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A B S T R A C T

Ongoing anthropogenically-driven environmental change in rivers (e.g. increasing air temperature, changing 
river flow extremes, increases in some key nutrients and decreasing concentrations of other key nutrients) is 
expected to impact ecological status and the magnitude and frequency of river algal blooms. In this study we 
considered 49 years of data from up to 161 river sites across England using water-column chlorophyll-a as a 
measure of suspended algal biomass and used a Bayesian hierarchical model to explore the potential drivers of 
changing river chlorophyll-a concentrations. Over a period of five decades the changes in chlorophyll-a con
centrations in rivers across England showed a mixed pattern in relationships with key environmental variables 
and are almost evenly divided between significant increases and decreases in those chlorophyll-a concentrations. 
Most river sites showed no significant change in the probability of algal bloom events (chlorophyll-a > 15 μg/l; >
30 μg/l or 45 μg/l) over the last 49 years. These results indicate that there has been no clear directional response 
in algal bloom events across England’s rivers to the changing pressures, including climate change and large-scale 
reductions in P concentrations achieved over the last 49 years from improved wastewater treatment. By iden
tifying these differing patterns in chlorophyll-a trends and responses across England, this large-scale spatio- 
temporal analysis provides a basis for exploring the multiple pressures driving chlorophyll-a responses at local to 
regional scales.

1. Introduction

Eutrophication is often associated with decreased dissolved oxygen 
levels, the presence of toxic cyanobacteria, and the development of 
unpleasant tastes and odours in drinking water reservoirs (Perkins et al., 
2019). A range of important drivers and controls for eutrophication in 
rivers have been identified and in most cases a combination of factors 
have been proposed as causing algal blooms. These causes include: 
increased nutrient supply; decreased flow; increased stream tempera
ture; and increasing light intensity (Reynolds and Descy 1996; Balbi 
2000; Waylett et al. 2013). With ongoing human-driven environmental 
change, algal bloom events are of increasing concern, and chlorophyll-a 
measurements are often used as a proxy for suspended (phytoplankton) 
algal biomass (Pinder et al, 1997; Neal et al, 2006). This study explores 
the trends in chlorophyll-a concentrations and exceedances across En
gland in relation to physico-chemical drivers. England has a long- 

established national water quality monitoring network that has 
covered a diversity of catchments during a 50-year period of agricultural 
intensification, population growth and improved urban wastewater 
management, and is therefore an exemplar for the impact of changing 
pressures on river systems across the world.

River flow and in-stream residence time strongly influence 
chlorophyll-a concentrations (Neal et al., 2006; Søballe and Kimmel, 
1987). Algal blooms often occur in rivers with residence times exceeding 
4 days (Kinniburgh et al., 1997; Bowes et al., 2019), highlighting the 
importance of factors like catchment area and dead zones (Reynolds, 
2000). However, climate change may alter this, as increased water cycle 
intensity could reduce low-flow, high-residence time periods 
(Huntington, 2006).

Light intensity influences algal growth (Figueroa-Nieves et al., 2006; 
Hardenbicker et al., 2014) and has been altered globally by anthropo
genic emissions. Global dimming, a reduction in surface light intensity, 
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occurred from the 1950s to 1980s (Stanhill and Cohen, 2001; Wild et al., 
2005), coinciding with increased anthropogenic aerosols impacting 
clouds and water vapor (Romanou et al., 2006). This dimming involved 
changes in cloud properties and aerosol concentrations (Liepert and 
Tegen, 2002). Since the 1980s, brightening has occurred in industrial 
regions of the Northern Hemisphere due to reduced aerosol emissions 
(Wild et al., 2007). Over the past 50 years, chlorophyll-a may have 
responded to these dimming and brightening trends. Additionally, local 
factors like riparian tree shading can influence algal responses (Zhang 
et al., 2024).

A range of authors have shown chlorophyll-a to be correlated with 
water temperature (Neal et al., 2006; Desortova and Puncochar, 2011; 
van Vliet and Zwolsman, 2008; Larroude et al., 2013), and stream 
temperature would be commonly considered to increase with ongoing 
climate change. Global river water temperature increased by 0.16 K per 
decade between 1960 and 2011 (Wanders et al., 2019). However, UK 
stream temperature has risen slower than air temperature (0.1 vs 0.3 K 
per decade) due to deindustrialisation and groundwater buffering 
(Worrall et al., 2022). Annual average stream temperature may not be 
the best indicator for algal blooms, as higher temperatures can both 
promote and limit certain algal communities.

High nutrient concentrations in rivers are frequently cited as the 
primary cause of eutrophication and subsequent algal blooms 
(Vollenweider 1968; Herath 1997; Chetelat et al., 2006). Riverine ni
trogen inputs can trigger near-shore algal blooms (Whelan et al., 2009). 
Moreover, increased nitrogen levels have been linked to shifts in the 
structure and diversity of lake plant and algae communities (Bunting 
et al., 2007; Olsen et al., 2015). Nitrogen, often a scarce resource in 
marine environments (Howarth and Marino, 2006), can significantly 
influence coastal ecosystems.

Nutrient concentrations in developed countries’ rivers are mainly 
influenced by wastewater emissions and agricultural runoff, with minor 
atmospheric contributions (Whelan et al. 2022). Algal growth, often 
limited by phosphorus (P) (Turner et al., 2003), typically becomes 
restricted below P concentrations of 50–100 μgP/l (Mainstone and Parr, 
2002; Jarvie et al, 2018), with lower thresholds in England’s low alka
linity rivers (UK TAG, 2013). Though nitrate levels remain high 
(Howden et al, 2010), P concentrations have significantly decreased 
since the 1980 s due to P management strategies (Civan et al, 2018; 
Powers et al, 2016).

Silicon (Si) is crucial for diatoms (Tréguer et al. 2021), key to aquatic 
primary production. Weathering of rocks and soil, driven by CO2 
(Wollast and Mackenzie, 1983), is the main Si source in freshwater. 
While increased river transport of Si might be expected with climate 
change, a global study found no consistent trend, only a median increase 
of 0.08 mg Si/l/yr (Jankowski et al. 2023). Diatom growth in rivers may 
become limited by Si, when N and P are in excess of Si (as defined by 
Redfield molar ratio − Redfield, 1963), and non-siliceous algae, 
including toxic and harmful cyanobacteria, may come to dominate the 
phytoplankton community (Carey et al. 2019).

