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Integrated multi-omics highlights alterations ==
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Abstract

Background Parkinson’s disease (PD) is associated with gut microbiome shifts. These shifts are mainly described

at taxonomic level, but the functional consequences remain unclear. To obtain insight into the functional disruptions
of the gut microbiome in PD, we used an integrated multi-omics approach, comparing gut microbiomes of individu-
als with PD, prodromal PD, and healthy controls.

Results Meta-metabolomics, the most discriminatory and robust omics level, was selected to Guide the analysis.

We identified 11 metabolites that were differentially abundant between the groups, among which 3-glutamate

was increased in PD and prodromal PD, and correlated with the transcriptional activities of Methanobrevibacter smithii
and Clostridium spp. We identified decreases in transcripts, but not in gene abundances, related to glutamate metabo-
lism, bile acids biosynthesis, chemotaxis, and flagellar assembly in PD, particularly in keystone genera such as Rose-
buria, Agathobacter, and Blautia. Our findings, integrated into the Expobiome map, reveal multifactorial microbiome
alterations which converge with PD pathways.

Conclusion Our study highlights the apparent disruption of microbial gene expression in PD, particularly in genes
associated to mobility. Moreover, we showcase the importance of investigating the gut microbiome’s functional
dimensions to better resolve microbiome-host interactions in health and disease.
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Background

Parkinson’s disease (PD), a neurodegenerative disease
impacting movement due to dopaminergic neuron loss,
is the second most prevalent neurodegenerative disease
worldwide [1]. Individuals with PD are often character-
ized by an increase in gut permeability, inflammation,
and constipation which, together, suggest a link between
the gut microbiome and PD etiology [2—4]. This potential
link is supported by numerous studies reporting differ-
ences in the gut microbiome structure of individuals with
PD compared to healthy individuals [5-11]. These find-
ings have been further confirmed by recent meta-analy-
ses [12, 13]. Together, the studies highlight a decreased
abundance for the genera Roseburia, Blautia, Butyricoc-
cus, and Faecalibacterium in PD while Methanobrevi-
bacter, Akkermansia, Lactobacillus, Bifidobacterium,
and Hungatella are typically enriched [5-13]. Simi-
lar changes in idiopathic REM sleep behavior disorder
(iRBD), a prodromal stage of PD [14], have been reported
[7, 10]. Moreover, the taxa decreased in PD are known
producers of short-chain fatty acids (SCFAs), which cor-
respondingly have also been found to be decreased in
concentration in fecal samples of PD individuals [6, 15,
16].

In addition to SCFAs, several microbiome-derived
metabolites such as bile acids (BAs), glycine, and glu-
tamate have been associated with PD, either in plasma,
serum [17, 18], or stool [19-21]. BAs are produced by
the host and metabolized by the gut microbiome into
secondary bile acids with different cytotoxic capacities
but also immunomodulatory capacities [22, 23]. Gluta-
mate is the major excitatory neurotransmitter and exerts
toxic activity on neuronal cells [24]. Its levels in serum
and cerebrospinal fluid have been reported as either
increased [25, 26], not different [27], or decreased [28],
but decreased in the gut in PD compared to healthy con-
trols (HC) [29].

Altogether, alterations of the gut microbiome are
linked to PD, but less is known about iRBD or other pro-
dromal stages of the disease. Moreover, most of the asso-
ciations between PD and the gut microbiome are based
on taxonomic and metabolomic analyses. The resulting
data, although insightful, lacks functional and systemic
information that could better capture the complex cross-
talk between the gut microbiome and the host in the con-
text of PD. To obtain such information, we performed an
integrated multi-omics study on a cross-sectional cohort
comprised of individuals with iRBD and PD alongside
HC. Metagenomics (MG), metatranscriptomics (MT),
metaproteomics (MP), and meta-metabolomics (MM)
were used to characterize taxonomic (taxM@G, taxMT,
taxMP) and functional (funMG, funMT, funMP, MM)
differences between HC, iRBD, and PD gut microbiomes.
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We identified substantial differences in gut microbiome
functions and metabolites between the groups, including
an increase in -glutamate levels in PD that were related
to a dysregulation of glutamate-related gene expression.
Alterations in glutamate-related genes were linked with
chemotaxis and flagellar assembly pathways, for which
we identified strong and distinct taxonomic differences
in transcription between PD and HC. Collectively, our
data highlight the importance of multi-omics approaches
for the identification of microbiome-mediated effects on
neurological, and more broadly, complex human diseases
involving host-microbiome interactions.

Results
Study cohort and integrated multi-omics pipeline
Our initial set of subjects consisted of 50 individuals with
PD, diagnosed according to United Kingdom Parkinson’s
Disease Society Brain Bank (UKPDSBB) clinical diag-
nostic criteria [30], and 30 people with polysomnogra-
phy-confirmed iRBD as well as 50 healthy control (HC)
subjects. The data from 4 PD and 3 iRBD as well as 1
HC were subsequently excluded (see the “Methods” sec-
tion), leading to a final data set of 46 PD, 27 iRBD, and
49 HCs (Fig. 1). The subjects in the three groups were of
similar age but had slightly different gender distributions,
with males overrepresented in the iRBD and PD groups
(Table 1, Fisher test, p=0.004), as is typical for these con-
ditions [31, 32]. Constipation, a prevalent non-motor
symptom of PD [33], was also more common in the iRBD
and PD groups compared to HC (Fisher test, p <0.001).
To allow integrated and paired sample analysis, we
used our previously published Integrated Multi-omics
Pipeline for data integration and analysis (Fig. 1) [34].
In short, metagenomic and metatranscriptomic reads
were co-assembled in a first round, followed by a sec-
ond round during which remaining reads that did not
co-assemble were retained and mapped against the co-
assembled contigs from the first round. Contigs were
then used to call genes and perform functional annota-
tions using multiple reference databases using the Mantis
tool [35]. Predicted proteins from the hybrid assembled
contigs were used to create theoretical mass spectra and
matched against actually measured metaproteomic mass
spectra. We chose to use the KEGG database to integrate
metabolic pathways and connect the meta-metabolomic
data with the other omics datasets.

Microbiome function is altered in PD

Alpha diversity comparisons revealed no statistically
significant differences between the three groups when
considering taxM@G, taxMT, funMG, taxMP, and MM
(Fig. 2A, Mann-Whitney test, p>0.05). However,
funMT and funMP showed a statistically significant
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Fig. 1 Schematic representation of the analytical workflow. Metagenomic (MG), metatranscriptomic (MT), metaproteomic (MP),

and meta-metabolomic (MM) data were generated for each sample. Pre-processed MG and MT reads were sample-wise assembled using

the iterative hybrid assembly pipeline of the Integrated Meta-omics Pipeline (IMP). After assembly, taxonomic annotation was performed

at the read and contig levels, followed by gene prediction and functional annotation on the assembled contigs. Expressed proteins (MP) were
identified using the predicted genes from the MG/MT hybrid assembly. For these three omics levels, we generated taxonomic and functional
profiles that are referred to as taxMG, taxMT, and taxMP for the taxonomic level, and funMG, funMT, and funMP for the functional level, respectively.
Community-based networks were reconstructed from gene annotations. Finally, the meta-metabolome (MM) was integrated with the other omics
data at the network level. The integrated multi-omics analysis was performed while accounting for the available clinical metadata

increase in alpha diversity in PD compared to HC and
iRBD compared to PD, respectively (Fig. 2A, Mann—
Whitney test, p<0.05). We then analyzed beta diver-
sity for all omics layers. TaxMG, funMG, and taxMP
revealed no statistically significant differences between
the three groups (Extended Fig. 1A, 1B, and 1C, PER-
MANOVA, p=0.2, 0.8 and 0.35, respectively), while
taxMT, funMT, MM, and funMP showed a statisti-
cally significant separation of the groups, especially for
funMT (Fig. 2B-D, Extended Fig. 1 D, PERMANOVA
p=0.001, 0.001, 0.005, and p=0.008, respectively).
Permutation analysis revealed that funMT, funMP,
and MM resulted in the best separation of the three
groups while taxMG, funMG, and taxMP exhibited
the lowest separation capacity (Extended Fig. 1E, PER-
MANOVA R[2] of 0.043, 0.041, 0.038, 0.018, 0.014, and
0.017, respectively). Pairwise comparisons using PER-
MANOVA demonstrated that most differences were
found between either HC and PD or HC and iRBD, with
only funMP and funMT showing statistically significant
differences between PD and iRBD (Fig. 2E). Based on
these differences, we next assessed how the confound-
ing factors sex, age, and constipation may impact beta
diversity. Sex and constipation were found to have a
significant association with beta diversity for taxMT
and funMT, while age was associated with taxMG

(Fig. 2F). Importantly, MM and funMP were not found
to be associated with any confounders (Fig. 2F).

