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Rhizosolenia mat diatoms associate with nitrogen-fixing
microbes
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Abstract

Some Rhizosolenia diatoms living in oligotrophic marine ecosystems are known to form large, conspicuous mats and are thought to
be sources of new nitrogen to surface waters via vertical migration to the nitracline where subsurface nitrate is accessed for growth.
These vertically migrating Rhizosolenia mats are chronically under sampled, and both the diatom species comprising the mats and the
associated microbiome have not been characterized using modern molecular techniques. Here we present the first DNA-based analysis
of Rhizosolenia mats collected in the North Pacific Subtropical Gyre. Using sequencing of 185 rRNA and nifH genes (a proxy for N, fixation
capacity), we report on the molecular diversity of mat-forming Rhizosolenia species, which include two newly sequenced clades, and
an assemblage of associated Nj-fixing microorganisms that is distinct from the non-mat associated water column assemblage. Our
findings advance knowledge of oligotrophic diatom diversity and challenge prevailing views of their nitrogen sources, suggesting these
mats may obtain nitrogen through association-based Ny, fixation. Further work is needed to understand the nature of these associations,
and whether Rhizosolenia mat communities are a significant unrecognized source of N, -fixation-derived new nitrogen to the oligotrophic

surface waters.
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Introduction

Rhizosolenia is a cosmopolitan diatom genus, observed across
broad latitudinal gradients from tropical to subpolar waters,
including inland seas [1]. In the subtropical oligotrophic oceans,
some Rhizosolenia sp. are known to have intracellular heterocyst-
forming, filamentous, N»-fixing cyanobacterial symbionts (Riche-
lia intracellularis), while other Rhizosolenia species are known to
form large aggregates (or “mats”) visible to the naked eye and
comprised of multiple morphologically distinct Rhizosolenia sp.
[2-4] and a microbiome that includes bacteria and ciliates [5].
Rhizosolenia mats contribute significantly to primary productivity
and carbon export fluxes [6-9] and are thought to be sustained
by nitrate assimilation at the nitracline accessed through vertical
migration [10]. However, reports of N, fixation in non-Richelia-
bearing Rhizosolenia and of intracellular bacteria found within
the diatoms suggest a symbiotic interaction between mat-
forming species and N,-fixing microbes [3]. Subsequent efforts
to measure N, fixation using acetylene reduction assays have
not substantiated these findings [4], though short incubation
periods (30-45 min) may have missed the active N, fixation
period or signals may have been undetectable over background

ethylene. Thus, the relative importance of nitrate assimilation vs.
diazotrophy in supplying Rhizosolenia mats with nitrogen and the
impact of mat diazotrophy on nitrogen biogeochemistry in the
oligotrophic oceans remains unresolved.

In June 2022, we encountered extensive fields of large
Rhizosolenia mats (ca. 10s of cm in length) in the North Pacific
Subtropical Gyre (NPSG). These mats remained visible to the
naked eye throughout a 48 h station occupation situated in a
frontal region between two eddies (Fig. S1). We gently collected
the fragile mats with a bucket (Fig. 1A), and light microscopy
revealed that they were a matrix of morphologically distinct
Rhizosolenia species including large (>50 um) and small (< 10 pum)
diameter chains. These morphotypes were consistent with gross
morphological descriptions of Rhizosolenia castracanei, R. imbricata
var. shrubsolei, R. formosa, R. debyana, and R. fallax species reported
in previously described multi-species mats (Fig. 1B and C) (3, 4].
None of the diatoms were observed to host the heterocyst-forming
cyanobacterial symbiont Richelia, and quantitative PCR (qPCR)
confirmed that Rhizosolenia-associated Richelia (Het-1) were rare
in surface water at this station (6 x 102 nifH copies L~1). Although
detailed characterization of diagnostic frustule features was
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Figure 1. NPSG diatom mats contain diverse Rhizosolenia sp. and distinct diazotroph assemblages. (A) Rhizosolenia mats were bucket-sampled from the
deck of the R/V kilo Moana (KM2206) at 27° 13.3" N, 178° 11.2" E on June 19, 2022. (B) Mat samples in a jar (scale bar, 1 cm). (C) Light micrographs of
different diatom mat species (scale bars, 50 um, 100 um). (D) Full-length 18S rRNA gene neighbor-joining consensus phylogenetic tree of NPSG mat
sequences with reference Rhizosolenia sp. sequences from Medlin et al. [22] retrieved from the NCBI nucleotide database. All branches or collapsed
clusters with color designate sequences retrieved from Rhizosolenia mats in this study. Branch labels show consensus support (%). (E) Relative
abundances of diazotroph taxa based on nifH amplicon high throughput sequencing in mat, marine snow catcher and water column samples. Marine
snow catcher deployments (10 m) captured three size fractions—Neutrally buoyant (or suspended), slow sinking, and fast sinking particles. Partial nifH
fragments were amplified, sequenced and analyzed as described previously [23, 24] and in supplemental materials. MSC—Marine snow catcher;
Susp—Suspended particles; SS—Slow sinking particles; FS—Fast sinking particles.