While multi-decadal investments in improved wastewater treatment 
and agri-environment schemes have led to long-term reduction of P 
loadings to rivers, other anthropogenic pressures on riverine eutrophi
cation have increased. Therefore, this study seeks to explore the net 
impacts of these multiple anthropogenically-driven changes on (a) the 
trends chlorophyll-a concentrations in England’s rivers, and (b) the 
changing probability of algal bloom events (chlorophyll-a concentra
tions above defined thresholds), over the last 50 years.

2. Approach & methodology

The approach of this study was to use four Bayesian hierarchical 
modelling approaches to understand the nature and long-term trend in 
suspended algae in rivers, as measured by chlorophyll-a (Chl-a) and the 
models considered: 

• Concentration of Chl-a; and,
• Occurrence of Chl-a events, i.e. occurrence of Chl-a above a defined 

threshold.

These are referred to as the Concentration and Exceedance models 
respectively. Each of these two approaches were applied to two sets of 
descriptors: 

• Relative to spatial and temporal factors, specifically, modelling 
including the inter- and intra-annual trends between monitoring 
sites;

• Relative to physio-chemical properties of the river water at the time 
of sampling, although these second models also included spatial and 
temporal factors.

The Bayesian approach, which values all data, can increase the 
precision of analyses on large datasets. This benefit means that the un
certainty surrounding estimated trends at individual sites will be 
reduced, making the analysis more sensitive to detecting significant 
trends. Additionally, this approach is robust against irregular sampling, 
a common issue in national monitoring programmes. Factorial infor
mation, such as the month of sampling, can be incorporated into the 
analysis to account for these irregularities. To highlight the benefits of 
the Bayesian hierarchical approach, a simple linear regression approach 
was also conducted on the dataset for comparison.

2.1. River monitoring data

This study uses data from the Harmonised Monitoring Scheme sites 
(HMS − Bellamy and Wilkinson, 2001). There are 161 sites in England 
where Chl-a has been monitored (Fig. 1 – Table 1). The original HMS 
monitoring programme included river sites if they were at the tidal limit 
of rivers with an average annual discharge > 2 m3s− 1, or any tributaries 
that had a mean annual discharge > 2 m3s− 1 (Bellamy and Wilkinson, 
2001). The catchments that could be included in the study vary area 
between 40 and 9885 km2 (Table 1). Although the UK-wide HMS 
monitoring programme ceased at the end of 2014, since then the same 
monitoring sites in England have been maintained by the Environment 
Agency. Therefore, Chl-a and the other water quality data could be 
considered from 161 sites between 1974 and 2022 (49 years). The other 
chemical determinands included were: nitrate, phosphate, silica and 
stream temperature. The measurement of Chl-a in this monitoring pro
gramme was of Chl-a in the water column, and so would only represent 
algae that are in suspension. The samples are grab samples rather than 
depth-width integrated. Sampling protocols and analytical methods for 
the HMS sites were prescribed in DoE (1972) and outlined in Simpson 
(1980). Current procedures are outlined and controlled by the UK 
Government’s Standing Committee of Analysts (http://standingcommitt 
eeofanalysts.co.uk/).

Similarly, the HMS monitoring sites were associated with their 
nearest river flow gauging station and the discharge on the day of 
sampling was included in the analysis. In order to ensure comparability 
between monitoring sites with respect to river discharge, the river 
discharge was converted to the percentile flow at the time of sampling 
with respect to the whole flow record available for that gauging station. 
Samples were collected independent of river discharge and percentile 
flow varied between 0.01 and 99.99 %. The other physico-chemical 
properties including in the modelling were not normalised as to aid 
stoichiometric interpretation.

2.2. Bayesian hierarchical modelling – the concentration model

The concentration model considered the concentration of Chl-a 
relative to both spatial and temporal factors, and to physio-chemical 
parameters. With respect to concentration model with spatial and tem
poral factors the model is: 
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Chlaxt = N
(

μxt ,
1
σ2

)

(i) 

μxt = αxt(Site,Month)+ βxt(Site,Month)[Year]xt (ii) 

where: Chlaxt, is the value of the Chl-a for Site x at time t (ug/l); Site, a 
factor representing the different monitoring sites for which data were 
available and so had a levels for each river monitoring site within the 
dataset. Month a factor representing the calendar month of sampling 
and hence there are 12 levels in this factor. The Chl-a concentration at 
time t was classified by its Month and Year and where there was more 
than one sample in any month all these data were included and no 
averaging was used. Year is the year of the sampling, but taken as a 
covariate and not as a factor. Furthermore, the value of year was re- 
scaled so that 1974 is year 0 – this was done so that if values of β 
were insignificant then model-fitting would return values of α that were 
the expected value for that monitoring site. N() is the normal distrbuton 
and σ2 is the variance and 1

σ2 is the precision which is used to be 
consistent with the manner of Lunn et al. (2013) and in which the code 

Fig. 1. The location of the monitoring sites used in this study.

Table 1 
Range of properties of the catchments considered in this study.

Catchment 
property

Median Range Catchment 
property

Median Range 
(%)

Area (km2) 446 40–9885 Mineral soil 
cover

49 0–100

Actual 
evaporation 
(mm)

524 426–588 Organo- 
mineral soil 
cover

24 0–100

Annual rainfall 
(mm)

926 561–2606 Organic soil 
cover

0.7 0–100

Baseflow index 0.52 0.3–0.9 Arable land 
cover

15 0–70

​ ​ ​ Urban land 
cover

34 0–78

​ ​ ​ Grass land 
cover

5 0–36
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operates (supplementary material provides R and JAGS code). In this 
way, βxt were calculated for each monitoring site, for each month, across 
the record and represents the trend in the chlorophyll concentration 
across the period for a particular site and month. The model in Equations 
(i) − (ii) is henceforward referred to as the concentration model as it 
included both Site and Month factors.

The second approach for the concentration model was to use the 
physio-chemical descriptors: 

μxt = αxt(Site,Month)+ βP(Site,Month)[P]xt + βT(Site,Month)[T]xt

+ β%Q(Site,Month)[%Q]xt

+ βSi(Site,Month)[Si]xt+βNO3(Site,Month)[NO3]xt

+ βyear(Site,Month)[Year]xt

(iii) 

where: [P]xt  = orthophosphate concentration at Site x at time t (mg P/l); 
[T]xt=stream temperature at Site x at time t (oC); [%Q]xt = the river 
discharge at Site x at time t expressed as percentile flow of the entire 
available record; [Si]xt = Silica concentration at Site X at time t (mg Si/l); 
[NO3]xt = nitrate concentration at Site at time t (mg N/l); and other 
terms as defined above. Note that Site and Month factors, as described 
above, were included for each of the variables, i.e. the influence of T, Si, 
N, P, %Q and Year were allowed to vary for each monitoring site and 
monitored month. The physico-chemical properties were those in the 
same grab sample in which the Chl-a was measured. In this analysis no 
auto-regressive terms could be used, i.e. it was not possible to consider 
whether the current measured Chl-a concentration reflected previous 
conditions.