We next looked at differential abundances of taxa to
highlight the compositional differences between the
groups. No significant differences were found in taxMG
at the genus and species levels between any of the three
groups (Fig. 2G and Extended Fig. 2A q>0.05, SIAM-
CAT). For taxMT, SIAMCAT highlighted an increase in
Alistipes obesi and Ruthenibacterium lactatiformans in
iRBD vs HC, Roseburia incertae sedis, Blautia massilien-
sis, B. obeum, and Clostridium sp. were decreased in PD
vs HC, and no significant differences were found between
PD and iRBD (Fig. 2G, q<0.05, g<0.05, and ¢>0.05,
respectively). We identified the genus Eubacterium
as being decreased in PD compared to HC in taxMT
(Extended Fig. 2A, q<0.05, SIAMCAT). The ALDEx2
algorithm highlighted only Roseburia incertae sedis to be
depleted in PD after FDR correction (Extended Fig. 2B).

Subsequently, we investigated overall differences in
gene abundances and expressions of the microbial genes
linked to the observed differences in metabolites using
the KEGG database. We observed no statistically sig-
nificant differences in gene abundances between HC vs
PD and HC vs iRBD (funMG, Extended Fig. 2C and 2D,
q>0.05). Gene expression highlighted one Transcript
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Fig. 2 Microbiome structure is altered in PD and iRBD vs HC. A Shannon indices for different omics levels comparing healthy controls (HC),
idiopathic REM sleep behavior disorder (iRBD), and Parkinson's Disease (PD). p-values are based on pairwise Mann-Whitney tests. Non-metric
multidimensional scaling (NMDS) based on Bray—Curtis dissimilarity for taxonomic annotation of metatranscriptomic (taxMT) (B) and functional
metatranscriptomic (funMT) data (C). D Principal component analysis (PCA) for meta-metabolomic (MM) data based on untargeted, targeted
SCFA, and targeted bile acid abundances. All three Quantifications have been sum-normalized before any merging. PCA was then computed

on the merged matrix. All tests are based on PERMANOVA with 1000 permutations. E Pairwise PERMANOVA between groups for each omics level.

F PERMANOVA analysis for "Age,"“Sex,"and “Constipation” for each omics level. Size of rectangle is based on—

log10(p-value) and color on R[2] value.

G Differential abundance analysis using SIAMCAT for taxMG and taxMT. Values are pseudo fold changes for pairwise comparisons between groups

and size is ba

sed on—

log10(p-value). Shape is based on significance before and after FDR correction



Villette et al. Microbiome (2025) 13:200

upregulated in HC vs iRBD, but 145 transcripts upregu-
lated in HC vs PD (funMT, Extended Fig. 2E and 2F,
q<0.05 and ¢>0.05, respectively). No genes or tran-
scripts were significantly higher in iRBD or PD compared
to HC (Extended Fig. 2C-F, q > 0.05). Finally, we found no
statistically significant differences in gene or transcript
abundances between PD and iRBD (data not shown).

Altered metabolome of PD patients is linked to microbial
abundance and activity

Considering that MM is associated with PD and iRBD
but not with confounders, we chose MM as a robust
guide for further statistical comparisons. In addition,
MM can be considered as one of the final outputs of
microbial activity and an important driver of microbial
effects on the host. For this purpose, we removed uni-
dentified compounds from the statistical testing, because
we cannot link microbial genes with them. Our analyses
revealed 11 statistically significantly different compounds
between the groups, including alanine, [-glutamate,
serine, and glycerol (Fig. 3A, q<0.05). We found a sig-
nificant increase in isovalerate, isobutyrate, and valerate
in PD patients (Fig. 3A, q<0.05) but no differences for
butyrate, acetate, formate, propionate, or total SCFAs
(data not shown). Primary bile acids glycocholic and che-
nodeoxycholic acids were decreased in PD and in iRBD
and PD, respectively (Fig. 3A, q<0.05). Glutamate was
not differentially abundant between the three groups
(data not shown). To unravel the effect of confounding
factors, we measured the variance explained by each fac-
tor on the compounds’ abundances. Diagnosis explained
more variance than constipation or sex (Extended
Fig. 3A—C, diagnosis mean=4.18%; median=3.33%, sex
mean=2.08%, median=1.3%; constipation mean=3.7%,
median=2.68%). We found only malic acid as being
significantly associated with sex and no compound to
be associated with constipation (Extended Fig. 3A-C,
q<0.05, g>0.05). Based on the PERMANOVA results
and variance analysis, the differences observed in MM
were most strongly associated with the disease status
and, importantly, not with the confounding factors.

We next checked correlations between metabolite
abundances and microbial abundances alongside activi-
ties. Metabolite abundances were linked to microbial
abundances for taxMG and taxMT. TaxMG exhibited
fewer significant correlations with metabolite abun-
dances compared to taxMT, except for Methanobrevi-
bacter smithii and Clostridium sp. CAG:138, which were
positively correlated with p-glutamate and isovalerate
levels (Extended Fig. 3D, Spearman test, g<0.01). Con-
versely, Prevotella copri and Faecalibacterium prausnitzii
abundances were negatively correlated with -glutamate
levels, while Roseburia hominis was positively correlated
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with glycerol levels (Extended Fig. 3D, Spearman test,
¢ <0.001). Additionally, for taxMT, we noted positive cor-
relations with isovalerate and isobutyrate for A. mucin-
iphila and Clostridium sp. CAG:448 (Fig. 3B, q<0.01 and
q<0.05, respectively). Methanobrevibacter smithii was
associated with B-glutamate, isovalerate, and isobutyrate
(Fig. 3B, Spearman test, g<0.01, g<0.001, and ¢<0.05,
respectively), while E prausnitzii, Blautia massilliensis,
Blautia obeum/wexlerae, Blautia obeum, and Clostrid-
ium spp. were negatively correlated with B-glutamate
(¢ <0.05, Spearman test, Fig. 3B). In addition, R. hominis,
Roseburia spp., and Clostridium spp. were positively cor-
related with glycerol (Fig. 3B, Spearman test, g <0.05). Of
note, while assessing the correlations at the genus level,
we noted negative correlations between Eubacterium and
isovalerate, isobutyrate, and valerate (taxMT, g<0.05,
Spearman test, data not shown). Strikingly, A. mucin-
iphila, some Clostridium spp., and M. smithii were posi-
tively correlated with compounds found to be elevated
in PD and iRBD (B-glutamate, isovalerate, and isobu-
tyrate) while R. hominis, F. prausnitzii, Blautia species,
and P. copri were negatively correlated with these same
compounds and positively correlated with compounds
increased in HC (glycerol and CDCA). This revealed
groups of bacteria being either linked with individuals
with PD and iRBD or HC (Fig. 3B).

