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ARTICLE INFO ABSTRACT
Keywords: Petrépolis was hit by a devastating disaster in February 2022, when it rained 252.8 mm within 3 h, leading to
Extreme weather 200 lost lives and hundreds of people being displaced. Here, we aimed to attribute the extreme rainfall event that

Heavy rainfall

Natural hazard

Attribution

Land use and land cover change

led to several landslides in Petrépolis, assess how Land Use and Land Cover changes (LUCC) from 1985 to 2021
contributed to it, and quantify their socioeconomic impacts. For this, we compared natural-only forcing (NAT)
and natural and anthropogenic forcing combined (ALL) scenarios of the HadGEM3 ensemble models with
observation data. We computed the trends in LUCC and quantified the landslide’s socioeconomic impacts from
official datasets. Human-induced climate change made this extreme event 45 % and 71 % more likely in short
and long-term rainfall, respectively. Recurrence period dropped from 2.36 years (NAT) to 1.63 years (ALL) in the
short-term and from 5.66 years (NAT) to 3.31 years (ALL) in the long-term. Landscape trends show an increase in
forest formations, but unprotected hilltops that collapsed presented more than 40 % of their area as farming. The
total economic loss was more than USD 22 million, with 1 078 people directly affected. The study’s findings are
valuable in understanding how changes in extreme weather events and land use are affecting our society. We
highlight the need for adaptation measures and for more research addressing the attribution of extreme events,
especially those associated with disastrous landslides.

1. Introduction the Cold Front (CF) and the South Atlantic Convergence Zone (SACZ)
(Lima et al., 2010). In Rio de Janeiro state, the combination of the

The Southeast region of Brazil has been historically impacted by proximity to the coast and rugged terrain generates a high precipitation
heavy rainfall due to the influence of several weather systems, such as spatial variability with several areas being impacted by extreme rainfall
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events, particularly over the Serrana region (Rio de Janeiro mountain
area), the Sul Fluminense (Southern part of Rio de Janeiro state) and the
Rio de Janeiro Metropolitan Area (Lima et al., 2021).

Among the consequences of heavy rainfall, floods and landslides are
the most impactful phenomena in Brazil. It is estimated that 37 % of all
South America landslides are concentrated in Brazil, mainly in the South
and Southeast regions (Dias et al., 2021), and were responsible for 74 %
of the deaths related to disasters between 1991 and 2010 (Debortoli
et al., 2017). The increase in precipitation extremes can amplify the risk
of landslides through soil infiltration, soil erosion, and an increase in
surface runoff (Gariano and Guzzetti, 2016); however, there is still un-
certainty in quantifying the impact of climate change on landslide oc-
currences due to a lack of records and sparsity of studies across the
globe. Moreover, with increased greenhouse gas emissions, it is esti-
mated that there is a significant increase in Brazil’s susceptibility to
landslides and flash floods. Notably, regions already considered to have
high susceptibility, such as the mountainous region of Rio de Janeiro,
are projected to become even riskier by the end of the century (Debortoli
et al., 2017). The most impactful disaster related to landslides in the
country occurred in this mountainous region of Rio de Janeiro state in
2011, resulting in approximately 947 deaths, mainly in the municipal-
ities of Nova Friburgo, Teresépolis, and Petropolis (Dourado et al.,
2012).

Given the increasing frequency and severity of these extreme events,
especially in densely populated and vulnerable areas, it has become
essential to understand the extent to which they may be influenced by
anthropogenic climate change. Attribution studies aim to assess the
extent to which the likelihood of these extreme events can be attributed
to anthropogenic climate change, to identify the influence of human
activities on their occurrence (Hegerl et al., 2010). Event attribution has
developed rapidly in the last decade due to the demand for explaining
the increased probability and magnitude of extreme events (Stott et al.,
2016). For example, Otto et al. (2015) studied the water crisis that
occurred in Central-Southern Brazil between 2014 and 2015. The au-
thors found that this extreme event could not be significantly attributed
to anthropogenic forcing, with the vulnerability being the most relevant
factor instead. On the other hand, Dalagnol et al. (2022) showed that the
extreme precipitation that occurred in Minas Gerais, Brazil, in January
2020 was, at least, 70 % more likely to happen due to human-induced
climate change, and 41 % of the financial impacts also could be attrib-
uted to climate change. Attribution analysis has also been developed for
other events such as heatwaves (Leach et al., 2021; Wang and Wang,
2023), extreme temperatures and droughts (Wang et al., 2017, 2018;
Neto et al., 2021), and floods (Hirabayashi et al., 2021; Kundzewicz and
Pinskwar, 2022; Quevedo et al., 2025). These studies are particularly
important and timely because under the Brazilian Federal Law 14.904
from June 2024, associated with the National Fire Management Plan, it
has been demanded the development of climate change adaptation plans
at different scales, from local, municipal, state and federal levels. In
order to develop realistic and useful plans, the identification, assessment
and understanding of the vulnerability and exposure of environmental,
social, economic and infrastructure systems to extreme events and how
they are changing is key.

Petrépolis was again hit by a devastating disaster in February 2022,
when the meteorological station data in the municipality recorded
252.8 mm within 3 h (Alcantara et al., 2023), leading to landslides that
reached a total area of 37 km?> (Netto et al., 2022). Two days before the
tragedy, the National Centre for Monitoring and Alerting Natural Di-
sasters (CEMADEN) issued an alert of an upcoming very intense mete-
orological event. However, despite this warning, 78 people died (with
unofficial estimates exceeding 200 people) and hundreds more were
displaced or left homeless in what is now registered as the deadliest
disaster in the municipality (FIDE, 16/02/2022).

In this context, the main objective of this study is to investigate the
extreme rainfall event that triggered numerous landslides in Petrépolis,
Brazil, in February 2022. The study integrates event attribution and
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Fig. 1. Study area. A) Location of the study area in Brazil; B) Polygon area for
analyzing the extreme precipitation event; C) Petrépolis municipality and
landslide occurrence.

impact assessment to evaluate both the climatic and socioeconomic di-
mensions of the disaster. Specifically, we address the following research
questions: (1) How much of the heavy rainfall event can be attributed to
anthropogenic climate change? (2) How do changes in Land Use and
Land Cover (LUCC) contribute to the region’s landslide susceptibility?
and (3) What socioeconomic impacts are related to the 2022 landslide
disaster?

2. Methodology
2.1. Study area

Our study focused on the extreme rainfall event that occurred in
February 2022, which triggered several landslides in the Petrépolis
municipality, located in the mountainous region of Rio de Janeiro,
Southeast Brazil. For the rainfall event analysis, we considered a poly-
gon area with the following coordinates: 21°0'0" S and 41°0'0” W; 24°0'0"
S and 46°0'0" W. The selected area comprises nearly the entire Rio de
Janeiro state and part of Sao Paulo, Minas Gerais, and Espirito Santo
states (Fig. 1). This area covers approximately 171,000 km? large
enough to be analyzed with global satellite and climate model precipi-
tation data.

