sources, dis
tinguishing between coastal and offshore environments or pelagic and 
benthic regimes (Cherel and Hobson, 2007; Stowasser et al., 2012). 
Furthermore, stable nitrogen isotope analysis (δ15N) provides a good 
insight into the biomagnification pattern of contaminants in a food web 
by determining the trophic position of species (Cabana and Rasmussen, 
1994; Stowasser et al., 2012; Chouvelon et al., 2014). Within this 
context, this study aims to study the habitat, trophic position and Hg 
concentrations in A. rostrata and M. holotrachys in South Georgia 
(Southern Ocean). In detail, we i) investigate the feeding habitat and 
trophic ecology of both species; ii) examine Hg accumulation across 
different tissues (muscle, brain, liver and gills) in both species; iii) 
investigate which biological (i.e. length and weight) and ecological (i.e. 
habitat and trophic position) factors influence Hg bioaccumulation in 
these species. To evaluate which ecological factors influence the Hg 
concentrations in both species, stable isotopes of δ13C and δ15N were 
analysed in the muscle to determine the habitat and trophic ecology.

2. Materials and methods

2.1. Data collection

Individuals of A. rostrata (n = 23) and M. holotrachys (n = 22) were 
collected in June 2020 at South Georgia ((Commission for the Conser
vation of Antarctic Marine Living Resources) (CCAMLR) sub-Area 48.3) 
(Fig. 1) aboard the FV Nordic Prince during the longline Patagonian 
toothfish fishing season. It is important to note that samples were not 
randomly collected but to create a length gradient to ensure a range of 
individuals were represented in the analysis.

Total length (± 1 cm), standard length (SL) (± 1 cm), weight (± 0.05 
Kg), sex and maturity stage (following Kock and Kellermann, 1991) were 
recorded for each individual of both species. After measurements, 
samples of muscle, brain, liver and gills were collected and preserved in 
individual plastic bags at − 30 ◦C. In the laboratory, samples were freeze 
dried for 72 h at − 50 ◦C and cut in to small pieces using stainless steel 
scissors.

2.2. Stable isotope analyses

Stable isotope analysis of δ13C and δ15N were performed on the 
muscle to allow comparisons with previous studies. Furthermore, the 
muscle provides a stable and representative isotopic signature of the 
fish's diet as it has a relatively low turnover rate, reflecting the diet over 
a longer time period than metabolically active tissues such as the liver.

Prior to analyses, between 22 and 28 mg of muscle samples were 
weighed in an identified glass tube and delipidated using three succes
sive rinses with cyclohexane following Chouvelon et al. (2011). Briefly, 
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glass tubes were shaken for 10 min at approximately 1000 rpm with 4 ml 
of cyclohexane and then centrifuged for 5 min at 4500 rpm. The su
pernatant containing the lipids was discarded. After delipidation, all 
samples were dried overnight in an oven at 45 ◦C. Delipidation was 
performed because the presence of lipids influences δ13C values and 
different species have different lipid contents. Therefore, delipidation 
allows the comparison between individuals and species with different 
lipid content. After drying, between 0.2 and 0.4 mg of muscle was 
weighed in a tin capsule using a Mettler Toledo microbalance. Carbon 
and nitrogen stable isotope values were measured using a Continuous 
Flow Isotope Ratio Mass Spectrometer (CF-IRMS) coupled to an 
elemental analyzer (Thermo Scientific EA Flash®). Isotope data were 
calculated using the following equation: 

δ13C or δ15N (‰) =
( (

Rsample
/
Rstandard

)
− 1

)
× 1000 

where R is 13C/12C or 15N/14N. Isotopic results are presented in delta 
notation (δ in per mil, ‰) relative to Vienna PeeDee Belemnite and at
mospheric nitrogen (N2) for δ13C and δ15N, respectively. Quality control 
was assessed using two certified reference materials: USGS-61 (caffeine) 
and USGS-63 (caffeine). The analytical precision was <0.04 ‰ for δ13C 
and < 0.06 ‰ δ15N.