Expression of genes linked to glutamate, bile acids,

and flagella is dysregulated in the iRBD and PD gut
microbiome

To reinforce the results of the differential analysis, we
compiled all the orthologs related to the metabolites
which were statistically significant between the three
groups. More specifically, we used regular expression
matching to retrieve all orthologous genes that are
linked to the abovementioned metabolites in KEGG.
Because the KEGG database only has one metabo-
lite entry annotated as p-glutamate, we selected all
glutamate-related genes instead (linked to both L-
and D-glutamate). We found no statistically signifi-
cant differences in gene abundances after correction
between any of the three groups (funMG, Fig. 3C and
Extended Fig. 4A, q>0.05, Mann—Whitney test). How-
ever, we did find a decrease in transcripts in PD for
the three known glutamate synthase genes (funMT,
GLT1:K00264, GLU:K00284, and gltB:K00265, Fig. 3C,
Mann-Whitney test, g =0.004, g=0.004, and p=0.006,
respectively) alongside a decrease in cheB in PD
(K03412, protein-glutamate methylesterase/glutami-
nase, Fig. 3C, q<0.01, Mann—Whitney test). Further-
more, we found an increase in cofE, mainly encoded
by Archaea and involved in methanogenesis (K12234,
coenzyme F420-0:L-glutamate ligase, Fig. 3C, q<0.05,
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Mann—Whitney test). In addition, we found a decrease
in BA-related transcripts in PD while transcripts
related to serine and isovalerate were increased in PD
(Fig. 3C, q<0.05). HC vs iRBD comparisons revealed
significant differences in alanine-related transcripts

but not for the other metabolites (Extended Fig. 4A,
q<0.05). B-glutamate abundance was negatively cor-
related with the transcripts of the three glutamate
synthases and carbamoyl-phosphate synthases, but
positively correlated with methyl aspartate mutase,
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and genes on the left panel and the sum of all genes per genus on the right panel with a square root transformation. Genera are clustered based
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methylamine-glutamate N-methyltransferase, and glu-
taminase (Extended Fig. 4B, Spearman correlation test,
g<0.01).

Since cheB is part of the chemotaxis and flagellar
assembly (FA) KEGG pathways, we further inspected
these pathways to assess the microbial capacity for
motility. We found no statistically significant differ-
ences in gene abundances (funMG) for either flagellar
assembly or chemotaxis pathways between the three
different groups (data not shown, g>0.05). In contrast
however, based on funMT, the chemotaxis pathway
(14/26 Transcripts decreased in PD, 0/26 transcripts
increased, Fig. 3D, q<0.05) and the FA pathway (25/46
Transcripts decreased in PD, 1/46 transcripts increased
in PD, Mann—Whitney, Fig. 3D, q<0.05) were strongly
downregulated in PD. In addition, we found transcripts
decreased in both PD and iRBD for five transcripts
belonging to chemotaxis and eight belonging to flagella
assembly (¢<0.05, Mann—Whitney, Fig. 3D). Moreo-
ver, eight transcripts showed a decrease in alpha diver-
sity for chemotaxis and flagellin assembly pathways
(p<0.01, Mann—Whitney, Fig. 3D). Finally, we observed
a decrease in alpha diversity for GLU, flagellar assem-
bly transcripts (fliJ, fliQ, and fliC), and cheD in PD com-
pared to the other two groups (Fig. 3E, q<0.05, Dunn
test) while pilD and aaaT were elevated in iRBD (Fig. 3E,
Dunn test, p <0.05).

Flagellin and chemotaxis are differentially expressed
depending on taxonomy and disease status
We next assessed the taxa expressing secondary bile
acid biosynthesis (SBAS), FA, and chemotaxis pathway
genes. While taxonomically resolving SBAS expression
at the genus level, we found an interesting divergence
with the differential analysis at the transcript level pre-
sented in Fig. 3C. We previously found that baiCD, baiE,
baiB, baiH, and baiF were all significantly decreased in
PD, while baiA and baiN were not (Fig. 3C). When we
resolved taxonomic information of these functional
genes, we found only statistically significant differences
in transcripts for baiA and baiN (17 after FDR correc-
tion and 31 before correction), but not for the other tran-
scripts previously found to be differentially expressed
(¢<0.05 and p<0.05, respectively, Extended Fig. 5A). We
found a significant decrease in the expression for baiN
in PD for Blautia, Fusicatenibacter, Choladocola, Oli-
verpabstia, and Ruminococcus genera and an increase in
expression for baiA encoded by the Lawsonibacter genus
in PD (g <0.05, Mann—Whitney test, Extended Fig. 5A).
When resolving the taxonomic expression of FA and
chemotaxis genes, we noted a differential expression
according to disease status and taxonomy. More specifi-
cally, we identified different clusters of taxa expressing
FA and chemotaxis genes. The first cluster was composed
of microbes expressing these genes principally in PD,
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including Ruminiclostridium, Enterocloster, Dysosmo-
bacter, and Butyvibrio. A second cluster was composed
of microbes expressing these genes principally in HC,
including Roseburia, Agathobacter, and Eubacterium
(Fig. 4). A third cluster was composed of taxa express-
ing FA and chemotaxis genes almost exclusively HC,
including Flavonifractor, Succinivibrio, Eisenbergiella,
or CAG-603 (Fig. 4). Strikingly, we found a fourth clus-
ter composed of taxa expressing flagellin or chemotaxis
genes almost exclusively in PD, including Escherichia,
Cellulosilyticum, Citrobacter, or Eisenbergiella. We sub-
sequently investigated the expression levels of genes of
the extracellular parts of flagella in the cluster wherein
Roseburia and most Lachnospiraceae were located (clus-
ter 2). Overall, we found a decrease in flagellin (7iC), fila-
ment cap (fliD, fliS), and hook-filament junction genes
(flgK, flgL) in PD or iRBD for Roseburia, CAG-115, and
Agathobacter genera (Extended Fig. 5B, p<0.05, Dunn
test).

Metabolites and metabolites-related genes associated
with PD are central to the microbial ecosystemic
metabolism
To quantify the importance of glutamate derivatives and
related genes in microbial metabolism, we next recon-
structed microbiome-wide metabolic networks as pre-
viously described [36]. We mapped genes related to the
compounds identified earlier as significantly different
A Il Glutamate
I Thymine
I Glycerol
Serine

Alanine
I Glucuronate
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between the different groups. The metabolic network
highlighted glutamate-related genes as compact and
placed in the middle of the network while glycerol was
more scattered across the network (Fig. 5A). Strikingly,
glutamate-related genes formed a subnetwork central to
the overall network with a betweenness centrality meas-
ure (BC) of 93.0 compared to 0.0009 for the whole com-
munity (Fig. 5B). Crucially, L-glutamate was the most
central non-cofactor metabolite in the network and
2-oxoglutarate (L-glutamate derivative) was the second
most central metabolite (Fig. 5C). Considering this, it
is apparent that glutamate and glutamate-related genes
are central to microbiome metabolism and that modifi-
cations in the levels of these metabolites or transcripts
reflect profound modifications of microbial metabolism.