The analyzed area is composed of a mountainous relief known as the
Serra do Mar, a system of escarpments and mountains that began to form
during the Cretaceous period (90 Ma). The specific geomorphological
characteristics result from the lithological differences due to formative
morphotectonic events, as well as the complex fault systems and shear
zones (Vieira and Gramani, 2015). Furthermore, the proximity of these
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mountains to the coast influences the rainfall spatial distribution. The
study area is characterized by the Atlantic Forest biome, with the
presence of a dense ombrophilous forest.

Currently integrated into the Metropolitan Region of Rio de Janeiro
(IBGE - Instituto Brasileiro de Geografia e Estatistica, 2025), Petrépolis
is located near major urban centers, including the state capital. Recog-
nized for its historical and urban significance, Petrépolis was one of the
first planned cities in Brazil, with its initial occupation delimited by the
Koeler Plan.' However, throughout the 19th and 20th centuries, eco-
nomic and demographic transformations, particularly driven by indus-
trialization, led to a significant urban expansion beyond the boundaries
originally established (Ambrozio, 2008). This unregulated growth,
combined with the scarcity of adequate land for urban infrastructure,
resulted in the occupation of hillside and ridge areas, characterized by
steep terrain and high environmental fragility.

From the 1970s onwards, the abandonment of the Koeler Plan and
the lack of effective urban planning led to deforestation, precarious
settlements, inadequate sanitation infrastructure, and an intensification
of floods and landslides (Guerra et al., 2007; Antunes and Fernandes,
2020; Costa et al., 2022). It is estimated that around 24 % of the
municipal population, approximately 72,000 people, are currently
exposed to landslide and flood risks (de Assis et al., 2018). This socio-
environmental vulnerability is further exacerbated by the municipality’s
location within the Serra do Mar Mountain range in the state of Rio de
Janeiro, a region heavily influenced by atmospheric systems such as the
South Atlantic Convergence Zone (SACZ) and cold fronts, which have
historically contributed to the occurrence of extreme rainfall events
(Tavares and Ferreira, 2020; Costa et al., 2022).

In addition to these socio-environmental challenges, Petrépolis also
stands out for its historical and contemporary role as a major tourist
destination. Considered one of Brazil’s first tourist destinations, the
municipality has recently established itself as one of the main attractions
in the state of Rio de Janeiro. Tourism accounts for approximately 6 % of
the municipality’s annual GDP, equivalent to over U$141.07 million”
(Camara Municipal de Petropolis, 2022), and in 2019 alone, the city
received around two million visitors (Prefeitura, 2019). This economic
dynamism is also reflected in indicators such as its high Human Devel-
opment Index (0.745) and one of the highest Gross Domestic Products in
the region (IBGE - Instituto Brasileiro de Geografia e Estatistica, 2025).

Given this context, the combination of unplanned urban growth and
the natural configuration of the territory makes Petrépolis highly sus-
ceptible to floods, flash floods, and landslides—vulnerabilities that
stand in contrast to its economic and touristic importance. In 2011,
extreme rainfall and consecutive landslides affected this region,
encompassing 23 municipalities (Cardozo and Monteiro, 2019) and
impacting over 7,000 people (Rosi et al., 2019). Among the affected
municipalities, Petrépolis was one of the most impacted and again
experienced severe losses from landslides and flooding in February
2022. In this sense, assessing the influence of anthropogenic climate
change on the extreme rainfall event, along with the analysis of its so-
cioeconomic impacts in Petropolis, provides a diagnosis of how these
factors have contributed to increasing social vulnerability. This scenario
highlights the urgent need for greater investment in adaptation strate-
gies and land use planning to reduce disaster risk, especially in the face
of significant economic losses resulting from a recurring cycle of
large-scale disasters.

2.2. Data

2.2.1. Observational rainfall data and climate models
Daily rainfall data from 177 pluviometric stations, provided by

! The Koeler Plan, developed by engineer Julio Frederico Koeler, was an
urbanization project that defined the initial urban core of Petrdpolis (Soares,
2009; Costa et al., 2022).
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CEMADEN, were used to characterize the event both temporally and
spatially. The data, available from 2000 onward, included stations
located in Petrépolis (considered main stations) as well as in neigh-
boring municipalities (complementary stations), covering a total of 26
municipalities. The goal was to assess the rainfall distribution on the day
of the extreme event in the mountainous central region of the state of Rio
de Janeiro.

Additionally, we used the CPC Global Unified Gauge-Based Analysis
of Daily Precipitation data at 0.5° spatial resolution (Chen et al., 2008)
as the gridded observational dataset. This dataset is available from 1979
onwards and was resampled to N216 spatial resolution to match the
climate model used in our analysis. The CPC dataset has been previously
used in research focused on tropical regions (Solman and Blazquez,
2019; Dalagnol et al., 2022), and provides sufficiently accurate esti-
mates to study tropical rainfall patterns.

For the attribution analysis, we used the global climate model Hadley
Centre Global Environmental Model version 3-A (HadGEMS3-A). This
global climate model is part of the HadGEM family and is based on the
HadGEMS3 atmospheric component, which is operated at a N216 hori-
zontal resolution with 85 vertical levels (Davies et al., 2005; Ciavarella
et al., 2018). The model simulations used for the attribution analysis
consist of one experiment considering natural-only forcing from volca-
nic activity and solar variability (“NAT”), while keeping all other forc-
ings constant at 1850 levels, and a second experiment considering both
natural and anthropogenic forcings combined (“ALL”). For the year
2022, 525 ensemble members are available for each experiment,
creating a large ensemble for the attribution analysis, as part of the
extended ensemble. In contrast, for the historical period (1981-2013),
the model includes 15 ensemble members (Ciavarella et al., 2018;
Dalagnol et al., 2022). A more comprehensive description of the attri-
bution system using the HadGEM3-GA6 model can be found at Ciavar-
ella et al. (2018) and Vautard et al. (2019).

2.2.2. Land use and land cover change (LUCC)

For the LUCC analysis, we used data from collection 10 of the
MapBiomas project (https://mapbiomas.org/en). MapBiomas is a
collaborative and open-source monitoring initiative founded in 2015 to
address the land use and land cover (LULC) information gap in Brazil
and monitors transformations in the Brazilian territory (Souza Jr et al.,
2020). MapBiomas facilitates collaboration with a network of
non-governmental organizations, universities, and private companies.
The annual LULC mapping with 30 m spatial resolution from 1985 to
2024. In this study, we assessed the LUCC up to 2022 and analyzed their
trends. We also analyzed the LUCC in hilltops, aiming to identify
possible relationships with landslide occurrence. To identify the hilltops,
we used the Digital Elevation Model (DEM) from the Shuttle Radar
Topography Mission (SRTM), selecting the SRTM 1 Arc-Second Global
with 30 m spatial resolution obtained from the Google Earth Engine
(GEE) platform (Farr et al., 2007).

