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Abstract 

Background  Parkinson’s disease (PD) is associated with gut microbiome shifts. These shifts are mainly described 
at taxonomic level, but the functional consequences remain unclear. To obtain insight into the functional disruptions 
of the gut microbiome in PD, we used an integrated multi-omics approach, comparing gut microbiomes of individu‑
als with PD, prodromal PD, and healthy controls.

Results  Meta-metabolomics, the most discriminatory and robust omics level, was selected to Guide the analysis. 
We identified 11 metabolites that were differentially abundant between the groups, among which β-glutamate 
was increased in PD and prodromal PD, and correlated with the transcriptional activities of Methanobrevibacter smithii 
and Clostridium spp. We identified decreases in transcripts, but not in gene abundances, related to glutamate metabo‑
lism, bile acids biosynthesis, chemotaxis, and flagellar assembly in PD, particularly in keystone genera such as Rose-
buria, Agathobacter, and Blautia. Our findings, integrated into the Expobiome map, reveal multifactorial microbiome 
alterations which converge with PD pathways.

Conclusion  Our study highlights the apparent disruption of microbial gene expression in PD, particularly in genes 
associated to mobility. Moreover, we showcase the importance of investigating the gut microbiome’s functional 
dimensions to better resolve microbiome-host interactions in health and disease.
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Background
Parkinson’s disease (PD), a neurodegenerative disease 
impacting movement due to dopaminergic neuron loss, 
is the second most prevalent neurodegenerative disease 
worldwide [1]. Individuals with PD are often character-
ized by an increase in gut permeability, inflammation, 
and constipation which, together, suggest a link between 
the gut microbiome and PD etiology [2–4]. This potential 
link is supported by numerous studies reporting differ-
ences in the gut microbiome structure of individuals with 
PD compared to healthy individuals [5–11]. These find-
ings have been further confirmed by recent meta-analy-
ses [12, 13]. Together, the studies highlight a decreased 
abundance for the genera Roseburia, Blautia, Butyricoc-
cus, and Faecalibacterium in PD while Methanobrevi-
bacter, Akkermansia, Lactobacillus, Bifidobacterium, 
and Hungatella are typically enriched [5–13]. Simi-
lar changes in idiopathic REM sleep behavior disorder 
(iRBD), a prodromal stage of PD [14], have been reported 
[7, 10]. Moreover, the taxa decreased in PD are known 
producers of short-chain fatty acids (SCFAs), which cor-
respondingly have also been found to be decreased in 
concentration in fecal samples of PD individuals [6, 15, 
16].

In addition to SCFAs, several microbiome-derived 
metabolites such as bile acids (BAs), glycine, and glu-
tamate have been associated with PD, either in plasma, 
serum [17, 18], or stool [19–21]. BAs are produced by 
the host and metabolized by the gut microbiome into 
secondary bile acids with different cytotoxic capacities 
but also immunomodulatory capacities [22, 23]. Gluta-
mate is the major excitatory neurotransmitter and exerts 
toxic activity on neuronal cells [24]. Its levels in serum 
and cerebrospinal fluid have been reported as either 
increased [25, 26], not different [27], or decreased [28], 
but decreased in the gut in PD compared to healthy con-
trols (HC) [29].

Altogether, alterations of the gut microbiome are 
linked to PD, but less is known about iRBD or other pro-
dromal stages of the disease. Moreover, most of the asso-
ciations between PD and the gut microbiome are based 
on taxonomic and metabolomic analyses. The resulting 
data, although insightful, lacks functional and systemic 
information that could better capture the complex cross-
talk between the gut microbiome and the host in the con-
text of PD. To obtain such information, we performed an 
integrated multi-omics study on a cross-sectional cohort 
comprised of individuals with iRBD and PD alongside 
HC. Metagenomics (MG), metatranscriptomics (MT), 
metaproteomics (MP), and meta-metabolomics (MM) 
were used to characterize taxonomic (taxMG, taxMT, 
taxMP) and functional (funMG, funMT, funMP, MM) 
differences between HC, iRBD, and PD gut microbiomes. 

We identified substantial differences in gut microbiome 
functions and metabolites between the groups, including 
an increase in β-glutamate levels in PD that were related 
to a dysregulation of glutamate-related gene expression. 
Alterations in glutamate-related genes were linked with 
chemotaxis and flagellar assembly pathways, for which 
we identified strong and distinct taxonomic differences 
in transcription between PD and HC. Collectively, our 
data highlight the importance of multi-omics approaches 
for the identification of microbiome-mediated effects on 
neurological, and more broadly, complex human diseases 
involving host-microbiome interactions.

Results
Study cohort and integrated multi‑omics pipeline
Our initial set of subjects consisted of 50 individuals with 
PD, diagnosed according to United Kingdom Parkinson’s 
Disease Society Brain Bank (UKPDSBB) clinical diag-
nostic criteria [30], and 30 people with polysomnogra-
phy-confirmed iRBD as well as 50 healthy control (HC) 
subjects. The data from 4 PD and 3 iRBD as well as 1 
HC were subsequently excluded (see the “Methods” sec-
tion), leading to a final data set of 46 PD, 27 iRBD, and 
49 HCs (Fig. 1). The subjects in the three groups were of 
similar age but had slightly different gender distributions, 
with males overrepresented in the iRBD and PD groups 
(Table 1, Fisher test, p = 0.004), as is typical for these con-
ditions [31, 32]. Constipation, a prevalent non-motor 
symptom of PD [33], was also more common in the iRBD 
and PD groups compared to HC (Fisher test, p < 0.001).

To allow integrated and paired sample analysis, we 
used our previously published Integrated Multi-omics 
Pipeline for data integration and analysis (Fig.  1) [34]. 
In short, metagenomic and metatranscriptomic reads 
were co-assembled in a first round, followed by a sec-
ond round during which remaining reads that did not 
co-assemble were retained and mapped against the co-
assembled contigs from the first round. Contigs were 
then used to call genes and perform functional annota-
tions using multiple reference databases using the Mantis 
tool [35]. Predicted proteins from the hybrid assembled 
contigs were used to create theoretical mass spectra and 
matched against actually measured metaproteomic mass 
spectra. We chose to use the KEGG database to integrate 
metabolic pathways and connect the meta-metabolomic 
data with the other omics datasets.

Microbiome function is altered in PD
Alpha diversity comparisons revealed no statistically 
significant differences between the three groups when 
considering taxMG, taxMT, funMG, taxMP, and MM 
(Fig.  2A, Mann–Whitney test, p > 0.05). However, 
funMT and funMP showed a statistically significant 
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increase in alpha diversity in PD compared to HC and 
iRBD compared to PD, respectively (Fig.  2A, Mann–
Whitney test, p < 0.05). We then analyzed beta diver-
sity for all omics layers. TaxMG, funMG, and taxMP 
revealed no statistically significant differences between 
the three groups (Extended Fig. 1A, 1B, and 1 C, PER-
MANOVA, p = 0.2, 0.8 and 0.35, respectively), while 
taxMT, funMT, MM, and funMP showed a statisti-
cally significant separation of the groups, especially for 
funMT (Fig.  2B–D, Extended Fig.  1 D, PERMANOVA 
p = 0.001, 0.001, 0.005, and p = 0.008, respectively). 
Permutation analysis revealed that funMT, funMP, 
and MM resulted in the best separation of the three 
groups while taxMG, funMG, and taxMP exhibited 
the lowest separation capacity (Extended Fig. 1E, PER-
MANOVA R[2] of 0.043, 0.041, 0.038, 0.018, 0.014, and 
0.017, respectively). Pairwise comparisons using PER-
MANOVA demonstrated that most differences were 
found between either HC and PD or HC and iRBD, with 
only funMP and funMT showing statistically significant 
differences between PD and iRBD (Fig.  2E). Based on 
these differences, we next assessed how the confound-
ing factors sex, age, and constipation may impact beta 
diversity. Sex and constipation were found to have a 
significant association with beta diversity for taxMT 
and funMT, while age was associated with taxMG 

(Fig. 2F). Importantly, MM and funMP were not found 
to be associated with any confounders (Fig. 2F).