Multi-omics factor analysis validates p-glutamate

and flagella links with PD

To validate our findings, we used an unsupervised
method with the Multi-Omics Factor Analysis (MOFA).
The resulting MOFA model included 10 factors (F1-
10 hereafter) whereby F1 showed a strong associa-
tion with disease status (p<0.05, ANOVA, Fig. 6A).
A complete description of the MOFA model is pro-
vided in the Extended information. We found that F1
mainly explained the variance of funMT, taxMT, and
MM (17.6%, 9.6%, and 5.7%, respectively, Extended
Fig. 6A-B) and showed separation of HC and PD,

Thymine

Isovalerate {
Valerate

Isobutyrate {

Glucuronate

Metabolites

Serine
Alanine
Glycerol

Glutamate |

D-serine-
D-alanine-
Glycine-
D-glutamine-
L-alanine-

P |

L-glutamine -

Metabolites

L-serine-

ryvate [
2-oxoglutarate -
canrarmete |
0.00 0.05 0.10 1 0.20

. 0.15
Betweenness Centrality

Fig.5 Metabolic network of whole community interactions. A Metabolic network of whole community interactions, with KEGG KOs represented
as nodes and associated metabolites as edges. Node sizes reflect MT/MG ratio of normalized read counts for each KO. Highlighted is the overlap
between glutamate-, thymine-, glycerol-, serine-, alanine-, and glucuronate-associated subnetworks mapped on the whole community network. B
Betweenness centrality calculated for the key metabolites highlighted in the whole-community network based on genes as nodes. C The network
was inverted to calculate betweenness centrality for metabolites; here, metabolites are nodes and genes are edges
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but not iRBD versus other groups (p<0.05, ANOVA,
Fig. 6B). The abundance of F1 was lower in the PD
group compared to HC and iRBD groups, mean-
ing omics features with a negative contribution to the
F1 were enriched in PD, while features with a posi-
tive contribution were enriched in the HC and iRBD
groups (Fig. 6C). Specifically, the microbiome of PD

was characterized by the joint increase in abundance of
M. smithii, archaeal proteins and genes (based on MP
and MG data), A. muciniphila (based on taxMT data),
B-glutamate, isovalerate, isobutyrate, hexadecanoic,
and hyocholic acids, whereas the abundance of R. hom-
inis (taxMG data), flagellin (funMT), GCA, and glyc-
erol were decreased in PD (Fig. 6C). Overall, the MOFA
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results are strongly consistent with the per omic layer
analysis and support our earlier findings.

From the microbiome to the host: expanding

the Expobiome map

To contextualize our newly gained insights about the
links between microbial taxa, their molecules, and mech-
anistic evidence from the literature on host physiology,
we integrated our results into the Expobiome map[35]
(https://expobiome.lcsb.uni.lu). Specifically, we added R.
intestinalis and hominis, B. wexlerae, coccoides and pro-
ducta, Clostridium butyricum, and E plautii as new taxo-
nomic elements linking flagellin, lipoteichoic acid (LTA),
and SCFAs signaling to immune-relevant human proteins
(Fig. 7). We also added mechanistic links on E praus-
nitzii and its effects mediated by the short-chain fatty
acid butyrate. Thereby, we integrated new mechanistic
details linking the combinatorial functions from these
taxa and pro-inflammatory component effectors such as
TLR5 and its downstream activation of NLRP3 inflam-
masome and NF-«B, IL-6, and TNF-a secretion. Thereby,
these new additions to the Expobiome map highlight the
convergent immunomodulatory functions of commensal
taxa, perturbed in the context of PD.

To facilitate the investigation of potential relation-
ships between microbial taxa, microbial compounds,
and human proteins that have been identified as crucial
players in PD, we have furthermore linked the Expobi-
ome map to the Parkinson’s disease map (https://pdmap.
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uni.lu). Notable overlaps exist between host proteins
that have been established to interact with microbial
components in both the immune system and the cen-
tral nervous system. For example, dendritic cells and
macrophages have well characterized interactions with
flagellin through TLR5 binding. TLR5 and other antigen
sensing receptors are present on microglia, a cell type of
critical importance in neuroinflammation and PD. This
integration of information from both so far disconnected
maps allows for a more comprehensive understanding
of these interactions and helps to draw new hypotheses
on the intricate links between the gut microbiome, the
immune system, and PD.

Discussion

Here, we investigate the Links between the Gut microbi-
ome and PD using an comprehensive integrated multi-
omics approach based on standardized sample collection
and extraction. We include individuals with iRBD as a
prodrome of PD to compare early and later stages of
the disease but do not find statistically significant differ-
ences between iRBD and PD, especially in comparison
to the more pronounced differences found between HC
and PD. Previous studies have shown differences in the
different early stages of PD, but these studies were per-
formed using 16S rRNA gene amplicon data [7, 10]. In
contrast to the amplicon-based results, no differentia-
tion between iRBD and PD is found using metagenomic
data [5]. More specifically, and contrary to previous
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Fig. 7 Schematic representation of the new taxonomic and molecular additions to the Expobiome map. Additional literature highlighting
mechanistic evidence linking microbial taxa to host physiology were collected. We specifically integrated Roseburia, Blautia, Faecalibacterium,
Flavonifractor, and Clostridium species, taxa that we measured and found significant differences for in this work, as new taxonomic elements
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findings [5] including our own work [7], we do not find
significant differences between HC and PD individuals in
the metagenome with respect to alpha or beta diversity.
However, we show differences in transcriptional activ-
ity for R. hominis, B. obeum, B. wexlerae, and P. copri
which are known to be found at lower abundance in PD
[5, 6, 8—13]. Moreover, we find several species, including
A. muciniphila, M. smithii, and Clostridium spp., to be
positively correlated with the abundance of compounds
increased in PD such as p-glutamate, isovalerate, or
isobutyrate, while other species are inversely correlated
with these compounds (species belonging to Faecalibac-
terium, Blautia, Eubacterium, and Roseburia). Collec-
tively, these findings are in line with findings associating
those genera with PD [5, 6, 8—13].

We identify metabolites that are associated with PD,
among which BAs, alanine, serine, and [-glutamate
showed differences in linked gene expression. The BA
chenodeoxycholic acid (CDCA) is decreased in PD and
iRBD whereas glycocholic acid (GCA) is decreased only
in iRBD. We also detect a decrease in transcripts related
to BAs in PD but not iRBD. BAs have a wide spectrum
of effects on the immune system [22, 23], metabolism
[37], hormones [38], and on the CNS [39]. GCA has
been found to be increased in the CNS of PD and asso-
ciated with disease duration [39], stressing the impor-
tance of analyzing BAs in PD and prodromal stages of
PD. Interestingly, when we taxonomically resolve the
differentially expressed SBAS genes, we find differ-
ent signals than when we compare the genes by them-
selves. For the differential expression analysis, we find a
significant decrease in PD for baiB, baiCD, baiE, baiF,
and baiH but not for baiA and baiN. When we resolve
the taxonomic expression of the SBAS genes we find
differences only for baiA and baiN. This finding under-
scores the importance of considering the microbiome at
the taxonomic and functional levels at once. In contrast
to previous studies [6, 15], we do not find a decrease in
butyrate, propionate, acetate, or overall levels of SCFAs.
However, we find an increase in isovalerate, isobutyrate,
and valerate as described previously [15]. Previous stud-
ies have highlighted the correlation of fecal concentra-
tions of isobutyrate and isovalerate with PD severity [40]
and concentrations of valerate with disease duration [41].
There currently is an apparent lack of knowledge regard-
ing isobutyrate or isovalerate with respect to host-micro-
biome interactions and very few related genes annotated
in the KEGG database, thereby hindering interpretations
concerning potential links between these metabolites and
PD.

B-glutamate and glutamate-related genes are of par-
ticular interest in the context of PD because of the
reported toxic effects of L-glutamate on neurons [24] and
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because of its association with microbial activity. In addi-
tion, glutamate levels have been reported to be increased
in PD individuals’ blood sera [17, 18]. B-glutamate has
strikingly only one reaction described in the KEGG
database; in contrast, L-glutamate has 213 reactions and
54 pathways, while D-glutamate has 12 reactions and 2
pathways. We find that glutamate and glutamate-related
genes are central to microbial metabolism, which under-
pins the notion that the highlighted differences reflect
a pronounced impact on gut microbiome function. Of
note, glutamate likely has local effects on enteric neurons
with subsequent influences on the CNS [42]. Although
we show significant differences in p-glutamate and gluta-
mate-related genes in the stool of PD patients, we detect
no significant differences in the glutamate levels (both
enantiomers) between the three groups. We highlight
significant differences in B-glutamate for which we cur-
rently cannot evaluate the effects on the ENS and CNS.
Overall, based on our results, microbiome-driven glu-
tamate metabolism and its impact on the glutamatergic
system must be comprehensively studied in the future to
disentangle its link with PD.