2.2.3. Socioeconomic impacts database

We obtained the socioeconomic impacts from the Integrated Disaster
Information System (S2ID, 2024). The S2ID is the official platform for
disaster information in Brazil and contains data on location (munici-
pality), type of disaster, date and time of occurrence, causes and effects,
human and material damage, and public and private economic losses.
The local civil defense collects and registers this information in the S2ID
within 10-15 days after the declaration of an emergency, aiming to get
financial resources from the federal government for disaster relief
(BRASIL. Instrucao Normativa N° 36 de 4 de dezembro de, 2020).

2.3. Method
2.3.1. Extreme rainfall attribution

The CPC observational data were used to define the extreme rainfall
event threshold used in the attribution study. Based on prior assessment
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of the most-affected areas, we selected the austral summer of 2021-2022
(December, January, and February) as our study period, which is the
peak rainy season in Southeast Brazil. The study focused on the spatial
maximum of accumulated rainfall over 3-day (Rx3day), 30-day
(Rx30day), and 60-day (Rx60day) periods within the study area,
adopted as representative metrics of rainfall intensity. The spatial
maximum was determined by aggregating rainfall over these specific
metrics (3, 30, and 60 days) and subsequently identifying the highest
value across the spatial region. Several tests were run to determine the
most suitable metrics that could be consistently applied to both model
and observational data and still represent the observed event. We chose
three different metrics to evaluate the rainfall conditions around the
time of the event (Rx3day), which may represent the short-term pre-
cipitation that triggered the landslide, and also before the event
(Rx30day and Rx60day) to understand the influence of antecedent
conditions, which increase soil moisture and therefore susceptibility, on
the event.

A climatological reference period of 1981-2013 was used for model
validation, in line with the 30 years commonly used to analyze long-
term climate data, as well as being a common period available be-
tween observations and model data. We obtained histograms to analyze
the differences between the CPC dataset and the HadGEM3-A ensemble
models and identify model biases. To correct the bias, we normalized the
data by the climatology, applying the following equation to the CPC and
HadGEM3-A datasets for the three selected metrics:

Rxn—day

_— Equation (1)
Xclimatalogical

where Rx represents the maximum cumulative precipitation for each n-
day (3-day, 30-day, and 60-day) and X is the historic mean based on the
climatology (1981-2013). The equation was applied for both CPC and
HadGEM3-A datasets, separately.

Based on the normalization of the datasets (bias correction), the
Generalized Extreme Value (GEV) distribution was fitted to the data.
Following this adjustment, the Probability Ratio (PR) was calculated to
quantify how much more likely it is to exceed the CPC-observed pre-
cipitation threshold in the ALL scenario compared to the NAT scenario.
The PR is defined as the ratio between the probability (P) of exceeding
the CPC threshold in the ALL scenario and the probability of exceeding
the same threshold in the NAT scenario. Confidence intervals were also
estimated (Equation (2)). This step was performed for the three selected
rainfall metrics.

P
PR — AL

= Equation (2)

PNAT
We also calculated the Attributable Risk Fraction (FAR), which
corresponds to the fraction that can be attributed to climate change
(Allen, 2003). FAR can be used to estimate the proportion of the damage
caused by human-induced climate change (Stott et al., 2016; Quevedo
et al., 2025). It is a measure of the contribution of anthropogenic forcing
to the occurrence or severity of the extreme event (Stott et al., 2004;
Otto et al., 2016; Otto, 2017; Frame et al., 2020; Dalagnol et al., 2022).
Although FAR may not precisely represent the risk attributable to
anthropogenic climate change, especially in contexts where the re-
lationships between meteorological variables and impacts are non-linear
(Perkins-Kirkpatrick et al., 2022), FAR remains a valuable metric by
providing an initial estimate of this contribution. This is particularly
relevant in situations where such relationships are complex and there is
no clear transfer function between the meteorological event and the
observed impacts (Carlson et al., 2024), as is the case in this study. To
calculate the FAR, we used the following equation:

1
FAR=1-(—
(=)

We calculate the return period based on the inverse of the probability

Equation (3)

Weather and Climate Extremes 50 (2025) 100811

Table 1
— Reclassification of original MapBiomas Collection 10 classes into nine
analytical categories.

New Class Original MapBiomas C10 Categories

1 — Forest formation Forest Formation (1)

Forest Plantation (50)

Herbaceous and Shrubby Vegetation (10), Grassland
Formation (11), Hypersaline Tidal Flat (12), Rocky
Outcrop (29), Herbaceous Sandbank (32) Whetland
Savanna Formation (4), Mangrove (5), Floodable
Forest (6), Wooded Sandbank (49)

Pasture (15)

Agriculture (19), Soybean (20), Sugarcane (39), Rice
(40), Cotton (41)

Coffee (35), Citrus (36), Oil Palm (46), Other
Perennial Crops (47), Perennial Crop (48)

2 - Forest Plantation

3 — Herbaceous and
Shrubby vegetation

3 — Other forest types

4 — Pasture
5 — Temporary Crops

6 — Perennial Crops

7 — Urban Urban Area (22)

8 — Water Water Body (26), River/Lake/Ocean (31),
Aquaculture (33)

9 — Other All remaining categories are not included in the

groups above

of exceeding the threshold for each of the scenarios using the 525
ensemble members to compute the probabilities. We also estimated the
probability ratio based on a two-dimensional probability analysis, where
we consider both the short-term trigger (Rx3day) and the long-term
antecedent conditions (Rx60day). This means that we want to find
how climate change affects the probability of an event happening where
we have larger values of precipitation before the event, building soil
moisture, and intense precipitation right before the event, triggering the
landslide.

2.3.2. LUCC evaluation

2.3.2.1. Reclassification. The LULC data were obtained from MapBio-
mas Collection 10, available on GEE platform. For the municipality of
Petrodpolis, the original classification system, which includes more than
seventy categories, was reclassified into nine broader classes to facilitate
the analysis and ensure comparability over time. The reclassification
grouped the categories into forest, other forest types, natural vegetation,
pasture, temporary crops, perennial crops, urban areas, water bodies,
and others (Table 1). The annual maps from 1985 to 2024 were clipped
to the municipal boundaries and subsequently harmonized into this
reduced classification. This methodological step enabled a consistent
assessment of land use and land cover dynamics across the study period.

