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A B S T R A C T

Pesticide impact assessment methods provide relevant approaches to quantifying risks to non-target terrestrial 
biodiversity in agricultural systems. Here we develop such an approach through combined analysis of pesticide 
usage, cropping patterns and ecotoxicological hazard datasets to generate a temporal series of maps (1994–2016) 
of the spatial risk of pesticides for invertebrates in England. Using data for 179 insecticides, fungicides and 
herbicides applied on arable crops, we assessed how pesticide risk for bees, earthworms, springtails, parasitic 
wasps and lacewings varied in space and time over two decades of usage shift. Change in the extent of risk 
associated with annual applied pesticide amounts differed depending on the organism examined. Organophos
phates, pyrethroids, organochlorines and neonicotinoids all contributed to risk in bees. Insecticides, fungicides 
and herbicides all contributed to risk in springtails. Unexpectedly herbicides (particularly chlorotoluran) had the 
largest contribution to risk in lacewings, albeit with some uncertainty. Insecticides (particularly organophos
phates) made the greatest contribution to risk in parasitic wasps. For earthworms, fungicides (particularly tri
azole fungicides and the diarylamine fluazinam) were important for risk. A noteworthy finding was that temporal 
risks linked to pesticide usage have changed only modestly from 1994 to 2016, despite the changes in approved 
authorisations and key policy such as the removal from use of most members of the neonicotinoid class of in
secticides. We discuss how insights, particularly those relating to the magnitude of risk, should be considered in 
future studies, and how the provision of higher resolution usage data and better hazard information could 
improve past and future pesticide risk understanding.

1. Introduction

Plant protection products, commonly referred to as “pesticides” in 
the following text (reflecting the name used in the key databases used in 
our analysis), reduce crop losses by insect and other pests, control dis
eases and lower competition from weeds, thereby, increasing crop yield 
and quality (Damalas & Eleftherohorinos 2011). Concerns exist around 
the impacts of pesticides on beneficial non-target species, including 
those important for various ecosystem processes, such as pollinators, 
biocontrol, and as ecosystem engineers (Mancini et al., 2020; Wan et al., 

2025). These considerations have led to the introduction of risk-based 
approval processes (European Food Safety Authority 2023) and a 
continued focus on Integrated Pest Management programs that are 
designed to reduce pesticide use in agriculture (Möhring et al., 2020). 
Depending on the ecotoxicological properties of different pesticides (e.g. 
taxon specific toxicity), decreasing the absolute weight of all pesticides 
applied to crops may not automatically decrease the extent of risk 
(Babut et al., 2013, Mancini et al., 2020). To understand how changes in 
pesticide use affect risks to non-target taxa, the nature of exposure and 
toxicological properties of the whole range of active ingredients used 
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needs to be taken into account (Padovani et al., 2004, Mancini et al., 
2020).

Although risk assessments are conducted for individual active in
gredients, it is typical for crops to receive a range of applications to 
target different insects, fungi and weeds. Further, it is also common to 
use products with diverse modes of action to prevent the development of 
resistance (Kudsk et al., 2018). Under multiple application scenarios, 
unintentional mixtures can occur together in the environment, even 
though they were not intentionally combined by the users. Classical 
single substance assessments do not address unintentional pesticide 
mixture risks under these real application scenarios. A range of impact 
assessment tools and approaches have emerged through which the po
tential real-world risks and impacts of pesticide use can be assessed. 
These methods use a range of different underlying metrics (e.g., risk 
ratios, relative risk ranking, decision trees and fuzzy systems), each with 
its own benefits and limitations (Labite et al., 2011, Bockstaller et al., 
2009). The risk ratio approach is based on calculating the extent of 
environmental exposure (e.g., as an environmental concentration/dose) 
compared to the substance’s ecotoxicity potential (Linders et al., 1994). 
Risk ratio calculation represents one of the most established approaches 
for impact assessments (Padovani et al., 2004, Labite et al., 2011, 
Bockstaller et al., 2009). Insights gained from risk ratio analysis are 
relatively easy to interpret, making them effective for communicating 
risk under different treatment scenarios. Further, these approaches can 
also be applied to cases where multiple pesticides are used. This reflects 
a wider recognition that unintentional mixture effects need to be 
included for robust assessment of non-target impacts (EFSA et al., 2023, 
De Zwart & Posthuma 2005). Such mixture risks are normally estimated 
based on assumptions of additivity, a pattern reported in the majority of 
pesticide mixture studies (Cedergreen, 2014), although greater or lesser 
than additive effects have also been reported in a moderate number of 
cases (Cedergreen, 2014; Gill et al., 2012; Johnson and Sumpter, 2016; 
Robinson et al., 2017).

A known limitation with any approach to pesticide impact assess
ment is that any prediction of risk can only be developed for species for 
which ecotoxicity data are available. In general, this is the case for only a 
few species used as internationally recognised (e.g., in OECD protocols) 
standard test organisms. Examples include honeybee Apis mellifera, 
earthworm Eisenia fetida, springtail Folsomia candida and various non- 
target arthropods, which are all used within regulatory risk assess
ments conducted according to agreed guidelines (e.g., European Com
mission Regulation (EC) No 1107/2009, which remains the basis for 
Plant Protection Product risk assessment in the UK). Although the reli
ance on model test species is limiting, this constraint reflects a more 
generalised absence of wider information on the toxicity of different 
active ingredients across the range of biodiversity (species and taxa) 
commonly found in agroecosystems. As such, using model species to 
predict risk in pesticide impact assessments currently represents the 
most tractable approach (Mancini et al., 2020).