Glutamate-related genes are further involved in chem-
otaxis and flagellar assembly pathways, highlighting a
modification of the latter genes’ expression with the
majority being decreased in PD individuals and some of
these genes in iRBD too. A decrease in flagellar assem-
bly gene abundances has been previously reported in a
metagenomic analyses of PD [9]. We do not see signifi-
cant differences in the linked gene abundances, but their
expression levels are significantly different, highlighting
altered regulation of transcription in PD/iRBD compared
to HC. Flagellar assembly and chemotaxis genes are also
differentially expressed by specific microbes; the genera
Escherichia and Cellulosilyticum for instance express fla-
gellar assembly genes only in the context of PD without
being statistically differentially abundant.

Flagellin is a known immunogenic molecule, a potent
pro-inflammatory compound in pathogens [43-48]
and is thus targeted by secretory IgA [49]. However,
flagellin in commensals, especially in the Lachno-
spiraceae family, has been shown to be either “silently
recognised” [50] or elicit anti-inflammatory effects
[51-53]. Among the Lachnospiraceae family, the genus
Roseburia shows a decrease in the transcription of
flagellin in the gut microbiome of PD. This in turn may
be linked to immune system dysregulation and exert
indirect effect on the CNS, particularly in microglia
as shown in a previous study using a murine model
of PD [54]. Previous studies have shown an increased
inflammatory state in PD, with increased pro-inflam-
matory circulating immune cells [55], cytokines [56],
and activated microglia [57]. In addition, microglia can
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be activated by a-synuclein via NLRP3 following TLR2
(lipopolysaccharide (LPS) sensing) and TLR5 (flagellin
sensing) activation [58]. Therefore, the activation or
inhibition of TLRs by distinct flagellins may modulate
microglia activation by competing with a-synuclein
and affect PD progression. It is however not known if
flagellin can reach the CNS directly or if this potential
effect would be mediated by an indirect effect through
the immune system. Evidence exists that a local,
microbiome-mediated effect on the enteric immune
system can impact distant sites such as the brain [59]
or tumors [60]. This provides solid grounds for the
hypothesis that flagellin can regulate the CNS and
modulate the neuroinflammation occurring in PD as
resolved in the Expobiome map (Fig. 7).

Knowledge on microbial antigens is based on stud-
ies of pathogens, mainly Salmonella typhimurium,
pathogenic Escherichia coli, Staphylococcus aureus, or
Bacillus subtilis. The results of these studies have led
the scientific community to consider bacterial antigens
as pro-inflammatory and danger signals for the host
[61]. Our findings associating flagellin expression with
health, along with recent reports showing the anti-
inflammatory effects of flagellin from R. hominis and
intestinalis [50, 51], LTA from F. plautii [62], and LPS
from Bacteroides dorei [63], call for a re-evaluation
of the impact of common antigens on host physiol-
ogy. Finally, the diverse compounds produced by the
gut microbiome demand detailed investigation, with
regard to the taxonomy and commensal/pathogen phe-
notype of the producing microbe, to fully understand
their modulating effects on the immune and nervous
systems alongside metabolism in health and disease.

In conclusion, our work clearly highlights the impor-
tance of studying microbiome functions rather than
restricting microbiome analyses to taxonomic struc-
ture. Specifically, the combination of MT and MM
provides clear insights into the activity of specific
microbial taxa in relation to disease. In our present
work, MT reveals that disease association is not solely
determined by gene expression levels; the diversity of
microbes capable of expressing a specific function and
the specific taxa expressing those functions are also of
immediate interest and relevance. While microbiome
interventions are mainly designed to deal with dysbio-
sis at the taxonomic level, here, we propose to focus on
restoring the lost functions from dysbiotic gut micro-
biomes. The future of microbiome research might lie
in understanding how we can modulate, re-activate, or
shut down specific microbial functions in vivo in order
to improve knowledge and later improve or function-
ally tailor microbiome interventions.
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Methods
Key resources table
Reagent or resource Source Identifier
MedAuxil Feces Col- MecAuxil Cati#tFe-Col
lection Device
Sarstedt collection Sarstedt Cat#80.623.022
tubes
Zymo DNA Zymobiomics Cat#D4014
Clean&Concentrator-5
Zymo RNA Zymobiomics Cat#R1014
Clean&Concentrator-5
Agilent 2100 Bioana-  Agilent Technologies ~ G2939A
lyser
NanoDrop Thermo Fisher Cat#ND-1000

Scientific
Qubit ds DNA BR Qubit Cat#Q32850
Assay kit
Qubit RNABR Assay  Qubit Cat# Q10210
kit
Bioruptor NGS Diagenode Cat#UCD-600
TruSeq Stranded [llumina Cat#20,020,595
mMRNA
RiboZero kit lllumina Cat#MRZB12424
NextSeq500 lllumina Cat#SY-415-1001
Sera-Mag SpeedBeads GE Healthcare Cat#45,152,105,050,250;

Q Exactive™ HF-X
Hybrid Quadrupole-
Orbitrap

TriVersa NanoMate

Acclaim PepMap 100
c18

Tecan Freedom EVO
200

Biological samples

Fecal sample from PD
and healthy individu-
als

Fecal sample
from iRBD individuals

Chemicals, peptides, and recombinant proteins

Ammonium bicar-
bonate

lodoacetamide
Acetonitrile

Ethanol

Ammonium formate
Trifluoroacetic acid
Deposited data
GTDB

Thermo Fisher
Scientific

Advion

Thermo Fisher
Scientific

Tecan

Paracelsus-Elena
Klinik, Kassel, Ger-
many

Department of Neu-
rology, Philipps-
University, Marburg,
Germany

Sigma-Aldrich

Sigma-Aldrich
Sigma-Aldrich
Sigma-Aldrich
Sigma-Aldrich
Sigma-Aldrich

Parks et al. 2022 [64]

Cat#65,152,105,050,250
0726042

Cat#STEM-LAHTPO-
0097-Z2JF

Cat#164,535

https://lifesciences.
tecan.com/freedom-
evo-platform

Cat#09830

Cat#l1149
Cat#L010300
Cat#459,844
Cat#156,264
Cat#900,518

https://github.com/
Ecogenomics/GtdbTk;
RRID:SCR_019136
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Reagent or resource  Source Identifier Reagent or resource  Source Identifier

SILVA 138.1 Quast et al. [65] http://www.arb-silva. NetworkX v3.3 Hagberg et al. [76] https://networkx.org
de/; RRID:SCR_006423 RRID:SCR_016864

KEGG Kanehisa et al. [66] http://www.kegg.jp/; ggplot2 Wickham et al. [77] https://cran.r-project.
RRID:SCR_012773 org/web/packages/

UniProtkB Schneideretal.[67]  http//www.uniprot. ggplth/mdex.html;
org/help/uniprotkb; RRID:SCR_014601
RRID:SCR_004426 vegan Oksanen et al. [78] https://github.com/

CRAP The Global Proteome  https://www. vega'ndevs/vegan

Machine Organization thegpm.org/crap/; RRID:SCR_011950

Software and algorithms
Integrated Meta-omic

Pipeline

Python

Rv4.4.1

RStudio v2024.4.2.764

BioRender

MetaboliteDetector
Thermo Xcalibur

TaceFinder

MEGAHIT

Prokka

featureCounts

Mantis

MOTUs
Kraken

Sipros

SIAMCAT

Narayanasamy et al.

