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Abstract — Deployment of floating photovoltaics (FPVs) on water reservoirs is accelerating, and their
lifetimes are expected to extend far into the 21% century. One of their potential co-benefits is mitigation of
climate change-induced impacts on water quality. However, there has been little investigation of this
possibility. We used MyLake, a 1D (vertical) numerical model, to simulate water quality impacts in a UK
reservoir of different FPV coverages under four future climate scenarios and a present-day baseline case. We
tested hypotheses that increased FPV coverage would offset climate-induced reservoir warming,
stratification duration lengthening, phytoplankton biomass increases and taxonomic dominance changes.
FPV coverage's ability to offset climate warming varied between the four climate scenarios, and seasonally
within them. It was able to fully offset changes in stratification duration and to entirely prevent thermal
stratification in all four future scenarios. Climate-induced increases in phytoplankton biomass and
taxonomic dominance patterns were also entirely offset if sufficient FPV coverage was applied in all future
scenarios. According to these results, FPV coverage will be able to compensate partially or fully for thermal
and phytoplanktic changes in reservoirs under future climates. However, the amount of coverage required
varies seasonally and depends on future climate trajectories.
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1 Introduction

The present and future impacts of climate change on the
water quality and quantity of reservoirs is a major concern for
water supply companies and authorities. Observed and
potential impacts of climate warming on lentic freshwater
systems have attracted particular attention (e.g., Woolway
etal.,2020; Rose et al., 2023). These impacts are highly socio-
economically significant in reservoirs, given that they are
essential for providing drinking water and other ecosystem
services. Climate warming has been linked to increases in
mean water temperature (O'Reilly ef al., 2015) and the duration
of thermal stratification (Woolway and Merchant, 2019). These
effects propagate throughout reservoirs bringing about, for
instance, reduced oxygen concentrations (Jane et al., 2021),
increased phytoplankton biomass (Winder and Sommer, 2012)
and switches in taxonomic composition, which can favour
toxin-producing species (Paerl and Huisman, 2009).
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Atthe same time, there is rapid growth in the installation on
reservoirs of floating photovoltaic solar panels (FPVs) for
electricity generation (Nobre et al., 2024). They are being
deployed most commonly on raw water reservoirs, which store
water prior to treatment (Exley et al., 2021b). FPV installations
reduce land use conflicts, sparing land for agriculture, industry,
and conservation. They offer enhanced generation efficiencies
over roof-top and ground- mounted solar panels, because of the
cooling effect of the host water body (Oliveira-Pinto and
Stokkermans, 2020). In water scarce contexts, they offer the
co-benefit of evaporation reduction alongside electricity
generation (Jin et al., 2023). In some cases, they have been
deployed alongside hydroelectric generation installations, to
optimise the use of existing transmission infrastructure and
improve the power output profile (e.g., Silverio et al., 2018).

FPVs have an expected 20- to 30-year lifespan,
representing a long-term perturbation to the hosting water
body (Costa and Silva, 2021). Since their first commercial
deployment in 2007, knowledge of FPV-environment inter-
actions has been gradually expanding. However, existing
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predictions of FPV impacts are based only on present climate
conditions (e.g., Exley et al., 2021b). The effects of FPVs on
key water quality parameters under present conditions have
been found to generally counteract those of climate change,
offering the potential for FPV deployment to be used as a
climate change mitigation tool. For example, FPV installations
can reduce water temperatures (Liu et al., 2023), and shorten
stratification duration (Ilgen et al., 2023), with the magnitude
of the effect modulated by FPV coverage and deployment
location (Exley et al., 2021a). These changes, along with
impacts on the underwater light climate (Bax ef al., 2023),
have consequences for the biological functioning of the host
water body, reducing phytoplankton growth and altering
species composition; potential co-benefits that could improve
water quality. However, the nature and scale of these effects is
unknown under future climates. Different FPV coverage may
be required to achieve the effects found under present climates.
If FPVs can offset future climate impacts on reservoirs, they
could delay or obviate the need for the costs of alternative
interventions, such as new infrastructure for treating high
concentrations of toxic phytoplankton species.

Decisions regarding installations of FPV are currently
made in a context of widespread concern about the combined
impacts of climate warming and other anthropogenic stressors
on water quality and quantity in reservoirs (Benjamins et al.,
2024). It is therefore essential to understand energy-
environment interactions associated with FPV to optimise
their deployment, minimise detrimental effects and maximise
benefits under both present and future climates (Armstrong
et al., 2020). To address this need, we explored the combined
effects of climate warming and FPV installation upon four of
the likely effects of climate warming for reservoirs: increased
water temperature, longer duration of thermal stratification,
greater phytoplankton biomass, and changes in phytoplankton
taxonomic composition that favour toxin-producing species.
To achieve this, we used a numerical model to simulate the
effects of FPV deployments on a raw water reservoir under
plausible future climate scenarios. Furthermore, we explored
how these effects are likely to vary with the percentage
coverage of FPVon the water body surface and the severity and
timescale of the climate changes. Specifically, we tested the
hypotheses that increased FPV coverage under future climate
scenarios would:

1. offset reservoir warming;

2. reduce the duration of thermal stratification; and

3. limit the growth of phytoplankton and alter their
taxonomic composition.