2.3. Mercury analyses

Hg analyses were performed on all tissues (muscle, brain, liver and 
gills). Concentrations of total Hg (hereafter Hg) were determined by 
atomic absorption spectrophotometry with thermal decomposition and 
gold amalgamation using an Advanced Mercury Analyzer (AMA) LECO® 
254 (Costley et al., 2000) with a limit detection of 0.01 ng. Analytical 

quality control was performed using the certified reference materials 
DORM-4 (n = 10; fish protein Hg = 0.41 μg g− 1) with a recovery of 96.0 
± 7.8 % and TORT-3 (n = 11; lobster hepatopancreas Hg = 0.29 μg g− 1) 
with a recovery of 95.9 ± 9.3 %. Hg concentrations were further 
expressed in μg g− 1 relative to the dry weight.

2.4. Data analyses

All statistical analyses were performed using GraphPad Prism 8 and 
considering alpha at 0.05. The normality of all study variables was first 
tested using the Shapiro-Wilk test. δ13C and δ15N values for both species 
followed a normal distribution (p > 0.05) and were therefore treated as 
parametric variables. For Hg concentrations, muscle and brain tissues of 
A. rostrata followed a normal distribution (p = 0.49 and p = 0.08, 
respectively), while gills and liver (p = 0.05 and p = 0.04, respectively), 
and all tissues of M. holotrachys (p < 0.0001) did not follow a normal 
distribution. Accordingly, parametric tests were applied to δ13C and 
δ15N values, whereas non-parametric tests were used for most Hg data.

For stable isotope analyses, a t-test was performed to compare the 
δ13C and δ15N values between the two species. Furthermore, a rela
tionship between the biological variables (standard length and weight) 
and δ15N values and also between the biological variables and δ13C 
values, were conducted to get some information about the bio
accumulation patterns and habitat use, respectively, for both species.

For comparisons of Hg concentrations across tissues within each 
species, a Friedman test was applied because the four tissues were 
measured in the same individuals, thus representing repeated and paired 
measurements. When significant results were obtained, a Nemenyi post 
hoc test was used to identify differences between tissues. To compare Hg 

Fig. 1. Map of the study area. White dots represent the sampling locations. Solid line represent the Polar Front (PF) and the dotted line represent the Southern 
Boundary of the Antarctic Circumpolar Current (SBACC).
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concentrations between the two species for each tissue, a Mann-Whitney 
tests were performed. To test Hg bioaccumulation in these species, we 
modeled the length/weight–Hg relationship using a Lognormal 
approach, fitting a Gaussian linear model on the log scale: log(Hg) = α +
βlog (SL or Weight) + ε,  ε ~ N(0, σ2), where αα is the intercept and β is 
the allometric exponent. Assumptions were checked on the log scale. 
These statistical analyses were performed in R (version 4.5.1; R Core 
Team, 2025). Finally, a linear regression was performed for each species 
to test relationships between Hg concentration and the δ15N values in 
the muscle.

3. Results

3.1. Habitat use and trophic position of A. rostrata and M. holotrachys

Standard length of A. rostrata ranged from 32 to 62 cm and weight 
from 0.34 to 1.34 kg, while M. holotrachys had a standard length ranging 
from 40 to 82 cm and a weight ranging between 0.40 and 2.80 kg 
(Table 1).

Significant differences were found in δ13C and δ15N values between 
the two species (δ13C: t = 9.36, p < 0.0001; δ15N: t = 13.90, p < 0.0001), 
with A. rostrata presenting lower δ13C (1.74 ‰) and δ15N (2.52 ‰) 
values than M. holotrachys (Fig. 2; Table 1). No significant relationships 
were found between standard length and both δ13C (p = 0.072) or δ15N 
values (p = 0.676) in A. rostrata, as well as no significant relation with 
weight (δ13C: p = 0.073; δ15N: p = 0.544). Regarding M. holotrachys, a 
significant relationship was found between standard length and δ13C 
values (p = 0.021; r2 = 0.239; δ13C = 0.03205SL – 22.93) and between 
weight and δ13C values (p = 0.026; r2 = 0.223; δ13C = 0.4867 W – 
21.61). No relationship was found between standard length or weight 
and δ15N values (p = 0.159 and p = 0.137, respectively) in 
M. holotrachys.

3.2. Inter-tissue specific Hg accumulation in A. rostrata and 
M. holotrachys

Hg concentrations in the tissues of A. rostrata decreased in the 
following order: muscle > brain > gills > liver (Table 1). Significant 
differences were found for Hg concentrations in A. rostrata between 
tissues (p < 0.0001), with multiple comparison test showing significant 
differences between all tissues (muscle/gills; muscle/liver; brain/liver: 
p < 0.0001; brain/gills: p < 0.05), except muscle/brain (p = 0.1520) and 
gills/liver (p = 0.090) (Fig. 3).