[34]

Python Programming

Language
R Core Team

Rstudio

BioRender

Hiller et al. [68]

Thermo Fisher

Scientific

Thermo Fisher

Scientific

Lietal [69]

Seeman et al. [70]

Liao etal. [71]

Queiros et al. [35]

Milanese et al. [72]
Davis et al. [73]

Guo et al. [74]

Wirbel et al. [75]

RRID:SCR_018187

https://git-r3lab.uni.lu/
IMP/imp3

http://www.python.
org/; RRID:SCR_008394

https://www.r-project.
org/; RRID:SCR_001905

https://posit.co/;
RRID:SCR_000432

https://www.biorender.
com/

https://md.tu-bs.de

http://chemistry.unt.
edu/~verbeck/LIMS/
Manuals/XCAL_Quant.
pdf; RRID:SCR_014593

https://www.thermofish
ercom/lu/en/home/
industrial/mass-spect
rometry/liquid-chrom
atography-mass-spect
rometry-lc-ms/Ic-ms-
software/Ic-ms-data-
acquisition-software/
tracefinder-software.
htm! RRID:SCR_023045

https://github.com/
voutcn/megahit;
RRID:SCR_018551

http://www.vicbioinfo
rmatics.com/softw
are.prokka.shtml;
RRID:SCR_014732

http://bioinfwehi.edu.
au/featureCounts/;
RRID:SCR_012919

https://github.com/
PedroMTQ/mantis;
RRID:SCR_021001

https://motu-tool.org/

http://www.ebi.ac.
uk/research/enrig
ht/software/kraken;
RRID:SCR_005484

http://sipros.omicsbio.
org

https://www.bioco
nductor.org/packages/
release/bioc/html/
SIAMCAT.html

rstatix v0.7.2 Kassambara [79] https://cran.r-project.
org/web/packages/rstat
ix/index.html

RRID:SCR_021240

https://github.com/
jokergoo/ComplexHea
tmap

ComplexHeatmap
v2.200

Gu [80]

ggpubr v0.6.0 Kassambara [81] https://cran.r-project.
org/web/packages/

ggpubr/index.html

DeSeq2 v1.42.1 Love et al. [82] https://bioconductor.
org/packages/release/
bioc/html/DESeq2.html

RRID:SCR_015687

https://github.com/
ggloor/ALDEX2;
RRID:SCR_003364

https://biofam.
github.io/MOFA2/
RRID:SCR_022992

ALDEX2 v 1.36.0 Fernandes et al. [83]

Multi-Omics Factor
Analysis (MOFA) 2

Argelaguet et al. [84]

Other

Experimental model and study participant details

All subjects from both cohorts provided informed writ-
ten consent, and the sample analysis was approved by the
Comité National d’Ethique de Recherche of Luxembourg
(reference no.: 140174_ND).

Kassel cohort

The DeNoPa cohort represents a prospective, biannual
follow-up study of (initially de novo) Parkinson’s dis-
ease (PD) patients at the Paracelsus-Elena Klinik, Kas-
sel, Germany. Fecal samples from PD patients (46) and
healthy controls (29) were collected during the 4-year
follow-up visit for the cohort. Details on inclusion and
exclusion criteria and ancillary investigations have been
published previously [85, 86]. Subjects with idiopathic
rapid-eye-movement sleep behavior disorder (iRBD, 13)
were recruited at the same clinic, diagnosed according to
consensus criteria of the International RBD study group
[87] using video-assisted polysomnography, and were
included only if they showed no signs of a neurodegen-
erative disorder. DeNoPa subjects were required to have
a 4-week antibiotic free interval before fecal sample col-
lection. As additional control subjects, we collected fecal
samples from (20) neurologically healthy subjects living
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in the same household as the DeNoPa participants. Sam-
ples of de novo PD patients from a cross-sectional cohort
at the same clinic were included if subjects were recently
diagnosed, drug-naive, and met United Kingdom Par-
kinson’s Disease Society Brain Bank (UKPDSBB) clinical
diagnostic criteria [30]. All subjects except household HC
were interviewed and examined by an expert in move-
ment disorders. The study conformed to the Declaration
of Helsinki and was approved by the ethics committee
of the Physician’s Board Hessen, Germany (FF 89/2008).
The DeNoPa trial is registered at the German Register for
Clinical trials (DRKS00000540).

Marburg cohort

We also added samples from 14 patients with polysom-
nography-confirmed iRBD which were recruited from
the outpatient clinic of the Department of Neurol-
ogy, Philipps-University, Marburg, Germany, between
November 2015 and November 2016. iRBD was diag-
nosed according to the guidelines of the American Acad-
emy of Sleep Medicine (AASM ICSD-3) [88]. A detailed
medical history was recorded, and a complete neuro-
logical examination performed to verify the subjects’
suitability. Inclusion criteria were age above 18 years,
no dopamimetic therapy, and no diagnosis of Parkin-
son’s disease, multiple system atrophy, dementia with
Lewy bodies, or progressive supranuclear palsy. Exclu-
sion criteria were smoking, antibiotic therapy in the last
24 months, history of other neurological diseases, or
disorders of the gastrointestinal tract. Non-motor and
autonomic symptoms were evaluated with the SCOPA-
AUT [89] and PD-NMS [90] questionnaires. Motor func-
tion was evaluated with the UPDRS [91]. Additionally,
patients were asked to complete the RBD-Sleep ques-
tionnaire [92]. The study conformed to the Declaration
of Helsinki and was approved by the ethics committee of
the Medical Faculty of the Philipps-University, Marburg,
Germany (46/14).

Method details

Fecal sample collection

Fecal samples were collected at the clinics via a Feces
Collection Device (MedAuxil) and collection tubes
(Sarstedt), as previously described [7]. Samples were
immediately flash-frozen on dry ice after collection. Sam-
ples were subsequently stored at—80 °C and shipped on
dry ice.

Sample exclusions

The initial set of samples consisted of 50 PD, 30 iRBD,
and 50 healthy control subjects (HC). Three PD and two
iRBD cases were subsequently excluded for clinical rea-
sons (adjusted diagnosis), one iRBD, and one PD subject
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for logistical reasons, and one control due to a combina-
tion of microbiome-altering medications (metformin,
antidepressants, statins, and proton pump inhibitors).
Additional samples were excluded due to missing values
(metabolomics) or a low amount of identified analytes
(metaproteomics), leading to the final numbers of sam-
ples summarized below:

— Metagenomics (MG) and metatranscriptomics (MT):
49 HC, 27 iRBD, 46 PD

— Metaproteomics (MP): 42 HC, 22 iRBD, 40 PD

— Meta-metabolomics: 49 HC, 27 iRBD, 41 PD

Metagenomic and metatranscriptomic sequencing
Extractions from fecal samples were performed accord-
ing to a previously published protocol [93], conducted on
a customized robotic system (Tecan Freedom EVO 200).
After extraction, DNA and RNA were purified prior the
sequencing analysis by using the following commercial
kits respectively: Zymo DNA Clean&Concentrator-5
(D4014) and Zymo RNA Clean&Concentrator-5 (R1014).
RNA quality was assessed and Quantified with an Agi-
lent 2100 Bioanalyser (Agilent Technologies) and the
Agilent RNA 6000 Nano kit, and genomic DNA and
RNA fractions with a NanoDrop Spectrophotometer
1000 (Thermo Scientific) as well as commercial kits from
Qubit (Qubit ds DNA BR Assay kit, Q32850; Qubit RNA
BR Assay kit, Q10210). All DNA samples were subjected
to random shotgun sequencing. Following DNA isola-
tion, 200-300 ng of DNA was sheared using a Biorup-
tor NGS (Diagenode) with 30 s ON and 30 s OFF for
20 cycles. Sequencing libraries were prepared using the
TruSeq Nano DNA library preparation kit (Illumina) fol-
lowing the manufacturer’s protocol, with 350 bp average
insert size. For MT, 1 pg of isolated RNA was rRNA-
depleted using the RiboZero kit (Illumina, MRZB12424).
Library preparation was performed using the TruSeq
Stranded mRNA library preparation kit (Illumina) fol-
lowing the manufacturer’s protocol, apart from omit-
ting the initial steps for mRNA pull down. MG and MT
analyses, the qualities of the libraries were checked using
a Bioanalyzer (Agilent) and quantified using Qubit (Inv-
itrogen). Libraries were sequenced on an Illumina Next-
Seq500 instrument with 2x 150 bp read length.

