
Attributing a deadly landslide disaster in Southeastern Brazil to 
human-induced climate change

Maria Lucia Ferreira Barbosa a,b , Rafaela Quintella Veiga c,d, Renata Pacheco Quevedo e,  
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A B S T R A C T

Petrópolis was hit by a devastating disaster in February 2022, when it rained 252.8 mm within 3 h, leading to 
200 lost lives and hundreds of people being displaced. Here, we aimed to attribute the extreme rainfall event that 
led to several landslides in Petrópolis, assess how Land Use and Land Cover changes (LUCC) from 1985 to 2021 
contributed to it, and quantify their socioeconomic impacts. For this, we compared natural-only forcing (NAT) 
and natural and anthropogenic forcing combined (ALL) scenarios of the HadGEM3 ensemble models with 
observation data. We computed the trends in LUCC and quantified the landslide’s socioeconomic impacts from 
official datasets. Human-induced climate change made this extreme event 45 % and 71 % more likely in short 
and long-term rainfall, respectively. Recurrence period dropped from 2.36 years (NAT) to 1.63 years (ALL) in the 
short-term and from 5.66 years (NAT) to 3.31 years (ALL) in the long-term. Landscape trends show an increase in 
forest formations, but unprotected hilltops that collapsed presented more than 40 % of their area as farming. The 
total economic loss was more than USD 22 million, with 1 078 people directly affected. The study’s findings are 
valuable in understanding how changes in extreme weather events and land use are affecting our society. We 
highlight the need for adaptation measures and for more research addressing the attribution of extreme events, 
especially those associated with disastrous landslides.

1. Introduction

The Southeast region of Brazil has been historically impacted by 
heavy rainfall due to the influence of several weather systems, such as 

the Cold Front (CF) and the South Atlantic Convergence Zone (SACZ) 
(Lima et al., 2010). In Rio de Janeiro state, the combination of the 
proximity to the coast and rugged terrain generates a high precipitation 
spatial variability with several areas being impacted by extreme rainfall 
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events, particularly over the Serrana region (Rio de Janeiro mountain 
area), the Sul Fluminense (Southern part of Rio de Janeiro state) and the 
Rio de Janeiro Metropolitan Area (Lima et al., 2021).

Among the consequences of heavy rainfall, floods and landslides are 
the most impactful phenomena in Brazil. It is estimated that 37 % of all 
South America landslides are concentrated in Brazil, mainly in the South 
and Southeast regions (Dias et al., 2021), and were responsible for 74 % 
of the deaths related to disasters between 1991 and 2010 (Debortoli 
et al., 2017). The increase in precipitation extremes can amplify the risk 
of landslides through soil infiltration, soil erosion, and an increase in 
surface runoff (Gariano and Guzzetti, 2016); however, there is still un
certainty in quantifying the impact of climate change on landslide oc
currences due to a lack of records and sparsity of studies across the 
globe. Moreover, with increased greenhouse gas emissions, it is esti
mated that there is a significant increase in Brazil’s susceptibility to 
landslides and flash floods. Notably, regions already considered to have 
high susceptibility, such as the mountainous region of Rio de Janeiro, 
are projected to become even riskier by the end of the century (Debortoli 
et al., 2017). The most impactful disaster related to landslides in the 
country occurred in this mountainous region of Rio de Janeiro state in 
2011, resulting in approximately 947 deaths, mainly in the municipal
ities of Nova Friburgo, Teresópolis, and Petrópolis (Dourado et al., 
2012).

Given the increasing frequency and severity of these extreme events, 
especially in densely populated and vulnerable areas, it has become 
essential to understand the extent to which they may be influenced by 
anthropogenic climate change. Attribution studies aim to assess the 
extent to which the likelihood of these extreme events can be attributed 
to anthropogenic climate change, to identify the influence of human 
activities on their occurrence (Hegerl et al., 2010). Event attribution has 
developed rapidly in the last decade due to the demand for explaining 
the increased probability and magnitude of extreme events (Stott et al., 
2016). For example, Otto et al. (2015) studied the water crisis that 
occurred in Central-Southern Brazil between 2014 and 2015. The au
thors found that this extreme event could not be significantly attributed 
to anthropogenic forcing, with the vulnerability being the most relevant 
factor instead. On the other hand, Dalagnol et al. (2022) showed that the 
extreme precipitation that occurred in Minas Gerais, Brazil, in January 
2020 was, at least, 70 % more likely to happen due to human-induced 
climate change, and 41 % of the financial impacts also could be attrib
uted to climate change. Attribution analysis has also been developed for 
other events such as heatwaves (Leach et al., 2021; Wang and Wang, 
2023), extreme temperatures and droughts (Wang et al., 2017, 2018; 
Neto et al., 2021), and floods (Hirabayashi et al., 2021; Kundzewicz and 
Pińskwar, 2022; Quevedo et al., 2025). These studies are particularly 
important and timely because under the Brazilian Federal Law 14.904 
from June 2024, associated with the National Fire Management Plan, it 
has been demanded the development of climate change adaptation plans 
at different scales, from local, municipal, state and federal levels. In 
order to develop realistic and useful plans, the identification, assessment 
and understanding of the vulnerability and exposure of environmental, 
social, economic and infrastructure systems to extreme events and how 
they are changing is key.

Petrópolis was again hit by a devastating disaster in February 2022, 
when the meteorological station data in the municipality recorded 
252.8 mm within 3 h (Alcântara et al., 2023), leading to landslides that 
reached a total area of 37 km2 (Netto et al., 2022). Two days before the 
tragedy, the National Centre for Monitoring and Alerting Natural Di
sasters (CEMADEN) issued an alert of an upcoming very intense mete
orological event. However, despite this warning, 78 people died (with 
unofficial estimates exceeding 200 people) and hundreds more were 
displaced or left homeless in what is now registered as the deadliest 
disaster in the municipality (FIDE, 16/02/2022).

In this context, the main objective of this study is to investigate the 
extreme rainfall event that triggered numerous landslides in Petrópolis, 
Brazil, in February 2022. The study integrates event attribution and 

impact assessment to evaluate both the climatic and socioeconomic di
mensions of the disaster. Specifically, we address the following research 
questions: (1) How much of the heavy rainfall event can be attributed to 
anthropogenic climate change? (2) How do changes in Land Use and 
Land Cover (LUCC) contribute to the region’s landslide susceptibility? 
and (3) What socioeconomic impacts are related to the 2022 landslide 
disaster?

2. Methodology

2.1. Study area

Our study focused on the extreme rainfall event that occurred in 
February 2022, which triggered several landslides in the Petrópolis 
municipality, located in the mountainous region of Rio de Janeiro, 
Southeast Brazil. For the rainfall event analysis, we considered a poly
gon area with the following coordinates: 21◦0′0″ S and 41◦0′0″ W; 24◦0′0″ 
S and 46◦0′0″ W. The selected area comprises nearly the entire Rio de 
Janeiro state and part of São Paulo, Minas Gerais, and Espírito Santo 
states (Fig. 1). This area covers approximately 171,000 km2, large 
enough to be analyzed with global satellite and climate model precipi
tation data.