2.3. Exceedance model

The exceedance model considered modelling the occurrence of Chl-a 
concentration above a set threshold (e.g. Bowes et al., 2016). Three 
thresholds were considered (Chl-a > 15 μg/l; > 30 μg/l; and > 50 μg/l – 
Bowes et al., 2016); and considered these events both relative to spatial 
and temporal factors and to physico-chemical parameters. Any sample 
with a Chl-a concentration above this threshold was considered to be an 
eutrophication event. With respect to spatial and temporal factors: 

s(Chl)l
xt = bin

(
θl

xt, nxt
)

(iv) 

log

(
θl

xt

1 − θl
xt

)

= αxt(Site,Month)+ βxt(Site,Month)[Year]xt (v) 

where: θl
xt = is the probability of Chl-a concentration > λ (with λ = 15 

μg/l; = 30 μg/l; and = 50 μg/l) at site x at time t; s(Chl)lxt = number of 
times within sample sizen that Chl-a will exceed limit λ at site x and time 
t; nxt = number of samples taken at site x at time t. All other terms are as 
defined above with Site and Month as factors with same levels as 
described above and Year is a covariate and an integer.

Similar to Equation (iii) the binomial regression can also be 
expressed in terms of the physico-chemical parameters: 

log

(
θl

xt

1 − θl
xt

)

= αxt(Site, Month)+ βT(Site,Month)[T]xt

+ β%Q(Site,Month)[%Q]xt

+ βSi(Site,Month)[Si]xt+βNO3(Site,Month)[NO3]xt

+ βP(Site,Month)[P]xt + βyear(Site,Month)[Year]xt

(vi) 

where all terms are as previously defined.

2.4. Fitting Bayesian models

For all model types, Bayesian estimation was performed using Mar
kov Chain Monte Carlo (MCMC) simulation implemented in JAGS, 
called from R via the R2Jags library (supplementary material provides R 

and JAGS code). A 10000-iteration MCMC chain was run for each model, 
discarding the first 2000 iterations as burn-in and saving every 10th 
iteration from three independent chains.

Prior distributions were specified as follows: for all Bayesian models, 
regardless of distribution (normal or binomial) or factor combination, 
the prior for the regression coefficients (β) was a normal distribution 
centered at zero, allowing for both positive and negative trends. The 
prior for the intercepts (α) was also taken as normally distributed, but 
centered on the overall dataset mean with a standard deviation chosen 
to minimize the probability of negative values. This choice is justified as, 
when β values are small, α represents the predicted expected value for a 
specific monitoring site, which should approximate the overall dataset 
mean. For concentration models, the standard deviation priors were 
half-t distributions to ensure positive values. For exceedance models, 
gamma distributions were used for standard deviation priors. Given the 
dataset size, the influence of these prior assumptions diminishes rapidly.

A number of approaches were used to test the fit of the Bayesian 
models: 

i) Convergence statistic (R̂)– the adequacy of the MCMC process 
was assessed using R̂, the convergence statistic, with 1 <- R̂ < 1.1 
considered as acceptable. If R̂ > 1.1 then the burn in process and 
number of iterations could be increased although this never 
proved necessary.

ii) Credible interval of factors – for each factor included in any 
model, the factor was considered significant if the 95 % credible 
interval did not include zero. Henceforward the credible interval 
was discussed as the 95 % probability of being significantly 
different from zero.

iii) Model deviance – for a factor or covariate to be included in a 
model it would be that it caused the total model deviance to 
decrease – deviance is a goodness of fit measure and is a gener
alization of the idea of using the sum of squares of residuals in 
ordinary least squares fitting.

iv) Deviance Information criteria (DIC) − when additional factors or 
covariates are included in any model we would expect there to be 
a resulting decrease in the deviance information criterion (DIC). 
Because inclusion of additional factors, or covariates, will in
crease the degrees of freedom of any fitted model, it would be 
expected that any such inclusion would lead to a decrease in the 
total deviance of any particular model, and hence the need for 
another measure rather than just the total deviance. The DIC 
accounts for the trade-off between the inclusion of more param
eters against the additional fit of the model and penalises for 
additional parameters relative to the fit of a particular model – 
DIC is the general case of Aikake Information Criterion. As for the 
third criterion, this fourth criterion was assessed by fitting models 
with the separate factors (e.g. Site or Month) in comparison to the 
model including both the Site and Month factors.

v) Effective number of parameters (pD) − it would be expected that 
as a factor or covariate was added to a model, then the number of 
effective parameters (pD) would likewise increase. If pD did not 
increase with inclusion of a factor or covariate, then that 
parameter is having no effect on a model and can be removed. 
Furthermore, pD should be close to the ideal case if all parameters 
are contributing, and so the calculated pD can be expressed as a 
percentage of that maximum possible – this value can never be 
greater than 100 %.

vi) Posterior prediction – for each models the posterior predictions 
were compared to the observed values. For concentration models 
(i.e. Equations (i) – (iii)) the output of the preferred concentration 
model was plotted against the observed values – for a good fit 
model the best-fit line between observed and posterior predicted 
values would have a gradient = 1 and a high r2 value. For the 
exceedance models (Equations (iv)-(vi)), the output is probability 
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and so the classification rate was checked using a receiver oper
ator curve (ROC) and the area under the curve (AUC) was used as 
a measure of fit, i.e. AUC = 1 would be perfect fit; AUC = 0.5 no 
classification.

The assumptions of the concentration models (Equations (i)-(iii)) 
were tested. Specifically, it is assumed that the model residuals would be 
independent over time. Consequently, the residuals from the preferred 
concentration model were tested for normality, homoscedasticity, and 
autocorrelation. Normality was evaluated using the Anderson-Darling 
test (Anderson and Darling, 1952), while homoscedasticity (or its 
absence, heteroscedasticity) was assessed through residual plots against 
fitted values and the Breusch-Pagan test (Breusch and Pagan, 1979). 
Finally, autocorrelation within the residuals was examined using the 
Durbin-Watson statistic (Durbin and Watson, 1950).