Regarding M. holotrachys, Hg concentrations in the tissues decreased 
in the following order: muscle > brain > liver > gills (Table 1). Signif
icant differences were also found for Hg concentrations in M. holotrachys 
tissues (p < 0.0001), with multiple comparison test showing significant 
differences between all tissues (muscle/gills and muscle/liver: p <
0.0001; brain/gills: p = 0.0008; brain/liver: p = 0.0003), except muscle/ 
brain (p = 0.7743) and gills/liver (p > 0.9952) (Fig. 3).

Significant differences were found for Hg concentrations between all 
tissues of the two studied species (muscle: U = 64; p < 0.0001; brain: U 
= 80; p < 0.0001; liver: U = 27; p < 0.0001; gills: U = 75; p < 0.0001). 
Hg concentrations in A. rostrata tissues were lower than concentrations 
in M. holotrachys tissues, i.e. 2-fold in muscle, 3-fold lower in the brain, 

9-fold in liver and 4-fold in gills (Table 1).

3.3. Hg bioaccumulation in relation to biological factors in A. rostrata 
and M. holotrachys

No significant relationships were found between Hg concentration 
and either standard length or weight in any tissue of A. rostrata. In 
contrast, M. holotrachys exhibited significant positive relationships be
tween Hg concentrations and both standard length and weight in most 
tissues,except for the brain, which showed no significant relationships 
with either variable (Table 2).

No significant relationship was found between Hg concentrations in 
the different tissues and the δ15N values in both species (A. rostrata: 
muscle: p = 0.259; brain: p = 0.962; liver: p = 0.958; gills: p = 0.063; 
M. holotrachys: muscle: p = 0.132; brain: p = 0.056; liver: p = 0.219; 
gills: p = 0.070).

4. Discussion

To the best of our knowledge, this is the first study assessing Hg 
concentrations in M. holotrachys in the South Georgia. Using stable 
isotopes and Hg analysis, we found that A. rostrata occupies a lower 
trophic position and forages more in the pelagic environment than 
M. holotrachys which is a demersal feeder, resulting in consistently lower 
Hg concentrations. Only M. holotrachys showed length-related Hg 
accumulation, likely reflecting age-related bioaccumulation and poten
tial dietary shifts with growth. These finding highlight the role of 
species-specific ecology in shaping contaminant exposure in deep-sea 
environments.

A. rostrata and M. holotrachys presented a limited range of lengths, 
with all individuals exceeding 32 cm and 40 cm, respectively, that 
suggest the sampled specimens were predominantly adults. This limited 
length variation may influence their ecological characteristics (habitat 
use, feeding behaviour, trophic position) and Hg bioaccumulation pat
terns observed in our study.

4.1. Habitat use and trophic position of A. rostrata and M. holotrachys

Our results, suggest that, despite captured in the same region, 
A. rostrata and M. holotrachys use different habitats. Lower δ13C values of 
A. rostrata suggest that this species forage more in pelagic environments, 
whereas M. holotrachys is more associated with benthic habitats 
(Newsome et al., 2007). This result is supported by previous studies 
showing that A. rostrata is a bathypelagic species strongly connected to 
the copepod-based pelagic food web (Cohen et al., 1990; Stowasser 
et al., 2009), contrary to M. holotrachys which is a bathy-demersal spe
cies living closer to the seafloor and feeds essentially in ostracods, iso
pods, amphipods, decapods and polychaetes (Cohen et al., 1990; 
Laptikhovsky, 2005; Ñacari et al., 2022).

However, our results contrast with a previous study by Ñacari et al. 
(2023) in the Southeastern Pacific Ocean with A. rostrata exhibiting a 
more demersal foraging strategy (δ13C = − 18.9 ± 0.2 ‰) compared to 
M. holotrachys (δ13C = − 19.7 ± 1.6 ‰). These differences may be 
correlated to both geographic variation and/or body length differences 
between the two studies. Additionally, A. rostrata and M. holotrachys 

Table 1 
Number (overall and per sex), standard length, weight, mercury (Hg) concentrations in the analysed tissues and stable isotopic values of δ13C and δ15N in the muscle of 
Antimora rostrata and Macrourus holotrachys from South Georgia. Values are mean ± standard deviation (minimum - maximum). ♀ Females; ♂ Males.