We use insights gained from testing these hypotheses to
assess potential implications for reservoir management of
increased use of FPV deployment in the context of warming
climates through the 21% century.

2 Materials and methods

We extended the methodology of Exley et al. (2022). A
summary of the original methods and full details of the
additional methods used to simulate future climate impacts are
described below.

2.1 Site description

We modelled the effects of FPV coverage and climate
changes on the Queen Elizabeth II reservoir (QEIL, Fig. 1), a
raw water reservoir located in south-west London, UK (51° 23’
27" N, 0° 23’ 32" W). The QEII has a surface area of 1.28 km?,
a mean depth of 15.3 m, a maximum depth of 17.8 m, and a
volumetric capacity of 19.5 gigalitres (1.95 x 10" m?). It is
steep-sided and approximately flat bottomed. Water is fed into
the reservoir from the adjacent River Thames, pumped in
through three inlets in its bed and abstracted at a single outlet
tower at its north-eastern corner. Given the circulation patterns
observed in the reservoir (Ta, 2019), it can be apportioned into
two hydrographic zones: one relatively short residence time,
faster-flowing zone (70% of surface area), in which the water
moves relatively rapidly from the inlets to the outlet, and one
comparatively longer residence time, slower-flowing zone
(30% of surface area), which is largely circumvented by
the faster flowing water. A FPV installation was installed on
the slower-flowing zone of the reservoir in 2016, covering
approximately 4.5% of the total reservoir surface.

2.2 MyLake model description

To carry out the modelling, we used MyLake v2 (Markelov
etal.,2019), an expanded version of the well-established, open
source, one-dimensional (vertical) numerical lake model
MyLake (Saloranta and Andersen, 2007). MyLake v2 uses
a daily time step to simulate 1 m vertical distributions of water
temperature, phytoplankton, and dissolved and particulate
substances, as well as interactions at the sediment-water
interface.

Specifically, we used the version of MyLake v2 adapted by
Exley et al. (2022) to enable simulation of differently
functioning but connected ‘zones’ within a single water body,
and to enhance phytoplankton representation by discriminating
broad functional groups. This was tested against empirical data
by Exley et al. (2022) and found to perform well. Because the
focus of the study reported here is future forecasts, it cannot be
tested against empirical data specific to its outputs. Although
MyLake is a one (vertical) dimension model, to provide a basic
representation the hydrodynamics of the QEII reservoir, the
model was set up to comprise a shorter residence time, faster-
flowing zone and a longer residence time, slower-flowing
zone. Although, in the reservoir, these have a specific spatial
configuration defined by bathymetry and the location of the
inlets and outlet, in the model they were represented by 1D-
vertical domains — essentially two MyLake models running
side by side. These two models were linked via an eddy
diffusion matrix, which governed the amount of lateral mixing
between them, and an advection matrix, which specified the
flows between them. Both the diffusion and advection matrices
were set to exchange 2.5% of volume between the models
during each simulation time step. This is based on the one day
— of the order of 10° s — time step and the size of the smaller
(slower-flowing) zone of the order of 500 m, assuming a
diffusivity coefficient of the order of 102 m?s', typical of
lateral diffusion in slow flowing water (e.g., Schnoor, 1996)
and that advective and diffusive transport are of the same order
of magnitude in this setting.
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Fig. 1. Conceptual zones for the QEII reservoir during 2018 based on hydrologic behaviour. Satellite image from Google Earth.

2.3 Future climate scenarios

To drive the model, we used a subset of the meteorological
scenarios from the United Kingdom Climate Projections 2018
(UKCP18) daily global (60 km resolution) projections for the
Thames basin (UK Meteorological Office Hadley Centre,
2018). These are based on multiple variants of the HadCM3
climate model (Lowe et al, 2019). Two Representative
Concentration Pathways (RCPs) were used: RCP2.6 and
RCP8.5. RCP2.6 represents a future with significant reductions
to greenhouse gas emissions, where radiative forcing will
increase by 2.6 Wm 2 by 2100. RCP8.5 represents a scenario
with unabated, very high greenhouse gas emissions, leading to
an increase in radiative forcing of 8.5 Wm 2 by 2100. These
two scenarios envelope a range of plausible future climates
(Lowe et al., 2019).

We simulated four cases, defined by mid-century and late-
century conditions for each of the RCP2.6 and RCP8.5
scenarios: RCP2.62()4()_2069, RCP8.52040_2069, RCP2.62070_2099
and RCP8.55970 2099- Each case is simulated over one year,
using driving data derived from the mean of each of these 30-
year windows of UKCP18 projections, thereby removing inter-
annual variability from our analyses. To compare between
future and present conditions, we defined a fifth, baseline case
using the mean of the RCP2.6 projections for the 30-year
window 2003-2033.