We next looked at differential abundances of taxa to 
highlight the compositional differences between the 
groups. No significant differences were found in taxMG 
at the genus and species levels between any of the three 
groups (Fig.  2G and Extended Fig.  2A q > 0.05, SIAM-
CAT). For taxMT, SIAMCAT highlighted an increase in 
Alistipes obesi and Ruthenibacterium lactatiformans in 
iRBD vs HC, Roseburia incertae sedis, Blautia massilien-
sis, B. obeum, and Clostridium sp. were decreased in PD 
vs HC, and no significant differences were found between 
PD and iRBD (Fig.  2G, q < 0.05, q < 0.05, and q > 0.05, 
respectively). We identified the genus Eubacterium 
as being decreased in PD compared to HC in taxMT 
(Extended Fig.  2A, q < 0.05, SIAMCAT). The ALDEx2 
algorithm highlighted only Roseburia incertae sedis to be 
depleted in PD after FDR correction (Extended Fig. 2B).

Subsequently, we investigated overall differences in 
gene abundances and expressions of the microbial genes 
linked to the observed differences in metabolites using 
the KEGG database. We observed no statistically sig-
nificant differences in gene abundances between HC vs 
PD and HC vs iRBD (funMG, Extended Fig. 2C and 2D, 
q > 0.05). Gene expression highlighted one Transcript 

Fig. 1  Schematic representation of the analytical workflow. Metagenomic (MG), metatranscriptomic (MT), metaproteomic (MP), 
and meta-metabolomic (MM) data were generated for each sample. Pre-processed MG and MT reads were sample-wise assembled using 
the iterative hybrid assembly pipeline of the Integrated Meta-omics Pipeline (IMP). After assembly, taxonomic annotation was performed 
at the read and contig levels, followed by gene prediction and functional annotation on the assembled contigs. Expressed proteins (MP) were 
identified using the predicted genes from the MG/MT hybrid assembly. For these three omics levels, we generated taxonomic and functional 
profiles that are referred to as taxMG, taxMT, and taxMP for the taxonomic level, and funMG, funMT, and funMP for the functional level, respectively. 
Community-based networks were reconstructed from gene annotations. Finally, the meta-metabolome (MM) was integrated with the other omics 
data at the network level. The integrated multi-omics analysis was performed while accounting for the available clinical metadata
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Fig. 2  Microbiome structure is altered in PD and iRBD vs HC. A Shannon indices for different omics levels comparing healthy controls (HC), 
idiopathic REM sleep behavior disorder (iRBD), and Parkinson’s Disease (PD). p-values are based on pairwise Mann–Whitney tests. Non-metric 
multidimensional scaling (NMDS) based on Bray–Curtis dissimilarity for taxonomic annotation of metatranscriptomic (taxMT) (B) and functional 
metatranscriptomic (funMT) data (C). D Principal component analysis (PCA) for meta-metabolomic (MM) data based on untargeted, targeted 
SCFA, and targeted bile acid abundances. All three Quantifications have been sum-normalized before any merging. PCA was then computed 
on the merged matrix. All tests are based on PERMANOVA with 1000 permutations. E Pairwise PERMANOVA between groups for each omics level. 
F PERMANOVA analysis for “Age,” “Sex,” and “Constipation” for each omics level. Size of rectangle is based on − log10(p-value) and color on R[2] value. 
G Differential abundance analysis using SIAMCAT for taxMG and taxMT. Values are pseudo fold changes for pairwise comparisons between groups 
and size is based on − log10(p-value). Shape is based on significance before and after FDR correction 
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upregulated in HC vs iRBD, but 145 transcripts upregu-
lated in HC vs PD (funMT, Extended Fig.  2E and 2 F, 
q < 0.05 and q > 0.05, respectively). No genes or tran-
scripts were significantly higher in iRBD or PD compared 
to HC (Extended Fig. 2C–F, q > 0.05). Finally, we found no 
statistically significant differences in gene or transcript 
abundances between PD and iRBD (data not shown).

Altered metabolome of PD patients is linked to microbial 
abundance and activity
Considering that MM is associated with PD and iRBD 
but not with confounders, we chose MM as a robust 
guide for further statistical comparisons. In addition, 
MM can be considered as one of the final outputs of 
microbial activity and an important driver of microbial 
effects on the host. For this purpose, we removed uni-
dentified compounds from the statistical testing, because 
we cannot link microbial genes with them. Our analyses 
revealed 11 statistically significantly different compounds 
between the groups, including alanine, β-glutamate, 
serine, and glycerol (Fig.  3A, q < 0.05). We found a sig-
nificant increase in isovalerate, isobutyrate, and valerate 
in PD patients (Fig.  3A, q < 0.05) but no differences for 
butyrate, acetate, formate, propionate, or total SCFAs 
(data not shown). Primary bile acids glycocholic and che-
nodeoxycholic acids were decreased in PD and in iRBD 
and PD, respectively (Fig.  3A, q < 0.05). Glutamate was 
not differentially abundant between the three groups 
(data not shown). To unravel the effect of confounding 
factors, we measured the variance explained by each fac-
tor on the compounds’ abundances. Diagnosis explained 
more variance than constipation or sex (Extended 
Fig. 3A–C, diagnosis mean = 4.18%; median = 3.33%, sex 
mean = 2.08%, median = 1.3%; constipation mean = 3.7%, 
median = 2.68%). We found only malic acid as being 
significantly associated with sex and no compound to 
be associated with constipation (Extended Fig.  3A–C, 
q < 0.05, q > 0.05). Based on the PERMANOVA results 
and variance analysis, the differences observed in MM 
were most strongly associated with the disease status 
and, importantly, not with the confounding factors.

We next checked correlations between metabolite 
abundances and microbial abundances alongside activi-
ties. Metabolite abundances were linked to microbial 
abundances for taxMG and taxMT. TaxMG exhibited 
fewer significant correlations with metabolite abun-
dances compared to taxMT, except for Methanobrevi-
bacter smithii and Clostridium sp. CAG:138, which were 
positively correlated with β-glutamate and isovalerate 
levels (Extended Fig.  3D, Spearman test, q < 0.01). Con-
versely, Prevotella copri and Faecalibacterium prausnitzii 
abundances were negatively correlated with β-glutamate 
levels, while Roseburia hominis was positively correlated 

with glycerol levels (Extended Fig.  3D, Spearman test, 
q < 0.001). Additionally, for taxMT, we noted positive cor-
relations with isovalerate and isobutyrate for A. mucin-
iphila and Clostridium sp. CAG:448 (Fig. 3B, q < 0.01 and 
q < 0.05, respectively). Methanobrevibacter smithii was 
associated with β-glutamate, isovalerate, and isobutyrate 
(Fig.  3B, Spearman test, q < 0.01, q < 0.001, and q < 0.05, 
respectively), while F. prausnitzii, Blautia massilliensis, 
Blautia obeum/wexlerae, Blautia obeum, and Clostrid-
ium spp. were negatively correlated with β-glutamate 
(q < 0.05, Spearman test, Fig. 3B). In addition, R. hominis, 
Roseburia spp., and Clostridium spp. were positively cor-
related with glycerol (Fig. 3B, Spearman test, q < 0.05). Of 
note, while assessing the correlations at the genus level, 
we noted negative correlations between Eubacterium and 
isovalerate, isobutyrate, and valerate (taxMT, q < 0.05, 
Spearman test, data not shown). Strikingly, A. mucin-
iphila, some Clostridium spp., and M. smithii were posi-
tively correlated with compounds found to be elevated 
in PD and iRBD (β-glutamate, isovalerate, and isobu-
tyrate) while R. hominis, F. prausnitzii, Blautia species, 
and P. copri were negatively correlated with these same 
compounds and positively correlated with compounds 
increased in HC (glycerol and CDCA). This revealed 
groups of bacteria being either  linked with  individuals 
with PD and iRBD or HC (Fig. 3B).