Species n Standard length 
(cm)

Weight (kg) Hg (μg g− 1 dw) δ13C (‰) δ15N (‰)

Total ♀ ♂ Muscle Brain Liver Gills

Antimora 
rostrata

23 20 3 51.0 ± 9.0 
(32.0–62.0)

1.4 ± 0.7 
(0.2–3.1)

0.7 ± 0.2 
(0.3–1.3)

0.6 ± 0.2 
(0.2–1.2)

0.1 ± 0.1 
(0.1–0.3)

0.2 ± 0.1 
(0.1–0.6)

− 22.6 ± 0.5 
(− 23.4 - -21.5)

10.5 ± 0.5 
(9.5–11.6)

Macrourus 
holotrachys

22 17 5 62.0 ± 11.0 
(40.0–82.0)

1.4 ± 0.7 
(0.4–2.8)

1.8 ± 1.8 
(0.7–9.2)

1.8 ± 2.0 
(0.3–9.5)

1.5 ± 3.9 
(0.2–18.7)

1.0 ± 1.4 
(0.1–6.6)

− 20.9 ± 0.7 
(− 22.4 - -19.4)

13.0 ± 0.7 
(12.0–11.4)
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analysed in our study were, on average, larger (51.0 ± 9.0 and 62.0 ±
11.0 cm, respectively) than those reported by Ñacari et al. (2023) (48.9 
± 7.2 and 56.5 ± 6.3 cm, respectively). Environmental factors such as 
depth distribution, prey availability, and carbon sources differ across 
locations, potentially influencing the δ13C signature of these species 
(Rodríguez-Malagón et al., 2021).

Regarding δ15N values, our results showed that A. rostrata occupies a 
lower trophic position than M. holotrachys. Considering a trophic 
enrichment factor of 3.4 ‰ per trophic position, our results suggest that 
A. rostrata is positioned ≈0.75 trophic position lower than M. holotrachys 
in the South Georgia food web (Minagawa and Wada, 1984; Post, 2002). 
This pattern in consistent with Queirós et al. (2025), where they iden
tified A. rostrata occupying the 4th trophic level and M. holotrachys the 
5th trophic level reinforcing the distinct δ15N values observed in our 
study. Studies of the diet of adult A. rostrata showed that they are 
opportunistic scavengers and mainly pelagic feeders, presenting a varied 
diet based on several taxonomic groups, although fish and squid make 
up the majority of their prey (Wenner and Musick, 1977; Mauchline and 
Gordon, 1986; Deng et al., 2011; Reid et al., 2013; Stowasser et al., 
2009). In contrast, studies of the diet of adult M. holotrachys showed that 
they are mainly demersal feeders, feeding near the bottom, presenting a 
wide variety of vertebrates and invertebrates such as benthic and ben
thopelagic crustaceans, e.g. Thymops birsteini, Notocrangon sp., and 
benthopelagic fish, e.g. Muraenolepis microps and Psilodraco breviceps 
(McLellan, 1977; Morley et al., 2004; Laptikhovsky, 2005). Aside from 
the different diet and feeding strategies, the differences found in δ15N 

values between the two species may also be attributed to the fact that 
benthic food webs are typically longer than pelagic food webs (Queirós 
et al., 2025). In longer food webs, energy assimilation losses are greater, 
requiring higher predators to consume more prey to get the same energy 
input. This not only reduces population stability but also increases the 
biomagnification of contaminants through the food web (Post, 2002b; 
Queirós et al., 2025).

According to FishBase (Froese and Pauly, 2025), the trophic posi
tionsof A. rostrata (δ15N: 3.6 ± 0.47) and M. holotrachys (δ15N: 3.7 ±
0.64), estimated from food items, are very similar. These values are 
consistent with our stable isotope results, which revealed close but 
distinct δ15N values. The similarity in trophic positions reported by 
FishBase also suggests that length-related differences, particularly in 
M. holotrachys, may play an important role in explaining the stronger 
length-Hg relationships observed in this species. Larger individuals may 
consume prey of higher trophic positions within the benthic food web, 
enhancing bioaccumulation patterns. In contrast, the more pelagic 
feeding behaviour of A. rostrata may result in a less pronounced rela
tionship between size and Hg concentration.