The 30-year averaging process used to arrive at these
scenarios smoothed out variability at daily timescales. To add
such variability back in, meteorological data from 2018 were
used. To define the daily variability signature, raw observations
of global radiation, cloud cover, wind speed, air temperature and
relative humidity from the closest meteorological station
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Table 1. Parameterizations of phytoplankton functional groups used in the model (from Exley et al., 2022).

Parameter Range sampled (min., max. or fixed)
Diatoms Greens Cyanobacteria
PAR saturation level for growth (mol-quantam s~ Min 0.000025 0.0005 0.00075
Max 0.000045 0.00075 0.0009
Optical cross section of chlorophyll-a (m *mg ") Fixed 0.03 0.005 0.01
Loss rateat 20 °C (day ') Grazed  Un-grazed  Grazed  Un-grazed  Grazed — Un-grazed
Fixed 0.18 0.13 0.05 0.025 0.025 0.0125
Settling velocity (m day ) Fixed 0.3 0.05 0.005
Specific growth rateat 20 °C (day ') Min 0.7 1 1.1
Max 1.1 2 1.8
Half saturation growth P level (mgm>) Fixed 5 5 5
Half saturation growth N level (mgm™>) Grazed  Un-grazed  Grazed  Un-grazed  Grazed — Un-grazed
Fixed 80 80 80 80 80 0.1
Half saturation growth Si level (m gm™) Fixed 550 - -
If algae are N-Limited Grazed  Un-grazed  Grazed  Un-grazed  Grazed — Un-grazed
Fixed 1 1 1 1 1 1
If algae are Si-Limited Fixed 1 0 0
Scaling factor for inflow concentration of chlorophyll-a  Fixed 0.5 0.4 0.1

(dimensionless)

(London Heathrow, 10km away) for the whole of 2018 were
smoothed using a five-day moving average and the daily
difference between the moving average and the raw observation
calculated. These differences between the five-day average and
the daily values were added back into the 30-year averaged data
on the corresponding day of the year. For example, if the air
temperature on, say, the 20" March 2018 was 0.5 °C above the
average air temperature of the five days centred on that date (i.e.,
18™-22" March), then 0.5 °C was added to the air temperature
value in each of the four 30-year averaged data sets used in the
simulations. Daily air pressure and rainfall recorded at Heathrow
Airport (UK Meteorological Office, 2019) were kept the same
for all five modelled scenarios.

2.3.1 Inflow temperature and volume

A data-based transfer function (TF) model was used for
estimating inflow water temperature from air temperature and
global radiation under present and future climates. The model
is a discrete-time TF derived directly from the available data
(Environment Agency, 2018; UK Meteorological Office, 2019;
Findlay, 2022) using the Refined Instrumental Variable (RIV)
algorithm (Young, 2015) implemented within the CAPTAIN
Toolbox for Matlab™ (Taylor et al., 2007). The resulting
model structure has the multi-input single-output model

Tg, = 1.794T, | + 0.794Tx, , + 0.1609T,, ,
+0.0278R,, | — 0.1604T,,_, — 0.0278R,, , (1)

8i—1

where Ty is river temperature, 7, is air temperature, R, is
global radiation and the subscripts ¢, #-/, ¢-2 indicate the
current and antecedent time steps, respectively. Future inflow
volumes were predicted from projected river flows at
Kingston-upon-Thames (~8km downstream of Q EII)
(Prudhomme et al., 2013). The use of river flows as a proxy
for changes in water available for abstraction from the river
assumes no changes to management or water demand. Mean

daily river flow for each day of the year was computed for a
30-year window centred on 2018 (2003-2033), and the
difference compared to river flow in 2040-2069 and 2070-
2099. A moving average was applied to calculate the change
in daily river flow as a percentage of present-day flow. For the
mid-century and late-century cases, percentage changes in
reservoir inflow volume were assumed to equal the
percentage change in river flow, thus inflows that varied
daily were synthesized. In the baseline case, we assumed no
change to reservoir inflow volumes. Reservoir volume was
maintained constant for all cases.

2.3.2 Phytoplankton data

Six functional groups of phytoplankton were simulated to
reflect broadly the species composition observed in the QEII
reservoir at the reservoir outlet during 2018: these comprised
grazed and ungrazed groups of each of diatoms, green algae
and cyanobacteria. Grazing pressures (represented by loss
rate), size, growth rate, light requirement for growth, and
settling velocity varied among these groups. Here, we combine
the grazed and ungrazed groups, thus reporting results for three
groups: diatoms, green algae, and cyanobacteria. Full details
on parametrisation of each functional group are as in Exley
et al. (2022) and shown in Table 1.