To quantify the benefit of using a Bayesian hierarchical approach, 
the non-Bayesian equivalent of each of Equations (i) – (vi) was fitted to 
the data. The Bayesian hierarchical model was fitted to the entire dataset 
in one model (all sites across all dates) whereas the non-Bayesian 
approach was fitted in several different ways. The first non-Bayesian 
comparison fit two linear regressions to each site, using all the dates 
sampled at that site. One regression included spatial and temporal fac
tors only and the other regression included physio-chemical properties 
along with spatial and temporal factors. These models are the non- 
Bayesian equivalents to the Bayesian concentration models. The linear 
regressions took the following form: 

Chl = α+ βyear(Year) + βmonth(Month) (vii) 

Chla = α+ βT(T)+ β%Q(%Q)+ βSi(Si)+ βP(P)+ βN(N)+ βssinM
+ βccosM+ βyearYear

(viii) 

Terms were defined as above, where; Year = calendar year; and 
Month = month in the calendar year. The Year was included as an 
integer so that β was the annual trend for that measure. In Equation (vii), 
Month was included as a factor with 12 levels from January to 
December. Using Month as a factor makes Equation (vii) more flexible 
than just considering the year or month as variables.

As another point of comparison to the Bayesian concentration 
models, linear regression was used again to fit the concentration model 
containing physio-chemical parameters (Equation vii) using all the data 
(all sites and all dates − Equation (viii)). In Equation (viii) the Month 
was transformed to the continuous variables sinM = πsin(m)

6 and cosM =
πcos(m)

6 where m is the month number with January = 1 and December =
12. Unless otherwise stated, significance of the annual trend was 
assessed at the 95 % probability of being different from zero.

As for the concentration models, and for comparison to the Bayesian 
hierarchical exceedance model, non-Bayesian exceedance model was 
fitted to each site across all the dates sampled. Unlike for the concen
tration data, a non-Bayesian approach was not taken to all the exceed
ance data together. The non-Bayesian hierarchical model fitted to each 
site was: 

s(Chl)l
xt = bin

(
θl

xt, nxt
)

(ix) 

log

(
θl

xt

1 − θl
xt

)

= α+ β(Year)+ γ(Month) (x) 

log

(
θl

xt

1 − θl
xt

)

= α+ βT(T)+ β%Q(%Q)+ βSi(Si)+ βP(P)+ βN(N)

+ βssinM+ βccosM+ βyearYear
(xi) 

where all terms are as defined above.

2.5. Principal component analysis

To understand the pattern of behaviour between sites included in the 
study a principal component analysis was performed. The slopes from 
Equations (iii) and (vi) were analysed by principal component analysis 
where the values of β for P, T, %Q, Si, NO3 and Year were considered 
from both the Equation (iii) and (vi). The values of β were z-transformed 
prior to the analysis and components were considered with eigenvalue 
> 1.

2.6. Catchment characteristics

This research investigated the reasons behind observed trends by 
comparing the estimated slopes (β) of these trends with various catch
ment properties listed in Table 1. First, the land use was classified as 
arable, grassland, or urban across England for 1 km2 grid squares using 
data from the June 2004 Agricultural Census (Defra, 2005). It was 
assumed that proportions of these land uses did not vary significantly 
across the study period. Secondly, the dominant soil type (mineral, 
organo-mineral, or organic) for each 1 km2 grid square for England was 
determined based on the Hodgson (1997) classification system. Third, 
the catchment area to each monitoring point was calculated using the 
CEH Wallingford digital terrain model, which boasts a 50-meter grid 
interval and 0.1-meter altitude resolution (Morris and Flavin, 1994). 
Land use and soil characteristics within each 1 km2 square were then 
summed to represent the entire catchment area feeding the monitoring 
points with available water quality data.

For each catchment in the dataset, several hydrological character
istics were considered: base flow index, average actual evaporation, 
average annual total river discharge, and average annual rainfall. This 
hydrological data came from the National River Flow Archive (htt 
ps://www.ceh.ac.uk/data/nrfa/).

The trends were compared to the collated catchment properties in 
two ways. First, multiple linear regression was performed on both un
transformed and log-transformed data for the explanatory and response 
variables. Normality of both transformed and untransformed variables 
was assessed using the Anderson-Darling test (Anderson and Darling, 
1952). Only statistically significant variables (p < 0.05) were retained in 
the final model. Second, logistic regression was used to analyze trends 
categorized as either “significant decrease” or “not significant” in rela
tion to catchment characteristics. Logistic regression can only be used to 
distinguish two categories whereas the significant tests could give three 
categories (significancat increase, significant decrease, and not signifi
cant), and hence to assess reasons behind trends two categories were 
chosen.

3. Results

Between 1974 and 2022, there were 78,414 grab sample measure
ments of Chl-a from 161 sites and 45,391 samples where all determi
nands and the flow data were available (Fig. 1 – Tables 1 & 2). The 
arithmetic median Chl-a concentration was 4.5 μg/l (an arithmetic 
mean = 12.6 μg/l) with a 95th percentile range of 0.6 to 89 μg/l. When 
judged relative to chlorophyll (algal bloom) event values then 16 % of 
all values > 15 μg/l; 8 % > 30 μg/l; and 5 % > 50 μg/l. The year with the 

Table 2 
Number and range of river water data used in this study. There were a total of 
161 sites.

Determinand N Median 95th percentile range

Chlorophyll-a (μg/l) 78,414 4.5 0.6–89
Nitrate (mg N/l) 45,391 5.2 0.6–13.8
Phosphate (mg P/l) 45,391 0.25 0.02–2.46
Silica (mg SiO2/l) 45,391 7.1 0.8–14.4
Temperature (oC) 45,391 11.6 3–20
Percentile flow (%) 45,391 49 3–98
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most chlorophyll events was 1990 for > 15 μg/l and > 50 μg/l, and 1986 
for the > 30 µg/l threshold categories. The least sampled year was 2020 
when 341 samples were analysed for Chl-a and the most sampled year 
was 2011 when 3043 samples were analysed. The least sampled site was 
River Wye at Redbrook (− 2.67 oE, 51.8 oN) with 12 samples and the 
most sampled site was the River Ribble at Mitton (− 2.41oE, 53.8 oN) 
with 1075 samples – further details provided in Table S1.

3.1. Concentration models

The comparison between the fitted models for the concentration 
model with spatial and temporal factors is given in Table 3. There was 
very little difference in efficiency between the three models fitted, but 
the DIC and deviance both showed that the best model was the Site +
Month model. The Anderson-Darling test showed that the residuals of 
the Site + Month model were not significantly different from normally 
distributed (P < 0.00). The Breusch-Pagan test suggested that residuals 
of the Site + Month model were homoscedastic at P < 0.00, likewise, the 
Durbin-Watson statistic suggested no significant autocorrelation in the 
residuals. Therefore, the Site + Month model was sufficient to meet the 
assumptions of the likelihood function and the Bayesian hierarchical 
model has removed sufficient temporal structure in the dataset. The 
posterior prediction plots (Fig. 2) shows that the Site + Month model 
underpredicts Chl-a for values of Chl-a > 11 μg/l and this suggests that 
the concentration model with Site and Month factors will be poor at 
predicting algal bloom events where Chl-a > 15 μg/l.