Expression of genes linked to glutamate, bile acids, 
and flagella is dysregulated in the iRBD and PD gut 
microbiome
To reinforce the results of the differential analysis, we 
compiled all the orthologs related to the metabolites 
which were statistically significant between the three 
groups. More specifically, we used regular expression 
matching to retrieve all orthologous genes that are 
linked to the abovementioned metabolites in KEGG. 
Because the KEGG database only has one metabo-
lite entry annotated as β-glutamate, we selected all 
glutamate-related genes instead (linked to both L- 
and D-glutamate). We found no statistically signifi-
cant differences in gene abundances after correction 
between any of the three groups (funMG, Fig.  3C and 
Extended Fig. 4A, q > 0.05, Mann–Whitney test). How-
ever, we did find a decrease in transcripts in PD for 
the three known glutamate synthase genes (funMT, 
GLT1:K00264, GLU:K00284, and gltB:K00265, Fig.  3C, 
Mann–Whitney test, q = 0.004, q = 0.004, and p = 0.006, 
respectively) alongside a decrease in cheB in PD 
(K03412, protein-glutamate methylesterase/glutami-
nase, Fig.  3C, q < 0.01, Mann–Whitney test). Further-
more, we found an increase in cofE, mainly encoded 
by Archaea and involved in methanogenesis (K12234, 
coenzyme F420-0:L-glutamate ligase, Fig.  3C, q < 0.05, 
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Mann–Whitney test). In addition, we found a decrease 
in BA-related transcripts in PD while transcripts 
related to serine and isovalerate were increased in PD 
(Fig.  3C, q < 0.05). HC vs iRBD comparisons revealed 
significant differences in alanine-related transcripts 

but not for the other metabolites (Extended Fig.  4A, 
q < 0.05). β-glutamate abundance was negatively cor-
related with the transcripts of the three glutamate 
synthases and carbamoyl-phosphate synthases, but 
positively correlated with methyl aspartate mutase, 

Fig. 3  Altered metabolome is linked with microbial activity and transcripts. A Metabolite relative abundances for significant compounds. 
Metabolomic data from untargeted meta-metabolomics, targeted SCFA, and targeted bile acid analyses were combined after normalization 
by sum for each. Dunn test, FDR corrected. B Spearman correlation between taxMT at the species level with statistically significant metabolites. 
All p-values are FDR corrected. Genera are selected based on differential abundance or relevance in the literature. C Absolute log2 fold change 
between HC and PD for funMG and funMT associated to significant compounds. Dots are scaled by the − log10(p-value), colorized, and shaped 
according to p-value significance before (triangle shape) and after FDR correction (round shape). D Chemotaxis and flagellin assembly pathway 
gene expression and Shannon index fold change between HC and PD group. Dots are colorized and shaped according to p-value significance 
before (triangle shape) and after FDR correction (round shape). Wilcoxon test, FDR corrected. E Functional diversity comparison for funMT KOs 
found to be significantly different in pairwise differential analyses. Shannon indices were calculated for each KO for funMG and funMT. Only genes 
significantly different after FDR correction on a Kruskal–Wallis test are plotted. p-values are calculated using Dunn post hoc test
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methylamine-glutamate N-methyltransferase, and glu-
taminase (Extended Fig. 4B, Spearman correlation test, 
q < 0.01).

Since cheB is part of the chemotaxis and flagellar 
assembly (FA) KEGG pathways, we further inspected 
these pathways to assess the microbial capacity for 
motility. We found no statistically significant differ-
ences in gene abundances (funMG) for either flagellar 
assembly or chemotaxis pathways between the three 
different groups (data not shown, q > 0.05). In contrast 
however, based on funMT, the chemotaxis pathway 
(14/26 Transcripts decreased in PD, 0/26 transcripts 
increased, Fig.  3D, q < 0.05) and the FA pathway (25/46 
Transcripts decreased in PD, 1/46 transcripts increased 
in PD, Mann–Whitney, Fig.  3D, q < 0.05) were strongly 
downregulated in PD. In addition, we found transcripts 
decreased in both PD and iRBD for five transcripts 
belonging to chemotaxis and eight belonging to flagella 
assembly (q < 0.05, Mann–Whitney, Fig.  3D). Moreo-
ver, eight transcripts showed a decrease in alpha diver-
sity for chemotaxis and flagellin assembly pathways 
(p < 0.01, Mann–Whitney, Fig. 3D). Finally, we observed 
a decrease in alpha diversity for GLU, flagellar assem-
bly transcripts (fliJ, fliQ, and fliC), and cheD in PD com-
pared to the other two groups (Fig.  3E, q < 0.05, Dunn 
test) while pilD and aaaT were elevated in iRBD (Fig. 3E, 
Dunn test, p < 0.05).

Flagellin and chemotaxis are differentially expressed 
depending on taxonomy and disease status
We next assessed the taxa expressing secondary bile 
acid biosynthesis (SBAS), FA, and chemotaxis pathway 
genes. While taxonomically resolving SBAS expression 
at the genus level, we found an interesting divergence 
with the differential analysis at the transcript level pre-
sented in Fig. 3C. We previously found that baiCD, baiE, 
baiB, baiH, and baiF were all significantly decreased in 
PD, while baiA and baiN were not (Fig.  3C). When we 
resolved taxonomic information of these functional 
genes, we found only statistically significant differences 
in transcripts for baiA and baiN (17 after FDR correc-
tion and 31 before correction), but not for the other tran-
scripts previously found to be differentially expressed 
(q < 0.05 and p < 0.05, respectively, Extended Fig. 5A). We 
found a significant decrease in the expression for baiN 
in PD for Blautia, Fusicatenibacter, Choladocola, Oli-
verpabstia, and Ruminococcus genera and an increase in 
expression for baiA encoded by the Lawsonibacter genus 
in PD (q < 0.05, Mann–Whitney test, Extended Fig. 5A).

When resolving the taxonomic expression of FA and 
chemotaxis genes, we noted a differential expression 
according to disease status and taxonomy. More specifi-
cally, we identified different clusters of taxa expressing 
FA and chemotaxis genes. The first cluster was composed 
of microbes expressing these genes principally in PD, 

Fig. 4  Flagellar assembly and chemotaxis gene expressions according to taxonomy. Top 50 genera expressing flagellar assembly and/
or chemotaxis-related genes are depicted by the mean of transcripts per million per disease status. Values are depicted for each genus 
and genes on the left panel and the sum of all genes per genus on the right panel with a square root transformation. Genera are clustered based 
on the log2FC(HC/PD) for each gene using a Canberra distance and hclust() using “ward.D2” method. Family taxonomic level is depicted on the left
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including Ruminiclostridium, Enterocloster, Dysosmo-
bacter, and Butyvibrio. A second cluster was composed 
of microbes expressing these genes principally in HC, 
including Roseburia, Agathobacter, and Eubacterium 
(Fig.  4). A third cluster was composed of taxa express-
ing FA and chemotaxis genes almost exclusively HC, 
including Flavonifractor, Succinivibrio, Eisenbergiella, 
or CAG-603 (Fig. 4). Strikingly, we found a fourth clus-
ter composed of taxa expressing flagellin or chemotaxis 
genes almost exclusively in PD, including Escherichia, 
Cellulosilyticum, Citrobacter, or Eisenbergiella. We sub-
sequently investigated the expression levels of genes of 
the extracellular parts of flagella in the cluster wherein 
Roseburia and most Lachnospiraceae were located (clus-
ter 2). Overall, we found a decrease in flagellin (fliC), fila-
ment cap (fliD, fliS), and hook-filament junction genes 
(flgK, flgL) in PD or iRBD for Roseburia, CAG-115, and 
Agathobacter genera (Extended Fig.  5B, p < 0.05, Dunn 
test).

Metabolites and metabolites‑related genes associated 
with PD are central to the microbial ecosystemic 
metabolism
To quantify the importance of glutamate derivatives and 
related genes in microbial metabolism, we next recon-
structed microbiome-wide metabolic networks as pre-
viously described [36]. We mapped genes related to the 
compounds identified earlier as significantly different 

between the different groups. The metabolic network 
highlighted glutamate-related genes as compact and 
placed in the middle of the network while glycerol was 
more scattered across the network (Fig.  5A). Strikingly, 
glutamate-related genes formed a subnetwork central to 
the overall network with a betweenness centrality meas-
ure (BC) of 93.0 compared to 0.0009 for the whole com-
munity (Fig.  5B). Crucially, L-glutamate was the most 
central non-cofactor metabolite in the network and 
2-oxoglutarate (L-glutamate derivative) was the second 
most central metabolite (Fig.  5C). Considering this, it 
is apparent that glutamate and glutamate-related genes 
are central to microbiome metabolism and that modifi-
cations in the levels of these metabolites or transcripts 
reflect profound modifications of microbial metabolism.