Metaproteomics

Twenty microliters protein extract was processed using
the paramagnetic bead approach with SP3 carboxylate
coated beads [94, 95]. Briefly, the protein samples were
reduced with 2puL. 25 mM DTT in 20 mM ammonium
bicarbonate (Sigma-Aldrich) for 1 h at 60°C. Subse-
quently, 4 uL 100 mM iodoacetamide (Merck) in 20 mM
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ammonium bicarbonate was added and incubated for 30
min at 37°C in the dark. Next, 5 uL of 10% formic acid
was added as well as 70 pL. 100% acetonitrile (ACN) to
reach a final organic content higher than 50% (v/v). Two
microliters SP3 beads per sample were washed with
water three times with subsequent addition of the sam-
ple. After protein binding to the beads, the supernatant
was discarded. The beads were washed twice with 200
puL 70% (v/v) ethanol, and once with 200 uL. ACN. The
protein lysates were proteolytically cleaved using trypsin
(1:50) over night at 37 °C. Since trypsin is added in aque-
ous solution to the samples, the proteins are not bound
to the beads during enzymatic cleavage. ACN was added
to each sample to reach a final organic content higher
than 95% (v/v). After peptide binding to the beads, the
samples were washed with pure ACN on the magnetic
rack. Finally, the peptides were eluted in two steps: first,
with 200 pL 87% ACN (v/v) containing 10 mM ammo-
nium formate (pH 10), and next with two times adding
50 pL water containing 2% (v/v) DMSO and combination
of the two aqueous supernatants. Thus, two fractions of
peptides were generated, which were evaporated and re-
dissolved in water containing 0.1% formic acid (20 pL)
and analyzed on a Q Exactive HF instrument (Thermo
Fisher Scientific) equipped with a TriVersa NanoMate
source (Advion) in LC chip coupling mode. Peptide
lysates were injected on a trapping column (Acclaim Pep-
Map 100 C18, 3 pum, nanoViper, 75 umx2 cm, Thermo
Fisher Scientific) with 5 pL/min by using 98% water/2%
ACN 0.5% trifluoroacetic acid, and separated on an ana-
lytical column (Acclaim PepMap 100 C18, 3 pm, nanoVi-
per, 75 um X 25 cm, Thermo Fisher Scientific) with a flow
rate of 300 nL/min. Mobile phase was 0.1% formic acid
in water (A) and 80% ACN/0.08% formic acid in water
(B). Full MS spectra (350-1550 m/z) were acquired in the
Orbitrap at a resolution of 120,000 with automatic gain
control (AGC) target value of 3 10[6] ions.

Meta-metabolomics

Untargeted GC-MS as well as targeted measurements
(SCFA GC-MS/MS and bile acids LC-MS/MS) from
fecal samples were performed according to a previously
published protocol [96]. All GC-MS chromatograms
were processed using MetaboliteDetector, v3.220190704
[69], while LC-MS chromatogram were acquired with
Thermo Xcalibur software (version 4.1.31.9) and analyzed
with TaceFinder (Version 4.1). Compounds were initially
annotated by retention time and mass spectrum using an
in-house mass spectral library. Internal standards were
added at the same concentration to every medium sam-
ple to correct for uncontrolled sample losses and analyte
degradation during metabolite extraction. The data was
normalized by using the response ratio of the integrated
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peak area of the analyte and the integrated peak area of
the internal standard.

Sequencing data processing and analysis

For all samples, MG and MT sequencing data were
processed and hybrid-assembled using the Integrated
Meta-omic Pipeline (IMP) [34] (https://git-r3lab.uni.lu/
IMP/imp3, commit 8clbd6fa443d064511909ceede-
20703f45e6¢69). It includes steps for the trimming and
quality filtering of the reads, the filtering of rRNA from
the MT data, and the removal of human reads after map-
ping against the human genome (hg38). Pre-processed
MG and MT reads were assembled using the IMP-based
iterative hybrid-assembly pipeline using MEGAHIT [97]
1.0.3. After assembly, the prediction and annotation of
structural features such as open-reading frames (ORFs)
was performed using a modified version of Prokka [70]
and followed by functional annotation of those using
Mantis [35]. Structural features were quantified on MG
and MT level using featureCounts [72]. Taxonomic anno-
tation of reads and contigs was performed using Kraken2
[98] with a GTDB release207 database (http://ftp.tue.
mpg.de/ebio/projects/struo2/GTDB_release207/krake
n2) and a 0.5 confidence threshold. Additionally, taxon
abundances were estimated using mOTUs 2.5.1 [73]. The
mOTU abundances were used to generate abundance
matrices for each taxonomic rank (phylum, class, order,
family, genus, and species) by summing up taxon marker
read counts at the respective levels.

Metaproteomics prediction and annotation

For each sample, the predicted proteins were concat-
enated with a cRAP database of contaminants and the
human UniProtKB Reference Proteome prior to the
MP search. In addition, reversed sequences of all pro-
tein entries were added to the databases for the estima-
tion of false discovery rates. The search was performed
using Sipros v1.1 [75] as search engine with the follow-
ing parameters: trypsin was used as the digestion enzyme
and a maximum of two missed cleavages was allowed.
The tolerance levels for matching to the database were
1 Da for MS1 and 0.01 Da for MS2. Peptides with large
errors for parent ions were later filtered out by setting the
Filter Mass Tolerance Parent Ion parameter to 0.05 Da.
Carbamidomethylation of cysteine residues was set as
a fixed modification and oxidation of methionines was
allowed as a variable modification. Peptides with length
between 7 and 60 amino acids, with a charge state com-
posed between +2 and +4, and a maximum missed cleav-
ages of 3 were considered for identification. The results
from all identifications were filtered by Sipros using at
least one unique peptide per protein, and peptide false
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discovery rate (FDR) was dynamically set to achieve a 1%
of protein FDR.

Data analysis was performed on all samples with at
least 2000 proteins identified. A summary matrix of all
selected samples consisting of the KO annotations from
the integrated MG and MT analysis and the spectral
count from the MP identification was then generated and
used for statistical analysis.

Quantification and statistical analysis

Dimensionality reduction and ordination

Beta diversity for MG and MT was assessed using the
Bray—Curtis dissimilarity and subjected to a Non-Met-
ric MultiDimensionnal Scaling (NMDS) for both the
taxonomic and functional levels, using the metaMDS()
function from the vegan package (2.6.2). Principal com-
ponent analysis (PCA) was performed for MP and MM
using the rda() function in the vegan package (2.6.4).
PERMANOVA was used to assess statistical differences
between groups using the Bray—Curtis dissimilarity and
conducted in the vegan R package with the adonis2()
function.

Differential abundance analysis and correlations
Differential abundance was done in two different
approaches. The first approach consisted in using SIAM-
CAT [76] and ALDEx2 [83] algorithm to find all the
taxa and genes differentially expressed between groups
without prior assumption. We used two different algo-
rithms to have a sensitive algorithm (SIAMCAT, less
prone to have false negative) and a more conservative one
(ALDEx2, less prone to have false positive). The second
approach consisted in using the MM significant com-
pounds to drive the analysis on the functional level for
MG and MT. Therefore, differential abundance tests and
multiple correlation tests were conducted with a classi-
cal approach. We used Mann—Whitney or Kruskal-Wal-
lis followed by a Dunn test (depending on the number of
groups) and Spearman correlation tests. We applied FDR
correction using the Benjamini and Hochberg method
[99]. We depicted both FDR corrected as g-values and
non-FDR corrected p-values to represent most of the dif-
ferences found in our datasets. All statistical tests were
done using the rstatix package (0.7.2).