In this study, we present an integrated approach that uses informa
tion on pesticide usage (for the 179 insecticides, fungicides and herbi
cides most applied by weight in England between 1994 and 2016), 
cropping patterns, exposure information and ecotoxicity data to produce 
maps of pesticide risk, as risk ratios for the major model ecotoxicological 
test species. To conduct any such assessment for pesticides and unin
tentional mixtures, any potential approach needs to account for differ
ences in exposure under the relevant usage regime, as well as the 
potency of the active ingredients (and their combined effects) on the 
different focal taxa (Mancini et al., 2020). To allow the direct compar
ison of exposure to toxicity, simple models exist that can translate 
application rates into organism-relevant exposure metrics expressed in 
the same units as the available ecotoxicity data (US Environmental 
Protection Agency 2014; European Food Safety Authority, 2015, 2023; 
Adriaanse et al., 2022). By applying our approach to different pesticide 
usage data sets across time, we provide an understanding of evolving 
pesticide risk trends to different non-target taxa (bees, earthworms, 

springtails, beneficial arthropods), as well as a national resource on the 
spatial and temporal patterns of mixture risk for the major pesticides 
used in arable agriculture. When combined with diversity information 
(e.g., species abundance data), our approach and derived datasets could 
support studies of the impacts of pesticide usage change (i.e., phasing 
out of some actives, introductions of others to the market) on species in 
England. Further in undertaking this analysis, we set out an overall 
approach that could potentially be operationalised to other regions/ 
countries to contribute to pesticide risk analysis in research, chemical 
assessment and management actions in other locations and jurisdictions.

2. Materials and methods

Our approach uses available annual pesticide usage data, cropping 
patterns, early tier regulatory relevant exposure assessment models and 
the available ecotoxicity data to quantify the spatial patterns of risks for 
single substances and mixtures of pesticides at national scale.

2.1. Pesticide usage data collection and analysis

Our approach starts with the generation of national application maps 
from the available pesticide usage data and cropping information. The 
approach used for modelling application builds on that used to create 
the CEH Land Cover® Plus: Pesticides maps (Jarvis et al., 2020) and for 
the analysis of the ratio of agricultural input to wheat yield ratios 
(Bullock et al., 2024). Data on pesticide use on arable crops in England 
from 1994 to 2016 were obtained from the Pesticide Usage Survey (PUS; 
pusstats.fera.co.uk/home). The PUS data is not open access, and its 
provision comes at considerable cost. Unfortunately, due to budget 
constraints, we were not in a position to procure the most up to date 
datasets from the PUS team for our analysis. Instead, we used the data 
we were allowed to access at affordable cost. Moreover, the crop data 
used to model pesticide application is only available up to 2016 for 
England (agcensus.edina.ac.uk). The available pesticide usage data we 
could access were derived at a scale linked to EU NUTs designated re
gions in England of the Northeast, Northwest, Yorkshire and the Hum
ber, East Midlands, West Midlands, South West, London and the South 
East and East. This resolution is higher than that in the current open 
access version of this dataset (South East, South West, Eastern, Midlands 
& Western and Northern). Ideally, we would have liked to go to a finer 
scale, however, resolution below this regional level proved problematic 
to obtain from the data holder due to UK General Data Protection 
Regulations.

To estimate patterns of use, we combined the PUS average applica
tion data for each NUTS region with data on arable crop cover. We used 
the agCensus data (agcensus.edina.ac.uk), which describes agricultural 
land use within 5 × 5 km grid squares for field beans, oilseed rape, 
potatoes, spring barley, winter barley, wheat, oats and sugar beet (but 
not horticulture, top or soft fruit or amenity/non-agricultural use of 
active ingredients). agCensus datasets were available for the following 
years: 1994, 1995, 1996, 1997, 2000, 2003, 2004, 2010 and 2016. We 
used linear interpolation where we had missing data between years and 
only included years that matched the PUS data. The weight per unit area 
of 179 pesticide active ingredients used on grown arable crops from 
1994 to 2016 was calculated for all 5 × 5 km grid squares in England. 
For each crop grown within a given 5 × 5 km grid square, pesticide 
application was estimated as: 

Mass applied AI
(
kgha− 1)

= AIx =

∑x,n
i=1Applicationx,n × Arean

Total area
(1) 

Where: AIx is the mass per unit area of active ingredient x applied in a 
5 × 5 km grid square; Application x,n is the average predicted mass of 
active ingredient x (kg ha− 1) applied to crop n within a 5 × 5 km grid 
squares; Area n is the total area*proportion of area treated (ha) of crop n 
within the same grid square, and Total area is the grid square total area 
(ha).
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For some regions in certain years, the PUS survey indicated no 
pesticide use for a specific crop, despite the agCensus data indicating 
that those crops were grown in that region (see below). As the PUS is not 
an exhaustive survey and is dependent on recipients responding, it is 
likely that these crops were grown and there was some degree of 
pesticide application, but this was not recorded in the PUS. Rather than 
assume no chemical use in the survey year for that crop in a particular 
region, we instead input the average value for the chemicals applied to 
that specific crop based on neighbouring regions. This approach will 
likely incorrectly assign pesticide use to areas under organic farming. 
However, such low input locations are a relatively small proportion 
(approximately ~50,000 of a UK total of ~3,000,000 ha of arable 
croplands) of the total land area. Further, because of the nature of the 
PUS survey data available to us at the county scale, such organic areas 
cannot be resolved to specific localities.