Our results suggests that for M. holotrachys, length may influence 
δ13C isotopic signature, possibly due to an ontogenetic shift in habitat 
use, where larger individuals may forage in different and/or deeper 
habitats or consume different prey. In contrast, the absence of a relation 
between length and δ13C values may suggest that A. rostrata does not 
undergo a similar ontogenetic shift in habitat as it grows. Nonetheless, 
we need to be cautious as an ontogenetic shift in habitat may occur 

Fig. 2. δ13C and δ15N values in the muscle of Antimora rostrata (n = 23) and Macrourus holotrachys (n = 22) from South Georgia. Mean ± standard deviation.

Fig. 3. Mercury concentrations (Mean ± 1 SD, μg g− 1 dw) in different tissues (Muscle, Brain, Liver and Gills) of Antimora rostrata and Macrourus holotrachys. Different 
lowercase (for Antimora rostrata) and uppercase (for Macrourus holotrachys) letters above bars indicate significant differences among tissues in each species (Friedman 
test with Nemenyi post hoc test, p < 0.05). * between bars indicate differences between the same tissue in both species (Mann-Whitney test, p < 0.0001).
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before the fish reach the 32 cm in length. The lack of a relationship 
between length and δ15N values in both species, suggests that these 
species may not change their trophic position throughout the studied life 
period. Similar to A. rostrata for δ13C values, these results should be 
carefully analysed as ontogenetic shifts in diet, and consequently in 
trophic position, may occur earlier in the life cycle. This is supported by 
previous diet studies in M. holotrachys that showed that smaller in
dividuals typically prey on smaller and different organisms, with dietary 
shifts life cycleas they grow and move to deeper habitats (Morley et al., 
2004; Laptikhovsky, 2005; Pinkerton et al., 2012, 2013; Moore et al., 
2022). Further studies are needed to fully understand the trophic ecol
ogy of A. rostrata in South Georgia.

4.2. Inter-tissue specific Hg accumulation in A. rostrata and 
M. holotrachys

The muscle was the tissue with the highest Hg concentrations in both 
species. Higher Hg concentrations in the muscle are linked to the affinity 
of Hg for thiols of the cysteine of proteins composing the muscle, leading 
to its preferential accumulation in this tissue in fish (Havelková et al., 
2008). The muscle as the main tissue accumulating Hg was also 
observed for other fish species worldwide such as bonnethead (Sphyrna 
tiburo) and silky shark (Carcharhinus falciformis) (O'Bryhim et al., 2017), 
bird beak dogfish (Deania calcea) and smooth lanternshark (Etmopterus 
pusillus) (Teixeira et al., 2020) in the Atlantic Ocean, and the Atlantic 
cod (Gadus morhua L.) (Amlund et al., 2007). From an ecological 
perspective, the higher Hg accumulation in the muscle plays a signifi
cant role in food webs, as it highlights the potential for biomagnification 
through trophic position. As muscle is a key tissue for energy storage and 
is normally the largest tissue by mass of the animal, it has a big impact 
on the Hg burden that is transferred along the food web (from prey to 

predator). This underscores the importance of understanding Hg dy
namics in tissues to assess the ecological risks posed by Hg exposure 
across food webs.

An unexpected result was the mercury concentrations in the brain, 
which were comparable to those in the muscle. The brain was the second 
most contaminated tissue in both species, which was surprising, as it 
typically considered one of the tissue with the lowest mercury accu
mulation. The higher Hg bioaccumulation in the brain may indicate that 
these species may experience significant neurological challenges, among 
other potential toxic effect of MeHg. These species could face impaired 
cognitive function, affecting their foraging capacities, predator avoid
ance, and overall survival (Weis and Candelmo, 2012). Additionally, Hg 
exposure may disrupt immunity, reproductive processes and potentially 
affecting population dynamics in the region, with long-term ecological 
consequences (Crump and Trudeau, 2009; Bera et al., 2022). Due to its 
critical role in organisms, marine organisms have evolved mechanisms 
to protect and prevent high concentrations of contaminants in the brain 
(Rouleau et al., 1999; Manceau et al., 2021). However, previous studies 
also found high concentrations of Hg in the brain of zebrafish (Danio 
rerio) raised in aquaria and in the golden mullet (Liza aurata) captured in 
Ria de Aveiro estuaries (Gonzalez et al., 2005; Mieiro et al., 2009). These 
studies found that MeHg is capable of crossing the blood-brain barrier by 
passive diffusion and by actively neutral amino acid transport systems 
due to its structural mimicry of methionine and the MeHg-cysteine 
complex (Gonzalez et al., 2005; Mieiro et al., 2009). It is possible that 
this mimicry process is present in our studied species, however, future 
studies will be necessary to understand the Hg bioaccumulation in the 
brain of A. rostrata and M. holotrachys.