not performed, precluding definitive morphology-based species
identification, 18S rRNA gene analyses [11] indicated the presence
of at least five distinct Rhizosolenia species or strains belonging to
three major clades (Fig. 1D; Supplemental Material). Only one
clade (NPSG Mat Clade II) and one additional sequence (NPSG
Mat Seq C) showed sufficient similarity (>98%) to be reasonably
assigned to R. bergonii, a species not typically associated with mat
formation [12]. A single sequence (NPSG Mat Seq B) was identified
as the mat-former R. formosa, and no sequences matched R.
imbricata var. shrubsolei reference sequences. Two other major
clades of NPSG mat-forming diatom sequences (Mat Clade I and
Mat Clade III) could not be assigned to the species level due to
limited reference sequence information for this genus. These
sequences represent the first report of the molecular identities
of confirmed mat-forming, non-Richelia-bearing, oligotrophic

Rhizosolenid diatoms. Resolving the taxonomy of this group is
particularly important because environmental sequence datasets
(e.g. Ocean Barcode Atlas: [13]; CalCOFI: [14]; Northwest Atlantic:
[15]) often classify Rhizosolenia only at the genus level, which is
insufficient to constrain diatom mat biogeography underscoring
the need to improve reference databases.

Diatom mats were associated with a diazotroph assemblage
distinct from those in marine snow and ambient water (Fig. 1E).
The diazotroph assemblage associated with Rhizosolenia mats was
investigated using nifH amplicon sequencing from hand-picked
mat samples and compared to particle and water column samples
collected from the same site using a marine snow catcher (MSC)
and Niskin-Conductivity, Temperature, and Depth (CTD) rosette,
respectively (See Supplemental Material for methodological
details). A non-cyanobacterial diazotroph (NCD) affiliated with
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a putative beta-proteobacterium (nifH cluster 1P) was specifically
associated with the Rhizosolenia mats and not found in MSC
or water column samples. Additionally, Trichodesmium thiebautii
had high relative abundance within the mats, despite not often
being observed in microscopic characterizations of the mats.
Notably, the dominant mat-associated Trichodesmium sequences
were distinct from MSC-associated Trichodesmium, another
line of evidence supporting strain-specific mat associations
(Fig. 1E). Collectively, these findings show that Rhizosolenia mats
contain a distinct and varied community of both cyanobacterial
diazotrophs (non-Richelia) and NCDs that does not simply reflect
the diazotroph populations present in the MSC or water column
samples, as would be expected if mats simply entrained the
microbial populations present. Alternatively, mat assemblages
may contain rare diazotroph taxa if the mat structure selects
against the dominant diazotrophs in the water column or MSC
samples. More work is needed to understand the variability
of Rhizosolenia mat N,-fixing microbiomes, whether some
mat-forming species host endosymbiotic NCDs as previously
suggested [3].

Oligotrophic Rhizosolenia mat diatoms are thought to migrate
to the nitracline to access subsurface nitrate to support their
nitrogen demands [7]. However, uncertainty persists over whether
some mat-forming species obtain nitrogen from diazotrophs.
Reports of N, fixation potential in Rhizosolenia mats have varied,
perhaps since the specific Rhizosolenia species involved were
not clearly identified, highlighting the importance of voucher
specimens and a more precisely resolved Rhizosolenia phylogeny
moving forward. However, our data provides evidence that mat-
forming Rhizosolenia species, and possibly the associated mat
microbiome, may obtain at least some of their nitrogen through
a distinct assemblage of associated cyanobacterial diazotrophs
and/or NCDs. If Rhizosolenia mats acquire nitrogen through N,
fixation, it represents a potentially significant and currently
overlooked source of new nitrogen to the oligotrophic ocean.
Current estimates indicate that N, fixation in the oligotrophic
waters of the North Pacific fuels ~50% of new production [16,
17]. Likewise, previously described associations between specific
diatom hosts and heterocyst-forming cyanobacteria, including
Richelia intracellularis associated with Rhizosolenia, and Richelia
euintracellularis associated with Hemiaulus [18], are believed to
support a significant portion of carbon export [16, 19]. Outside
the predictable summertime export events, yearly N, fixation
is generally associated with smaller unicellular cyanobacterial
diazotrophs (<10 wm; [20]). The most common approach for
measuring N, fixation uses small volume (~4 L) N, tracer
incubations of whole water, typically collected with Niskin bottles
on a CTD rosette, and likely underestimates contributions from
large and heterogeneously distributed diazotrophs (>20 um;
[21]). Thus, the magnitude of N, fixed by heterogeneous and
delicate Rhizosolenia mat communities likely remains uncaptured
in current estimates, yet our work suggests N, fixation within
Rhizosolenia mats may add to diazotrophic support of carbon
export. Determining if Rhizosolenia mats are an important and
overlooked niche for diazotrophs and rely, even in part, on N,
fixation to supply their nitrogen demand has broad implications
for prior estimates of their contribution to primary productivity
and carbon export flux in oligotrophic ecosystems. Further work
is necessary to clarify the nature of these associations using
modern molecular techniques and directly measure Rhizosolenia
mat associated N, fixation. It is clearly time to revisit the old
paradigm.
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