2.3.3 Other model driving data

Two monitoring stations on the River Thames, located
5.5km upstream (Wey tributary) and 11.6km downstream
(Teddington Weir) of the QEII inlet, were used to estimate
inflow nutrient concentrations (Environment Agency, 2018).
Samples (approximately monthly) were linearly interpolated to
obtain mean daily values for 2018. The 2018 inflow nutrient
concentrations were used for all cases. The resources available
for phytoplankton growth did not change in our simulated
scenarios, allowing us to discern the effects of climate change
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Table 2. Percentage coverage of each of the two zones into which the model divided the reservoir, for each of the incremental total FPV
coverage model runs. All values are shown as a % of the total reservoir surface area.

Total FPV Faster flow zone covered  Faster flow zone uncovered  Slower flow zone covered  Slower flow zone uncovered
surface coverage

10 10 60 0 30
20 20 50 0 30
30 30 40 0 30
40 40 30 0 30
50 45 25 5 25
60 50 20 10 20
70 55 15 15 15
80 60 10 20 10
90 65 5 25 5
100 70 0 30 0

on reservoir properties without any confounding effects of
resource variability. Bathymetry for QEII was digitised from a
2004 1m-resolution survey provided by the reservoir operator.

2.4 FPV deployments under future climate
simulations

We varied FPV surface coverage between model runs in
10% increments from 0-100%. As the two zones into which
the model divides the reservoir are unequal in surface area,
initially, the array was placed entirely on the larger of the two
zones (the faster flow zone). As the percentage surface
coverage increased, when the faster flowing zone's remaining
exposed area equalled that of the slower flowing zone, the
array was deployed equally between the two zones. Table 2
provides a detailed breakdown of zone coverages for each
overall coverage.

We assumed that under the FPV coverage global radiation
was decreased by 94% and wind speed was lowered by 95%.
These assumptions are based on observations made at an FPV
installation near Lancaster, UK (Exley et al., 2022) and a land-
based solar park near Swindon, UK, (Armstrong et al., 2016).

2.5 Model calibration

MyLake had already been calibrated for use on the QEII
reservoir (Exley et al., 2022), using the Generalised Likelihood
Uncertainty Estimation (GLUE) procedure (Beven and Binley,
1992). We used formalised limits of acceptability to account
for the uncertainty associated with modelling environmental
systems, following Exley et al. (2022) and based on the
method and expert based estimates first described by Page
Page T, et al. (2017). We compared model output from multiple
simulations with observed data (total chlorophyll-a, surface
water temperature, stratification duration and phytoplankton
functional group proportions) to identify acceptable baseline
simulation results and parameter sets. Acceptable simulations
are defined by a fuzzy weighting function that returns a relative
confidence for each simulation depending on its position
within the formalised limits of acceptability. To limit bias
within the parameter sets, the parameter ranges comprised
physically reasonable values for each parameter and were

sampled 8,000 times using a Monte Carlo strategy. Seventy-
five parameter sets were within the limits of acceptability for
all simulations; the remaining 7,925 parameter sets were
rejected and not used in the subsequent analyses.

2.6 Model output analysis

To summarise the impact of varying FPV coverage under
different predicted future climates, we compared model output
from each of the four future cases with that from the baseline
case, for each of the coverage scenarios (Tab. 2). Our analysis
focused exclusively on the faster-flowing zone, as this contains
the reservoir outflow and therefore determines the quality of
water entering the treatment works. We analysed water
temperature at 1 m depth and the stratification duration. We
used two metrics to define the latter. These were maximum
stratification (the longest period of continuous stratification)
and cumulative stratification duration (the total number of
stratified days during the one-year simulation period).
Stratification was defined using a threshold density gradient
of 0.1kgm™ m™' between adjacent 1m layers. For phyto-
plankton composition, each functional group was represented
as a proportion of the total biomass (using chlorophyll-a as a
proxy) at 1 m depth.

The variability amongst the 75 model outcomes produced for
each climate scenario was captured used the median, 2.5™ and
97.5™ percentiles of the values obtained for each variable
(yielding the associated 95% confidence interval). We present
the maximum (7,.¢) and minimum (7,,,;,) water temperature,
maximum and cumulative stratification duration, and maximum
total chlorophyll-a concentration (Chl-a,,,,) for each season,
defined as: winter — December to February; spring — March
to May; summer — June to August; autumn — September to
November. Phytoplankton species composition is presented as a
time series for the simulated year. Given the volume of data,
some FPV coverage extents are omitted from the figures here.