2.2. Ecotoxicological exposure assessment

To predict pesticide exposure for our focal species, we used equations 
taken from early tier pesticide exposure modelling to convert applica
tion rates as modelled usage per 5 × 5 km square to exposure values 
expressed in the same metrics as the available ecotoxicity data. The 
approach used varied by the species of interest.

i) Soil exposure of the earthworm Eisenia fetida and springtail Folsomia 
candida

Soil concentrations were calculated from application rates based on 
the assumption that the added pesticide per unit area enters evenly into 
the top 5 cm of a soil with a bulk density of 1.5 g/cm3. These two values 
were taken as standard from the UK Health and Safety Executive Tier 1 
PEC Soil.xlsx calculation tool (www.hse.gov.uk/pesticides/data-re 
quirements-handbook/fate/environmental-fate-models.htm). The first 
assumption converts application rates from an area to volume metric, 
the second accounts for bulk density in calculating soil concentrations. 
Ultimately in combination their effect was to give a soil concentration in 
mg/kg (the same units in which ecotoxicity data for earthworms and 
springtails are mostly reported), as the product of the application rate 
(kg/ha)*1.33.

ii) Daily dietary (oral) exposure for bees
The approach for dietary exposure converts the area-based applica

tion rates into dietary exposures, based on the size of the bee species and 
their food consumption in µg/bee/day as needed to calculate the µg/bee 
dose metrics reported in toxicity tests, i.e., in regulatory authorisation 
dossiers. The conversion equation used depends on the pesticide appli
cation method and the bee species of interest. For actives with dominant 
application by downward spray and seed treatment, dietary exposure 
was calculated using the following Equation (2) from the European Food 
Safety Authority (2023) guidance: 

Application rate (kg/ha− 1)* Number of applications * (Constant 
B*1000)                                                                                        (2)

The number of applications was set to one, given as the modelled 
predictions of aggregated annual input per 5 x 5 km unit area. Constant 
B accounts for the size of the bee species and their food consumption. For 
the honeybees (Apis mellifera), constant B is 6.4 for spray and 1.08 for 
seed treatments; for bumble bees (Bombus terrestris), B is 10 for spray and 
1.67 for seed treatments; for solitary bees (Osmia sp.), B is 0.7 for spray 
and 0.12 for seed treatments. The multiplication term (1000) is included 
to convert the application rate from kg/ha to g/ha.

For dominantly soil-applied active ingredients, acute adult dietary 
exposure in µg/bee/day for all bee species was calculated based on 
model input variables for honeybees. These parameters are based on the 
amount of nectar (292 mg/day) and pollen (0.041 mg/day) consumed 
(total consumption 292.041 mg) multiplied by the predicted pesticide 
concentration in these foods estimated from the substance log Kow and 
KoC. Calculation is made following Equation (3) from the US 

Environmental Protection Agency (2014) Tier 1 honeybee Bee-REX 
xv1.0 exposure tool: 

Concentration [µg/mg] = ((10^(0.95*logKow-2.05) + 0.82)* 
((− 0.0648*logKow^2) + 0.2431* logKow + 0.5822)*(1.5/0.2 + 1.5*Koc* 
0.01))*0.45*Application_Rate [kg/ha])/1000*292.041                    (3)

Although EFSA et al., 2023 (section 5.3.5) have derived a range of 
food consumption values for different bee species to be considered for 
the risk assessments, they recognise that there are significant knowledge 
gaps regarding the food consumption of bees and bee larvae (section 
5.5.5). In particular, further research is needed to reliably quantify 
pesticide exposure for bumble bees and solitary bees, as reliable food 
consumption rates are generally lacking for these species (Gradish et al., 
2019; Sgolastra et al., 2018). In the absence of reliable species-specific 
information, daily nectar and pollen consumption for honeybees was 
used in the bumble bee and solitary bee exposure calculations. This 
approach is likely to underestimate exposure in bumble bees, while 
overestimating exposure in solitary bees.

iii) Daily contact exposure for bees
To calculate honeybee exposure via contact (e.g. on plant surfaces) 

expressed as µg/bee/day, as needed to calculate the µg/bee dose metric 
reported in ecotoxicological studies, we used the simplified Equation (4)
taken from section 5.6 of the European Food Safety Authority (2023)
guidance: 

Application rate (kg/ha− 1)*(Bsf *1000)                                          (4)

where Bsf is a Body surface factor, which for honeybees is 0.0114 
dm2/bee, 0.0146 dm2/bee for bumble bees and 0.00184 dm2/bee for 
solitary bees. The multiplication term (1000) is included to convert the 
application rate from kg/ha to g/ha. This simplification does not include 
the contact exposure factor, EFco, which accounts for the source of the 
exposure from the landscape. The parameters for EFco are derived from 
deposition factors (where the deposition factor for the weed scenario is 
related to the crop interception and dependent on the growth stage of 
the crop and the deposition to the field margin is related to the spray 
drift/dust drift; section 5.2.2, EFSA et al., et al., . 2023). Our developed 
approach was taken because the modelled predictions are based on 
aggregated annual inputs per 5 x 5 km unit area.

iv) Acute oral + contact exposure for bees
To calculate combined oral and contact exposure, the calculation 

used depends on the dominant application method and bee species as 
detailed above. For each bee species, the final exposure term is the total 
via both routes expressed in µg/bee/day. This value is multiplied by 2 to 
estimate bee exposure dose in µg/bee over a 48 h period; the same 
duration as used for the honeybee acute test from which the vast ma
jority of the ecotoxicity data are taken.

v) Contact exposure for Lacewing (Chrysoperla carnea) and Parasitic 
wasp (Aphidius rhopalosiphi)

For these two species the following exposure calculation is used: 

Application rate (kg/ha− 1)*1000                                                    (5)

This equation simply converts application rate in kg/ha to g/ha, the 
same area-based exposure metric used in the tests from which the vast 
majority of the ecotoxicity data are taken.