The trend of Chl-a was significant at 157 out of 161 sites (Table 4), 
with 85 sites showing significant negative trends and 76 showing sig
nificant positive trends. The significant negative trends ranged from 
− 0.00034 to − 0.01584 μg/l/yr. The significant positive trends ranged 
from 0.001 to 0.127 μg/l/yr. The smallest significant slope found was 
0.001 μg/l/yr. The median change was − 0.007 μg/l/yr, i.e. a median 
decrease of 0.36 μg/l over the 49 years of the study, or a percentage 
change of 7 %, and the median root mean square error was 6.5 %. The 
spatial distribution of trends does not show a discernible distribution 
across England (Fig. 3).

The slope from the fit of the concentration model to the spatial 
temporal variables was classified as significantly negative or not, i.e. 
significant positive slopes, and this classification was compared to the 
available catchment characteristics using logistic regression, the best-fit 
equation was: 

log

(
θl

xt

1 − θl
xt

)

= − 2.47 − 0.0005(Area)+3.9(BFI)+4.12(Northing)

(xii) 

where θ = the probability of the site being a site with significant decline 
in Chl-a concentration; Area = the catchment area for each study site 
(km2); BFI = base flow index; and Northing = northing gird reference in 
British national grid. Equation (xii) implies that those sites which show 
declines in Chl-a concentration are more likely to be in smaller catch
ment with permeable geology (high BFI) and further north in England. 
However, Equation (xii) explained only 9 % of the variance in the 
original dataset.

When trend was assessed in a non-Bayesian concentration model 

(Equation viii) then 68 out of 161 sites show a significant trend. The 
trends vary from − 6.1 to 74.1 μg/l/yr with a median of − 0.16 μg/l with 
58 sites showing a significant negative trend and only 10 showing a 
positive trend. The smallest significant trend that could be detected was 
− 0.02 μg/l/yr. So, the Bayesian method was able to detect smaller 
trends than the non-Bayesian model and of those trends that were found 
to be significant the relative 95 % confidence interval was 50 % of the 
result for the Bayesian method and 58 % for the linear model, i.e. the 
Bayesian approach gave more precise results.

For comparison with the Bayesian concentration models for Chl-a 
concentration compared to physio-chemical properties, then the non- 
Bayesian approach using all the data, the best-fit line was: 

Chl − a = − 0.0005Year+5.4sin
(

Mπ
6

)

− 0.9cos
(

Mπ
6

)

+ 5.25Q%

+ 0.56N+5.2P − 1.3Si+1.18T 

r2 = 0.29, n = 45391 (xiii) 

(0.0003) (0.2) (0.3) (0.4) (0.03) (0.2) (0.03) (0.04)

where all terms are as defined above. The fit of Equation (xiii) did not 
improve if the data were log-normalised. The values in brackets are the 
standard errors in each coefficient. Equation (xiii) implies that when 
other determinands were considered, then there has been a decrease in 
Chl-a over the time period. However, the change over the 49 years of the 
study predicted by Equation (xiii) was small, only 0.5 % of the median 
over the 49-year study period. Equally, Equation (xiii) also implies that 
Chl-a is positively correlated with percentile flow (Q%), nitrate (N), 
phosphate (P) and stream temperature (T), but negatively correlated 
with silica (Si).

When fitted with the physical–chemical properties using the 
Bayesian hierarchical approach, the deviance = 386121, DIC = 394932, 
and pD = 8812 (33 % of the expected). The posterior plot shows no 
visible difference from the posterior plot for the concentration model 
with Site + Month model (Fig. 2) with underprediction for Chl-a > 11 
μg/l and the best-fit line that is significantly different from the 1:1 line. 
Models for the different combinations of physio-chemical properties 
were not run, but the results by each property when all parameters were 
included shows that for each of the properties there were sites where 
that property had no significant impact on Chl-a concentration 
(Table 5). Only for stream temperature (T) is the response dominated by 
positive slopes, i.e. increasing stream temperature increases Chl-a at 43 
out of 73 sites where a significant relationship was found. However, 
median slope for stream temperature was zero and 89 sites showed 
either no significant slope or a negative relationship with stream tem
perature. The relationship between Chl-a concentration and all other 
variables is dominantly negative, though for phosphate the median slope 
was zero.

The number of sites with significantly positive, significantly negative 
and with no significant slope at all does not lend itself to binary classi
fication; therefore, to better understand the patterns of controls for the 
Chl-a concentration the principal component analysis (PCA) was used. 
The PCA showed that three components had eigenvalues > 1 and that 
these explained 69 % of the variance in the original dataset (Table 6). 
The first component (PC1) is strongly, negatively correlated with βSi and 
β%Q, i.e. high scores in PC1 are correlated with sites where Chl-a con
centration increase is correlated with decreasing flow and decreasing Si 
concentrations. The second component (PC2) is strongly positively 
correlated βN and negatively correlated with βyear, i.e. sites plotting at 
high values of PC2 will be those where Chl-a concentrations are corre
lated with increasing nitrate concentration but Chl-a concentrations 
decreasing over time. Finally, the third component (PC3) is strongly 
negatively correlated with βP, i.e. sites with a high value of PC3 are those 
where increases in Chl-a concentration are correlated with decreasing 
phosphate. Plotting sites relative to their scores on PC1, PC2 and PC3 

Table 3 
Fitting properties of the concentration model combinations. The pD is expressed 
as both its absolute value and the % of that which could be expected if all new 
parameters included in the model were effective.

Factors pD (% expected) DIC Deviance

Year 88 (90) 751,583 751,451
Site 157 (49) 741,822 741,635
Month 14 (58) 744,568 744,399
Site + Month 1903 (49) 721,449 719,580
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(Fig. 4) means that sites could be classified according to their scores on 
these components.

3.2. Exceedance models

When a non-Bayesian model was fitted to all the data, the trend in 
the prediction of events was, for > 15 μg/l = -0.023 ± 0.003 /y; for > 30 
μg/l = -0.023 ± 0.003 /yr; and for > 50 μg/l = -0.021 ± 0.003 /yr, i.e. 
for each chosen threshold there was a significant decrease in the prob
ability of exceeding the given value.