Variance analysis

Variance analysis was used to assess the importance of
each clinical factor on MM. To verify the covariance of
factors and to assess which factors explained the most
variance in our datasets, we computed the total variance
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for each clinical factor (removing the NAs for each fac-
tor) and the variance explained by each group within a
clinical factor. Explained variance was calculated as fol-

. . __ l—variance.group
lows: var.explained = — =" ===,

Microbiome-wide metabolic network analysis

The microbiome-wide metabolic network analysis was
conducted by establishing an association between KEGG
KOs and corresponding ChEBI IDs. The networks were
visualized utilizing the NetworkX package (release 3.3)
[76]. In this network, the nodes were represented by
KEGG KOs, while the edges were denoted by the cor-
responding metabolites (either products or reactants)
[36]. Such compounds as water, energy Transporters,
and cofactors were removed, to only consider main com-
pounds of a given reaction. The analysis was restricted to
genes that were present in a minimum of 50% of the sam-
ples. To construct metabolite-specific networks, we used
KEGG KOs which have either a reactant or product in
KEGG. Glutamate-, thymine-, glycerol-, serine-, alanine-,
and glucuronate-specific subnetworks were composed
of 146, 9, 66, 43, 70, and 18 genes, respectively. The net-
work topology metric “Betweenness centrality” was used
to underscore the importance of a metabolite in microbi-
ome-wide metabolism [36].

Integrated multi-omics analysis using MOFA2

Integrative analysis for the seven omics layers was con-
ducted with the Multi-Omics Factor Analysis (MOFA) 2
R package (version 1.10.0) [100]. Before the analysis, data
were preprocessed as follows: (I) funM@G, funMT, funMP,
taxM@G, taxMT, and taxMP data were filtered based on
the number of non-zero features; a feature was kept if it
was present in at least in 25% of samples in each group
(PD, HC, iRBD) or at least in 75% in any of the groups;
(II) funMG@G, funMT, taxM@G, and taxMT count data were
separately residualized in a linear model to remove vari-
ance explained by differences in sequencing depth; (III)
funMP and taxMP data were residualized by the sum of
protein counts per sample and information on the num-
ber of high-quality proteins recovered per sample; (IV)
regression residuals were cubic-root transformed to
account for heteroscedasticity; (V) MM data were Trans-
formed using a centered log-ratio Transformation. Each
dataset was then additionally filtered to retain the fea-
tures with the largest variance for the subsequent anal-
ysis. For funMG and funMT, we included features with
variances equal to or larger than 90% feature variance
for a dataset; for the other datasets, we included features
with variance equal to or larger than the median feature
variance for a given dataset. In the results, the feature size
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for omics layers was as follows: 759 for funM@G, 657 for
funMT, 410 for funMP, 109 for taxM@G, 71 for taxMT, 115
for taxMP, and 34 for MM. MOFA analysis was run on
scaled omics data with fifteen initial factors. All factors
that explained less than 2% of the variance were excluded
from the model. The remaining factors were tested for
differential abundance between the groups studied using
the linear regression followed by ANOVA type II control-
ling the participants’ sex, age, and recruitment cohort.

Extended information

Multi-omics data overview

Using our previously developed methodological frame-
work [104, 105], we performed a systematic multi-omic
analysis of DNA, RNA, protein, and metabolite fractions
isolated from flash-frozen fecal samples. We used MG,
MT, MP and MM data to find biomarkers associated with
the PD phenotype (Fig. 1). We generated a mean of 7.5
(std 1.7) Gbps and 7.5 (std 1.4) Gbps of sequencing data
for MG and MT, respectively. After trimming and filter-
ing, we retained a mean of 6.8 (std 1.7) Gbps and 3.2 (std
1.3) Gbps for MG and MT, respectively. The mean assem-
bly size was 0.4 (std 0.1) Gbps, with on average 5.9 10[5]
(std 1.7x10[5]) genes predicted. Finally, protein data-
bases contained a mean of 7.2x10[5] (std 1.8x10[5])
proteins, an average of 4.1x10[4] (std 0.6x10[4])
MS spectra per sample were acquired, and a mean of
3.4x10[3] (std 1.7 x 10[3]) proteins were identified.

MOFA model description

MOFA is an unsupervised machine learning approach for
the integration of multi-omics data sets [100]. It allows
for the identification of highly informative features across
multiple omics. It has previously been used in the study
of the gut microbiome in several diseases, giving criti-
cal insights into the link between the gut microbiome,
health, and disease [101-103]. The biggest proportion of
variance was explained by funMG and funMT, followed
by the taxMT and funMP datasets (Extended Fig. 6A).
F1-2 incorporated most of the variance related to the
funMT and taxMT, whereas funMG and taxM@ variance
was predominantly covered by F3-F5 (Extended Fig. 6B).
The funMP variance was explained mostly by F6, and
MM variance was explained by F1 and F6. MOFA factors
were tested in a linear model followed by ANOVA with
disease status, as well as confounders including patients’
sex, age, and recruitment cohort. Among the MOFA fac-
tors, F1 showed an association with the disease status,
whereas F4 and F9 were associated with patients’ sex and
recruitment cohort, respectively (Fig. 6A).
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Supplementary Material 1: Extended figure 1. NMDS analysis of A.
metagenomic taxonomic composition (taxMG), B. metagenomic functions
(funMG) and C. meta-proteomic taxonomic composition (taxMP), using

a Bray-Curtis dissimilarity matrix. D. PCA analysis of metaproteomic func-
tions (funMP). E. PERMANOVA analysis for the three groups and all omics.
Colour represents R? values and size is-log10(p-value). All PERMANOVA
analysis were run using 1000 permutations using a Bray-Curtis dissimilarity
matrix.

Supplementary Material 2: Extended figure 2. A. Differential abundance
analysis at the genus level using SIAMCAT algorithm. B. Differential
abundance analysis using ALDEx2 algorithm at the species level. Values
are pseudo fold changes for HC/PD and size is based on —log10(p-value).
Shape is referring to level of significance, triangular shape for p-value sig-
nificance before and round shape for p-values < 0.05 after FDR correction.
C to F ALDEx2 differential abundance analysis on funMG for HC vs PD (C)
and HC vs iRBD (D); funMT for HC vs PD (E) and HC vs iRBD (F). All genes
and transcripts are colored and shaped according to p-value significance
before (triangle shape) and after FDR correction (round shape).

Supplementary Material 3: Extended figure 3. A. Percentage of variance
explained for each metabolite for “Sex” and “Diagnosis” and B. Percentage
of variance explained for each metabolite for “Constipation”and "Diag-
nosis” (right panel). Metabolites include untargeted meta-metabolomics,
targeted SCFA and targeted bile acids, normalized by sum before merging
and variance quantification. C. Variance for each metabolite associated

to the clinical factors “Diagnosis’, “Sex”and “Constipation”. Metabolites
include untargeted meta-metabolomics, targeted SCFA and targeted bile
acids, normalized by sum before merging and variance quantification. D.
Spearman correlation between metabolites and taxMG species. P-values
are FDR corrected.

Supplementary Material 4: Extended figure 4. A. Absolute log?2 fold
change between HC and iRBD for funMG and funMT associated to signifi-
cant compounds. Dots are scaled by the —log10(p-value), colorized and
shaped according to p-value significance before (triangle shape) and after
FDR correction (round shape). B. Spearman correlation between beta-
glutamate relative abundance and funMG-funMT KEGG orthologs related
to glutamate species. Only genes with at least one significant correlation
are plotted. All p-values are FDR corrected.

Supplementary Material 5: Extended figure 5. A. Bile acids transcripts
found significantly different between the groups. P-values are corrected
with FDR. B. Flagellar assembly transcripts encoding for extracellular
component of the flagella for the genus present in Cluster 2. All tests are
Wilcoxon tests.

Supplementary Material 6: Extended figure 6. Multiomics variance
explained by MOFA factors. A. Variance explained by the MOFA factors
across different omics layers, total. B. Variance explained by the MOFA fac-
tors across different omics layers, split by factors.
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