The analyzed area is composed of a mountainous relief known as the 
Serra do Mar, a system of escarpments and mountains that began to form 
during the Cretaceous period (90 Ma). The specific geomorphological 
characteristics result from the lithological differences due to formative 
morphotectonic events, as well as the complex fault systems and shear 
zones (Vieira and Gramani, 2015). Furthermore, the proximity of these 

Fig. 1. Study area. A) Location of the study area in Brazil; B) Polygon area for 
analyzing the extreme precipitation event; C) Petrópolis municipality and 
landslide occurrence.
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mountains to the coast influences the rainfall spatial distribution. The 
study area is characterized by the Atlantic Forest biome, with the 
presence of a dense ombrophilous forest.

Currently integrated into the Metropolitan Region of Rio de Janeiro 
(IBGE – Instituto Brasileiro de Geografia e Estatística, 2025), Petrópolis 
is located near major urban centers, including the state capital. Recog
nized for its historical and urban significance, Petrópolis was one of the 
first planned cities in Brazil, with its initial occupation delimited by the 
Köeler Plan.1 However, throughout the 19th and 20th centuries, eco
nomic and demographic transformations, particularly driven by indus
trialization, led to a significant urban expansion beyond the boundaries 
originally established (Ambrozio, 2008). This unregulated growth, 
combined with the scarcity of adequate land for urban infrastructure, 
resulted in the occupation of hillside and ridge areas, characterized by 
steep terrain and high environmental fragility.

From the 1970s onwards, the abandonment of the Köeler Plan and 
the lack of effective urban planning led to deforestation, precarious 
settlements, inadequate sanitation infrastructure, and an intensification 
of floods and landslides (Guerra et al., 2007; Antunes and Fernandes, 
2020; Costa et al., 2022). It is estimated that around 24 % of the 
municipal population, approximately 72,000 people, are currently 
exposed to landslide and flood risks (de Assis et al., 2018). This socio
environmental vulnerability is further exacerbated by the municipality’s 
location within the Serra do Mar Mountain range in the state of Rio de 
Janeiro, a region heavily influenced by atmospheric systems such as the 
South Atlantic Convergence Zone (SACZ) and cold fronts, which have 
historically contributed to the occurrence of extreme rainfall events 
(Tavares and Ferreira, 2020; Costa et al., 2022).

In addition to these socio-environmental challenges, Petrópolis also 
stands out for its historical and contemporary role as a major tourist 
destination. Considered one of Brazil’s first tourist destinations, the 
municipality has recently established itself as one of the main attractions 
in the state of Rio de Janeiro. Tourism accounts for approximately 6 % of 
the municipality’s annual GDP, equivalent to over U$141.07 million2

(Câmara Municipal de Petrópolis, 2022), and in 2019 alone, the city 
received around two million visitors (Prefeitura, 2019). This economic 
dynamism is also reflected in indicators such as its high Human Devel
opment Index (0.745) and one of the highest Gross Domestic Products in 
the region (IBGE – Instituto Brasileiro de Geografia e Estatística, 2025).

Given this context, the combination of unplanned urban growth and 
the natural configuration of the territory makes Petrópolis highly sus
ceptible to floods, flash floods, and landslides—vulnerabilities that 
stand in contrast to its economic and touristic importance. In 2011, 
extreme rainfall and consecutive landslides affected this region, 
encompassing 23 municipalities (Cardozo and Monteiro, 2019) and 
impacting over 7,000 people (Rosi et al., 2019). Among the affected 
municipalities, Petrópolis was one of the most impacted and again 
experienced severe losses from landslides and flooding in February 
2022. In this sense, assessing the influence of anthropogenic climate 
change on the extreme rainfall event, along with the analysis of its so
cioeconomic impacts in Petrópolis, provides a diagnosis of how these 
factors have contributed to increasing social vulnerability. This scenario 
highlights the urgent need for greater investment in adaptation strate
gies and land use planning to reduce disaster risk, especially in the face 
of significant economic losses resulting from a recurring cycle of 
large-scale disasters.

2.2. Data

2.2.1. Observational rainfall data and climate models
Daily rainfall data from 177 pluviometric stations, provided by 

CEMADEN, were used to characterize the event both temporally and 
spatially. The data, available from 2000 onward, included stations 
located in Petrópolis (considered main stations) as well as in neigh
boring municipalities (complementary stations), covering a total of 26 
municipalities. The goal was to assess the rainfall distribution on the day 
of the extreme event in the mountainous central region of the state of Rio 
de Janeiro.

Additionally, we used the CPC Global Unified Gauge-Based Analysis 
of Daily Precipitation data at 0.5◦ spatial resolution (Chen et al., 2008) 
as the gridded observational dataset. This dataset is available from 1979 
onwards and was resampled to N216 spatial resolution to match the 
climate model used in our analysis. The CPC dataset has been previously 
used in research focused on tropical regions (Solman and Blázquez, 
2019; Dalagnol et al., 2022), and provides sufficiently accurate esti
mates to study tropical rainfall patterns.

For the attribution analysis, we used the global climate model Hadley 
Centre Global Environmental Model version 3-A (HadGEM3-A). This 
global climate model is part of the HadGEM family and is based on the 
HadGEM3 atmospheric component, which is operated at a N216 hori
zontal resolution with 85 vertical levels (Davies et al., 2005; Ciavarella 
et al., 2018). The model simulations used for the attribution analysis 
consist of one experiment considering natural-only forcing from volca
nic activity and solar variability (“NAT”), while keeping all other forc
ings constant at 1850 levels, and a second experiment considering both 
natural and anthropogenic forcings combined (“ALL”). For the year 
2022, 525 ensemble members are available for each experiment, 
creating a large ensemble for the attribution analysis, as part of the 
extended ensemble. In contrast, for the historical period (1981–2013), 
the model includes 15 ensemble members (Ciavarella et al., 2018; 
Dalagnol et al., 2022). A more comprehensive description of the attri
bution system using the HadGEM3-GA6 model can be found at Ciavar
ella et al. (2018) and Vautard et al. (2019).

2.2.2. Land use and land cover change (LUCC)
For the LUCC analysis, we used data from collection 10 of the 

MapBiomas project (https://mapbiomas.org/en). MapBiomas is a 
collaborative and open-source monitoring initiative founded in 2015 to 
address the land use and land cover (LULC) information gap in Brazil 
and monitors transformations in the Brazilian territory (Souza Jr et al., 
2020). MapBiomas facilitates collaboration with a network of 
non-governmental organizations, universities, and private companies. 
The annual LULC mapping with 30 m spatial resolution from 1985 to 
2024. In this study, we assessed the LUCC up to 2022 and analyzed their 
trends. We also analyzed the LUCC in hilltops, aiming to identify 
possible relationships with landslide occurrence. To identify the hilltops, 
we used the Digital Elevation Model (DEM) from the Shuttle Radar 
Topography Mission (SRTM), selecting the SRTM 1 Arc-Second Global 
with 30 m spatial resolution obtained from the Google Earth Engine 
(GEE) platform (Farr et al., 2007).