@ Detection of hill tops of Permanent Preservation Areas (APPs)

The Brazilian Forest Code (Law n° 12,651 of 2012) defines hilltops
as APPs when: (i) the total elevation difference (amplitude) from
base to summit is greater than 100 m, (ii) the average slope exceeds
25°, and (iii) the upper third portion of the hill meets these two
conditions. Additionally, all areas above 1,800 m in elevation must
be preserved, regardless of vegetation type. These areas are key for
mitigating landslide risks (Cohen and Schwarz, 2017; Lehmann et al.,
2019). To identify APP-eligible hilltops not currently protected, we
used a Hydrologically Consistent Digital Elevation Model (HCDEM)
to correct depressions and generate a continuous elevation surface.
From this, we derived slope and elevation maps (Pereira et al., 2014).
The method included:

- Hilltop delimitation: Identification of individual topographic highs
(summits) using elevation inversion and flow accumulation to
delineate hill massifs.

Slope analysis: Calculation of the average slope
S for each hilltop:

Equation (4)
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Fig. 2. Extreme Rainfall Event Characterization. (a) Spatial distribution of accumulated precipitation (mm) on February 15 for the weather stations available in the
area. The red line highlights the city of Petrépolis, the shaded colors are the altitude in meters, and the markers are the available weather stations colored according
to the precipitation; (b) Time Series of daily accumulated precipitation for February 2022 for the available weather stations in the area.

where S; is the slope (in degrees) of each pixel, and n is the number of
pixels in the hilltop area.
- Elevation amplitude: Computation of total elevation range:

A= Hpax — Hyin Equation (5)
where H,,o, and Hp;, are the maximum and minimum elevations
within the hilltop unit.

- Upper third identification: Definition of the upper third elevation
band:

A
H,

upper third :Hmux - § Equation (6)

All pixels with elevation > H,yper irg and located on hills with A >
100m and S > 0.25° were flagged as APP-eligible hilltops.

2.3.2.2. Trend analysis. To analyze LULC dynamics within hilltop APPs
in the municipality of Petrdpolis, a Bayesian hierarchical regression
model (Schmid et al., 2000; Seltzer et al., 1996) was applied. Annual
data on the area occupied by each LULC class from 1985 to 2024 were
organized as a time series, considering seven aggregated categories:
forest, other forest types, natural vegetation, pasture, temporary crops,
perennial crops, and urban areas.

The model assumes that, for each class j and year t, the observed area
Y, follows a normal distribution:

Yy ~ N <I4r.i70;2) Equation (7)

Where the expected value y,; is modeled as a linear function of time:

Heg =0+ * (t=1) Equation (8)

Here, ¢; is the intercept, f; is the slope representing the temporal
trend, and (t —t) denotes the centered year to improve model conver-
gence. The prior distributions were specified as weakly informative to
allow flexibility while regularizing estimates:

a; ~ N(0,100%),4; ~ N (0,10%),0; ~ HalfNormal (50)

Posterior distributions of the parameters a; , §; and o; were estimated
using Markov Chain Monte Carlo (MCMC) (Karandikar, 2006; Zobitz et
a.,l 2011; Nemeth et al., 2021) with the No-U-Turn Sampler (NUTS)
algorithm (Nishio and Arakawa, 2019; Alawamy et al., 2022). From the
posterior estimates, the expected temporal trajectories of each land use

class were reconstructed, including 95 % credible intervals:

Y.y + 196 * (V™) Equation (9)

These trajectories provided a probabilistic quantification of long-
term trends in LUCC categories, enabling robust inferences on land
use transitions within environmentally sensitive areas.

2.3.2.3. Association with landslide areas. To elucidate the relationship
between land use dynamics and landslide occurrences, a comprehensive
dataset of landslide locations within the municipality of Petrépolis was
compiled. For each location, the corresponding LULC class was extracted
for the years 1985, 2012, and 2022, enabling a detailed assessment of
land cover transitions over time in landslide susceptible areas. The
aggregate area occupied by natural vegetation, comprising forest, other
forest types, and natural vegetation classes, was computed for each
point, and the magnitude of vegetation loss between consecutive periods
(1985-2012 and 2012 to 2022) was quantified.

Transition matrices were generated to quantify the number of points
transitioning between LULC classes during each temporal interval,
providing a nuanced depiction of LUCC dynamics within landslide-
prone areas. Furthermore, relative landslide risk was estimated for
each class as the proportion of points experiencing landslides relative to
the total number of points classified within that category. To visually
represent these dynamics, Sankey diagrams were employed, in which
nodes correspond to LULC classes at each time point, and links denote
the number of points undergoing transitions between classes. Node
colors were assigned according to LULC categories, while link colors
incorporated partial transparency to emphasize predominant transitions
without obscuring minor flows.

2.3.3. Socioeconomic damages estimation

The socioeconomic impacts of the extreme precipitation event in
Petrépolis (February 2022) were assessed using official data from the
S2iD and complementary municipal and state government sources. The
analysis was structured into two main components: human impacts and
economic impacts, both categorized and tabulated for clarity and cross-
verification. Human impacts were analyzed based on the officially re-
ported number of individuals affected, including those injured, dis-
placed, left homeless, or deceased. These figures were extracted from the
first official damage assessment (FIDE, 16/02/2022), which reflects data
collected within the first 24 h after the event. It is important to note that
this initial assessment likely underestimates the total human toll, as the
municipal civil defense later reported at least 240 fatalities through
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Fig. 3. Histograms of bias-corrected CPC and the HadGEM3-A model for the spatial maximum of the (a) Rx3day, (b) Rx30day, and (c) Rx60day.

media channels. Moreover, no estimates were available for the indirectly
affected population, which may be substantially higher than those
directly impacted.

Economic impacts were calculated based on official estimates of
losses and damages, converted from Brazilian reais (BRL) to United
States dollars (USD) using the average exchange rate for the year of the
event, as published by the Central Bank of Brazil (1 USD = 5.16 BRL).
The losses were classified into three categories: 1. Private economic
losses, primarily in the commerce/services and agriculture sectors, 2.
Public economic losses, including damages to urban cleaning services,
water supply, sewage, and healthcare infrastructure, and 3. Material
damages, notably to public infrastructure and private dwellings.

All monetary values were compiled into structured tables and cross-
verified with multiple governmental sources to ensure consistency and
accuracy. This disaggregation enabled the identification of the most
affected sectors and the proportional contribution of each loss category
to the total economic impact. Data limitations and uncertainties were
considered, especially regarding the temporal scope of data collection
and the unavailability of updated figures on long-term impacts.