2.3. Ecotoxicological hazard

Ecotoxicological values were collected for six acute (i.e., LC50, LD50) 
values, relating to honeybees, earthworms, springtails, lacewings and 
parasitic wasps, and two chronic values (i.e. reproduction NOECs) 
relating to earthworms and springtails (Table 1). LC50/LD50 values are 
the concentration (C) or dose (D) at which a substance is lethal for 50 % 
of the organisms tested. NOEC is the no observed effect concentration, 
which is the highest concentration of a chemical in a toxicity test where 
no statistically significant effects are observed in the test organism. 
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These values were initially collected from the University of Hertford
shire Pesticide Property Database (UoH-PPDB) (Lewis et al., 2016). This 
resource contains values for ecotoxicity (and other relevant informa
tion) reported in registration documents used for active ingredients 
submitted for authorisation under European Commission regulation No. 
1107/2009. For the most commonly used (top 15 in each class) herbi
cides, fungicides and insecticides applied by weight in 2016, in cases 
where UoH-PPD gave unbounded values available for a species (e.g., 
where ecotoxicity is reported as a > value or < value), the UoH-PPDB 
data were supplemented by data from the scientific literature.

Our focal non-target invertebrates are all ecotoxicological models 
and standard test organisms. As such they are the species for which the 
greatest amount of ecotoxicity data is available. The species cover a 
range of taxonomic groups (Annelids, Collembola, Insects) and include 
both above and below ground species. Different model species have been 
used historically to lesser or larger extents in pesticide hazard assess
ment. For example, while honeybees have been widely used as a 
terrestrial insect model species for decades, this is not the case for other 
wild bee species, which have come into use only since the 2010s, as 
guidance has further developed (European Food Safety Authority 2023). 
For bee species, there is, therefore, a paucity of ecotoxicological values 
for available for non-honeybee species in the UoH-PPDB (Lewis et al., 
2016) and wider scientific literature. Under revised guidance on the risk 
assessment of plant protection products for bees (Apis mellifera, Bombus 
spp. and solitary bees), methods have been proposed where toxicity data 
for honeybees are used to derive estimates of risk for bumble bees 
(Bombus terrestris) and two solitary bee species Osmia bicornis and 
O. cornuta using Toxicity extrapolation factors (Tef) (European Food 
Safety Authority 2023). Although the use of Tefs is not approved under 
current regulation and, therefore, should be used with caution, their use 
represents the best available approach for estimating risk to bumble bees 
(Bombus terrestris) and the two solitary bee species (Osmia bicornis and 
O. cornuta).

The ecotoxicity data available for our focal species represent a range 
of LD50/LC50 and reproduction NOECs taken from experiments with 
different exposure durations. The differences in measured endpoints and 
test durations mean that for each taxon, hazard is quantified on a 

different basis. To provide a consistent hazard metric for risk mapping, a 
systematic approach was used to calculate species PNECs from the re
ported ecotoxicity data for each pesticide to provide a consistent metric 
(a predicted NOEC) for assessment: 

• For this conversion, the inequality symbols (e.g., < and > ) were 
removed from all unbounded values to change them into defined 
values.

• In those cases where the unbounded value was reported as a > value, 
the defined value was taken as 2x the unbounded value; when the 
unbounded value was reported as a < value, the defined value was 
taken as ½ the unbounded value.

• The complete set of defined values were then converted to a PNEC 
using a widely used generic approach that was consistent for all 
species that was based on the use of two assessment factors according 
to the tested endpoint (LD50/LC50 or NOEC reproduction) and test 
duration (short term or long-term) following principles set out in an 
established risk assessment guidance (European Chemicals Agency 
2008). First, when a reported metric was for an effect on survival (e. 
g., an LC/LD50), this value was divided by a factor of 10 to convert 
from mortality to sub-lethal effects. Second for tests of short duration 
(defined as a test of <168 h), an additional assessment factor of 10 is 
included to account for the potential for greater effects under the 
longer exposure times that may be encountered in the field.

• In cases where a test measured both an effect on mortality and over a 
short-term exposure (e.g., 48hr), then the assessment factors were 
multiplied (e.g., PNEC = short term LC50/LD50)/100).

• For those tests that assessed a sub-lethal effect over a longer duration 
exposure, then the NOEC for this study was taken as the PNEC, i.e., 
no division of the reported NOEC values by either assessment factor.

• For species for which both acute and chronic toxicity data were 
available (e.g., earthworms, springtails), the lowest of the two 
calculated PNECs was taken as the hazard value for the assessment. 
The lowest PNEC was used as this enables a more conservative 
assessment.

Table 1 shows the number of lowest PNEC values available for 

Table 1 
Input parameters included in exposure and hazard calculations, detailing the number of active ingredients in each pesticide class with the maximum value for each 
input parameter (i.e., the minimum endpoint value that indicates the highest toxicity). Note the input parameters for honeybees were used to derive exposure estimates 
for 3 additional bee species Bombus terrestris, Osmia bicornis and O. cornuta using methods described by EFSA et al 2023. As such the input values shown for honeybees 
were therefore also used in risk calculations for these 3 bee species.

Group Species and test method Exposure 
unit

Fungicide 
PNECs

Herbicide 
PNECs

Insecticide 
PNECs

Molluscicide 
PNECs

Missing 
PNECs

Max 
value

Most potent 
pesticide

Pollinator Honeybee – acute contact LD50 

(48hr) – OECD, 1998, Test No. 
214

μg/bee 67 76 27 2 7 0.0015 Deltamethrin

Honeybee – acute oral LD50 

(48hr) – OECD, 1998, Test No. 
213

μg/bee 0.0037 Imidacloprid

Soil macro- 
organism

Earthworm − acute LC50 (14 
days) – OECD, 1984, Test No. 
207

mg/kg 65 78 28 2 6 0.565 Beta-cyfluthrin

Earthworm – chronic NOEC for 
reproduction (28 days) – OECD, 
2016, Test No. 222

mg/kg 0.084 Epoxiconazole

Springtail − acute LC50 (28 
days) – OECD, 2016, Test No. 
232

mg/kg 35 29 14 2 99 0.101 Carfentrazone- 
ethyl

Springtail − chronic NOEC for 
reproduction (28 days) – OECD, 
2016, Test No. 232

mg/kg 0.065 Chlorpyrifos

Non-target 
(predatory) 
arthropod

Lacewing – acute LD50 (48hr) – 
Candolfi et al 2000, IOBC study 
guidelines

g/ha 22 26 11 0 120 1.5 Dimethoate

Parasitic wasp – acute LD50 

(48hr) – Candolfi et al 2000, 
IOBC; Mead-Briggs et al 2010

g/ha 54 61 17 1 46 0.014 Dimethoate
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hazard calculations for fungicides, herbicides, insecticides and 
molluscicides.