2.2.3. Socioeconomic impacts database
We obtained the socioeconomic impacts from the Integrated Disaster 

Information System (S2ID, 2024). The S2ID is the official platform for 
disaster information in Brazil and contains data on location (munici
pality), type of disaster, date and time of occurrence, causes and effects, 
human and material damage, and public and private economic losses. 
The local civil defense collects and registers this information in the S2ID 
within 10–15 days after the declaration of an emergency, aiming to get 
financial resources from the federal government for disaster relief 
(BRASIL. Instrução Normativa N◦ 36 de 4 de dezembro de, 2020).

2.3. Method

2.3.1. Extreme rainfall attribution
The CPC observational data were used to define the extreme rainfall 

event threshold used in the attribution study. Based on prior assessment 

1 The Köeler Plan, developed by engineer Júlio Frederico Köeler, was an 
urbanization project that defined the initial urban core of Petrópolis (Soares, 
2009; Costa et al., 2022).
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of the most-affected areas, we selected the austral summer of 2021–2022 
(December, January, and February) as our study period, which is the 
peak rainy season in Southeast Brazil. The study focused on the spatial 
maximum of accumulated rainfall over 3-day (Rx3day), 30-day 
(Rx30day), and 60-day (Rx60day) periods within the study area, 
adopted as representative metrics of rainfall intensity. The spatial 
maximum was determined by aggregating rainfall over these specific 
metrics (3, 30, and 60 days) and subsequently identifying the highest 
value across the spatial region. Several tests were run to determine the 
most suitable metrics that could be consistently applied to both model 
and observational data and still represent the observed event. We chose 
three different metrics to evaluate the rainfall conditions around the 
time of the event (Rx3day), which may represent the short-term pre
cipitation that triggered the landslide, and also before the event 
(Rx30day and Rx60day) to understand the influence of antecedent 
conditions, which increase soil moisture and therefore susceptibility, on 
the event.

A climatological reference period of 1981–2013 was used for model 
validation, in line with the 30 years commonly used to analyze long- 
term climate data, as well as being a common period available be
tween observations and model data. We obtained histograms to analyze 
the differences between the CPC dataset and the HadGEM3-A ensemble 
models and identify model biases. To correct the bias, we normalized the 
data by the climatology, applying the following equation to the CPC and 
HadGEM3-A datasets for the three selected metrics: 

Rxn− day

Xclimatological
Equation (1) 

where Rx represents the maximum cumulative precipitation for each n- 
day (3-day, 30-day, and 60-day) and X is the historic mean based on the 
climatology (1981–2013). The equation was applied for both CPC and 
HadGEM3-A datasets, separately.

Based on the normalization of the datasets (bias correction), the 
Generalized Extreme Value (GEV) distribution was fitted to the data. 
Following this adjustment, the Probability Ratio (PR) was calculated to 
quantify how much more likely it is to exceed the CPC-observed pre
cipitation threshold in the ALL scenario compared to the NAT scenario. 
The PR is defined as the ratio between the probability (P) of exceeding 
the CPC threshold in the ALL scenario and the probability of exceeding 
the same threshold in the NAT scenario. Confidence intervals were also 
estimated (Equation (2)). This step was performed for the three selected 
rainfall metrics. 

PR=
PALL

PNAT
Equation (2) 

We also calculated the Attributable Risk Fraction (FAR), which 
corresponds to the fraction that can be attributed to climate change 
(Allen, 2003). FAR can be used to estimate the proportion of the damage 
caused by human-induced climate change (Stott et al., 2016; Quevedo 
et al., 2025). It is a measure of the contribution of anthropogenic forcing 
to the occurrence or severity of the extreme event (Stott et al., 2004; 
Otto et al., 2016; Otto, 2017; Frame et al., 2020; Dalagnol et al., 2022). 
Although FAR may not precisely represent the risk attributable to 
anthropogenic climate change, especially in contexts where the re
lationships between meteorological variables and impacts are non-linear 
(Perkins-Kirkpatrick et al., 2022), FAR remains a valuable metric by 
providing an initial estimate of this contribution. This is particularly 
relevant in situations where such relationships are complex and there is 
no clear transfer function between the meteorological event and the 
observed impacts (Carlson et al., 2024), as is the case in this study. To 
calculate the FAR, we used the following equation: 

FAR=1 −

(
1

PR

)

Equation (3) 

We calculate the return period based on the inverse of the probability 

of exceeding the threshold for each of the scenarios using the 525 
ensemble members to compute the probabilities. We also estimated the 
probability ratio based on a two-dimensional probability analysis, where 
we consider both the short-term trigger (Rx3day) and the long-term 
antecedent conditions (Rx60day). This means that we want to find 
how climate change affects the probability of an event happening where 
we have larger values of precipitation before the event, building soil 
moisture, and intense precipitation right before the event, triggering the 
landslide.

2.3.2. LUCC evaluation

2.3.2.1. Reclassification. The LULC data were obtained from MapBio
mas Collection 10, available on GEE platform. For the municipality of 
Petrópolis, the original classification system, which includes more than 
seventy categories, was reclassified into nine broader classes to facilitate 
the analysis and ensure comparability over time. The reclassification 
grouped the categories into forest, other forest types, natural vegetation, 
pasture, temporary crops, perennial crops, urban areas, water bodies, 
and others (Table 1). The annual maps from 1985 to 2024 were clipped 
to the municipal boundaries and subsequently harmonized into this 
reduced classification. This methodological step enabled a consistent 
assessment of land use and land cover dynamics across the study period. 

● Detection of hill tops of Permanent Preservation Areas (APPs) 
The Brazilian Forest Code (Law n◦ 12,651 of 2012) defines hilltops 

as APPs when: (i) the total elevation difference (amplitude) from 
base to summit is greater than 100 m, (ii) the average slope exceeds 
25◦, and (iii) the upper third portion of the hill meets these two 
conditions. Additionally, all areas above 1,800 m in elevation must 
be preserved, regardless of vegetation type. These areas are key for 
mitigating landslide risks (Cohen and Schwarz, 2017; Lehmann et al., 
2019). To identify APP-eligible hilltops not currently protected, we 
used a Hydrologically Consistent Digital Elevation Model (HCDEM) 
to correct depressions and generate a continuous elevation surface. 
From this, we derived slope and elevation maps (Pereira et al., 2014). 
The method included:

- Hilltop delimitation: Identification of individual topographic highs 
(summits) using elevation inversion and flow accumulation to 
delineate hill massifs.

- Slope analysis: Calculation of the average slope
- S for each hilltop: 

S=
1
n
∑n

i− 1
Si Equation (4) 

Table 1 
– Reclassification of original MapBiomas Collection 10 classes into nine 
analytical categories.

New Class Original MapBiomas C10 Categories

1 – Forest formation Forest Formation (1)
2 - Forest Plantation Forest Plantation (50)
3 – Herbaceous and 

Shrubby vegetation
Herbaceous and Shrubby Vegetation (10), Grassland 
Formation (11), Hypersaline Tidal Flat (12), Rocky 
Outcrop (29), Herbaceous Sandbank (32) Whetland

3 – Other forest types Savanna Formation (4), Mangrove (5), Floodable 
Forest (6), Wooded Sandbank (49)

4 – Pasture Pasture (15)
5 – Temporary Crops Agriculture (19), Soybean (20), Sugarcane (39), Rice 

(40), Cotton (41)
6 – Perennial Crops Coffee (35), Citrus (36), Oil Palm (46), Other 

Perennial Crops (47), Perennial Crop (48)
7 – Urban Urban Area (22)
8 – Water Water Body (26), River/Lake/Ocean (31), 

Aquaculture (33)
9 – Other All remaining categories are not included in the 

groups above
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where Si is the slope (in degrees) of each pixel, and n is the number of 
pixels in the hilltop area.