3. Results
3.1. Event definition

The extreme precipitation event on February 15 was concentrated in
the southern portion of Petrépolis (Fig. 2), with accumulations
exceeding 100 mm. Petrépolis—a municipality in the state of Rio de
Janeiro situated in a high-relief area—has the windward slope of the
mountain range in its southern section, which is precisely where rainfall
was concentrated. The rest of the municipality and neighboring towns
recorded low totals, between 0 and 40 mm. Moreover, the 15th was the

only and most intense precipitation peak of the month, underscoring the
event’s highly concentrated nature in both space and time at the scales
analyzed.

3.2. Model validation

To validate the HadGEM3-A model, we compared the modeled pre-
cipitation with the observational CPC data from 1981 to 2013. We found
a positive model bias of approximately 90, 160, and 245 mm for Rx3day,
Rx30day, and Rx60day, respectively, indicating an overestimation of
the precipitation metrics by the HadGEM3-A. After the bias correction
and application of the GEV distribution (Fig. 3), the two datasets
significantly increased their overlap, especially for the Rx30day and
Rx60day metrics, and the bias was reduced to almost zero. These results
indicate that the HadGEM3-A can satisfactorily be used in our study
area. However, we should notice that CPC indicates a few events in the
right tail of the distribution for Rx30day and Rx60day, which are not
present in the model, and might indicate that the model is not good at
capturing such extreme events.

3.3. Attribution analysis

We used ALL and NAT scenarios from HadGEM3-A to compute the
changes in likelihood of the event (Fig. 4). The distributions for the three
metrics (RX3day, RX30day, and RX60day) were all slightly shifted to the
right under the ALL scenario, suggesting higher precipitation values are
expected when considering human-induced climate change (Fig. 4).
Notably, the CPC precipitation threshold for the Rx60-day is also located
further right in the graph (Fig. 4c). This suggests that such extreme
rainfall events are relatively rare in both scenarios (ALL and NAT) but
become more probable to occur under human-induced climate change.
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Fig. 4. Histograms and GEV fitted distributions of the spatial maximum for the three metrics, (a) RX3day, (b) RX30day, and (c) RX60day, for ALL (blue) and NAT
(orange) scenarios from the HadGEM3-A model using CPC climatology for bias model correction. The thresholds from CPC for exceedance probability calculation in

each case are shown in the red line.
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Table 2

Attribution metrics for the extreme precipitation event in Camara Municipal de
Petropolis, 2022), based on the ALL and NAT scenarios, using the CPC observed
threshold. Probabilities and return periods were calculated using the fitted GEV
distribution. The 95 % confidence interval (CI) was obtained by the 2.5th and
97.5th percentiles using 1 000 bootstrap simulations. For the event threshold,
we show the value in millimeters and normalized by the 1981-2013 average.

Metric Rx3day Rx30day Rx60day
Estimate [95 % Estimate [95 % Estimate [95 %
cI] CI] cI]

Event threshold 118.16 mm 399.15 mm 763.34 mm

(mm) (0.84) (0.84) (0.99)
Probability Ratio 1.45 [1.31, 1.30[1.18,1.44]  1.71 [1.42, 2.05]
(PR) 1.60]

Attributable Risk 0.31 [0.24, 0.23[0.15,0.31]  0.41 [0.29, 0.51]
Fraction (FAR) 0.38]

ALL Return period 1.63 [1.54, 1.63 [1.54,1.73] 3.31 [2.97,3.72]
(years) 1.72]

NAT Return period 2.36 [2.18, 2.13[1.97,2.30] 5.66 [4.94, 6.67]
(years) 2.59]

On the other hand, the Rx3day and Rx30day CPC thresholds remained
near the distribution mean for both scenarios, suggesting that maximum
rainfall accumulations of this magnitude over these timescales are more
typical, i.e., less extreme.

The event thresholds for the Rx3day, Rx30day, and Rx60day were
118.16 mm, 399.15 mm, and 763.34 mm, respectively (Table 2). All
calculated PR were greater than one, indicating that anthropogenic
climate change has increased the likelihood of rainfall events above the
calculated thresholds. This increase is statistically significant at the 5 %
confidence level. The PR for the Rx3day and Rx30day were similar and
characterized by lower PR (1.45 and 1.30, respectively) when compared
to the Rx60day (1.71). These results indicate an increase of 45 % in the
likelihood of short-term extreme rainfall events (Rx3day) occurring,
which are commonly associated with landslide triggers, and a 71 %
increase for the long-term rainfall events (Rx60day), highlighting the
influence of antecedent conditions in landslide susceptibility.

The FAR results similarly show that the damage caused by this event
can be attributed to anthropogenic climate change by 31 % (0.31) for the
Rx3day, 23 % (0.23) for Rx30day, and 41 % (0.41) for Rx60day. Despite
FAR having limitations, as it may not always express the non-linear
relations between the hazard and the impact, it is a first estimate of
the attributable damage when we have complex relationships that are
not easily modeled (Perkins-Kirkpatrick et al., 2022; Carlson et al.,
2024). Furthermore, the return period indicates that in the ALL scenario
(considering anthropogenic climate change), the recurrence of an event
of this type would increase. While in the NAT scenario (natural forcing
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only), the return period is around 2.4-5.6 years, in ALL, this period is
1.6-3.3 years.

The comparison between the Rx3day and Rx60day (Fig. 5) demon-
strated that the density of points exceeding both the Rx3day and
Rx60day thresholds is higher in ALL than in NAT. To quantify whether
the difference between ALL and NAT was significant, we calculated the
PR accounting for the number of members above the threshold. The PR
value is 2.06 [1.46, 2.30], demonstrating that the probability of the
event in the Rx3day and Rx60day metrics in the climate change scenario
is approximately twice as high as in the natural scenario. We also
calculated the PR using a conditional probability, where the calculated
PR was conditioned on both Rx3day and Rx60day being higher than the
CPC threshold, instead of just one of them, as in Fig. 4, getting a value of
1.46 [1.17, 1.88].

3.4. LUCC analysis

3.4.1. Land use change in hill tops from 1985 to 2024

The analysis of average annual variation by period (Fig. 6a and
Table 3) reveals distinct dynamics across land cover categories in Hilltop
APPs. The “Pasture” land cover class consistently shows the highest
average annual losses, with a marked decline of —2.17 % during the
period 2015-2024, reinforcing its role as the main source of land-use
conversion. In contrast, “Urban” areas exhibit the most consistent
gains throughout the study period, peaking at 4.43 % per year in
1985-1994 and remaining positive thereafter, though at lower rates
(1.18 % per year in 2015-2024).