Multi‑omics factor analysis validates β‑glutamate 
and flagella links with PD
To validate our findings, we used an unsupervised 
method with the Multi‐Omics Factor Analysis (MOFA). 
The resulting MOFA model included 10 factors (F1-
10 hereafter) whereby F1 showed a strong associa-
tion with disease status (p < 0.05, ANOVA, Fig.  6A). 
A complete description of the MOFA model is pro-
vided in the Extended information. We found that F1 
mainly explained the variance of funMT, taxMT, and 
MM (17.6%, 9.6%, and 5.7%, respectively, Extended 
Fig.  6A–B) and showed separation of HC and PD, 

Fig. 5  Metabolic network of whole community interactions. A Metabolic network of whole community interactions, with KEGG KOs represented 
as nodes and associated metabolites as edges. Node sizes reflect MT/MG ratio of normalized read counts for each KO. Highlighted is the overlap 
between glutamate-, thymine-, glycerol-, serine-, alanine-, and glucuronate-associated subnetworks mapped on the whole community network. B 
Betweenness centrality calculated for the key metabolites highlighted in the whole-community network based on genes as nodes. C The network 
was inverted to calculate betweenness centrality for metabolites; here, metabolites are nodes and genes are edges
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but not iRBD versus other groups (p < 0.05, ANOVA, 
Fig.  6B). The abundance of F1 was lower in the PD 
group compared to HC and iRBD groups, mean-
ing omics features with a negative contribution to the 
F1 were enriched in PD, while features with a posi-
tive contribution were enriched in the HC and iRBD 
groups (Fig.  6C). Specifically, the microbiome of PD 

was characterized by the joint increase in abundance of 
M. smithii, archaeal proteins and genes (based on MP 
and MG data), A. muciniphila (based on taxMT data), 
β-glutamate, isovalerate, isobutyrate, hexadecanoic, 
and hyocholic acids, whereas the abundance of R. hom-
inis (taxMG data), flagellin (funMT), GCA, and glyc-
erol were decreased in PD (Fig. 6C). Overall, the MOFA 

Fig. 6  MOFA analysis validates the findings of per omics layer analyses. A Associations of MOFA factors with diagnosis and confounders; the color 
of rectangles represents partial R[2] values, significant associations (FDR-adjusted p-value < 0.05) are marked with an asterisk. B Abundance 
of the factor 1 in studied groups; for graphical purpose, the Y axis was inverted. C Minimum–maximum scaled weights of top 10 features per omics 
layer contributing to factor 1. The sign of the weight indicates the direction of the effect, the abundance of features with positive weights 
is positively associated with the factor 1 level, and the abundance of features with negative weights is negatively associated with the factor 1 level
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results are strongly consistent with the per omic layer 
analysis and support our earlier findings.

From the microbiome to the host: expanding 
the Expobiome map
To contextualize our newly gained insights about the 
links between microbial taxa, their molecules, and mech-
anistic evidence from the literature on host physiology, 
we integrated our results into the Expobiome map[35] 
(https://​expob​iome.​lcsb.​uni.​lu). Specifically, we added R. 
intestinalis and hominis, B. wexlerae, coccoides and pro-
ducta, Clostridium butyricum, and F. plautii as new taxo-
nomic elements linking flagellin, lipoteichoic acid (LTA), 
and SCFAs signaling to immune-relevant human proteins 
(Fig.  7). We also added mechanistic links on F. praus-
nitzii and its effects mediated by the short-chain fatty 
acid butyrate. Thereby, we integrated new mechanistic 
details linking the combinatorial functions from these 
taxa and pro-inflammatory component effectors such as 
TLR5 and its downstream activation of NLRP3 inflam-
masome and NF-κB, IL-6, and TNF-α secretion. Thereby, 
these new additions to the Expobiome map highlight the 
convergent immunomodulatory functions of commensal 
taxa, perturbed in the context of PD.

To facilitate the investigation of potential relation-
ships between microbial taxa, microbial compounds, 
and human proteins that have been identified as crucial 
players in PD, we have furthermore linked the Expobi-
ome map to the Parkinson’s disease map (https://​pdmap.​

uni.​lu). Notable overlaps exist between host proteins 
that have been established to interact with microbial 
components in both the immune system and the cen-
tral nervous system. For example, dendritic cells and 
macrophages have well characterized interactions with 
flagellin through TLR5 binding. TLR5 and other antigen 
sensing receptors are present on microglia, a cell type of 
critical importance in neuroinflammation and PD. This 
integration of information from both so far disconnected 
maps allows for a more comprehensive understanding 
of these interactions and helps to draw new hypotheses 
on the intricate links between the gut microbiome, the 
immune system, and PD.

Discussion
Here, we investigate the Links between the Gut microbi-
ome and PD using an  comprehensive integrated multi-
omics approach based on standardized sample collection 
and extraction. We include individuals with iRBD as a 
prodrome of PD to compare early and later stages of 
the disease but do not find statistically significant differ-
ences between iRBD and PD, especially in comparison 
to the more pronounced differences found between HC 
and PD. Previous studies have shown differences in the 
different early stages of PD, but these studies were per-
formed using 16S rRNA gene amplicon data [7, 10]. In 
contrast to the amplicon-based results, no differentia-
tion between iRBD and PD is found using metagenomic 
data [5]. More specifically, and contrary to previous 

Fig. 7  Schematic representation of the new taxonomic and molecular additions to the Expobiome map. Additional literature highlighting 
mechanistic evidence linking microbial taxa to host physiology were collected. We specifically integrated Roseburia, Blautia, Faecalibacterium, 
Flavonifractor, and Clostridium species, taxa that we measured and found significant differences for in this work, as new taxonomic elements 
and linked their molecules to host physiology, in particular the immune system. The Expobiome map is now also connected to the Parkinson’s 
disease map, allowing direct overlays of pathways between the maps. Parts of the scheme in pink are the elements we were able to measure in this 
work

https://expobiome.lcsb.uni.lu
https://pdmap.uni.lu
https://pdmap.uni.lu
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findings [5] including our own work [7], we do not find 
significant differences between HC and PD individuals in 
the metagenome with respect to alpha or beta diversity. 
However, we show differences in transcriptional activ-
ity for R. hominis, B. obeum, B. wexlerae, and P. copri 
which are known to be found at lower abundance in PD 
[5, 6, 8–13]. Moreover, we find several species, including 
A. muciniphila, M. smithii, and Clostridium spp., to be 
positively correlated with the abundance of compounds 
increased in PD such as β-glutamate, isovalerate, or 
isobutyrate, while other species are inversely correlated 
with these compounds (species belonging to Faecalibac-
terium, Blautia, Eubacterium, and Roseburia). Collec-
tively, these findings are in line with findings associating 
those genera with PD [5, 6, 8–13].

We identify metabolites that are associated with PD, 
among which BAs, alanine, serine, and β-glutamate 
showed differences in linked gene expression. The BA 
chenodeoxycholic acid (CDCA) is decreased in PD and 
iRBD whereas glycocholic acid (GCA) is decreased only 
in iRBD. We also detect a decrease in transcripts related 
to BAs in PD but not iRBD. BAs have a wide spectrum 
of effects on the immune system [22, 23], metabolism 
[37], hormones [38], and on the CNS [39]. GCA has 
been found to be increased in the CNS of PD and asso-
ciated with disease duration [39], stressing the impor-
tance of analyzing BAs in PD and prodromal stages of 
PD. Interestingly, when we taxonomically resolve the 
differentially expressed SBAS genes, we find differ-
ent signals than when we compare the genes by them-
selves. For the differential expression analysis, we find a 
significant decrease in PD for baiB, baiCD, baiE, baiF, 
and baiH but not for baiA and baiN. When we resolve 
the taxonomic expression of the SBAS genes we find 
differences only for baiA and baiN. This finding under-
scores the importance of considering the microbiome at 
the taxonomic and functional levels at once. In contrast 
to previous studies [6, 15], we do not find a decrease in 
butyrate, propionate, acetate, or overall levels of SCFAs. 
However, we find an increase in isovalerate, isobutyrate, 
and valerate as described previously [15]. Previous stud-
ies have highlighted the correlation of fecal concentra-
tions of isobutyrate and isovalerate with PD severity [40] 
and concentrations of valerate with disease duration [41]. 
There currently is an apparent lack of knowledge regard-
ing isobutyrate or isovalerate with respect to host-micro-
biome interactions and very few related genes annotated 
in the KEGG database, thereby hindering interpretations 
concerning potential links between these metabolites and 
PD.

β-glutamate and glutamate-related genes are of par-
ticular interest in the context of PD because of the 
reported toxic effects of L-glutamate on neurons [24] and 

because of its association with microbial activity. In addi-
tion, glutamate levels have been reported to be increased 
in PD individuals’ blood sera [17, 18]. β-glutamate has 
strikingly only one reaction described in the KEGG 
database; in contrast, L-glutamate has 213 reactions and 
54 pathways, while D-glutamate has 12 reactions and 2 
pathways. We find that glutamate and glutamate-related 
genes are central to microbial metabolism, which under-
pins the notion that the highlighted differences reflect 
a pronounced impact on gut microbiome function. Of 
note, glutamate likely has local effects on enteric neurons 
with subsequent influences on the CNS [42]. Although 
we show significant differences in β-glutamate and gluta-
mate-related genes in the stool of PD patients, we detect 
no significant differences in the glutamate levels (both 
enantiomers) between the three groups. We highlight 
significant differences in β-glutamate for which we cur-
rently cannot evaluate the effects on the ENS and CNS. 
Overall, based on our results, microbiome-driven glu-
tamate metabolism and its impact on the glutamatergic 
system must be comprehensively studied in the future to 
disentangle its link with PD.