2.4. Risk calculations for single pesticides and mixtures

The risk of each active ingredient for which a species specific PNEC 
was available was calculated by dividing the predicted exposure con
centration, expressed in appropriate units (mg/kg soil, µg/bee, g/ha 
application rate) by the lowest PNEC value for the species expressed in 
the same units (i.e., Risk = PEQ/lowest PNEC). By calculating risk based 
on the exposure concentration predicted from pesticide usage data for 
each 5 km square, it was possible to map risk for each focal species. 
Further, by repeating this analysis for all usage datasets available from 
1994 to 2016, a time-sliced view of the spatial patterns of risk could be 
generated (Supplementary file 1).

To calculate mixture risk, two potential models could potentially 
have been used: concentration addition and independent action. These 
two mixture models differ in their mechanistic assumptions, concen
tration addition being considered more relevant to similarly acting 
chemicals and independent action to dissimilarly acting substances (Van 
Gestel et al., 2010). The statistical calculation of both models are 
established and are discussed in full in (Van Gestel et al., 2010). In 
mixture studies with non-target species, applying these two models ac
cording to their mechanistic basis is often problematic due to un
certainties in mode of action assignment. Instead, other reasons can 
underpin choice. Here we chose to use concentration addition for two 
reasons. First, this model is often marginally more conservative than 
independent action. Such conservatism is seen as potentially beneficial 
in risk assessment studies, where failure to identify risk could lead to 
irrecoverable species-specific effects from co-exposure to chemical 
mixtures. Second, this model requires only a single hazard metric (i.e., a 
PNEC) to calculate individual pesticide contributions to a mixture effect, 
while independent action needs the full concentration response rela
tionship; something not available in the UoH-PPDB. Finally, this model 
is recognised as a widely accepted default approach to predict mixture 
toxicities for human health as well as the environment (European 
Commission 2020).

To analyse trends in usage and risks to our focal species we used 
concentration addition to sum risk for all active ingredients, by major 
pesticide group (fungicides, insecticides, herbicides and molluscicides) 
and by pesticide class (Chloronitrile, Triazole, Carbamate, Morpholine, 
Strobilurin, Triazolinthione, Benzimidazole, Urea, Dinitroaniline, 
Organophosphate, Thiocarbamate, Aryloxyalkanoic acid, Chlor
oacetamide, Benzamide, Triazine, Oxyacetamide, Pyridine compound, 
Triazinone, Pyrethroid, Neonicotinoid and Organochlorine). Risks were 
mapped as raster stacks, where each layer contains the values of the risk 
metric per year for each 5 x 5 km square.

However, because many aspects of the test method, e.g., duration, 
endpoint, exposure method, test media etc., differ between the focal 
invertebrates, simple comparison of these quotients across species is not 
fully appropriate. Instead, we chose to compare predicted risk in space 
and time for each species. To allow temporal and spatial risk compari
son, calculated mixture risk per species was plotted on a relative scale, 
with 1994 as the baseline. These plots give a snapshot of change over the 
longest duration possible with the available data. Visualising in this way 
does not capture the full trajectory of change for cases where risk is 
highest in the middle of the time series. Hence, for more detailed time 
resolved comparisons, maps of absolute risk for each time year modelled 
are provided in Supplementary File 1.

3. Results

3.1. Data availability

The use of 179 pesticides; 81 herbicides (75 spray, 6 soil applica
tion), 68 fungicides (53 spray, 12 seed dressing; 3 soil application), 28 

insecticides (17 spray, 6 seed application, 5 soil application) and 2 
molluscicides (both soil application) were mapped based on the PUS 
data available to us and cropping information in years from 1996 to 
2016. Supplementary file 2 provides a summary of the substance iden
tity and authorisation status information for each of the 179 pesticides 
collected from the University of Hertfordshire Pesticide Property Data
base (UoH-PPDB) (Lewis et al., 2016). The usage information for these 
pesticides was compared to extracted ecotoxicity values for eight non- 
target invertebrate species to allow spatial and temporal risk 
characterisation.

Despite using a comprehensive resource of regulatory ecotoxicity 
data, hazard data suitable to generate a PNEC for use in risk mapping 
was not available for all active ingredients. PNECs could be calculated 
for 172 of 179 pesticides in honeybees (and by following the methods 
described in European Food Safety Authority 2023 also for bumblebees 
and solitary bees), 173 of 179 for earthworms, 133 of 179 for parasitic 
wasps, 80 of 179 for springtails and 59 of 179 for lacewings. For further 
breakdown of the available PNEC by pesticide group and the most 
hazardous active for each species and endpoint (lowest LC/LD50 and 
NOEC values) see Table 1. In cases where a substance PNEC was missing 
for a species, these pesticides were excluded from the mixture risk 
assessment. Thus, especially for springtails and lacewings, mixture risk 
calculations do not include the contributions of a number of pesticides, 
including some insecticides, that lack ecotoxicity values for this species.