- Elevation amplitude: Computation of total elevation range: 

A=Hmax − Hmin Equation (5) 

where Hmax and Hmin are the maximum and minimum elevations 
within the hilltop unit.

- Upper third identification: Definition of the upper third elevation 
band: 

Hupper third =Hmax −
A
3

Equation (6) 

All pixels with elevation ≥ Hupper third and located on hills with A ≥
100m and S ≥ 0.25◦ were flagged as APP-eligible hilltops.

2.3.2.2. Trend analysis. To analyze LULC dynamics within hilltop APPs 
in the municipality of Petrópolis, a Bayesian hierarchical regression 
model (Schmid et al., 2000; Seltzer et al., 1996) was applied. Annual 
data on the area occupied by each LULC class from 1985 to 2024 were 
organized as a time series, considering seven aggregated categories: 
forest, other forest types, natural vegetation, pasture, temporary crops, 
perennial crops, and urban areas.

The model assumes that, for each class j and year t, the observed area 
Yt,j follows a normal distribution: 

Yt,j ∼ N
(

μt,i, σ2
j

)
Equation (7) 

Where the expected value μt,i is modeled as a linear function of time: 

μt,j = αj + βj * (t − t) Equation (8) 

Here, αj is the intercept, βj is the slope representing the temporal 
trend, and (t − t) denotes the centered year to improve model conver
gence. The prior distributions were specified as weakly informative to 
allow flexibility while regularizing estimates: 

αj ∼ N
(
0, 1002), βj ∼ N

(
0, 102), σj ∼ HalfNormal (50)

Posterior distributions of the parameters αj , βj and σj were estimated 
using Markov Chain Monte Carlo (MCMC) (Karandikar, 2006; Zobitz et 
a.,l 2011; Nemeth et al., 2021) with the No-U-Turn Sampler (NUTS) 
algorithm (Nishio and Arakawa, 2019; Alawamy et al., 2022). From the 
posterior estimates, the expected temporal trajectories of each land use 

class were reconstructed, including 95 % credible intervals: 

Ŷ t,j ± 1.96 * SD
(

Yposterior
t,j

)
Equation (9) 

These trajectories provided a probabilistic quantification of long- 
term trends in LUCC categories, enabling robust inferences on land 
use transitions within environmentally sensitive areas.

2.3.2.3. Association with landslide areas. To elucidate the relationship 
between land use dynamics and landslide occurrences, a comprehensive 
dataset of landslide locations within the municipality of Petrópolis was 
compiled. For each location, the corresponding LULC class was extracted 
for the years 1985, 2012, and 2022, enabling a detailed assessment of 
land cover transitions over time in landslide susceptible areas. The 
aggregate area occupied by natural vegetation, comprising forest, other 
forest types, and natural vegetation classes, was computed for each 
point, and the magnitude of vegetation loss between consecutive periods 
(1985–2012 and 2012 to 2022) was quantified.

Transition matrices were generated to quantify the number of points 
transitioning between LULC classes during each temporal interval, 
providing a nuanced depiction of LUCC dynamics within landslide- 
prone areas. Furthermore, relative landslide risk was estimated for 
each class as the proportion of points experiencing landslides relative to 
the total number of points classified within that category. To visually 
represent these dynamics, Sankey diagrams were employed, in which 
nodes correspond to LULC classes at each time point, and links denote 
the number of points undergoing transitions between classes. Node 
colors were assigned according to LULC categories, while link colors 
incorporated partial transparency to emphasize predominant transitions 
without obscuring minor flows.

2.3.3. Socioeconomic damages estimation
The socioeconomic impacts of the extreme precipitation event in 

Petrópolis (February 2022) were assessed using official data from the 
S2iD and complementary municipal and state government sources. The 
analysis was structured into two main components: human impacts and 
economic impacts, both categorized and tabulated for clarity and cross- 
verification. Human impacts were analyzed based on the officially re
ported number of individuals affected, including those injured, dis
placed, left homeless, or deceased. These figures were extracted from the 
first official damage assessment (FIDE, 16/02/2022), which reflects data 
collected within the first 24 h after the event. It is important to note that 
this initial assessment likely underestimates the total human toll, as the 
municipal civil defense later reported at least 240 fatalities through 

Fig. 2. Extreme Rainfall Event Characterization. (a) Spatial distribution of accumulated precipitation (mm) on February 15 for the weather stations available in the 
area. The red line highlights the city of Petrópolis, the shaded colors are the altitude in meters, and the markers are the available weather stations colored according 
to the precipitation; (b) Time Series of daily accumulated precipitation for February 2022 for the available weather stations in the area.
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media channels. Moreover, no estimates were available for the indirectly 
affected population, which may be substantially higher than those 
directly impacted.

Economic impacts were calculated based on official estimates of 
losses and damages, converted from Brazilian reais (BRL) to United 
States dollars (USD) using the average exchange rate for the year of the 
event, as published by the Central Bank of Brazil (1 USD = 5.16 BRL). 
The losses were classified into three categories: 1. Private economic 
losses, primarily in the commerce/services and agriculture sectors, 2. 
Public economic losses, including damages to urban cleaning services, 
water supply, sewage, and healthcare infrastructure, and 3. Material 
damages, notably to public infrastructure and private dwellings.

All monetary values were compiled into structured tables and cross- 
verified with multiple governmental sources to ensure consistency and 
accuracy. This disaggregation enabled the identification of the most 
affected sectors and the proportional contribution of each loss category 
to the total economic impact. Data limitations and uncertainties were 
considered, especially regarding the temporal scope of data collection 
and the unavailability of updated figures on long-term impacts.

3. Results

3.1. Event definition

The extreme precipitation event on February 15 was concentrated in 
the southern portion of Petrópolis (Fig. 2), with accumulations 
exceeding 100 mm. Petrópolis—a municipality in the state of Rio de 
Janeiro situated in a high-relief area—has the windward slope of the 
mountain range in its southern section, which is precisely where rainfall 
was concentrated. The rest of the municipality and neighboring towns 
recorded low totals, between 0 and 40 mm. Moreover, the 15th was the 

only and most intense precipitation peak of the month, underscoring the 
event’s highly concentrated nature in both space and time at the scales 
analyzed.

3.2. Model validation

To validate the HadGEM3-A model, we compared the modeled pre
cipitation with the observational CPC data from 1981 to 2013. We found 
a positive model bias of approximately 90, 160, and 245 mm for Rx3day, 
Rx30day, and Rx60day, respectively, indicating an overestimation of 
the precipitation metrics by the HadGEM3-A. After the bias correction 
and application of the GEV distribution (Fig. 3), the two datasets 
significantly increased their overlap, especially for the Rx30day and 
Rx60day metrics, and the bias was reduced to almost zero. These results 
indicate that the HadGEM3-A can satisfactorily be used in our study 
area. However, we should notice that CPC indicates a few events in the 
right tail of the distribution for Rx30day and Rx60day, which are not 
present in the model, and might indicate that the model is not good at 
capturing such extreme events.