Glutamate-related genes are further involved in chem-
otaxis and flagellar assembly pathways, highlighting a 
modification of the latter genes’ expression with the 
majority being decreased in PD individuals and some of 
these genes in iRBD too. A decrease in flagellar assem-
bly gene abundances has been previously reported in a 
metagenomic analyses of PD [9]. We do not see signifi-
cant differences in the linked gene abundances, but their 
expression levels are significantly different, highlighting 
altered regulation of transcription in PD/iRBD compared 
to HC. Flagellar assembly and chemotaxis genes are also 
differentially expressed by specific microbes; the genera 
Escherichia and Cellulosilyticum for instance express fla-
gellar assembly genes only in the context of PD without 
being statistically differentially abundant.

Flagellin is a known immunogenic molecule, a potent 
pro-inflammatory compound in pathogens [43–48] 
and is thus targeted by secretory IgA [49]. However, 
flagellin in commensals, especially in the Lachno-
spiraceae family, has been shown to be either “silently 
recognised” [50] or elicit anti-inflammatory effects 
[51–53]. Among the Lachnospiraceae family, the genus 
Roseburia shows a decrease in the transcription of 
flagellin in the gut microbiome of PD. This in turn may 
be linked to immune system dysregulation and exert 
indirect effect on the CNS, particularly in microglia 
as shown in a previous study using a murine model 
of PD [54]. Previous studies have shown an increased 
inflammatory state in PD, with increased pro-inflam-
matory circulating immune cells [55], cytokines [56], 
and activated microglia [57]. In addition, microglia can 
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be activated by α-synuclein via NLRP3 following TLR2 
(lipopolysaccharide (LPS) sensing) and TLR5 (flagellin 
sensing) activation [58]. Therefore, the activation or 
inhibition of TLRs by distinct flagellins may modulate 
microglia activation by competing with α-synuclein 
and affect PD progression. It is however not known if 
flagellin can reach the CNS directly or if this potential 
effect would be mediated by an indirect effect through 
the immune system. Evidence exists that a local, 
microbiome-mediated effect on the enteric immune 
system can impact distant sites such as the brain [59] 
or tumors [60]. This provides solid grounds for the 
hypothesis that flagellin can regulate the CNS and 
modulate the neuroinflammation occurring in PD as 
resolved in the Expobiome map (Fig. 7).

Knowledge on microbial antigens is based on stud-
ies of pathogens, mainly Salmonella typhimurium, 
pathogenic Escherichia coli, Staphylococcus aureus, or 
Bacillus subtilis. The results of these studies have led 
the scientific community to consider bacterial antigens 
as pro-inflammatory and danger signals for the host 
[61]. Our findings associating flagellin expression with 
health, along with recent reports showing the anti-
inflammatory effects of flagellin from R. hominis and 
intestinalis [50, 51], LTA from F. plautii [62], and LPS 
from Bacteroides dorei [63], call for a re-evaluation 
of the impact of common antigens on host physiol-
ogy. Finally, the diverse compounds produced by the 
gut microbiome demand detailed investigation, with 
regard to the taxonomy and commensal/pathogen phe-
notype of the producing microbe, to fully understand 
their modulating effects on the immune and nervous 
systems alongside metabolism in health and disease.

In conclusion, our work clearly highlights the impor-
tance of studying microbiome functions rather than 
restricting microbiome analyses to taxonomic struc-
ture. Specifically, the combination of MT and MM 
provides clear insights into the activity of specific 
microbial taxa in relation to disease. In our present 
work, MT reveals that disease association is not solely 
determined by gene expression levels; the diversity of 
microbes capable of expressing a specific function and 
the specific taxa expressing those functions are also of 
immediate interest and relevance. While microbiome 
interventions are mainly designed to deal with dysbio-
sis at the taxonomic level, here, we propose to focus on 
restoring the lost functions from dysbiotic gut micro-
biomes. The future of microbiome research might lie 
in understanding how we can modulate, re-activate, or 
shut down specific microbial functions in vivo in order 
to improve knowledge and later improve or function-
ally tailor microbiome interventions.

Methods
Key resources table

Reagent or resource Source Identifier

MedAuxil Feces Col‑
lection Device

MecAuxil Cat#Fe-Col

Sarstedt collection 
tubes

Sarstedt Cat#80.623.022

Zymo DNA 
Clean&Concentrator-5

Zymobiomics Cat#D4014

Zymo RNA 
Clean&Concentrator-5

Zymobiomics Cat#R1014

Agilent 2100 Bioana‑
lyser

Agilent Technologies G2939A

NanoDrop Thermo Fisher 
Scientific

Cat#ND-1000

Qubit ds DNA BR 
Assay kit

Qubit Cat#Q32850

Qubit RNA BR Assay 
kit

Qubit Cat# Q10210

Bioruptor NGS Diagenode Cat#UCD-600

TruSeq Stranded 
mRNA

Illumina Cat#20,020,595

RiboZero kit Illumina Cat#MRZB12424

NextSeq500 Illumina Cat#SY-415–1001

Sera-Mag SpeedBeads GE Healthcare Cat#45,152,105,050,250;
Cat#65,152,105,050,250

Q Exactive™ HF-X 
Hybrid Quadrupole-
Orbitrap

Thermo Fisher 
Scientific

0726042

TriVersa NanoMate Advion Cat#STEM-LAHTPO-
0097-ZJF

Acclaim PepMap 100 
C18

Thermo Fisher 
Scientific

Cat#164,535

Tecan Freedom EVO 
200

Tecan https://​lifes​cienc​es.​
tecan.​com/​freed​om-​
evo-​platf​orm

Biological samples

Fecal sample from PD 
and healthy individu‑
als

Paracelsus-Elena 
Klinik, Kassel, Ger‑
many

Fecal sample 
from iRBD individuals

Department of Neu‑
rology, Philipps-
University, Marburg, 
Germany

Chemicals, peptides, and recombinant proteins

Ammonium bicar‑
bonate

Sigma-Aldrich Cat#09830

Iodoacetamide Sigma-Aldrich Cat#I1149

Acetonitrile Sigma-Aldrich Cat#L010300

Ethanol Sigma-Aldrich Cat#459,844

Ammonium formate Sigma-Aldrich Cat#156,264

Trifluoroacetic acid Sigma-Aldrich Cat#900,518

Deposited data

GTDB  Parks et al. 2022 [64] https://​github.​com/​
Ecoge​nomics/​GtdbTk; 
RRID:SCR_019136

https://lifesciences.tecan.com/freedom-evo-platform
https://lifesciences.tecan.com/freedom-evo-platform
https://lifesciences.tecan.com/freedom-evo-platform
https://github.com/Ecogenomics/GtdbTk
https://github.com/Ecogenomics/GtdbTk
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Reagent or resource Source Identifier

SILVA 138.1 Quast et al. [65] http://​www.​arb-​silva.​
de/; RRID:SCR_006423

KEGG Kanehisa et al. [66] http://​www.​kegg.​jp/; 
RRID:SCR_012773

UniProtKB Schneider et al. [67] http://​www.​unipr​ot.​
org/​help/​unipr​otkb; 
RRID:SCR_004426

cRAP The Global Proteome 
Machine Organization

https://​www.​
thegpm.​org/​crap/; 
RRID:SCR_018187

Software and algorithms

Integrated Meta-omic 
Pipeline

Narayanasamy et al. 
[34]

https://​git-​r3lab.​uni.​lu/​
IMP/​imp3

Python Python Programming 
Language

http://​www.​python.​
org/; RRID:SCR_008394

R v4.4.1 R Core Team https://​www.r-​proje​ct.​
org/; RRID:SCR_001905

RStudio v2024.4.2.764 Rstudio https://​posit.​co/; 
RRID:SCR_000432

BioRender BioRender https://​www.​biore​nder.​
com/

MetaboliteDetector Hiller et al. [68] https://​md.​tu-​bs.​de

Thermo Xcalibur Thermo Fisher 
Scientific

http://​chemi​stry.​unt.​
edu/​~verbe​ck/​LIMS/​
Manua​ls/​XCAL_​Quant.​
pdf; RRID:SCR_014593

TaceFinder Thermo Fisher 
Scientific

https://​www.​therm​ofish​
er.​com/​lu/​en/​home/​
indus​trial/​mass-​spect​
romet​ry/​liquid-​chrom​
atogr​aphy-​mass-​spect​
romet​ry-​lc-​ms/​lc-​ms-​
softw​are/​lc-​ms-​data-​
acqui​sition-​softw​are/​
trace​finder-​softw​are.​
html RRID:SCR_023045