Among forest-related categories, “Forest Formation” maintains small
but steady positive growth across all periods, ranging from 0.19 % to
0.67 % per year, while “Forest Plantation” records a sharp increase only
in the most recent period (6.98 % per year in 2015-2024). “Herbaceous/
Shrubby Vegetation™ alternates between modest positive changes in
earlier decades (0.56-0.72 % per year) and losses in 2015-2024 (—0.48
% per year). “Other Forest Types” remain stable, with no significant
changes across periods.

Agricultural classes (Temporary and Perennial Crops) show negli-
gible average variations close to zero, suggesting limited expansion or
contraction. Water and “Other” categories, on the other hand, display
substantial fluctuations: “Water” registers losses in 1985-1994 (—0.20
% per year) and 1995-2014 (—1.44 to —1.63 % per year), followed by a
small recovery in 2015-2024 (0.35 % per year). The “Other” class,
which likely aggregates transitional or undefined covers, presents high
volatility, with a major reduction in 1985-1994 (—9.20 % per year),
subsequent recovery in 1995-2004 (4.07 % per year), and minor oscil-
lations in later periods.

Fig. 6b, which illustrates annual variation in absolute area (km?),

NAT
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Fig. 5. Joint density histogram of ensemble members for the maximum values of short-term (Rx3day) and long-term (Rx60day) precipitation metrics under the ALL
(left) and NAT (right) scenarios from the HadGEM3-A model. Colors represent the probability density of event occurrence in each grid cell, with blue tones for the
ALL scenario and orange to red tones for the NAT scenario. Red lines indicate the observed precipitation thresholds on the event day, based on CPC data, for both
Rx3day and Rx60day metrics. All values are normalized with respect to the 1981-2013 climatology.
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Fig. 6. Land use and land cover (LULC) dynamics within hilltop permanent preservation areas (APPs) in Petropolis between 1985 and 2024; (a) Average annual
percentage change of land use classes by period (1985-1994, 1995-2004, 2005-2014, and 2015-2024) and (b) Annual net gain and loss in area (km?!) of land use
classes for the entire period of analysis (1985-2024).

Table 3

Average annual percentage change of land use and land cover (LUCC) classes in hilltop APPs, Petrépolis, 1985-2024.
Period Forest Forest Herbaceous/Shrubby Other Forest Pasture = Temporary Perennial Urban  Water  Other

Formation Plantation Vegetation Types Crops Crops

1985-1994  0.67 0.00 0.56 0.00 —0.09 0.00 0.00 4.43 -0.20 -9.20
1995-2004  0.33 0.00 0.72 0.00 —0.22 0.00 0.00 1.93 -1.63 4.07
2005-2014  0.30 0.00 0.63 0.00 -1.39 0.00 0.00 0.94 -1.44  -0.92
2015-2024 0.19 6.98 —0.48 0.00 -2.17 0.00 0.00 1.18 0.35 0.98

highlights strong interannual variability, especially for pastures, which
alternate between pronounced gains and losses over the decades. In the
late 1990s and early 2000s, pasture losses were particularly intense,

while earlier years occasionally recorded gains. Urban expansion ap-
pears as a persistent upward trend, though less variable than pasture
dynamics. Forest Formation and Herbaceous/Shrubby Vegetation
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exhibit relatively stable annual changes, corroborating the gradual but
steady gains identified in the period averages.

Overall, the results indicate that pasture contraction and urban
expansion are the dominant processes shaping land-use change in Hill-
top APPs. Forest Formation has shown moderate permanence with small
but consistent increases, while Forest Plantations emerge as a recent but
rapidly expanding land-use category. The pronounced interannual
variability, particularly in pastures and transitional classes, underscores
that, beyond clear long-term trends, isolated episodes of abrupt area loss
or gain significantly contribute to the dynamics of land-use change in
these protected landscapes.

3.4.2. Bayesian analysis by MCMC with the NUTS algorithm in hilltop
areas of Petropolis

The Bayesian analysis of LULC dynamics in hilltop APPs between
1985 and 2024 revealed heterogeneous trajectories across classes, with
some stability in natural vegetation but pronounced signals of land use
intensification and urban expansion. Forest Formation exhibited a slight
positive trend(slope = 0.08; 95 % HDI: 0.01-0.16), with a 96 % prob-
ability of increase (Fig. 7). The temporal trajectory confirmed modest
but continuous recovery (Fig. 8a), suggesting gradual reforestation or
regeneration in these areas despite the reduced obligations imposed by
the revised Forest Code.

Forest Plantations, in turn, showed the most robust expansion signal
(slope = 0.24; 95 % HDI: 0.11-0.36; P[increase] = 1.00), concentrated
in recent years. This sharp increase reflects the introduction of silvi-
cultural activities in APPs, highlighting the regulatory loopholes that
allowed productive uses even in environmentally sensitive zones. Her-
baceous/Shrubby Vegetation revealed a slight negative tendency (slope
= —0.08; 95 % HDI: 0.15-0.00; P[decrease] = 0.97), with its proportion
declining steadily over time (Fig. 8a). This reduction is consistent with
the replacement of degraded or transitional vegetation either by pas-
tures in earlier decades or by secondary forest regeneration in recent
periods.

Pastures displayed the strongest and most persistent decline (slope =
—0.66; 95 % HDI: 1.24-0.09; P[decrease] = 0.99; Fig. 7). Their pro-
portion fell sharply (Fig. 8a), with probabilities of decrease equal to one

2 Quote as of September 11, 2025.

across most years (Fig. 8b). This pattern indicates systematic replace-
ment of pastures by forest regrowth, plantations, or urban expansion,
evidencing a major restructuring of land uses in hilltop APPs.

Temporary Crops showed high uncertainty, with slope estimates
overlapping zero (slope = 0.05; 95 % HDI: 0.12-0.38), and posterior
probabilities close to equilibrium (P[increase] = 0.52; Fig. 7). The
temporal evolution (Fig. 8a) highlighted oscillations rather than
consistent growth, reflecting short-term agricultural strategies and
opportunistic use of restricted lands. Perennial Crops presented a weak
tendency toward decline (slope = —0.09; 95 % HDI: 0.23-0.04; P
[decrease] = 0.84), confirmed by their progressive reduction in the
landscape (Fig. 8a). This trend suggests substitution by more profitable
annual crops or urban land uses.

Urban areas presented the most unequivocal growth trend (slope =
0.19; 95 % HDI: 0.14-0.24; P[increase] = 1.00; Fig. 7). Their temporal
trajectory shows continuous expansion (Fig. 8a), with probabilities of
increase equal to one throughout the entire period (Fig. 8b). This
consolidated trajectory underscores the anthropogenic pressure on
hilltop APPs and reveals that the revised Forest Code has not curtailed
urban occupation. Water areas and “Other” categories showed variable
but generally negative tendencies, with limited influence on broader
land-use dynamics.