3.3. Attribution analysis

We used ALL and NAT scenarios from HadGEM3-A to compute the 
changes in likelihood of the event (Fig. 4). The distributions for the three 
metrics (RX3day, RX30day, and RX60day) were all slightly shifted to the 
right under the ALL scenario, suggesting higher precipitation values are 
expected when considering human-induced climate change (Fig. 4). 
Notably, the CPC precipitation threshold for the Rx60-day is also located 
further right in the graph (Fig. 4c). This suggests that such extreme 
rainfall events are relatively rare in both scenarios (ALL and NAT) but 
become more probable to occur under human-induced climate change. 

Fig. 3. Histograms of bias-corrected CPC and the HadGEM3-A model for the spatial maximum of the (a) Rx3day, (b) Rx30day, and (c) Rx60day.

Fig. 4. Histograms and GEV fitted distributions of the spatial maximum for the three metrics, (a) RX3day, (b) RX30day, and (c) RX60day, for ALL (blue) and NAT 
(orange) scenarios from the HadGEM3-A model using CPC climatology for bias model correction. The thresholds from CPC for exceedance probability calculation in 
each case are shown in the red line.
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On the other hand, the Rx3day and Rx30day CPC thresholds remained 
near the distribution mean for both scenarios, suggesting that maximum 
rainfall accumulations of this magnitude over these timescales are more 
typical, i.e., less extreme.

The event thresholds for the Rx3day, Rx30day, and Rx60day were 
118.16 mm, 399.15 mm, and 763.34 mm, respectively (Table 2). All 
calculated PR were greater than one, indicating that anthropogenic 
climate change has increased the likelihood of rainfall events above the 
calculated thresholds. This increase is statistically significant at the 5 % 
confidence level. The PR for the Rx3day and Rx30day were similar and 
characterized by lower PR (1.45 and 1.30, respectively) when compared 
to the Rx60day (1.71). These results indicate an increase of 45 % in the 
likelihood of short-term extreme rainfall events (Rx3day) occurring, 
which are commonly associated with landslide triggers, and a 71 % 
increase for the long-term rainfall events (Rx60day), highlighting the 
influence of antecedent conditions in landslide susceptibility.

The FAR results similarly show that the damage caused by this event 
can be attributed to anthropogenic climate change by 31 % (0.31) for the 
Rx3day, 23 % (0.23) for Rx30day, and 41 % (0.41) for Rx60day. Despite 
FAR having limitations, as it may not always express the non-linear 
relations between the hazard and the impact, it is a first estimate of 
the attributable damage when we have complex relationships that are 
not easily modeled (Perkins-Kirkpatrick et al., 2022; Carlson et al., 
2024). Furthermore, the return period indicates that in the ALL scenario 
(considering anthropogenic climate change), the recurrence of an event 
of this type would increase. While in the NAT scenario (natural forcing 

only), the return period is around 2.4–5.6 years, in ALL, this period is 
1.6–3.3 years.

The comparison between the Rx3day and Rx60day (Fig. 5) demon
strated that the density of points exceeding both the Rx3day and 
Rx60day thresholds is higher in ALL than in NAT. To quantify whether 
the difference between ALL and NAT was significant, we calculated the 
PR accounting for the number of members above the threshold. The PR 
value is 2.06 [1.46, 2.30], demonstrating that the probability of the 
event in the Rx3day and Rx60day metrics in the climate change scenario 
is approximately twice as high as in the natural scenario. We also 
calculated the PR using a conditional probability, where the calculated 
PR was conditioned on both Rx3day and Rx60day being higher than the 
CPC threshold, instead of just one of them, as in Fig. 4, getting a value of 
1.46 [1.17, 1.88].

3.4. LUCC analysis

3.4.1. Land use change in hill tops from 1985 to 2024
The analysis of average annual variation by period (Fig. 6a and 

Table 3) reveals distinct dynamics across land cover categories in Hilltop 
APPs. The “Pasture” land cover class consistently shows the highest 
average annual losses, with a marked decline of − 2.17 % during the 
period 2015–2024, reinforcing its role as the main source of land-use 
conversion. In contrast, “Urban” areas exhibit the most consistent 
gains throughout the study period, peaking at 4.43 % per year in 
1985–1994 and remaining positive thereafter, though at lower rates 
(1.18 % per year in 2015–2024).

Among forest-related categories, “Forest Formation” maintains small 
but steady positive growth across all periods, ranging from 0.19 % to 
0.67 % per year, while “Forest Plantation” records a sharp increase only 
in the most recent period (6.98 % per year in 2015–2024). “Herbaceous/ 
Shrubby Vegetation” alternates between modest positive changes in 
earlier decades (0.56–0.72 % per year) and losses in 2015–2024 (− 0.48 
% per year). “Other Forest Types” remain stable, with no significant 
changes across periods.

Agricultural classes (Temporary and Perennial Crops) show negli
gible average variations close to zero, suggesting limited expansion or 
contraction. Water and “Other” categories, on the other hand, display 
substantial fluctuations: “Water” registers losses in 1985–1994 (− 0.20 
% per year) and 1995–2014 (− 1.44 to − 1.63 % per year), followed by a 
small recovery in 2015–2024 (0.35 % per year). The “Other” class, 
which likely aggregates transitional or undefined covers, presents high 
volatility, with a major reduction in 1985–1994 (− 9.20 % per year), 
subsequent recovery in 1995–2004 (4.07 % per year), and minor oscil
lations in later periods.

Fig. 6b, which illustrates annual variation in absolute area (km2), 

Table 2 
Attribution metrics for the extreme precipitation event in Câmara Municipal de 
Petrópolis, 2022), based on the ALL and NAT scenarios, using the CPC observed 
threshold. Probabilities and return periods were calculated using the fitted GEV 
distribution. The 95 % confidence interval (CI) was obtained by the 2.5th and 
97.5th percentiles using 1 000 bootstrap simulations. For the event threshold, 
we show the value in millimeters and normalized by the 1981–2013 average.

Metric Rx3day 
Estimate [95 % 
CI]

Rx30day 
Estimate [95 % 
CI]

Rx60day 
Estimate [95 % 
CI]

Event threshold 
(mm)

118.16 mm 
(0.84)

399.15 mm 
(0.84)

763.34 mm 
(0.99)

Probability Ratio 
(PR)

1.45 [1.31, 
1.60]

1.30 [1.18, 1.44] 1.71 [1.42, 2.05]

Attributable Risk 
Fraction (FAR)

0.31 [0.24, 
0.38]

0.23 [0.15, 0.31] 0.41 [0.29, 0.51]

ALL Return period 
(years)

1.63 [1.54, 
1.72]

1.63 [1.54, 1.73] 3.31 [2.97, 3.72]

NAT Return period 
(years)

2.36 [2.18, 
2.59]

2.13 [1.97, 2.30] 5.66 [4.94, 6.67]

Fig. 5. Joint density histogram of ensemble members for the maximum values of short-term (Rx3day) and long-term (Rx60day) precipitation metrics under the ALL 
(left) and NAT (right) scenarios from the HadGEM3-A model. Colors represent the probability density of event occurrence in each grid cell, with blue tones for the 
ALL scenario and orange to red tones for the NAT scenario. Red lines indicate the observed precipitation thresholds on the event day, based on CPC data, for both 
Rx3day and Rx60day metrics. All values are normalized with respect to the 1981–2013 climatology.
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highlights strong interannual variability, especially for pastures, which 
alternate between pronounced gains and losses over the decades. In the 
late 1990s and early 2000s, pasture losses were particularly intense, 

while earlier years occasionally recorded gains. Urban expansion ap
pears as a persistent upward trend, though less variable than pasture 
dynamics. Forest Formation and Herbaceous/Shrubby Vegetation 

Fig. 6. Land use and land cover (LULC) dynamics within hilltop permanent preservation areas (APPs) in Petrópolis between 1985 and 2024; (a) Average annual 
percentage change of land use classes by period (1985–1994, 1995–2004, 2005–2014, and 2015–2024) and (b) Annual net gain and loss in area (km21) of land use 
classes for the entire period of analysis (1985–2024).