MEGAHIT Li et al. [69] https://​github.​com/​
voutcn/​megah​it; 
RRID:SCR_018551

Prokka Seeman et al. [70] http://​www.​vicbi​oinfo​
rmati​cs.​com/​softw​
are.​prokka.​shtml; 
RRID:SCR_014732

featureCounts Liao et al. [71] http://​bioinf.​wehi.​edu.​
au/​featu​reCou​nts/; 
RRID:SCR_012919

Mantis Queiròs et al. [35] https://​github.​com/​
Pedro​MTQ/​mantis; 
RRID:SCR_021001

MOTUs Milanese et al. [72] https://​motu-​tool.​org/

Kraken Davis et al. [73] http://​www.​ebi.​ac.​
uk/​resea​rch/​enrig​
ht/​softw​are/​kraken; 
RRID:SCR_005484

Sipros Guo et al. [74] http://​sipros.​omics​bio.​
org

SIAMCAT​ Wirbel et al. [75] https://​www.​bioco​
nduct​or.​org/​packa​ges/​
relea​se/​bioc/​html/​
SIAMC​AT.​html

Reagent or resource Source Identifier

NetworkX v3.3 Hagberg et al. [76] https://​netwo​rkx.​org
RRID:SCR_016864

ggplot2 Wickham et al. [77] https://​cran.r-​proje​ct.​
org/​web/​packa​ges/​
ggplo​t2/​index.​html; 
RRID:SCR_014601

vegan Oksanen et al. [78] https://​github.​com/​
vegan​devs/​vegan
RRID:SCR_011950

rstatix v0.7.2 Kassambara [79] https://​cran.r-​proje​ct.​
org/​web/​packa​ges/​rstat​
ix/​index.​html
RRID:SCR_021240

ComplexHeatmap 
v2.20.0

Gu [80] https://​github.​com/​
joker​goo/​Compl​exHea​
tmap

ggpubr v0.6.0 Kassambara [81] https://​cran.r-​proje​ct.​
org/​web/​packa​ges/​
ggpubr/​index.​html

DeSeq2 v1.42.1 Love et al. [82] https://​bioco​nduct​or.​
org/​packa​ges/​relea​se/​
bioc/​html/​DESeq2.​html 
RRID:SCR_015687

ALDEx2 v 1.36.0 Fernandes et al. [83] https://​github.​com/​
ggloor/​ALDEx2; 
RRID:SCR_003364

Multi-Omics Factor 
Analysis (MOFA) 2

Argelaguet et al. [84] https://​biofam.​
github.​io/​MOFA2/ 
RRID:SCR_022992

Other

Experimental model and study participant details
All subjects from both cohorts provided informed writ-
ten consent, and the sample analysis was approved by the 
Comité National d’Ethique de Recherche of Luxembourg 
(reference no.: 140174_ND).

Kassel cohort
The DeNoPa cohort represents a prospective, biannual 
follow-up study of (initially de novo) Parkinson’s dis-
ease (PD) patients at the Paracelsus-Elena Klinik, Kas-
sel, Germany. Fecal samples from PD patients (46) and 
healthy controls (29) were collected during the 4-year 
follow-up visit for the cohort. Details on inclusion and 
exclusion criteria and ancillary investigations have been 
published previously [85, 86]. Subjects with idiopathic 
rapid-eye-movement sleep behavior disorder (iRBD, 13) 
were recruited at the same clinic, diagnosed according to 
consensus criteria of the International RBD study group 
[87] using video-assisted polysomnography, and were 
included only if they showed no signs of a neurodegen-
erative disorder. DeNoPa subjects were required to have 
a 4-week antibiotic free interval before fecal sample col-
lection. As additional control subjects, we collected fecal 
samples from (20) neurologically healthy subjects living 
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http://www.uniprot.org/help/uniprotkb
http://www.uniprot.org/help/uniprotkb
https://www.thegpm.org/crap/
https://www.thegpm.org/crap/
https://git-r3lab.uni.lu/IMP/imp3
https://git-r3lab.uni.lu/IMP/imp3
http://www.python.org/
http://www.python.org/
https://www.r-project.org/
https://www.r-project.org/
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https://www.biorender.com/
https://www.biorender.com/
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http://chemistry.unt.edu/~verbeck/LIMS/Manuals/XCAL_Quant.pdf
http://chemistry.unt.edu/~verbeck/LIMS/Manuals/XCAL_Quant.pdf
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in the same household as the DeNoPa participants. Sam-
ples of de novo PD patients from a cross-sectional cohort 
at the same clinic were included if subjects were recently 
diagnosed, drug-naïve, and met United Kingdom Par-
kinson’s Disease Society Brain Bank (UKPDSBB) clinical 
diagnostic criteria [30]. All subjects except household HC 
were interviewed and examined by an expert in move-
ment disorders. The study conformed to the Declaration 
of Helsinki and was approved by the ethics committee 
of the Physician’s Board Hessen, Germany (FF 89/2008). 
The DeNoPa trial is registered at the German Register for 
Clinical trials (DRKS00000540).

Marburg cohort
We also added samples from 14 patients with polysom-
nography-confirmed iRBD which were recruited from 
the outpatient clinic of the Department of Neurol-
ogy, Philipps-University, Marburg, Germany, between 
November 2015 and November 2016. iRBD was diag-
nosed according to the guidelines of the American Acad-
emy of Sleep Medicine (AASM ICSD-3) [88]. A detailed 
medical history was recorded, and a complete neuro-
logical examination performed to verify the subjects’ 
suitability. Inclusion criteria were age above 18 years, 
no dopamimetic therapy, and no diagnosis of Parkin-
son’s disease, multiple system atrophy, dementia with 
Lewy bodies, or progressive supranuclear palsy. Exclu-
sion criteria were smoking, antibiotic therapy in the last 
24 months, history of other neurological diseases, or 
disorders of the gastrointestinal tract. Non-motor and 
autonomic symptoms were evaluated with the SCOPA-
AUT [89] and PD-NMS [90] questionnaires. Motor func-
tion was evaluated with the UPDRS [91]. Additionally, 
patients were asked to complete the RBD-Sleep ques-
tionnaire [92]. The study conformed to the Declaration 
of Helsinki and was approved by the ethics committee of 
the Medical Faculty of the Philipps-University, Marburg, 
Germany (46/14).

Method details
Fecal sample collection
Fecal samples were collected at the clinics via a Feces 
Collection Device (MedAuxil) and collection tubes 
(Sarstedt), as previously described [7]. Samples were 
immediately flash-frozen on dry ice after collection. Sam-
ples were subsequently stored at − 80 °C and shipped on 
dry ice.

Sample exclusions
The initial set of samples consisted of 50 PD, 30 iRBD, 
and 50 healthy control subjects (HC). Three PD and two 
iRBD cases were subsequently excluded for clinical rea-
sons (adjusted diagnosis), one iRBD, and one PD subject 

for logistical reasons, and one control due to a combina-
tion of microbiome-altering medications (metformin, 
antidepressants, statins, and proton pump inhibitors). 
Additional samples were excluded due to missing values 
(metabolomics) or a low amount of identified analytes 
(metaproteomics), leading to the final numbers of sam-
ples summarized below:

–	 Metagenomics (MG) and metatranscriptomics (MT): 
49 HC, 27 iRBD, 46 PD

–	 Metaproteomics (MP): 42 HC, 22 iRBD, 40 PD
–	 Meta-metabolomics: 49 HC, 27 iRBD, 41 PD

Metagenomic and metatranscriptomic sequencing
Extractions from fecal samples were performed accord-
ing to a previously published protocol [93], conducted on 
a customized robotic system (Tecan Freedom EVO 200). 
After extraction, DNA and RNA were purified prior the 
sequencing analysis by using the following commercial 
kits respectively: Zymo DNA Clean&Concentrator-5 
(D4014) and Zymo RNA Clean&Concentrator-5 (R1014). 
RNA quality was assessed and Quantified with an Agi-
lent 2100 Bioanalyser (Agilent Technologies) and the 
Agilent RNA 6000 Nano kit, and genomic DNA and 
RNA fractions with a NanoDrop Spectrophotometer 
1000 (Thermo Scientific) as well as commercial kits from 
Qubit (Qubit ds DNA BR Assay kit, Q32850; Qubit RNA 
BR Assay kit, Q10210). All DNA samples were subjected 
to random shotgun sequencing. Following DNA isola-
tion, 200–300 ng of DNA was sheared using a Biorup-
tor NGS (Diagenode) with 30 s ON and 30 s OFF for 
20 cycles. Sequencing libraries were prepared using the 
TruSeq Nano DNA library preparation kit (Illumina) fol-
lowing the manufacturer’s protocol, with 350 bp average 
insert size. For MT, 1 µg of isolated RNA was rRNA-
depleted using the RiboZero kit (Illumina, MRZB12424). 
Library preparation was performed using the TruSeq 
Stranded mRNA library preparation kit (Illumina) fol-
lowing the manufacturer’s protocol, apart from omit-
ting the initial steps for mRNA pull down. MG and MT 
analyses, the qualities of the libraries were checked using 
a Bioanalyzer (Agilent) and quantified using Qubit (Inv-
itrogen). Libraries were sequenced on an Illumina Next-
Seq500 instrument with 2 × 150 bp read length.