3.2. Change in risk between 1994 and 2016 for each non-target 
invertebrate species

Combining the pesticide use data, exposure models and PNEC values 
allowed bi-annual maps of combined pesticide risk to be generated for 
each focal species. Visualisation of trends in data suggested that the risk 
in England has decreased since 1994 for parasitic wasps, springtails and 
lacewings, but increased for all four bee species and earthworms (Fig. 1). 
The magnitude of decrease is greatest for parasitic wasps for which risk 
has decreased > 75 %. The greatest increase in risk is for solitary bees, 
with risk to earthworms also predicted to have increased > 2 fold.

3.3. Temporal trends in the contribution of different pesticide groups to 
risk

The contributions of broad pesticide classes (herbicides, insecticides, 
fungicides, molluscicides) and contributions of the different main classes 
of insecticides to risk varied between the focal species (Fig. 2). Insects 
are the main target pests for which insecticides are developed. As such, 
higher maximum values for insects compared to soil arthropods may be 
expected. In support of this, modelling of mixture risk indicated gener
ally higher maximum values for bees, lacewings and parasitic wasps 
compared to the two soil invertebrates. Visualisation of trends suggests 
that insecticides make a contribution to modelled risk for all focal spe
cies, especially so for the four bees and parasitic wasps. For the 
remaining three species, there is a substantial contribution to mixture 
risk for either herbicides (for lacewings), fungicides (for earthworms) or 
both (for springtails). Across all non-target invertebrates, molluscicides 
make only a small contribution to risk, due to either low use or low 
hazard.

Bees and parasitic wasps – insecticides dominated risk: To 
visualise how different pesticide classes contribute to insecticide risk in 
all bees and the parasitic wasp, we plotted the time trends of risk for the 
carbamates, neonicotinoids, organochlorines, organophosphates, pyre
throids and ‘other’ (i.e., those not in the other five groups) classes. For 
parasitic wasps, organophosphates make the largest contribution to risk. 
The decline in the use of this class of insecticide accounts for the drop in 
mixture risk to this species (Fig. 3). The replacement of organophos
phates with neonicotinoids might have been expected to retain, or even 
increase, risks in this taxon. However, the nature of the short-term 
contact test used for testing for parasitic wasps may underestimate 

M. Gibbs et al.                                                                                                                                                                                                                                   Environment International 204 (2025) 109856 

5 



neonicotinoid risk as these compounds have low lipophilicity and so 
may be poorly adsorbed across the insect cuticle. As a result of this 
mechanism, the toxicity of neonicotinoids to this species may be 
underestimated, especially over the short exposure times used for testing 
(Sánchez-Bayo & Tennekes, 2020). For all four bees, and particularly the 
solitary species, insecticide risk was dominated by neonicotinoids 
(Fig. 3). In all cases, risk from neonicotinoids rose steeply in the 2000s 
before declining, especially near the end of the time series as the mor
atorium for use on mass flowering crops came into force in 2013 (with 
2014 being the last year neonicotinoids were used in field).

Lacewings – herbicides dominated risk: Trends for pesticide class 
contributions for lacewings suggest that herbicides are the largest con
tributors to risk. This finding should, however, be treated with some 
caution, as it is based on a cumulative assessment for only the 63 actives 
for which PNECs are available for this species (Fig. 3). To visualise 
which of the included active ingredients within the herbicide class had 
the largest contribution to risk in lacewings, graphs were plotted for the 
classes: aryloxyalkanoic acid, benzamide, carbamate, chloroacetamide, 
dinitroaniline, organophosphate, oxyacetamide, pyridine compound, 
thiocarbamate, triazine, triazinone, urea and an ‘other’ category con
sisting of active ingredients not included in those classes and substances 
(e.g., glyphosate) that are the only member of their class. Visualisation 
of these classes suggest the ‘other’ class of herbicides was the largest 
contributor to risk (Fig. 3). Further investigation suggested that chlor
otoluron, a phenylurea class herbicide in the ‘other’ class, was the 
dominant contributor. The reported LD50 for this herbicide at 2.5 g/ha is 
below those for the other herbicides and comparable to some in
secticides (e.g. alpha-cypermethrin, 2.88 g/ha), indicating that this 
herbicide could indeed contribute to risk based on this potency. This 
finding indicates how a single active ingredient, even one from an un
expected class, can be identified as an important contributor to mixture 
risk, acting as a stimulus for further research into its potential field 
effects.

Earthworms – fungicides dominated risk: Visualisation of trends 
in data suggests that fungicides were the largest contributor to combined 
risk for earthworms (Fig. 2). To visualise which active ingredients most 
contribute, the fungicide risk was apportioned to the following classes; 
benzimidazole, carbamate, chloronitrile, morpholine, strobilurin, 

triazole, triaolinithione and ‘other’. The class assessment indicated that, 
although triazoles also had a significant contribution, the ‘other’ class 
was the largest contributor, with risks to earthworms due to both of 
these classes increasing over time (Fig. 3). Among the ‘other’ fungicides, 
the phenylpyridinamine fluazinam, had a large contribution to earth
worm risk.

Springtails – multiple pesticide risk: Insecticides, fungicides and 
herbicides all make a substantive contribution to risk for springtails. In 
more recent modelled years, there has been a trend for a greater 
contribution from fungicides and less from insecticides (Fig. 2). Risks to 
springtails from herbicides was also observed to increase over time 
(Fig. 2). Among the insecticides, those in the organophosphate class 
were observed to have the largest contribution to risk in springtails in 
the years until 2010, although in latter times the contribution of risk 
from neonicotinoids increased (Fig. 3).