3 Results

3.1 The effect of FPV coverage on water temperature

In all the future cases, T,,,x Was raised relative to the
baseline case in every season, with warming increasing
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Fig. 2. Seasonal maximum water temperatures at 1 m depth for each scenario. Whiskers represent simulation minima and maxima. The box
represents the 2.5™ & 97.5™ percentiles. 0% FPV coverage represents QEII reservoir simulated as a baseline case with no additional FPV

coverage.

between the mid-century and late-century cases for each RCP
(Fig. 2). Increasing FPV percentage coverage progressively
cooled Ti.x in all seasons. FPV coverage was able to fully
offset changes to Tpax in spring and summer for all four future
cases, although the amount of coverage required to do this
increased from RCP2.6 to RCP8.5, and from mid-century to
late-century. In spring, the increases of i« in the RCP2.6
cases was offset by FPV coverages of 10% in mid-century and
20% in late century. For the RCP8.5 cases, these “offset
coverages” were 30% and 60%, respectively. In summer,
greater offset coverages were required. For the two RCP2.6
cases, they were 20% (mid-century) and 30% (late century),

and for the RCP8.5 cases, they were 40% and 90%,
respectively. In autumn, changes to T,,.x were offset by
FPV coverages of 30% (mid-century) and 40% (late-century)
for the RCP2.6 cases and 70% for the RCP8.5 mid-century
case. In the RCP8.5 late-century case, even 100% FPV
coverage was unable to fully offset the increase in 7},,x. During
winter, no extent of FPV coverage was able to offset fully the
changes to T,.x in any of the future cases.

As for Tph.x, and in line with our hypotheses, Tiin
increased in the future cases compared to the present day, and
from mid-century to late-century (Fig. 3). Increasing FPV
coverage cooled Ty, in all cases. It was less effective at
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coverage.

offsetting climate warming effects on 7,,;, than T,,.. Even
100% FPV coverage was unable to offset T;,;, increases in
winter, spring, or autumn in both RCP8.5 cases, or in autumn
for both RCP2.6 cases. FPV coverages of 70% and 90% were
required to offset winter Tp,;, warming in the RCP2.6 mid-
century and late-century cases, respectively. In spring, FPV
coverages of 50% and 70% offset climate warming of iy,
for the RCP2.6 mid-century and late-century cases,
respectively. Summer Ty, increases were offset by 20%
FPV coverage in both RCP2.6 cases and by 40% and 70%
FPV coverage for the RCP8.5 mid-century and late-century
cases, respectively.

3.2 The effect of FPV coverage on stratification
duration

Compared to the simulated effects upon water temperature,
there was relatively high among-simulation variability in
stratification duration for each climate change case, compared
to the differences among cases. With no FPV coverage,
average maximum stratification duration remained the same as
in the baseline case for the two mid-century cases, reduced by
four days for the RCP2.6 late-century case, and increased by
two days for the RCP8.5 late-century case (Fig. 4). FPV
coverage of 10% reduced maximum stratification duration by
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eleven days for the baseline case and caused smaller reductions
in the future cases: six and five days by mid-century for the
RCP2.6 and RCPS8.5 cases, respectively, and five and four days
for the corresponding late-century cases.

Cumulative stratification duration increased by three days
for the RCP2.6 mid-century case, eight days for the RCP8.5
mid-century case and 21 days for the RCP8.5 late-century case
but reduced by one day for RCP2.6 late-century case compared
to the baseline case. The increase in cumulative stratification
from climate change was offset by 10% FPV coverage for the
mid-century cases and 20% coverage for the RCP8.5 late
century case. The reservoir experienced no stratification when
FPV coverage exceeded 40% for both RCP2.6 cases and the
RCP8.5 mid-century case. For the RCP8.5 late-century case, a
60% or greater FPV coverage prevented any thermal
stratification.

3.3 The effect of FPV coverage on phytoplankton
biomass and species composition

Withno FPV cover, Chl-a,,,, increased in all the future cases
in comparison to the baseline case (Fig. 5). The largest increases
occurred in the summer under the late-century RCP8.5 case
(>25pgL™"). Increases to spring, summer and autumn Chl-
amax compared to the baseline case were offset at 10% FPV
coverage for both RCP2.6 cases and the RCP8.5 mid-century
case. A greater FPV coverage of 20% was required to offset
increases in spring, summer and autumn Chl-a,,,, forthe RCP8.5

late-century case. FPV coverage above these thresholds led to
substantial reductions in Chl-a,,,, for all future climate cases
compared to the baseline case with 0% FPV coverage.

Whilst simulated Chl-a,,,x concentrations declined rapidly
with increasing coverage (Fig. 5), the relative proportions of
phytoplankton functional groups varied (Fig. 6). In the
baseline case without FPV coverage, diatoms are the most
dominant functional group throughout the year, except for
August to September, when green algae and cyanobacteria
concentrations peak and the former exceeds the diatom
concentration briefly. In the baseline climate scenarios in
general, FPV coverage reduces the peaks in green algae and
cyanobacteria and enhances the dominance of diatoms. The
exception is the 100% coverage case, in which green algae
concentration is higher than in the baseline case throughout the
year and matches that of the diatoms in late summer and early
autumn.