Metaproteomics
Twenty microliters protein extract was processed using 
the paramagnetic bead approach with SP3 carboxylate 
coated beads [94, 95]. Briefly, the protein samples were 
reduced with 2µL 25 mM DTT in 20 mM ammonium 
bicarbonate (Sigma-Aldrich) for 1 h at 60°C. Subse-
quently, 4 μL 100 mM iodoacetamide (Merck) in 20 mM 
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ammonium bicarbonate was added and incubated for 30 
min at 37 °C in the dark. Next, 5 μL of 10% formic acid 
was added as well as 70 μL 100% acetonitrile (ACN) to 
reach a final organic content higher than 50% (v/v). Two 
microliters SP3 beads per sample were washed with 
water three times with subsequent addition of the sam-
ple. After protein binding to the beads, the supernatant 
was discarded. The beads were washed twice with 200 
μL 70% (v/v) ethanol, and once with 200 µL ACN. The 
protein lysates were proteolytically cleaved using trypsin 
(1:50) over night at 37 °C. Since trypsin is added in aque-
ous solution to the samples, the proteins are not bound 
to the beads during enzymatic cleavage. ACN was added 
to each sample to reach a final organic content higher 
than 95% (v/v). After peptide binding to the beads, the 
samples were washed with pure ACN on the magnetic 
rack. Finally, the peptides were eluted in two steps: first, 
with 200 μL 87% ACN (v/v) containing 10 mM ammo-
nium formate (pH 10), and next with two times adding 
50 μL water containing 2% (v/v) DMSO and combination 
of the two aqueous supernatants. Thus, two fractions of 
peptides were generated, which were evaporated and re-
dissolved in water containing 0.1% formic acid (20 µL) 
and analyzed on a Q Exactive HF instrument (Thermo 
Fisher Scientific) equipped with a TriVersa NanoMate 
source (Advion) in LC chip coupling mode. Peptide 
lysates were injected on a trapping column (Acclaim Pep-
Map 100 C18, 3 μm, nanoViper, 75 μm × 2 cm, Thermo 
Fisher Scientific) with 5 μL/min by using 98% water/2% 
ACN 0.5% trifluoroacetic acid, and separated on an ana-
lytical column (Acclaim PepMap 100 C18, 3 μm, nanoVi-
per, 75 μm × 25 cm, Thermo Fisher Scientific) with a flow 
rate of 300 nL/min. Mobile phase was 0.1% formic acid 
in water (A) and 80% ACN/0.08% formic acid in water 
(B). Full MS spectra (350–1550 m/z) were acquired in the 
Orbitrap at a resolution of 120,000 with automatic gain 
control (AGC) target value of 3 × 10[6] ions.

Meta‑metabolomics
Untargeted GC–MS as well as targeted measurements 
(SCFA GC–MS/MS and bile acids LC–MS/MS) from 
fecal samples were performed according to a previously 
published protocol [96]. All GC–MS chromatograms 
were processed using MetaboliteDetector, v3.220190704 
[69], while LC–MS chromatogram were acquired with 
Thermo Xcalibur software (version 4.1.31.9) and analyzed 
with TaceFinder (Version 4.1). Compounds were initially 
annotated by retention time and mass spectrum using an 
in-house mass spectral library. Internal standards were 
added at the same concentration to every medium sam-
ple to correct for uncontrolled sample losses and analyte 
degradation during metabolite extraction. The data was 
normalized by using the response ratio of the integrated 

peak area of the analyte and the integrated peak area of 
the internal standard.

Sequencing data processing and analysis
For all samples, MG and MT sequencing data were 
processed and hybrid-assembled using the Integrated 
Meta-omic Pipeline (IMP) [34] (https://​git-​r3lab.​uni.​lu/​
IMP/​imp3, commit 8c1bd6fa443d064511909c9eede-
20703f45e6c69). It includes steps for the trimming and 
quality filtering of the reads, the filtering of rRNA from 
the MT data, and the removal of human reads after map-
ping against the human genome (hg38). Pre-processed 
MG and MT reads were assembled using the IMP-based 
iterative hybrid-assembly pipeline using MEGAHIT [97] 
1.0.3. After assembly, the prediction and annotation of 
structural features such as open-reading frames (ORFs) 
was performed using a modified version of Prokka [70] 
and followed by functional annotation of those using 
Mantis [35]. Structural features were quantified on MG 
and MT level using featureCounts [72]. Taxonomic anno-
tation of reads and contigs was performed using Kraken2 
[98] with a GTDB release207 database (http://​ftp.​tue.​
mpg.​de/​ebio/​proje​cts/​struo2/​GTDB_​relea​se207/​krake​
n2) and a 0.5 confidence threshold. Additionally, taxon 
abundances were estimated using mOTUs 2.5.1 [73]. The 
mOTU abundances were used to generate abundance 
matrices for each taxonomic rank (phylum, class, order, 
family, genus, and species) by summing up taxon marker 
read counts at the respective levels.

Metaproteomics prediction and annotation
For each sample, the predicted proteins were concat-
enated with a cRAP database of contaminants and the 
human UniProtKB Reference Proteome prior to the 
MP search. In addition, reversed sequences of all pro-
tein entries were added to the databases for the estima-
tion of false discovery rates. The search was performed 
using Sipros v1.1 [75] as search engine with the follow-
ing parameters: trypsin was used as the digestion enzyme 
and a maximum of two missed cleavages was allowed. 
The tolerance levels for matching to the database were 
1 Da for MS1 and 0.01 Da for MS2. Peptides with large 
errors for parent ions were later filtered out by setting the 
Filter Mass Tolerance Parent Ion parameter to 0.05 Da. 
Carbamidomethylation of cysteine residues was set as 
a fixed modification and oxidation of methionines was 
allowed as a variable modification. Peptides with length 
between 7 and 60 amino acids, with a charge state com-
posed between + 2 and + 4, and a maximum missed cleav-
ages of 3 were considered for identification. The results 
from all identifications were filtered by Sipros using at 
least one unique peptide per protein, and peptide false 
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discovery rate (FDR) was dynamically set to achieve a 1% 
of protein FDR.

Data analysis was performed on all samples with at 
least 2000 proteins identified. A summary matrix of all 
selected samples consisting of the KO annotations from 
the integrated MG and MT analysis and the spectral 
count from the MP identification was then generated and 
used for statistical analysis.

Quantification and statistical analysis
Dimensionality reduction and ordination
Beta diversity for MG and MT was assessed using the 
Bray–Curtis dissimilarity and subjected to a Non-Met-
ric MultiDimensionnal Scaling (NMDS) for both the 
taxonomic and functional levels, using the metaMDS() 
function from the vegan package (2.6.2). Principal com-
ponent analysis (PCA) was performed for MP and MM 
using the rda() function in the vegan package (2.6.4). 
PERMANOVA was used to assess statistical differences 
between groups using the Bray–Curtis dissimilarity and 
conducted in the vegan R package with the adonis2() 
function.

Differential abundance analysis and correlations
Differential abundance was done in two different 
approaches. The first approach consisted in using SIAM-
CAT [76] and ALDEx2 [83] algorithm to find all the 
taxa and genes differentially expressed between groups 
without prior assumption. We used two different algo-
rithms to have a sensitive algorithm (SIAMCAT, less 
prone to have false negative) and a more conservative one 
(ALDEx2, less prone to have false positive). The second 
approach consisted in using the MM significant com-
pounds to drive the analysis on the functional level for 
MG and MT. Therefore, differential abundance tests and 
multiple correlation tests were conducted with a classi-
cal approach. We used Mann–Whitney or Kruskal–Wal-
lis followed by a Dunn test (depending on the number of 
groups) and Spearman correlation tests. We applied FDR 
correction using the Benjamini and Hochberg method 
[99]. We depicted both FDR corrected as q-values and 
non-FDR corrected p-values to represent most of the dif-
ferences found in our datasets. All statistical tests were 
done using the rstatix package (0.7.2).