Another possible explanation is based on a previous study that sug
gests that higher concentrations may still occur because of detoxification 
processes, particularly the sequestration of Hg as mercury‑selenium 
complexes (HgSe) or Hg-selenocysteine complexes (Manceau et al., 
2021).

Surprisingly, the liver, which is a tissue responsible for storage, 
redistribution, detoxification of Hg in vertebrates (Maršálek et al., 2007; 
Seco et al., 2020; Yamashita et al., 2005), presents the lowest Hg con
centrations in A. rostrata and the second lowest in M. holotrachys. Rather 
than indicating rapid excretion, this pattern may reflect effective 
detoxification mechanisms that convert MeHg into less toxic forms, such 
as HgSe which are then sequestered and retained in other tissues or 
excreted at a later stage.

Studies in other vertebrates, including birds and mammals, have 
shown that detoxification often results in long-term storage rather than 
elimination, particularly in the form of insoluble compounds like 
tiemannite (mercury selenide granules) (Kojadinovic et al., 2007; Lail
son-Brito et al., 2012). Although fewer studies exist for fish, emerging 
evidence suggests that similar processes may occur, with detoxification 
leading to internal sequestration rather than direct elimination (Siscar 
et al., 2014).

In M. holotrachys, the gills presented the lowest Hg concentrations 
among all studied tissues. The gills are usually responsible for the intake 
of some waterborne contaminants in fish (Marrone et al., 2021). While 
the gills are a primary site for the uptake of waterborne contaminants in 
fish (Marrone et al., 2021), their relatively low Hg content suggests that 
they do not serve as a major site of mercury accumulation. Instead, as 
observed in other species, most Hg is likely incorporated through dietary 
exposure and subsequently stored in internal tissues such as muscle and 
liver (Gonzalez et al., 2005; Hall et al., 1997).

Our results showed that A. rostrata presented lower Hg concentra
tions in all tissues compared to M. holotrachys. This difference was ex
pected and can be explained either by the lower trophic position or the 
more pelagic distribution of A. rostrata in relation to M. holotrachys. 
However, the absence of relationship between Hg concentrations and 
δ15N values suggests that biomagnification may not be the primary 
factor driving these differences, but the habitat use, as benthic food webs 
are generally enriched in Hg (Li et al., 2022).

Table 2 
Summary of statistical relationships between mercury (Hg) concentrations and 
biological variables (standard length and weight) in different tissues (muscle, 
brain, liver, gills) of Antimora rostrata and Macrourus holotrachys.

Species Tissue Biological 
variable

p- 
value

r2 Equation

Antimora 
rostrata

Muscle SL 0.253 0.062 Hg = 0.11840 ⋅ 
SL^0.466

Weight 0.311 0.049 Hg = 0.72805 ⋅ 
W^0.108

Brain SL 0.165 0.094 Hg = 0.03474 ⋅ 
SL^0.713

Weight 0.218 0.075 Hg = 0.55817 ⋅ 
W^0.165

Liver SL 0.093 0.128 Hg = 0.00443 ⋅ 
SL^0.915

Weight 0.15 0.096 Hg = 0.15652 ⋅ 
W^0.206

Gills SL 0.397 0.034 Hg = 0.04439 ⋅ 
SL^0.453

Weight 0.466 0.026 Hg = 0.25918 ⋅ 
W^0.101

Macrourus 
holotrachys

Muscle SL 0.029 0.216 Hg = 0.00288 ⋅ 
SL^1.522

Weight 0.041 0.193 Hg = 1.370 ⋅ 
W^0.467

Brain SL 0.105 0.132 Hg = 0.00156 ⋅ 
SL^1.638

Weight 0.155 0.103 Hg = 1.191 ⋅ 
W^0.466

Liver SL 0.014 0.265 Hg = 3.85e-06 ⋅ 
SL^2.943

Weight 0.03 0.214 Hg = 0.58664 ⋅ 
W^0.860

Gills SL 0.021 0.238 Hg = 4.19e-05 ⋅ 
SL^2.359

Weight 0.028 0.22 Hg = 0.59399 ⋅ 
W^0.737
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4.3. Hg bioaccumulation and inferences on Hg biomagnification