3.4. How has the spatial pattern of risk changed over time?

To assess how risk has varied in space and time, we calculated 
change maps to compare the overall modelled pesticide risk between 
1994 and 2016. These change maps consider whether the most recent 
time period has higher or lower risk than the earlier year to provide a 
snapshot of change over the longest duration possible with the available 
data. For each bee species, a greater change in risk due to pesticides was 
indicated for areas in the southeast and west midlands of England. This 
pattern of change was particularly notable for solitary bee species 
(Fig. 4). These regions of England have the highest land use given to the 
growth of arable crops, and so the greatest potential to see changes in 
risk as trends in pesticide usage shift in time. Spatially, a lower change in 
risk was observed in urban areas for solitary bees and more widely for 
honeybees and bumble bees across years (Fig. 4). This lower change in 
risk is naturally linked to the absence of agriculture in these areas, 
although amenity and garden use may provide additional risk not 
captured in the underlying arable based PUS statistics.

The patterns of overall risk in the other taxonomic groups showed 
the greatest change in the southeast of England, matching the spatial 
profile of change for bees in these areas where there is high arable land 
use (Fig. 4). Earthworm risk showed a trend for increase, with the risk 

Fig. 1. Trends in the cumulative mixture risk relative to the baseline year of 1994 for eight focal invertebrate species. Lines show pattern of change in relative risk 
relative to the baseline, line for bumblebees are overlaid by that for honey bees and for O. bicornis by the trend of O. cornuta.
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Fig. 2. Trends in the absolute risk of herbicides, fungicides, insecticides and molluscicides for (A) the honeybee A. mellifera, (B) the bumblebee B. terrestris, (C) the 
solitary bee O. bicornis, (D) the solitary bee O. cornuta, (E) the lacewing C. carnea, (F) the parasitic wasp A. rhopalosiphi, (G) the earthworm E. fetida, and (H) the 
springtail F. candida for biannual years from 1994 to 2016.

M. Gibbs et al.                                                                                                                                                                                                                                   Environment International 204 (2025) 109856 

7 



Fig. 3. Trends in the absolute risk of different insecticide classes for (A) the honeybee A. mellifera, (B) the bumblebee B. terrestris, (C) the solitary bee O. bicornis, (D) 
the solitary bee O. cornuta, (F) the parasitic wasp A. rhopalosiphi, (G), the springtail F. candida; herbicide classes to (E) the lacewing C. carnea; and fungicide classes to 
(H) the earthworm E. fetida for all for biannual years from 1994 to 2016.
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Fig. 4. Map, at 5 x 5 km resolution of the change from 1994 to 2016 in cumulative mixture risk due to pesticide exposure for A) the honeybee A. mellifera, (B) the 
bumblebee B. terrestris, (C) the solitary bee O. bicornis, (D) the solitary bee O. cornuta, (E) the parasitic wasp A. rhopalosiphi; (F) the lacewing C. carnea; (H) the 
earthworm E. fetida and (G) the springtail F. candida.
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change largest in the regional area of East Anglia, specifically in counties 
(Cambridgeshire, Lincolnshire, Suffolk) known to be important for 
vegetable production in lowland peat soils (Fig. 4). For parasitic wasps, 
lacewings and springtails, there is an overall pattern of decrease in risk 
over the modelled time period.

4. Discussion

4.1. Visualising the spatial and temporal patterns of risk to non-target 
terrestrial invertebrates

Using a combination of pesticide usage, exposure prediction ap
proaches and ecotoxicity data, we have produced a highly resolved 
picture of the temporal and spatial patterns in risks due to arable 
pesticide use for non-target terrestrial organisms in England. Our 
approach advances beyond the previous state of the art, which allowed 
only understanding of usage amounts by area. Overall, the spatial and 
temporal risk assessments suggest that risks linked to pesticide usage in 
England have changed only modestly from 1994 to 2016. Visualisation 
of the spatial distribution of risk identified a clear pattern with all non- 
target invertebrates having the highest change in southeast England, the 
region of the country with the greatest percentage of land given over to 
arable farming, the greatest pesticide use, and so the greatest potential 
to see changes in risk as usage shift patterns over the studied timeframe.

Over the period of the assessment, there has been a marked transition 
in the active ingredients used in England (Garthwaite et al., 1995, 2017). 
For example, pyrethroids are the most extensively used insecticide 
applied as sprays on arable farm crops (Garthwaite et al., et al., 1995, 
2017). The Pesticide Usage Survey data available for our analysis re
ported an increase in pyrethroid use from 45 % of all sprayed in
secticides in 1994 to 94 % in 2016 (Garthwaite et al., 1995, 2017). 
Conversely, organophosphate use declined from 35 % in 1994 to less 
than 1 % in 2016. Our results indicate that parasitic wasps are most at 
risk from the organophosphate class of insecticides, and the sensitivity of 
parasitic wasps to organophosphates explains the reduction in cumula
tive pesticide risk for this species as the usage of these products declined. 
Like organophosphates, carbamate use has also declined from 16 % in 
1994 to 2 % in 2016 (Garthwaite et al., 1995, 2017). Neonicotinoid use 
was observed to be 2 % of the insecticide-treated area of arable farm 
crops grown in Great Britain by 2016 (Garthwaite et al., 2017). None
theless, this group still made a significant contribution to the risk to bees 
and to a lesser extent, to parasitic wasps (Fig. 2). For lacewings, a high 
contribution of herbicides and a reducing contribution of pesticide risk 
was indicated as the drivers of changes in risk to this taxon (Fig. 2).