Under the future climate cases, the 0% FPV coverage results
show increased peaking of the green algae and cyanobacteria and
enhanced declines in diatoms in the later summer and early
autumn. This results in green algae becoming the dominant
functional group at this time in all cases, with cyanobacteria also
exceeding diatoms in both RCP8.5 cases. As FPV coverage
increases, however, this effect is reduced, and the results for
all future climate cases move closer to the baseline case results.
For all coverages of 30% and above, the results of the baseline
case and all future climate cases are essentially indistinguishable.
Note also that, given the reductions in total chlorophyll-a

Page 8 of 14



G. Exley et al.: Knowl. Manag

. Aquat. Ecosyst. 2025, 426, 26

Season: Spring

Season: Winter

12 T T T T 15 : :
1
L[ H
—— - T i —_
- 115 B 11 B 7 -
- I -
o g I o = H
a =1
S~ I r 3 g S 10 L 4
P ?
= 11r . . 4 = )
2 r [ g 2
Q. - Q.
o o x 1
2 - |8
= = .
G 105+ 1 © .
: I L | -
£ £ 1
x - - > -
© i © .
= 1r H S H 1 = E] " HH
1 L gofp®
0.95 L | L | L 0 L | | L - T T==
0% 10 % 30 % 50 % 100 % 0% 10 % 30 % 50 % 100 %
FPV coverage (%) FPV coverage (%)
Season: Summer Season: Autumn
60 . I : —T ‘ ; ; .
30+ 1
~ 90T 1 ~
Fl_l | FI_I 25 [ 7
()] ()] H
= =
f— 40 L l 4 f—
Y Foor 1 ]
=S =S
ey T .C
S 30| [ 18 I
s g5 () -
_C T L
[&] [&)
= - £
20 | ‘ .
E U i é 10r * T i |
x > -
© - ©
=10 ’ H = H H
| o [ a g ‘
g:leg B-t gnom8
0 1 L 1 1 - 0 1 1 L 1 - e e -
0% 10 % 30 % 50 % 100 % 0% 10 % 30 % 50 % 100 %
FPV coverage (%) FPV coverage (%)
Case

[N Baseline

[ 1RCP2.6 2040-2069 [ 1RCP8.5 2040-2069

I RCP2.6 2070-2099 I RCP8.5 2070-2099
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with increasing FPV cover (Fig. 5), these functional group
percentages are of a lower overall concentration.

4 Discussion

The results presented show the potential for FPV to offset
some future climate change impacts in reservoirs, although the
extent to which that could be achieved varies with season,
climate scenarios and time horizons, percentage cover and
waterbody properties.

4.1 The ability of FPV coverage to offset water
temperature warming

Mitigation of the impacts of ongoing long-term climate
change-induced warming of reservoirs and more frequent
heatwaves are an important potential co-benefit of FPV
deployment. Changes in reservoir heat budgets are predicted to
alter the structure and functioning of freshwater ecosystems,
which will, in turn, undermine the provision of key services
and benefits to people including clean water provision,
fisheries, tourism, and recreation (Saulnier-Talbot and Lavoie,
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2018). Long-term reservoir warming may lead to phenological
change (Thackeray ef al., 2016) and food-web de-synchroni-
sation (Thackeray ef al., 2013), while periods of extreme heat
could lead to fish die-offs when temperatures exceed species'
thermal tolerances (Miranda et al., 2020). Such events can
degrade water quality, affect reservoir operations, and raise
public concerns about decomposition odours (Godinho et al.,
2019). Climate warming could also accelerate organism
metabolic rates, with far-reaching ecological implications.
These include potential effects on greenhouse gas emissions;
accelerated reservoir metabolism can increase methane and

carbon dioxide emissions, contributing to further climate
warming (Kraemer ef al., 2017).

According to our results, increasing FPV deployment
decreases the maximum water temperature in all the scenarios
considered, in agreement with in situ measurements reported
by, for example, Ilgen et al. (2023). This raises the question of
whether it may offer an effective means to mitigate against
climate-induced warming of reservoirs. In terms of our first
hypothesis, FPV coverage was able to fully offset increases to
maximum seasonal temperatures in the spring and summer in
our model but was only able to do so in autumn for the lower
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emissions RCPs and was only able to partially offset climatic
warming in winter. FPV was less effective at offsetting
increases to minimum seasonal temperatures, especially
during winter, spring, and autumn. However, it still provided
a dampening effect, limiting water temperature increase under
climate change.

In seasons where FPV coverage was unable to fully offset
the QEII reservoir's future warming, a likely cause is the
relative temperature of the inflow and outflow. In the cooler
months of the year, inflows to reservoirs tend to be warmer
than their outflows, leading to net heating (Livingstone and
Imboden, 1989) that cannot be counteracted by the seasonally-
diminished shading and sheltering effects of FPVs. Given the
short residence time of the reservoir, this heat flux is likely to
be an important element of the reservoir's heat budget
(Fenocchi et al., 2017). However, these inferences about future
scenarios from the perspective of physical science need to be
considered together with potential changes in reservoir
management and water demand to gain a better predictive
capability regarding water temperature.