Surprisingly, no relationships were found between either length or 
weight and Hg concentrations in A. rostrata. This may be explained by its 
feeding behaviour, i.e. an opportunistic scavenger (Reid et al., 2013). 
Therefore, A. rostrata may not present an ontogenetic shift in the diet 
which could lead to the absence of visible bioaccumulation if Hg 
incorporation decreases while growth continues, due to a tissue dilution 
effect (Sánchez-Hernández et al., 2019). It may also be related to habitat 
use and detoxification mechanisms. In contrast, Hg concentrations were 
positively related to the length and weight in most tissues of 
M. holotrachys, with the exception of the brain, where no significant 
relationships were observed. The largest and heaviest individual 
exhibiting the highest Hg concentration. This positive relationship could 
be explained by changes to higher trophic-level prey as it grows, leading 
to increased Hg bioaccumulation, with this pattern being reinforced by 
its benthic habitat. The absence of length- or weight-related patterns in 
the brain may reflect physiological regulation mechanisms, such as 
detoxification or protection of neural tissues.

The absence of a significant relationship between Hg concentration 
and δ15N in both species could be explained by various ecological and 
physiological factors. In A. rostrata's case, its opportunistic scavenging 
behaviour and association with the pelagic food web, could result in 
highly variable Hg exposure. Since scavenged prey may originate from 
different trophic positions and habitats, Hg accumulation may be 
influenced more by prey availability than by trophic position. In 
M. holotrachys, despite its association with demersal food web, where Hg 
concentrations are usually higher, the lack of correlation with δ15N 
suggests that other factors, such as habitat use and physiological pro
cesses, i.e. Hg detoxification or excretion rates, may play a major role in 
determining Hg concentrations.

In terms of biomagnification, considering the Trophic Magnification 
Slope (TMS) equation proposed by Seco et al. (2021) for the pelagic food 
web in the Scotia Sea (Hg = 0.2782× δ15N − 3.0960), we expected an 
average Hg concentration of approximately 0.85 μg g− 1 dw for 
A. rostrata. Indeed, this value is similar to those measured here (0.79 ±
0.26 μg g− 1 dw), indicating that the biomagnification factor of this 
species fits in the pelagic food web of the Scotia Sea. In contrast, the 
expected Hg concentration for M. holotrachys would be of 1.72 μg g− 1 

dw, which is slightly lower than our results (1.89 ± 1.83 μg g− 1 dw) and 
roughly twice as high as the of A. rostrata, suggesting that the Hg bio
magnification factor of this species differs from those in the pelagic food 
web of this ecosystem. This was expected considering that this species is 
associated to the benthic food web (discussed above; Morley et al., 2004; 
Ñacari et al., 2022). However, we must be cautious as the standard 
deviation is relatively high and includes the expected value of Hg 
following this TMS (Seco et al., 2021). Further studies are needed to 
confirm this hypothesis.

5. Conclusion

In this study, we analysed stable isotopes of δ13C and δ15N in the 
muscle and Hg concentrations in 4 tissues (muscle, brain, liver and gills) 
of two Southern Ocean deep-sea fish species that, despite their impor
tant ecological role, remain poorly studied. Our results indicated that 
A. rostrata forage in the pelagic zone while M. holotrachys has a stronger 
association to the benthic habitat. Unexpectedly, high Hg concentra
tions were found in the brain in both species, challenging conventional 
assumptions about contamination patterns among tissues and raising the 
question of the neurotoxic effects and the detoxification processes 
involved to cope with potential damages due to MeHg. This suggests a 
potential vulnerability to Hg accumulation in this tissue in both species, 
possibly due to complex interactions with the blood-brain barrier and 
metabolic processes. Additionally, the contrasting Hg concentrations 
between tissues and species hint at differential dietary habits and 

possible detoxification mechanisms. However, it is worth highlighting 
that only adult individuals were analysed in this study. Future studies 
should also consider juvenile individuals to have a greater understand
ing of their patterns of accumulation along their life cycle. Overall, our 
study underscores the importance of further research into the ecological 
dynamics and contamination risks associated with these species.
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