The binomial regression applied at each site (Equation (vii)) for Chl- 
a > 15 μg/l, 58 of the 161 sites showed a significant trend over time of 
which 51 were significant negative trends and 7 were significant posi
tive trends. The significant trends ranged from − 1.74 to 0.22 /yr with a 
median of − 0.05 /yr. For events defined by Chl-a > 30 μg/l, there were 
47 of the 161 sites with a significant trend, with 7 sites showing positive 
trends and 40 sites showing negative trends, with significant trends 

ranging from − 0.28 to 0.24 /yr. For events defined by Chl-a > 50 μg/l, 
there were 32 out of 161 sites with significant trends, with 7 sites 
showing positive trends and 40 sites showing negative trends, with 
significant trends ranged from − 0.28 to 0.24 /yr. Therefore, for all the 
non-Bayesian approaches the result, or results, were that the probability 
of an event has been in long-term decline.

The fit of Bayesian binomial regression model for the spatial tem
poral factors showed that the deviance was the lowest for the model 
including Site + Month, but the DIC is lowest for the model which 
included no other factors other than the trend at each site (Table 7): the 
pattern of fitting was the same for the different definition of a Chl-a 
event (> 15; > 30; > 50 μg/l). The AUC of the binomial regression 
with Site + Month factors was 0.7. Of the 161 sites where analysis could 
be done all showed a significant trend, with 28 sites showing a positive 
trend with variation from 0.05 to 0.0002 /yr, and there were 133 sites 
showing a significant negative trend with trends − 0.0008 to − 0.08/yr. 
There is a clear long-term decline in probability of events at all thresh
olds (Fig. 5), but it is difficult to see a particular pattern to the spatial 
distribution of the slopes of the binomial regression (Fig. 6). There are 
noticeably fewer significant trends in the concentration model than for 
the exceedance model and then can be ascribed to the small changes 
detected in the concentration of Chl-a, over 49 years the median change 
of − 0.36 μg/l: a percentage change of 7 %. (Fig. 7).

The fit of the exceedance model to the physico-chemical data showed 
that the fitting parameters were deviance = 24046; DIC = 160339; and 
pD = 136293. In comparison with results for the Site + Month model 
(Table 7), then the exceedance model with physico-chemical parameters 
has a lower deviance but higher DIC implying the additional parameters 
do not make the model more efficient. The AUC of the binomial 
regression with physico-chemical data was 0.88. The pattern of signifi
cant trends across the parameters shows that Year and Silica have a 
significant role for most sites (91 and 89 % of sites respectively) whereas 

Fig. 2. The observed vs. predicted Chl-a concentrations as predicted from the normal model with spatio-temporal factors (Site + Month). with each hexagonal bin 
representing 100 datapoints. (− − − ) the 1:1 line; and (…) the best-fit line.

Table 4 
Summary of trend results for concentration and exceedance models. Where No. 
positive is the number of sites with slope significantly greater than zero; and No. 
negative is the number of sites with a slope significantly less than zero. Values 
are for the Bayesian hierarchical model and those in the brackets are for the non- 
Bayesian model.

Model Approach No. 
significant

No. 
positive

No. 
negative

Concentration Spatio-temporal 157 (68) 76 (10) 85 (58)
​ Physico- 

chemical
123 25 98

Exceedance Spatio-temporal 161 (58) 28 (7) 133 (51)
​ Physico- 

chemical
119 22 97
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for phosphate (P) less than 50 % of the sites showed a significant rela
tionship with event probability (Table 8). The majority of study sites 
showed negative slopes for Year, %Q, nitrate (N), phosphate (P) and 
silica (Si), but not for stream temperature (T) where the majority of sites 
that do have a significant relationship with the event probability show a 
positive relationship.

As for the fit of the concentration model with the physico-chemical 
parameters so too with PCA of the parameters from the fit of the 
physico-chemical parameters in a exceedance model showed that three 
components had eigenvalues > 1 and that these explained 79 % of the 

variance in the original dataset (Table 9). The first component is 
strongly, negatively correlated with βSi and β%Q, but positively corre
lated with βyear, i.e. high scores in PC1 are correlated with sites where 
Chl-a events are more likely with decreasing flow and decreasing Si 
concentrations, but more likely over time. The second component is 
strongly positively correlated with βN and negatively correlated with βT, 
i.e. sites plotting at high values of PC2 will be those where Chl-a events 
are more likely with increasing nitrate concentration and more likely 
with decreasing stream temperature. Finally, the third component is 
strongly negatively correlated with βP, i.e. sites with a high value of PC3 

Fig. 3. Spatial distribution of the 49- year trend of the Chl-a concentration.

Table 5 
The number of the sites which show a significant relationship with which physico-chemical parameters for the concentration model. Where No. + ve is the number of 
sites with slope significantly greater than zero; and No.-ve is the number of sites with a slope significantly less than zero, The Median is the median of all slopes while 
Median + ve is the median slope of all those sites with significant + ve slopes; and Median − ve is the median slope of all those sites with significant − ve slopes. NB. 
There were 161 sites in total.

Year Percentile flow (%Q) Nitrate (N) Phosphate (P) Silica (Si) Stream temperature (T)

No. significant 123 68 101 74 123 73
No. + ve 25 0 21 21 0 43
No. − ve 98 68 80 53 123 30
Range − 0.181 to 0.018 − 1.94 to − 0.19 − 3.95 to 1.36 − 0.99 to 2.18 − 7.34 to − 0.18 − 1.14 to 2.60
Median − 0.003 − 0.195 − 0.302 0 − 0.677 0
Median + ve 0.003 na 0.44 0.48 na 0.49
Median − ve − 0.004 − 0.33 − 0.41 − 0.28 − 0.73 − 0.26
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are those where increased probability of Chl-a events are correlated with 
decreasing phosphate.