Variance analysis
Variance analysis was used to assess the importance of 
each clinical factor on MM. To verify the covariance of 
factors and to assess which factors explained the most 
variance in our datasets, we computed the total variance 

for each clinical factor (removing the NAs for each fac-
tor) and the variance explained by each group within a 
clinical factor. Explained variance was calculated as fol-
lows: var.explained =

1−variance.group
variance.total .

Microbiome‑wide metabolic network analysis
The microbiome-wide metabolic network analysis was 
conducted by establishing an association between KEGG 
KOs and corresponding ChEBI IDs. The networks were 
visualized utilizing the NetworkX package (release 3.3) 
[76]. In this network, the nodes were represented by 
KEGG KOs, while the edges were denoted by the cor-
responding metabolites (either products or reactants) 
[36]. Such compounds as water, energy Transporters, 
and cofactors were removed, to only consider main com-
pounds of a given reaction. The analysis was restricted to 
genes that were present in a minimum of 50% of the sam-
ples. To construct metabolite-specific networks, we used 
KEGG KOs which have either a reactant or product in 
KEGG. Glutamate-, thymine-, glycerol-, serine-, alanine-, 
and glucuronate-specific subnetworks were composed 
of 146, 9, 66, 43, 70, and 18 genes, respectively. The net-
work topology metric “Betweenness centrality” was used 
to underscore the importance of a metabolite in microbi-
ome-wide metabolism [36].

Integrated multi‑omics analysis using MOFA2
Integrative analysis for the seven omics layers was con-
ducted with the Multi-Omics Factor Analysis (MOFA) 2 
R package (version 1.10.0) [100]. Before the analysis, data 
were preprocessed as follows: (I) funMG, funMT, funMP, 
taxMG, taxMT, and taxMP data were filtered based on 
the number of non-zero features; a feature was kept if it 
was present in at least in 25% of samples in each group 
(PD, HC, iRBD) or at least in 75% in any of the groups; 
(II) funMG, funMT, taxMG, and taxMT count data were 
separately residualized in a linear model to remove vari-
ance explained by differences in sequencing depth; (III) 
funMP and taxMP data were residualized by the sum of 
protein counts per sample and information on the num-
ber of high-quality proteins recovered per sample; (IV) 
regression residuals were cubic-root transformed to 
account for heteroscedasticity; (V) MM data were Trans-
formed using a centered log-ratio Transformation. Each 
dataset was then additionally filtered to retain the fea-
tures with the largest variance for the subsequent anal-
ysis. For funMG and funMT, we included features with 
variances equal to or larger than 90% feature variance 
for a dataset; for the other datasets, we included features 
with variance equal to or larger than the median feature 
variance for a given dataset. In the results, the feature size 
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for omics layers was as follows: 759 for funMG, 657 for 
funMT, 410 for funMP, 109 for taxMG, 71 for taxMT, 115 
for taxMP, and 34 for MM. MOFA analysis was run on 
scaled omics data with fifteen initial factors. All factors 
that explained less than 2% of the variance were excluded 
from the model. The remaining factors were tested for 
differential abundance between the groups studied using 
the linear regression followed by ANOVA type II control-
ling the participants’ sex, age, and recruitment cohort.

Extended information
Multi‑omics data overview
Using our previously developed methodological frame-
work [104, 105], we performed a systematic multi-omic 
analysis of DNA, RNA, protein, and metabolite fractions 
isolated from flash-frozen fecal samples. We used MG, 
MT, MP and MM data to find biomarkers associated with 
the PD phenotype (Fig.  1). We generated a mean of 7.5 
(std 1.7) Gbps and 7.5 (std 1.4) Gbps of sequencing data 
for MG and MT, respectively. After trimming and filter-
ing, we retained a mean of 6.8 (std 1.7) Gbps and 3.2 (std 
1.3) Gbps for MG and MT, respectively. The mean assem-
bly size was 0.4 (std 0.1) Gbps, with on average 5.9 × 10[5] 
(std 1.7 × 10[5]) genes predicted. Finally, protein data-
bases contained a mean of 7.2 × 10[5] (std 1.8 × 10[5]) 
proteins, an average of 4.1 × 10[4] (std 0.6 × 10[4]) 
MS spectra per sample were acquired, and a mean of 
3.4 × 10[3] (std 1.7 × 10[3]) proteins were identified.

MOFA model description
MOFA is an unsupervised machine learning approach for 
the integration of multi-omics data sets [100]. It allows 
for the identification of highly informative features across 
multiple omics. It has previously been used in the study 
of the gut microbiome in several diseases, giving criti-
cal insights into the link between the gut microbiome, 
health, and disease [101–103]. The biggest proportion of 
variance was explained by funMG and funMT, followed 
by the taxMT and funMP datasets (Extended Fig.  6A). 
F1-2 incorporated most of the variance related to the 
funMT and taxMT, whereas funMG and taxMG variance 
was predominantly covered by F3-F5 (Extended Fig. 6B). 
The funMP variance was explained mostly by F6, and 
MM variance was explained by F1 and F6. MOFA factors 
were tested in a linear model followed by ANOVA with 
disease status, as well as confounders including patients’ 
sex, age, and recruitment cohort. Among the MOFA fac-
tors, F1 showed an association with the disease status, 
whereas F4 and F9 were associated with patients’ sex and 
recruitment cohort, respectively (Fig. 6A).
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Supplementary Material 1: Extended figure 1. NMDS analysis of A. 
metagenomic taxonomic composition (taxMG), B. metagenomic functions 
(funMG) and C. meta-proteomic taxonomic composition (taxMP), using 
a Bray-Curtis dissimilarity matrix. D. PCA analysis of metaproteomic func‑
tions (funMP). E. PERMANOVA analysis for the three groups and all omics. 
Colour represents R² values and size is–log10(p-value). All PERMANOVA 
analysis were run using 1000 permutations using a Bray-Curtis dissimilarity 
matrix. 

Supplementary Material 2: Extended figure 2. A. Differential abundance 
analysis at the genus level using SIAMCAT algorithm. B. Differential 
abundance analysis using ALDEx2 algorithm at the species level. Values 
are pseudo fold changes for HC/PD and size is based on –log10(p-value). 
Shape is referring to level of significance, triangular shape for p-value sig‑
nificance before and round shape for p-values < 0.05 after FDR correction. 
C to F ALDEx2 differential abundance analysis on funMG for HC vs PD (C) 
and HC vs iRBD (D); funMT for HC vs PD (E) and HC vs iRBD (F). All genes 
and transcripts are colored and shaped according to p-value significance 
before (triangle shape) and after FDR correction (round shape).

Supplementary Material 3: Extended figure 3. A. Percentage of variance 
explained for each metabolite for “Sex” and “Diagnosis” and B. Percentage 
of variance explained for each metabolite for “Constipation” and “Diag‑
nosis” (right panel). Metabolites include untargeted meta-metabolomics, 
targeted SCFA and targeted bile acids, normalized by sum before merging 
and variance quantification. C. Variance for each metabolite associated 
to the clinical factors “Diagnosis”, “Sex” and “Constipation”. Metabolites 
include untargeted meta-metabolomics, targeted SCFA and targeted bile 
acids, normalized by sum before merging and variance quantification. D. 
Spearman correlation between metabolites and taxMG species. P-values 
are FDR corrected. 

Supplementary Material 4: Extended figure 4. A. Absolute log2 fold 
change between HC and iRBD for funMG and funMT associated to signifi‑
cant compounds. Dots are scaled by the –log10(p-value), colorized and 
shaped according to p-value significance before (triangle shape) and after 
FDR correction (round shape). B. Spearman correlation between beta-
glutamate relative abundance and funMG-funMT KEGG orthologs related 
to glutamate species. Only genes with at least one significant correlation 
are plotted. All p-values are FDR corrected.

Supplementary Material 5: Extended figure 5. A. Bile acids transcripts 
found significantly different between the groups. P-values are corrected 
with FDR. B. Flagellar assembly transcripts encoding for extracellular 
component of the flagella for the genus present in Cluster 2. All tests are 
Wilcoxon tests.

Supplementary Material 6: Extended figure 6. Multiomics variance 
explained by MOFA factors. A. Variance explained by the MOFA factors 
across different omics layers, total. B. Variance explained by the MOFA fac‑
tors across different omics layers, split by factors.
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