Table 3 
Average annual percentage change of land use and land cover (LUCC) classes in hilltop APPs, Petrópolis, 1985–2024.

Period Forest 
Formation

Forest 
Plantation

Herbaceous/Shrubby 
Vegetation

Other Forest 
Types

Pasture Temporary 
Crops

Perennial 
Crops

Urban Water Other

1985–1994 0.67 0.00 0.56 0.00 − 0.09 0.00 0.00 4.43 − 0.20 − 9.20
1995–2004 0.33 0.00 0.72 0.00 − 0.22 0.00 0.00 1.93 − 1.63 4.07
2005–2014 0.30 0.00 0.63 0.00 − 1.39 0.00 0.00 0.94 − 1.44 − 0.92
2015–2024 0.19 6.98 − 0.48 0.00 − 2.17 0.00 0.00 1.18 0.35 0.98
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exhibit relatively stable annual changes, corroborating the gradual but 
steady gains identified in the period averages.

Overall, the results indicate that pasture contraction and urban 
expansion are the dominant processes shaping land-use change in Hill
top APPs. Forest Formation has shown moderate permanence with small 
but consistent increases, while Forest Plantations emerge as a recent but 
rapidly expanding land-use category. The pronounced interannual 
variability, particularly in pastures and transitional classes, underscores 
that, beyond clear long-term trends, isolated episodes of abrupt area loss 
or gain significantly contribute to the dynamics of land-use change in 
these protected landscapes.

3.4.2. Bayesian analysis by MCMC with the NUTS algorithm in hilltop 
areas of Petrópolis

The Bayesian analysis of LULC dynamics in hilltop APPs between 
1985 and 2024 revealed heterogeneous trajectories across classes, with 
some stability in natural vegetation but pronounced signals of land use 
intensification and urban expansion. Forest Formation exhibited a slight 
positive trend(slope = 0.08; 95 % HDI: 0.01–0.16), with a 96 % prob
ability of increase (Fig. 7). The temporal trajectory confirmed modest 
but continuous recovery (Fig. 8a), suggesting gradual reforestation or 
regeneration in these areas despite the reduced obligations imposed by 
the revised Forest Code.

Forest Plantations, in turn, showed the most robust expansion signal 
(slope = 0.24; 95 % HDI: 0.11–0.36; P[increase] = 1.00), concentrated 
in recent years. This sharp increase reflects the introduction of silvi
cultural activities in APPs, highlighting the regulatory loopholes that 
allowed productive uses even in environmentally sensitive zones. Her
baceous/Shrubby Vegetation revealed a slight negative tendency (slope 
= − 0.08; 95 % HDI: 0.15–0.00; P[decrease] = 0.97), with its proportion 
declining steadily over time (Fig. 8a). This reduction is consistent with 
the replacement of degraded or transitional vegetation either by pas
tures in earlier decades or by secondary forest regeneration in recent 
periods.

Pastures displayed the strongest and most persistent decline (slope =
− 0.66; 95 % HDI: 1.24–0.09; P[decrease] = 0.99; Fig. 7). Their pro
portion fell sharply (Fig. 8a), with probabilities of decrease equal to one 

across most years (Fig. 8b). This pattern indicates systematic replace
ment of pastures by forest regrowth, plantations, or urban expansion, 
evidencing a major restructuring of land uses in hilltop APPs.

Temporary Crops showed high uncertainty, with slope estimates 
overlapping zero (slope = 0.05; 95 % HDI: 0.12–0.38), and posterior 
probabilities close to equilibrium (P[increase] = 0.52; Fig. 7). The 
temporal evolution (Fig. 8a) highlighted oscillations rather than 
consistent growth, reflecting short-term agricultural strategies and 
opportunistic use of restricted lands. Perennial Crops presented a weak 
tendency toward decline (slope = − 0.09; 95 % HDI: 0.23–0.04; P 
[decrease] = 0.84), confirmed by their progressive reduction in the 
landscape (Fig. 8a). This trend suggests substitution by more profitable 
annual crops or urban land uses.

Urban areas presented the most unequivocal growth trend (slope =
0.19; 95 % HDI: 0.14–0.24; P[increase] = 1.00; Fig. 7). Their temporal 
trajectory shows continuous expansion (Fig. 8a), with probabilities of 
increase equal to one throughout the entire period (Fig. 8b). This 
consolidated trajectory underscores the anthropogenic pressure on 
hilltop APPs and reveals that the revised Forest Code has not curtailed 
urban occupation. Water areas and “Other” categories showed variable 
but generally negative tendencies, with limited influence on broader 
land-use dynamics.

Overall, the results demonstrate a dual dynamic: on one hand, Forest 
Formation and Forest Plantations expanded, suggesting regeneration 
and productive intensification; on the other, pastures declined mark
edly, while urban areas grew without interruption. These findings 
highlight that, despite the resilience of forest cover, hilltop APPs have 
been increasingly shaped by human occupation, with regulatory 
changes enabling both the persistence of natural recovery and the 
consolidation of urban expansion.

3.5. Socioeconomic impacts on Petropolis

The extreme precipitation event in Petrópolis in February 2022 
directly affected 1,078 people and caused more than USD 22 million of 
economic losses, being divided into USD 14 million were private losses 
(65.59 % of total), USD 1.8 million of public losses (8.28 %), and USD 
5.7 million of material damage (26.13 %) (Table 4). The most affected 
sector was the commerce/services, accounting for 65.36 % of all losses, 
followed by dwellings, which represented 15.69 % of the total loss. 

Fig. 7. Posterior distributions of slope estimates (tendency) for each land-use and land-cover class between 1985 and 2024. The horizontal bars represent the 95 % 
highest density intervals (HDI), while white dots indicate the posterior mean. The dashed vertical line represents the null effect (slope = 0).

2 Quote as of September 11, 2025.
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These values show the disruptions of services and losses of private and 
public properties, which can take weeks, months, or even years to be 
fully recovered or become permanent losses.

Concerning the human impacts, officially, 78 people were reported 
dead, 450 were sick or injured, and 450 lost their homes or had to be 
displaced (Table 4). However, these data were collected from the 
Municipal Civil Defense, which registers the impact at the moment of the 
disaster, underestimating the total human impact since it may require 
long-term assessment due to the local capacity to perform the necessary 
work. The National Civil Defense reported that at least 240 people died.