4. Discussion

This study has hypothesized that there are competing trends in the 
drivers for riverine chlorophyll-a concentrations, an indicator of algal 
blooms. While P concentration is commonly observed to be decreasing 
across Western European catchments (e.g, Minaudo et al., 2015), other 
drivers of algal blooms, including stream temperature; low-flow events 
and other key nutrients, are known to be increasing. The study showed a 
mixed picture in trends of Chl-a concentrations in England’s rivers since 
1974: 53 % of the 161 sites demonstrated significant declining trends 
(an average decline of 2 µg/L), and 47 % of showed significant 
increasing trends (average increase of 0.4 µg/L) (Fig. 3). Overall, across 
all 161 sites there was a decline of 7 %. The majority of sites (71 %) 
showed no significant trend in the probability of algal bloom events 
exceeding a > 30 μg/L chlorophyll-a threshold, with 25 % showing a 
decrease and only 4 % showing an increase in algal bloom probability 
(Fig. 5). Decreases in Chl-a concentration have been observed for UK’s 
largest lake (Lough Neagh – Elliott et al., 2016), where Chl-a concen
tration peaked in the mid-1990 s and has decreased since. Changes in 
rivers and lakes are then reflected in marine Chl-a, Huguet et al. (2024)
have shown decreasing Chl-a in the English Channel which supports the 
earlier work of Romero et al. (2016) and Groetsch et al. (2016) who 

observed a decrease of the mean biomass and Chl-a in western European 
seas. The decline of the phytoplankton biomass (Romero et al., 2016) is 
generally attributed to lower phosphate concentrations in rivers, with a 
decrease close to 75 % between 1970 and 2013 for the Seine River 
whereas nitrogen is not a limiting factor. However, Jarvie et al. (2025)
have shown that despite several decades of declining phosphate con
centration I the River Thamesthe potential for algal blooms has 
remained close to constant. Further afield a mix of long term changes for 
Chl-a have been reported. Raike et al. (2003), studied the 25 year trends 
in Chl-a for Finnish lakes and rivers and found a mixture of significant 
increase and decreases in Chl-a concentration for both rivers and lakes. 
Similarly, Jackson et al. (2015) shows significant decreases and in
creases in coastal Chl-a concentrations across the coast of British 
Columbia over a 24 year period.

One reason for the observed mixture of the significant trends would 
be the more sensitive methodology. The Bayesian approach was more 
sensitive than the non-Bayesian approach at detecting trends in 
chlorophyll-a. This sensitivity was the case even for sites with low 
sample frequency as Bayesian analysis is using the whole dataset at once 
and so is essentially gap-filling. For example, given the use of Site and 
Month factors and Year as a covariate within the Bayesian hierarchical 
model it is not necessary that a particular site is sampled in a particular 
month or year merely that is sampled during the study period at that site 
and that other sites are sampled for the month or year of interest.

When potential drivers (stream temperature, Si, nitrate, phosphate, 
and river flow) were considered, then there was a still a decline in the 

Table 6 
The loadings on the first three principal components of the principal component 
analysis of the beta slopes from fitting of Equation (viii).

Variable PC1 PC2 PC3

Silica − 0.54 0.33 0.33
Nitrate 0.16 0.75 0.23
Year 0.26 − 0.48 0.34
Phosphate − 0.26 0.06 − 0.82
Percentile flow − 0.54 − 0.11 0.12
Stream temperature 0.50 0.28 − 0.18
Cumulative variance explained (%) 32 52 69

Fig. 4. Scores on PC1, PC2 and PC3 coloured by the values of Si, N and P. Note that this is not a matrix plot.

Table 7 
Fitting properties of the exceedance model combinations applied. The pD is 
expressed as both its absolute value and the % of that which could expected if all 
new parameters included in the model were effective.

Factors pD (% expected) DIC Deviance

Year 1.9 (85) 64,557 65,556
Site 74.3 (28.3) 65,145 64,422
Month 23.6 (98) 65,185 64,592
Site + Month 3012 (78) 65,906 62,895
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Chl-a concentration at most sites and in fact the proportion of sites 
showing a significant decline actually increases (74 % of 133 sites), i.e. 
the physico-chemical variables that could be included were driving in
creases in the some of the study sites, but, that there is a more general 
decline in Chl-a concentration. Likewise, the inclusion of physico- 
chemical variables mask, i.e. partially explain, a general decline in the 
probability of a Chl-a event.

Over the timescale of this study what were the changes in these 
physico-chemical drivers? There has been speculation that increasing air 
temperatures resulting from anthropogenic climate change could drive 
increasing water temperatures and an increase in magnitude and fre
quency of algal bloom events. However, whilst there has been a long- 
term increase in air temperature, even if there is evidence that streams 
have been buffered against this change (Worrall et al., 2022) and, when 
the physico-chemical parameters are considered, the majority of study 
sites showed no significant positive relationship with the stream tem
perature (67 % of 131 sites, for Chl-a concentration; and 64 % of 131 
sites for Chl-a event probability). So, there were sites where there was a 
significant positive relationship with stream temperature, but also sites 
where there was a significant negative relationship with stream tem
perature. These results suggest a complex interplay between a wider 
suite of both physico-chemical and biological drivers of these variable 
trends, including water temperature, light levels, flow velocity, 

nutrients and potentially also top-down grazing by zooplankton, which 
is not considered in this study but can play an important role in 
phytoplankton bloom dynamics (Gosselain et al., 1998). Bowes et al. 
(2009) have identified peak Chl-a in English rivers with diatom blooms 
in late spring rather than cyano-bacteria blooms in summer and this has 
been associated with temperature being a limited factor. In contrast, 
harmful algal blooms (HAB) have been reported for English lakes during 
times of elevated temperature (Wagstaff et al., 2021).

When considered across all sites and years, then the non-Bayesian 
approach would predict that a decrease in percentile flow by 1 % 
would increase Chl-a concentration by a median of 0.2 μg/l (Equation 
xiii) – which is a smaller change than was detectable by even the 
Bayesian approach. Marsh and Dixon (2012) demonstrated a rise in river 
discharge from the UK between 1961 and 2011, with statistically sig
nificant increases particularly evident in Scotland, but not in England. 
Hannaford and Marsh (2006) examined two periods (1963–2002 and 
1973–2002) and found increased runoff in western and northern Britain, 
especially Scotland, while southern and eastern England exhibited no 
discernible trend. Marsh and Dixon (2012) reported substantial annual 
runoff increases, reaching 22.2 % in Scotland, but only 1.7 % in England. 
However, these studies documenting changes in UK river dischargeThe 
average decline in Chl-a concentration observed in this study was 2 µg/l, 
significantly greater than what a minor shift in English flows would 

Fig. 5. The main effects plots of the change in the probability of Chl-a events, a) Chl-a > 15 μg/l; b) Chl-a > 30 μg/l; and c) Chl-a > 50 μg/l.
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predict. Moreover, 42 % of sites showed no significant correlation be
tween Chl-a concentration and percentile flow, and this figure rises to 
50 % when considering event probability and percentile flow. However, 
in the physico-chemical models it is the flow at the time of sampling that 
is considered whereas Chl-a concentration and events may respond to 
periods of low flow and not just a single day of low flow.