Overall, the results demonstrate a dual dynamic: on one hand, Forest
Formation and Forest Plantations expanded, suggesting regeneration
and productive intensification; on the other, pastures declined mark-
edly, while urban areas grew without interruption. These findings
highlight that, despite the resilience of forest cover, hilltop APPs have
been increasingly shaped by human occupation, with regulatory
changes enabling both the persistence of natural recovery and the
consolidation of urban expansion.

3.5. Socioeconomic impacts on Petropolis

The extreme precipitation event in Petrépolis in February 2022
directly affected 1,078 people and caused more than USD 22 million of
economic losses, being divided into USD 14 million were private losses
(65.59 % of total), USD 1.8 million of public losses (8.28 %), and USD
5.7 million of material damage (26.13 %) (Table 4). The most affected
sector was the commerce/services, accounting for 65.36 % of all losses,
followed by dwellings, which represented 15.69 % of the total loss.
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These values show the disruptions of services and losses of private and
public properties, which can take weeks, months, or even years to be
fully recovered or become permanent losses.

Concerning the human impacts, officially, 78 people were reported
dead, 450 were sick or injured, and 450 lost their homes or had to be
displaced (Table 4). However, these data were collected from the
Municipal Civil Defense, which registers the impact at the moment of the
disaster, underestimating the total human impact since it may require
long-term assessment due to the local capacity to perform the necessary
work. The National Civil Defense reported that at least 240 people died.

4. Discussion

The extreme precipitation event during the austral summer of
2021-2022 in Southeastern Brazil, particularly across Minas Gerais, Rio
de Janeiro, and Sao Paulo states, was characterized by exceptional
accumulated rainfall over multiple temporal scales. CPC data indicated
maximum aggregated totals of approximately 225 mm for three days
(Rx3day), 510 mm for thirty days (Rx30day), and 850 mm for sixty days
(Rx60day). Moreover, bias adjustments were applied to correct sys-
tematic underestimation in the HadGEM3-A models (both ALL and
NAT), especially over the 30- and 60-day scales. Data normalization
against the 1981-2013 climatology (ratio of event value to historical

10

mean) enabled more consistent inter-scenario comparisons. Subse-
quently, the Generalized Extreme Value (GEV) distribution was fitted to
the indices, demonstrating good goodness-of-fit and enabling reliable
estimation of exceedance probabilities under both anthropogenic-forced
(ALL) and natural-only (NAT) scenarios.

Attribution studies focused on extreme rainfall events in Brazil
remain relatively limited, particularly in the Southeastern region, yet
they consistently indicate increased probabilities of extreme precipita-
tion across several areas of South America due to anthropogenic climate
change (De Abreu, 2019; Rudorff et al., 2021; Dalagnol et al., 2022;
Zachariah et al., 2022; das Junior, 2024; de Souza et al., 2024; Quevedo
et al., 2023, 2025). For instance, Rudorff et al. (2021) estimated up to a
30 % increase in flood probability in the Parnaiba River basin attribut-
able to global warming. Specifically in Southeastern Brazil, Dalagnol
etal. (2022) demonstrated that the extreme event affecting Minas Gerais
in 2020 became 70 % more likely due to anthropogenic influence. Also,
De Souza et al. (2024), in investigating the extreme rainfall event that
occurred in the Baixada Santista region (Sao Paulo), which was also
associated with widespread landslides, showed through the analysis of
two metrics — Rx60day (extreme 60-day accumulated rainfall), asso-
ciated with antecedent soil moisture conditions, and Rx3day (extreme
3-day accumulated rainfall), related to landslide-triggering rainfall —
that the event became more likely due to anthropogenic climate change.
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Table 4

Socioeconomic impacts as a consequence of the extreme precipitation event. The
economic losses show the most impacted sectors related to private economic
losses, public economic losses, and material damage. The human losses (number
of people) include the homeless and displaced, sick and injured, and deaths.

Economic impacts (USD)™"* Total’

Private Losses ¢ Commerce/services $ 14,425,575.00 $14,473,660.25
Agriculture $ 48,085.25

Public Losses® Urban cleaning $471,235.45 $1,827,239.50
Water supply $240,426.25
Sewage system $932,853.85
Health Care $182,723.95

Material Damaged Public Infrastructure $2,305,206.88 $5,767,344.88

Dwellings $3,462,138.00
Human impacts™"* Total®
Homeless and displaced” 450 1078
Sick and injured® 550
Deaths® 78

@ Source: FIDE, 16/02/2022.

b These data represent the preliminary damage survey up to 5:00 p.m. on 02/
16/2022 (first 24 h). FIDE does not specify what damages and losses were due to
the landslide. In the sheet, it is only described that the heavy rainfall caused
landslides, floods, and other consequences.

¢ Urban areas with affected populations: Quitandinha, Centro, Alto da Serra,
Mosela, Independeéncia, Estrada da Saudade, Sao Sebastiao, Morin, Castelanea,
Bairro Castrioto, Caxambu, Chdcara Flora, Corréa, Fazenda. Rural area: Cax-
ambu, Santa Isabel.

4 All values are expressed in USD (EUA currency) - Quote from February 13th,
2023.

¢ Number of people.

The Rx60day metric showed a 74 % increase in the probability of
occurrence, while Rx3day became 46 % more likely under anthropo-
genic forcings. Additionally, Lyra et al. (2018) indicated that climate
model projections show increases in the R95p and R99p indices across
mountainous areas that encompass our study area, which may
contribute to a higher frequency of mass movement events. Similar in-
ternational findings corroborate the pivotal role of climate change in
exacerbating disaster risks, with an increase in extreme precipitation
across most of Europe, for example (Christidis and Stott, 2022; Hu et al.,
2023).

These findings reinforce the conclusions of the latest IPCC Assess-
ment Report (AR6), which states that the Southeastern South America
(SES) region has experienced an estimated 19 % increase in extreme
precipitation events since 1950 (low confidence) (IPCC, 2021). This
upward trend is associated with a significant rise in the frequency of
landslides and flash floods (Castellanos et al., 2022) — events that have
led to a high number of fatalities in Brazil (high confidence) (Debortoli
et al., 2017; Haque et al., 2019; Fonseca Aguiar and Cataldi, 2021), as
exemplified by the 2022 disaster in Petrépolis, analyzed in this study.
Altogether, this body of evidence supports the hypothesis that global
warming has intensified both the magnitude of extreme rainfall and the
persistence of antecedent soil moisture, a critical combination that
amplifies the risk of landslides and flooding.