4. Discussion

The extreme precipitation event during the austral summer of 
2021–2022 in Southeastern Brazil, particularly across Minas Gerais, Rio 
de Janeiro, and São Paulo states, was characterized by exceptional 
accumulated rainfall over multiple temporal scales. CPC data indicated 
maximum aggregated totals of approximately 225 mm for three days 
(Rx3day), 510 mm for thirty days (Rx30day), and 850 mm for sixty days 
(Rx60day). Moreover, bias adjustments were applied to correct sys
tematic underestimation in the HadGEM3-A models (both ALL and 
NAT), especially over the 30- and 60-day scales. Data normalization 
against the 1981–2013 climatology (ratio of event value to historical 

mean) enabled more consistent inter-scenario comparisons. Subse
quently, the Generalized Extreme Value (GEV) distribution was fitted to 
the indices, demonstrating good goodness-of-fit and enabling reliable 
estimation of exceedance probabilities under both anthropogenic-forced 
(ALL) and natural-only (NAT) scenarios.

Attribution studies focused on extreme rainfall events in Brazil 
remain relatively limited, particularly in the Southeastern region, yet 
they consistently indicate increased probabilities of extreme precipita
tion across several areas of South America due to anthropogenic climate 
change (De Abreu, 2019; Rudorff et al., 2021; Dalagnol et al., 2022; 
Zachariah et al., 2022; das Junior, 2024; de Souza et al., 2024; Quevedo 
et al., 2023, 2025). For instance, Rudorff et al. (2021) estimated up to a 
30 % increase in flood probability in the Parnaíba River basin attribut
able to global warming. Specifically in Southeastern Brazil, Dalagnol 
et al. (2022) demonstrated that the extreme event affecting Minas Gerais 
in 2020 became 70 % more likely due to anthropogenic influence. Also, 
De Souza et al. (2024), in investigating the extreme rainfall event that 
occurred in the Baixada Santista region (São Paulo), which was also 
associated with widespread landslides, showed through the analysis of 
two metrics — Rx60day (extreme 60-day accumulated rainfall), asso
ciated with antecedent soil moisture conditions, and Rx3day (extreme 
3-day accumulated rainfall), related to landslide-triggering rainfall — 
that the event became more likely due to anthropogenic climate change. 

Fig. 8. Temporal dynamics of land-use and land-cover classes. (a) Evolution of the proportion of each class in the landscape, with shaded areas representing 95 % 
uncertainty intervals. (b) Posterior probabilities of increase for each class across the study period, ranging from 0 (probability of decrease) to 1 (probability 
of increase).
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The Rx60day metric showed a 74 % increase in the probability of 
occurrence, while Rx3day became 46 % more likely under anthropo
genic forcings. Additionally, Lyra et al. (2018) indicated that climate 
model projections show increases in the R95p and R99p indices across 
mountainous areas that encompass our study area, which may 
contribute to a higher frequency of mass movement events. Similar in
ternational findings corroborate the pivotal role of climate change in 
exacerbating disaster risks, with an increase in extreme precipitation 
across most of Europe, for example (Christidis and Stott, 2022; Hu et al., 
2023).

These findings reinforce the conclusions of the latest IPCC Assess
ment Report (AR6), which states that the Southeastern South America 
(SES) region has experienced an estimated 19 % increase in extreme 
precipitation events since 1950 (low confidence) (IPCC, 2021). This 
upward trend is associated with a significant rise in the frequency of 
landslides and flash floods (Castellanos et al., 2022) — events that have 
led to a high number of fatalities in Brazil (high confidence) (Debortoli 
et al., 2017; Haque et al., 2019; Fonseca Aguiar and Cataldi, 2021), as 
exemplified by the 2022 disaster in Petrópolis, analyzed in this study. 
Altogether, this body of evidence supports the hypothesis that global 
warming has intensified both the magnitude of extreme rainfall and the 
persistence of antecedent soil moisture, a critical combination that 
amplifies the risk of landslides and flooding.

4.1. Variation in landslide damage of 2024

The dynamics of land use in landslide-prone areas of Petrópolis 
(Fig. 9) reveal an intensification of urban pressure over the last four 
decades. The Sankey diagram (Fig. S1a) shows that, between 1985 and 
2022, a substantial flow of areas previously occupied by pastures and 
Forest Formation was converted into urban land. While Forest Forma
tion and Other Forest Types maintained part of their extent, their rela
tive contribution diminished as urban expansion accelerated, 
particularly after 2012. This shift coincides with the revision of the 
Brazilian Forest Code, which reduced restoration requirements in APPs 
and allowed the consolidation of pre-existing occupations on steep 

slopes, thereby facilitating the permanence and growth of settlements in 
high-risk zones.

The bar chart (Fig. S1b) confirms that, in absolute terms, urban areas 
expanded markedly and became the dominant land-cover class by 2022. 
In contrast, pastures declined, and forest-related categories remained 
relatively constant in extent but lost proportional relevance. The pro
portional analysis (Fig. S1c) reinforces this interpretation: while urban 
land increased sharply, forests and natural vegetation decreased in 
relative share, reflecting a structural reconfiguration of land cover in 
landslide-prone environments.

These results highlight that urbanization is the primary driver of 
LUCC in Petrópolis, exacerbating risks associated with slope instability. 
The decline in the relative importance of forests and natural vegetation 
implies a reduction in protective ecosystem services, potentially inten
sifying erosion and slope failure. Agricultural uses, including temporary 
and perennial crops, remained marginal and did not significantly in
fluence recent LULC dynamics.

These results indicate that urbanization is the main driver of LUCC in 
landslide-prone zones, amplifying risks associated with slope instability. 
The reduction in the relative contribution of forest and natural vegeta
tion implies a loss of protective cover, which could exacerbate soil 
erosion and slope failure. Meanwhile, agricultural uses remain marginal 
and relatively stable, suggesting that they are not central to recent LULC 
dynamics in these high-risk environments. Overall, the findings 
emphasize the importance of integrating urban growth control and slope 
stabilization policies in Petrópolis. The persistence of forest classes 
suggests potential for ecosystem-based risk reduction, but the un
checked expansion of urban areas into steep and fragile terrains, 
particularly after the 2012 regulatory changes, poses significant chal
lenges for disaster risk management.

Overall, the findings underscore the urgent need to integrate urban 
growth control with ecosystem-based approaches to slope stabilization. 
The persistence of forest classes points to a residual potential for 
ecological restoration and risk mitigation. However, the unchecked 
expansion of urban areas into steep and fragile terrains—particularly 
after the 2012 regulatory changes—represents a major challenge for 
disaster risk governance in Petrópolis.

4.2. Implications for disaster Prevention and adaptation policies

Historical LUCC have directly influenced disaster recurrence in 
Petrópolis. Three main classes were identified: natural formations, 
agricultural lands, and urban zones. Although there has been an 
aggregate increase in natural vegetation—likely linked to reforestation 
initiatives (Côrtes, 2017; Quevedo et al., 2023)—areas affected by 
landslides disproportionately encompass agricultural and urban uses. 
This aligns with evidence indicating that deforested areas for cultivation 
(Mugagga et al., 2012) or urban development (Vuillez et al., 2018; Liu 
et al., 2021) are more susceptible to landslides.