Reductions in future minimum water temperatures caused
by FPV coverage in winter (Fig. 3) may be considered
problematic by reservoir operators who are responsible for
public water supplies. Reduced water temperatures (to below
5°C), as seen with increasing FPV coverage in the baseline
case, could lead to increased risk of the water distribution
network suffering from pipe contraction, increasing the
incidence of bursts (Jesson ef al, 2010) and consequent
problems for water supply and potentially damaging surround-
ing infrastructure (Mora-Rodriguez et al., 2015).

4.2 The ability of FPV coverage to offset stratification
duration increases

Our simulations supported our second hypothesis that FPV
coverage can reduce stratification duration. Again, this is in
agreement with the in situ measurements reported by Ilgen
et al. (2023). Thermal stratification is one of a reservoir's most
important physical characteristics, and prolonged stratified
periods can degrade water quality by changing biological and
chemical processes (Woolway et al., 2021). Periods of thermal
stratification can facilitate oxygen depletion in bottom waters
(where oxygen is used for biological and chemical processes)
by preventing oxygen replenishment from the surface (Boehrer
and Schultze, 2008). Oxygen depletion can have wide-ranging
impacts on reservoir function, often acting as a catalyst for
water quality problems. For example, hypoxia could lead to
fish die-off events in productive reservoirs, degrading water
quality and disrupting food webs (Till ez al., 2019). Further,
deoxygenation of bottom waters due to prolonged stratification
duration may facilitate the internal loading of phosphorus from
bed sediments, fuelling phytoplankton blooms that reduce
water quality and reservoir amenity (North er al., 2014).
Stratification-induced anoxia may also increase methane
production from reservoirs (Vachon et al., 2019). However,
FPV coverage may limit surface exchanges of dissolved
oxygen, given reduced wind shear at the air-water interface
(Andini et al., 2021). Therefore, reservoir oxygen levels could
still be lower than in the baseline case, particularly at greater
FPV coverage, even with reduced stratification duration

(Chateau et al., 2019). Destratification strategies currently
used in the water industry include pumped water circulation or
introducing air curtains and add to annual reservoir manage-
ment costs. Electrical power is required for this purpose, so the
reduction in stratification, combined with the potential use of
renewable energy from the FPV may be attractive. This is an
issue that requires further exploration.

Under future climates there was an increase in maximum
stratification duration (for the RCP8.5 mid-century case) and
increased cumulative stratification duration (for the RCP2.6
mid-century and both RCP8.5 cases), suggesting a potential
threat to water quality. However, only modest FPV coverage
was required to achieve substantial reductions in stratification
duration. For example, in the RCP8.5 late-century case, an
FPV coverage of 30% reduced the median cumulative
stratification duration by 88%. Such changes could have
significant benefits for water body processes, properties, and
ultimately ecosystem service delivery.

Whilst FPV coverage successfully reduced stratification
duration, offsetting the effects of future climates, stratification
events in QEII were often short regardless. The increases to
cumulative stratification duration in QEII under future
climate conditions demonstrate a discontinuous polymictic
mixing regime, characterised by short irregular stratified
periods that are disrupted by frequent mixing events. Even
under the higher climate warming scenario (RCP8.5 late-
century case), the maximum stratified period lasted for a
median of 16 days, a period brief enough for complete anoxia
to be unlikely, although, partial deoxygenation may occur in
sufficiently productive reservoirs (Jane et al, 2021).
However, in years with low wind speeds, low inflow or
higher air temperatures, the mixing regime could shift to
monomictic, characterised by a single period of prolonged
stratification, increasing the likelihood of detrimental
deoxygenation events. In other water bodies that exhibit
prolonged stratification, the ability of FPV coverage to limit
increases to stratification duration under future climates may
improve reservoir water quality.

4.3 The ability of FPV coverage to limit the growth of
phytoplankton and alter their taxonomic composition

Climate change-induced reservoir warming is likely to lead
to an increased prevalence of cyanobacteria and more frequent
blooms (Paerl and Huisman, 2009). Cyanobacterial blooms
can cause oxygen depletion, increase turbidity and release
toxins. Different water treatment processes may be required to
mitigate these impacts, increasing water treatment costs
(Watson et al., 2016). Cyanobacterial blooms can also affect
recreational ecosystem services, as they pose a health risk to
humans, livestock, and pets.