For each individual non-target invertebrate, visualisation of trends 
indicated different patterns of risk change over the studied period. For 
parasitic wasps and springtails, a reduction in risk was indicated since 
1994, and for lacewings since the mid-2000 s based on the data available 
for this taxon (Fig. 1). For honeybees and bumble bees, only a limited 
change was indicated, while for earthworms and especially solitary bees, 
risk tended to increase over time (Fig. 1). There is a degree of concor
dance between the outcomes of our spatial and temporal analysis and 
experimental evidence on the pesticide groups and classes most likely to 
cause harm to our focal species. For bees, risk in the early years was 
linked to several insecticide classes including organophosphates, pyre
throids, organochlorines and neonicotinoids. However, in later years, 
bee risk was dominated by neonicotinoids, especially for solitary bees. 
There is a large evidence base demonstrating the negative impact of 
neonicotinoid insecticides on bees (Goulson et al., 2018), and compared 
to honeybees, other bee species are known to have high sensitivity 
(reviewed in Arena & Sgolastra 2014). Although neonicotinoid use 
declined by 2016 as the effect of the moratorium for use on mass 
flowering crops came into force, restrictions on use of two neon
icotinoids, acetamiprid and thiacloprid, did not occur until after 2013 
and some other neonicotinoids were authorised for use on winter wheat 
and sugar beet beyond 2016. Hence, some risks due to this insecticide 

class remained in later years, contributing to risk for sensitive species.
Pesticides, including insecticides and herbicides, are known to have 

negative effects on the distribution and abundance of non-target ar
thropods (Sánchez-Bayo, 2021). Trend patterns in the data suggest that 
risks from different classes of pesticides differed across these two 
beneficial arthropods. Insecticides from the organophosphate class had 
the largest contribution to risk in parasitic wasps, and herbicides 
(particularly chlortoluron) the largest contribution to risk in lacewings. 
In addition to indications of direct toxic effects of herbicides (e.g., 
glyphosate arrests development and impairs cocoon formation to lace
wings; Defarge et al., 2023), declines in predatory arthropods have been 
noted in locations where herbicides are used. From such observations in 
the field, it can be difficult to attribute such community effects to either 
herbicide exposure directly, or to the removal of plants resulting in a 
reduction of habitat resources, such as overwintering and oviposition 
sites (Sánchez-Bayo, 2021). The results here do, however, suggest that 
direct herbicide effects could play a role, especially given the apparent 
potency of chlortoluron to lacewings.

The are, however, some reasons to be cautious about the interpre
tation of the lacewing data. The data for this taxon are based on a cu
mulative assessment for only 63 of the 179 actives for which PNECs are 
available, of which 11 were insecticides. Given the limited substance 
coverage for lacewings the potential exists to underestimate the impact 
of those unstudied pesticides on lacewings. The International Organi
zation for Biological Control (IOBC) developed a testing method for 
natural enemies using standardised species and methods, where pesti
cide toxicity data are classified according to a tiered system consisting of 
set levels of mortality (Sterk et al., . 1999). Concerns have been raised 
that this testing approach underestimates effects because the set levels of 
mortality used (harmless, 29 % mortality; slightly harmful, 79 % mor
tality) would lead to severe detrimental effects on parasitoid populations 
in nature (Stark & Banks 2024). Also, concerns have been raised that this 
testing method could underestimate the toxicity of systemic insecticides 
like neonicotinoids, because it does not take into account the time- 
cumulative toxicity of this class of pesticides, which may also be 
poorly taken up by contact due to their low lipophilicity (Sánchez-Bayo 
& Tennekes, 2020). There is a need for a concerted research effort to fill 
data gaps and refine methodological approaches to improve our ability 
to conduct robust environmental risk assessments for non-target insects 
useful for biological control, such as parasitic wasps and lacewings.

4.2. Wider relevance

Policy makers, regulatory agencies and farmers are all usually aware 
of the hazards of pesticides and the need to understand the risks their use 
poses to species. The approach we have adopted here, using usage data, 
early tier exposure approaches and available ecotoxicity values, pro
vides these stakeholders with a further approach to understand how 
pesticide properties, practitioner choices and crop distributions all act to 
affect risk to different non-target organisms in time and space. Our 
spatial and temporal visualisation of data can provide information on 
how regulatory decisions change risk, where pressure is greatest and 
which taxa have, are, or will be affected. For example, the UK govern
ment, under the Sustainable Farming Incentive (SFI) for England, pro
vides financial incentives under IPM4 for “No use of insecticide on 
arable crops and permanent crops”. Modelling of patterns of risk over 
time can help understand the extent to which these policies change 
farming practices and so change risk. Of the 179 pesticides included in 
this study, on the University of Hertfordshire Pesticide Property Data
base (Lewis et al., 2016), 102 have an ‘approved’ status under EC 
Regulation 1107/2009 (Supplementary file 2). Our approach could 
therefore also encourage reassessment of certain chemicals with highest 
risks identified and alternative management options such as switching to 
use of pesticides among substance groups shown to have lower impacts 
on the different organism groups.

Pesticide usage information currently represents the most tractable 
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approach for estimating risk, as these data are often readily available for 
a larger number of pesticides. This approach is, however, not without its 
limitations, as the data may be incomplete and provide only an indica
tion of true exposure compared to the use of comprehensive chemical 
exposure monitoring data. Despite these caveats, the approach imple
mented here could, however, be used for similar analysis in other areas 
where similar or better-quality usage data is available. Input data on 
usage was taken from the Pesticide Usage Survey for England using data 
available for years from 1994 to 2016. These data are provided by 
farmers for annual reporting of pesticide use in agriculture. Models are 
required to scale-up these data to national, spatially explicit estimates of 
application rates. Although there are some issues with this process (for 
details see Jarvis et al., 2020, Mancini et al., 2020), use of this type of 
input data offers some flexibility, and in principle the modelling 
approach could be used wherever national level pesticide use informa
tion exists e.g., Scotland, and in European Union member states required 
to collect such data under Regulation (EC) No. 1185/2009 (Mancini 
et al., 2020).

4.3. Conclusion

Pesticide use represents a significant threat to terrestrial (and 
aquatic) biodiversity. Hence, understanding risks can aid in studies of 
the impacts of different environmental drivers on wildlife populations. 
Given the concerns over the potential for pesticide effects on wildlife 
(Wan et al., 2025), there is a need for reliable datasets predicting 
mixture toxicity in space and time. Our analyses provides such a data 
layer.
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