4.1. Variation in landslide damage of 2024

The dynamics of land use in landslide-prone areas of Petrdpolis
(Fig. 9) reveal an intensification of urban pressure over the last four
decades. The Sankey diagram (Fig. S1a) shows that, between 1985 and
2022, a substantial flow of areas previously occupied by pastures and
Forest Formation was converted into urban land. While Forest Forma-
tion and Other Forest Types maintained part of their extent, their rela-
tive contribution diminished as urban expansion accelerated,
particularly after 2012. This shift coincides with the revision of the
Brazilian Forest Code, which reduced restoration requirements in APPs
and allowed the consolidation of pre-existing occupations on steep
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slopes, thereby facilitating the permanence and growth of settlements in
high-risk zones.

The bar chart (Fig. S1b) confirms that, in absolute terms, urban areas
expanded markedly and became the dominant land-cover class by 2022.
In contrast, pastures declined, and forest-related categories remained
relatively constant in extent but lost proportional relevance. The pro-
portional analysis (Fig. S1c) reinforces this interpretation: while urban
land increased sharply, forests and natural vegetation decreased in
relative share, reflecting a structural reconfiguration of land cover in
landslide-prone environments.

These results highlight that urbanization is the primary driver of
LUCC in Petrépolis, exacerbating risks associated with slope instability.
The decline in the relative importance of forests and natural vegetation
implies a reduction in protective ecosystem services, potentially inten-
sifying erosion and slope failure. Agricultural uses, including temporary
and perennial crops, remained marginal and did not significantly in-
fluence recent LULC dynamics.

These results indicate that urbanization is the main driver of LUCC in
landslide-prone zones, amplifying risks associated with slope instability.
The reduction in the relative contribution of forest and natural vegeta-
tion implies a loss of protective cover, which could exacerbate soil
erosion and slope failure. Meanwhile, agricultural uses remain marginal
and relatively stable, suggesting that they are not central to recent LULC
dynamics in these high-risk environments. Overall, the findings
emphasize the importance of integrating urban growth control and slope
stabilization policies in Petropolis. The persistence of forest classes
suggests potential for ecosystem-based risk reduction, but the un-
checked expansion of urban areas into steep and fragile terrains,
particularly after the 2012 regulatory changes, poses significant chal-
lenges for disaster risk management.

Overall, the findings underscore the urgent need to integrate urban
growth control with ecosystem-based approaches to slope stabilization.
The persistence of forest classes points to a residual potential for
ecological restoration and risk mitigation. However, the unchecked
expansion of urban areas into steep and fragile terrains—particularly
after the 2012 regulatory changes—represents a major challenge for
disaster risk governance in Petrépolis.

4.2. Implications for disaster Prevention and adaptation policies

Historical LUCC have directly influenced disaster recurrence in
Petrdpolis. Three main classes were identified: natural formations,
agricultural lands, and urban zones. Although there has been an
aggregate increase in natural vegetation—likely linked to reforestation
initiatives (Cortes, 2017; Quevedo et al., 2023)—areas affected by
landslides disproportionately encompass agricultural and urban uses.
This aligns with evidence indicating that deforested areas for cultivation
(Mugagga et al., 2012) or urban development (Vuillez et al., 2018; Liu
et al., 2021) are more susceptible to landslides.

LULC transformations alter soil physical properties such as infiltra-
tion and cohesion, thereby impacting slope stability (Lehmann et al.,
2019). Native vegetation enhances stability via root reinforcement
(Masi et al., 2021; Parra et al., 2021), whereas replacement by crops
increases vulnerability over time, especially post root decay (Soma et al.,
2019).

Furthermore, lack of protection for hilltops—classified as APPs
under the Brazilian Forest Code—compromises environmental integrity
and exacerbates slope instability. Legal relaxations enacted in 2012 and
2014 (Magdalena et al., 2022) exempted municipal authorities from
safeguarding these zones, contributing to altered runoff patterns and
sediment dynamics.

The 2022 disaster resulted in 78 officially confirmed fatalities and
economic losses exceeding USD 22 million, approximately 7.5 % of
Petrépolis’ municipal budget (Brasil, 2023). Unofficial estimates suggest
even higher impacts (240 deaths, 1,178 displaced), but data in-
consistencies fuel public distrust and hinder planning. Long-term
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Fig. 9. Land use and land cover (LULC) dynamics in landslide-prone areas of Petropolis. (a) Sankey diagram illustrating transitions among LULC classes between
1985, 2012, and 2022. (b) Distribution of total area (km?) occupied by each class in the three time points. (c) Relative share of each land cover class in landslide-
prone zones, highlighting proportional changes across time.

repercussions—psychological trauma, food insecurity, and cultural capacity to simulate anthropogenic (ALL) and natural-only (NAT) forc-
heritage loss—are frequently unrecorded in platforms like S2ID, ing scenarios, it has notable constraints. The atmospheric-only config-
exposing institutional fragilities in national risk management. uration features limited surface coupling, restricting representation of
coupled oceanic and terrestrial feedback such as local evapotranspira-
tion and soil moisture persistence, which are vital processes to the
4.3. Limitations of the HadGEM3-A model and FAR metric 2021-2022 events. Also, the horizontal resolution of the model
(approximately 60 km) is coarse to effectively represent the rainfall that
While HadGEM3-A is widely employed in attribution studies for its
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triggered the specific landslide; however, it still can reproduce the
regional to large-scale conditions for precipitation that led to the event.

Moreover, the FAR metric, while intuitive, has methodological lim-
itations. Its estimates depend on the choice of thresholds, the statistical
distribution fit (here, GEV), and data quality. Small uncertainties in
distribution tails can substantially alter attribution values. FAR also does
not differentiate between distinct physical drivers of risk increase—such
as temperature rise versus changes in atmospheric circulation pat-
terns—and thus lacks mechanistic diagnostic power. To strengthen
inference, triangulation with complementary metrics, such as the Risk
Ratio (RR), and high-resolution coupled model experiments incorpo-
rating key local and regional processes, is recommended.

5. Conclusions

This study presents the first attribution analysis of the February 2022
extreme precipitation event that triggered multiple landslides in Pet-
répolis, Brazil. Trends in land use and land cover changes (LUCC) and
socioeconomic impacts were also quantified. Anthropogenic climate
change increased the likelihood of this event by at least 45 % (Rx3day)
and 71 % (Rx60day), reducing the recurrence intervals from 2.36 to 1.63
years (short term) and 5.66 to 3.31 years (long term).

Although forest cover has increased, critical areas such as hilltops
remain highly converted to agriculture (>40 %), increasing landslide
susceptibility and necessitating targeted protection. The socioeconomic
impact includes over USD 22 million in losses and more than 1,000
people affected. Petrépolis has a long history of disaster events, with
major incidents driving improvements in civil defense. However, the
2022 event exposed ongoing gaps in preparedness intensified by climate
change. This study highlights the need for further event attribution
research and comprehensive impact assessments to inform effective
climate adaptation and disaster risk reduction policies.
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