In support of our third hypothesis, our simulations suggest
that FPV coverage could limit the growth of phytoplankton and
prevent dominance of cyanobacteria under future climates
(Figs. 5 and 6). Increases in Chl-a,,,, concentrations under
predicted future climates were offset with low FPV coverage
(<20%) in all seasons. For example, in the late-century
RCPS8.5 case, summer Chl-a,,,, concentrations were simulated
to increase by 128% in the QEII reservoir. However, 10% FPV
coverage could limit this increase to just 22%, while a 30%
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FPV coverage reduced summer Chl-a,,.x concentrations by
42% compared to the baseline case with no FPV coverage.
However, future phytoplankton biomass and species compo-
sition will also be determined by inflow nutrient concentrations
under future climates, which were not modified in this study.
Whilst FPV deployment may allow management of
cyanobacterial growth, it could also trigger community
turnover in favour of other taxa, such as diatoms. Filamentous
diatoms and some colonial green algae can disrupt water
treatment processes by blocking filters (Henderson et al.,
2008). Our model predicts that FPV coverage would reduce
peaks in cyanobacteria and green algae between late summer
and early autumn, allowing diatoms to proliferate. However,
whilst FPV coverage of >10% increased the dominance of
diatoms, the change was compensated by reductions in total
chlorophyll-a concentration caused by FPV coverage.

4.4 The effectiveness of FPV as a tool for offsetting
climate change impacts on reservoirs

FPV deployment presents dual benefits of providing low-
carbon electricity generation and potentially acting as a
management tool for offsetting changes to water temperature,
stratification duration, and phytoplankton growth under future
climates. The FPV coverage required to achieve this offsetting
varies by season. Our model predicts that mid-century summer
maximum temperature changes would be offset with coverage
of 20% (RCP2.6) or 40% (RCP8.5). The late-century cases
have considerable variation in the FPV coverage required to
offset changes in summer maximum temperature, given the
large difference in emissions, with 30% (RCP2.6) and 90%
(RCP8.5) required. The FPV coverage required to offset
changes in summer Chl-a,,,x and cumulative stratification
duration were considerably lower than for summer maximum
temperature. Changes in summer Chl-a,,,, and cumulative
stratification duration were offset for both mid-century cases
and for the late-century RCP2.6 case with 10% FPV coverage,
with 20% FPV coverage sufficient to offset changes caused by
the late-century RCP8.5 case.

However, our results should be interpreted with a degree of
caution. Firstly, there are various limitations to the model
itself, and therefore to the reliability of its predictions.
Specifically, reduction of short wave solar radiation and wind
energy are the only influences of FPV coverage that have been
included in the model. For example, the impact on long wave
radiation (in both directions), evaporation, and the impact of
the arrays' wind and water wakes (which might be expected to
have an influence on mixing and stratification beyond the
physical footprint of the FPV) have been omitted. Further
research is required to address the impact of these omissions.
FPV coverage is not the only design feature of importance
when making deployment decisions. Siting location on the host
water body, for instance, can strongly mediate water body
responses (Exley ef al., 2022) and needs to consider aspects of
reservoirs including surface water velocities, local water depth
and the shading effects of fringing forestry or topography
(Herlambang et al., 2024). Moreover, wider issues of techno-
economic viability (Alhassan ef al., 2023) and social

acceptability and stakeholder collaboration (Benjamins
et al., 2024) will guide FPV deployment roll out. We also
acknowledge that our simulations focus exclusively on the
QEII reservoir — and simplify and abstract its nature. It is
likely that the potential ability of FPV coverage to offset
climate change impacts will vary across climate zones. Finally,
our simulations suggest that a very high FPV coverage would
be required to fully-mitigate projected water temperature
warming under the late-century high emissions (RCP8.5) case.
However, such high FPV coverages may be incompatible with
other water body uses, such as water sports, fishing or other
recreational activities (Exley et al., 2021b). Further, high FPV
coverage may have other impacts on the hosting water body
not simulated in this study. For example, reduced sunlight
under an FPV array limits the UV degradation of dissolved
organic carbon (Armstrong et al, 2020) and pathogens
(Mathijssen et al., 2020), an important form of natural water
treatment. Much further research is required to understand
potential unintended ecological impacts of FPV deployments
and deliver operational guidance that can be followed with
confidence.

4.5 Conclusion

The deployment of FPV on reservoirs is accelerating, and
this growth is forecast to continue at a global scale as the
energy transition continues. FPV deployment represents a
long-term perturbation to a water body, so understanding its
potential impacts under both present and future climates is vital
to minimising unintended consequences. This study shows that
reservoir managers can use FPV coverage to offset partially or
fully, or even over-compensate for changes in reservoir water
temperature, stratification duration, phytoplankton biomass
and species composition under future climates. In this study,
we have identified considerable differences in the FPV
coverage required to achieve these offsets, depending on
season, future emissions levels, and desired management
goals. Higher FPV coverages are needed to offset water
temperature changes in cases with higher emissions. However,
lower FPV coverage were sufficient at offsetting changes to
phytoplankton biomass at all emissions concentrations. FPV
could be used as an effective tool for managing climate change
impacts on reservoirs in addition to their primary role of
providing electrical energy, but the specifics of each
deployment must be considered to ensure suitability and
preservation of water body ecosystem service provision.
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