LULC transformations alter soil physical properties such as infiltra
tion and cohesion, thereby impacting slope stability (Lehmann et al., 
2019). Native vegetation enhances stability via root reinforcement 
(Masi et al., 2021; Parra et al., 2021), whereas replacement by crops 
increases vulnerability over time, especially post root decay (Soma et al., 
2019).

Furthermore, lack of protection for hilltops—classified as APPs 
under the Brazilian Forest Code—compromises environmental integrity 
and exacerbates slope instability. Legal relaxations enacted in 2012 and 
2014 (Magdalena et al., 2022) exempted municipal authorities from 
safeguarding these zones, contributing to altered runoff patterns and 
sediment dynamics.

The 2022 disaster resulted in 78 officially confirmed fatalities and 
economic losses exceeding USD 22 million, approximately 7.5 % of 
Petrópolis’ municipal budget (Brasil, 2023). Unofficial estimates suggest 
even higher impacts (240 deaths, 1,178 displaced), but data in
consistencies fuel public distrust and hinder planning. Long-term 

Table 4 
Socioeconomic impacts as a consequence of the extreme precipitation event. The 
economic losses show the most impacted sectors related to private economic 
losses, public economic losses, and material damage. The human losses (number 
of people) include the homeless and displaced, sick and injured, and deaths.

Economic impacts (USD)a,b,c Totald

Private Losses d Commerce/services $ 14,425,575.00 $14,473,660.25
Agriculture $ 48,085.25

Public Lossesd Urban cleaning $471,235.45 $1,827,239.50
Water supply $240,426.25
Sewage system $932,853.85
Health Care $182,723.95

Material Damaged Public Infrastructure $2,305,206.88 $5,767,344.88
Dwellings $3,462,138.00

Human impactsa,b,c Totale

Homeless and displacede 450 1 078
Sick and injurede 550
Deathse 78

a Source: FIDE, 16/02/2022.
b These data represent the preliminary damage survey up to 5:00 p.m. on 02/ 

16/2022 (first 24 h). FIDE does not specify what damages and losses were due to 
the landslide. In the sheet, it is only described that the heavy rainfall caused 
landslides, floods, and other consequences.

c Urban areas with affected populations: Quitandinha, Centro, Alto da Serra, 
Mosela, Independência, Estrada da Saudade, São Sebastião, Morin, Castelânea, 
Bairro Castrioto, Caxambu, Chácara Flora, Corrêa, Fazenda. Rural area: Cax
ambu, Santa Isabel.

d All values are expressed in USD (EUA currency) - Quote from February 13th, 
2023.

e Number of people.
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repercussions—psychological trauma, food insecurity, and cultural 
heritage loss—are frequently unrecorded in platforms like S2ID, 
exposing institutional fragilities in national risk management.

4.3. Limitations of the HadGEM3-A model and FAR metric

While HadGEM3-A is widely employed in attribution studies for its 

capacity to simulate anthropogenic (ALL) and natural-only (NAT) forc
ing scenarios, it has notable constraints. The atmospheric-only config
uration features limited surface coupling, restricting representation of 
coupled oceanic and terrestrial feedback such as local evapotranspira
tion and soil moisture persistence, which are vital processes to the 
2021–2022 events. Also, the horizontal resolution of the model 
(approximately 60 km) is coarse to effectively represent the rainfall that 

Fig. 9. Land use and land cover (LULC) dynamics in landslide-prone areas of Petrópolis. (a) Sankey diagram illustrating transitions among LULC classes between 
1985, 2012, and 2022. (b) Distribution of total area (km2) occupied by each class in the three time points. (c) Relative share of each land cover class in landslide- 
prone zones, highlighting proportional changes across time.
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triggered the specific landslide; however, it still can reproduce the 
regional to large-scale conditions for precipitation that led to the event.

Moreover, the FAR metric, while intuitive, has methodological lim
itations. Its estimates depend on the choice of thresholds, the statistical 
distribution fit (here, GEV), and data quality. Small uncertainties in 
distribution tails can substantially alter attribution values. FAR also does 
not differentiate between distinct physical drivers of risk increase—such 
as temperature rise versus changes in atmospheric circulation pat
terns—and thus lacks mechanistic diagnostic power. To strengthen 
inference, triangulation with complementary metrics, such as the Risk 
Ratio (RR), and high-resolution coupled model experiments incorpo
rating key local and regional processes, is recommended.

5. Conclusions

This study presents the first attribution analysis of the February 2022 
extreme precipitation event that triggered multiple landslides in Pet
rópolis, Brazil. Trends in land use and land cover changes (LUCC) and 
socioeconomic impacts were also quantified. Anthropogenic climate 
change increased the likelihood of this event by at least 45 % (Rx3day) 
and 71 % (Rx60day), reducing the recurrence intervals from 2.36 to 1.63 
years (short term) and 5.66 to 3.31 years (long term).

Although forest cover has increased, critical areas such as hilltops 
remain highly converted to agriculture (>40 %), increasing landslide 
susceptibility and necessitating targeted protection. The socioeconomic 
impact includes over USD 22 million in losses and more than 1,000 
people affected. Petrópolis has a long history of disaster events, with 
major incidents driving improvements in civil defense. However, the 
2022 event exposed ongoing gaps in preparedness intensified by climate 
change. This study highlights the need for further event attribution 
research and comprehensive impact assessments to inform effective 
climate adaptation and disaster risk reduction policies.
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Löschke, S., Möller, V., Okem, A., Rama, B. (Eds.), Climate Change 2022 – Impacts, 
Adaptation and Vulnerability: Working Group II Contribution to the Sixth 
Assessment Report of the Intergovernmental Panel on Climate Change, first ed. 
Cambridge University Press, Cambridge, UK and New York, NY, USA, 
pp. 1689–1816. https://doi.org/10.1017/9781009325844.014. Cambridge 
University Press. 

Christidis, N., Stott, P.A., 2022. The extremely wet May of 2021 in the United Kingdom. 
Bull. Amer. Meteor. Soc. 103, E2912–E2916. https://doi.org/10.1175/BAMS-D-22- 
0108.1.

Chen, M., Shi, W., Xie, P., Silva, V.B.S., Kousky, V.E., Wayne Higgins, R., Janowiak, J.E., 
2008. Assessing objective techniques for gauge-based analyses of global daily 
precipitation. J. Geophys. Res. Atmos. 113 (D4). https://agupubs.onlinelibrary.wi 
ley.com/doi/abs/1.

Cohen, D., Schwarz, M., 2017. Tree-root control of shallow landslides. Earth Surf. Dyn. 5 
(3), 451–477. https://doi.org/10.5194/esurf-5-451-2017.

Ciavarella, Andrew, et al., 2018. Upgrade of the HadGEM3-A based attribution system to 
high resolution and a new validation framework for probabilistic event attribution. 
Weather Clim. Extrem. 20, 9–32.
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Costa, M.A.M., Fogaça, I.D.F., Moraes, C.C.D.A., 2022. Reflexões sobre o turismo em 
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