For the concentration models using physico-chemical variables, then 
we would expect that a unit increase in Chl-a concentration would be 
accompanied by declines in the concentration of nutrients in proportion 
to the extended Redfield ratio (Redfield et al., 1963, Brzezinski, 1985) – 
C:N:P:Si of 106:16:1:16 for balanced diatom growth. From Table 5 and 
allowing for the atomic mass of Si, N and P for a unit N:P:Si is 14:0:16, i. 
e. for the Si and N the ratio is very close to that expected and could 
readily be explained by diatoms using alternative sources of N, e.g. 
ammonium, or dissolved organic N. The lack of relationship with 
phosphate (P) could be a matter of limit of detection. If, instead of the 
median value, the lowest detected change in P was used, then the 
observed ratio becomes 16:15:3, i.e. the value of P in the median Red
field ratio is 0 and 3. However, this median stoichiometry does not ac
count for the variation in the coefficients and indeed that in 16 % of 
cases the rise in Chl-a concentration was accompanied by rises in nitrate 
and phosphate concentrations and not decreases. Spear et al. (2013) 
considered 94 lakes across the UK and Ireland and found the mass ratio 

Chl:TP ranged between 0.02 and 0.96 in 2008. The wide variation in 
Chl:TP shows that some UK lakes were insensitive to changes in P just as 
observed in this study.

The study has important implications for the ongoing debate about 
water quality in western European countries facing as they are 
increasing pressure on surface water resources. Within the UK there has 
much recent controversy about serious pollution incidents associated 
with discharges of untreated sewage into rivers (Lawton, 2023, Purnell 
et al., 2021). The rise in pollution incidents has been attributed to: de
cades of underinvestment in wastewater infrastructure; expansion in 
housing and commercial developments; and greater intensity of rainfall 
events resulting from climate change (Lawton, 2023; Allsop, 2023). The 
low-frequency water quality data used in this study are never going to be 
sufficient to examine responses to individual sewage discharge in
cidents. Increased discharge from sewage treatment works might be 
expected to have chronic effects, for example developing supplies of 
nutrients into the fluvial system, but this study shows no evidence for 
such a build-up. A number of recent studies have shown long-term re
covery in macroinvertebrates (Pharoah et al., 2023) and nutrient con
centrations (Whelan et al., 2022) in UK rivers. The improvement in UK 
rivers can be ascribed to improvement in discharges from sewage 
treatment plants as a result of the implementation of the EU’s Urban 
Wastewater Treatment Directive (European Commission, 1991) which 

Fig. 6. Distribution of slopes of Bayesian binomial regression based upon spatial and temporal factors.
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has been demonstrated to lead to step improvements in discharge from 
sewage treatment works (Civan et al., 2018). Fig. 5 shows occurrence of 
chlorophyll concentrations above threshold events peaked in 
1991–1992 and declined subsequently, which may indicate reduction in 
algal bloom events in response to improved wastewater treatment. 
However, caution must be applied in use of the monthly sampling of 
suspended (water-column) chlorophyll-a data used in this study to 
characterise algal bloom events. Firstly, algal blooms dynamics respond 

to changes in physio-chemical conditions on daily to sub-daily scales, so 
a large proportion of algal bloom events will be missed by monthly 
sampling. However, the Bayesian approach does show improved preci
sion over more conventional approaches. Secondly, by sampling water- 
column chlorophyll-a, these measurements only capture suspended 
algae, thus excluding a large proportion of algal growth in rivers as 
periphyton (attached algae), especially in the shallower and smaller 
rivers where phytoplankton do not dominate primary production (Royer 
et al, 2008). Nevertheless, by identifying these differing patterns in 
chlorophyll-a trends and responses across England, the large-scale spa
tio-temporal analysis undertaken in this study provides an important 
basis for exploring the multiple pressures driving chlorophyll-a re
sponses and algal bloom dynamics at regional to local scales and at 
higher temporal resolution, particularly in larger, deeper, slower- 
flowing rivers where phytoplankton dominate.

5. Conclusions

The study provides the first national-scale spatio-temporal analysis 
of changes in chlorophyll-a in England’s rivers over the last five decades. 
The results reveal no clear and consistent pattern in relationships with 

Fig. 7. Scores on PC1, PC2 and PC3 for slopes on the Bayesian binomial model coloured by the values of βSi, βN and βP. Note that this is not a matrix plot.

Table 8 
The number of the sites which show a significant relationship with which physico-chemical parameters for the exceedance model. Where No. + ve is the number of sites 
with slope significantly greater than zero; and No.-ve is the number of sites with a slope significantly less than zero, The Median is the median of all slopes while 
Median + ve is the median slope of all those sites with significant + ve slopes; and Median − ve is the median slope of all those sites with significant − ve slopes. NB. 
There were 161 sites in total.

Year Percentile flow (Q) Nitrate (N) Phosphate (P) Silica (Si) Stream temperature (T)

No. significant 119 66 87 63 117 68
No + ve 22 1 18 21 1 46
No − ve 97 65 69 42 116 22
Range + ve − 0.09–0.22 − 12.2–2.6 − 47.3–16.3 − 12.2–26.1 − 88–1.25 − 13.7–31
Median 0.03 0 3.04 0 7.97 0
Median + ve 0.04 2.6 6.4 5.8 1.25 5.2
Median − ve − 0.05 − 4.1 − 5.6 − 3.3 − 9.2 − 3.5

Table 9 
The loadings on the first three principal components of the principal component 
analysis of the beta slopes from fitting of Equation (xi).

Variable PC1 PC2 PC3

Silica − 0.59 − 0.07 0.25
Nitrate 0.10 0.69 0.09
Year 0.52 0.35 0.08
Phosphate 0.19 0.14 0.89
Percentile flow − 0.50 0.22 − 0.07
Stream temperature 0.28 − 0.56 − 0.34
Cumulative variance explained (%) 38 61 79
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key environmental variables across England’s network rivers: trends in 
chlorophyll-a concentration were almost evenly divided between sites 
with decreasing trends (53 %) and increasing trends (47 %). The ma
jority of river sites (73 %) showed no significant change in the proba
bility of algal bloom events (>30 µg/L) over the last 50 years, with 25 % 
of river sites showing a decrease, and only 4 % showing an increase in 
algal bloom probability. The observed significant declines in both Chl-a 
concentration and probability of algal bloom events were independent 
of changes in stream temperature; river flow; nitrate; phosphate and 
silica concentration. These results indicate that there has been no 
consistent directional response in algal bloom events across England’s 
rivers to the pressures from anthropogenic climate change and the large- 
scale reductions in P concentrations achieved over the last 50 years, 
largely from improved wastewater treatment. However, by capturing a 
unique national-scale picture of differing patterns in chlorophyll-a 
trends and responses over the last five decades, this spatio-temporal 
analysis now provides an important basis from which to explore the 
multiple pressures driving chlorophyll-a responses and dynamics at local 
to regional scales.
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