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Abstract

Soil bacterial communities are vital for ecosystem functioning in the humid tropics, yet their
response to land-use change remains poorly understood. This knowledge gap is exacer-
bated by the lack of long-term studies. We employed a space-for-time substitution approach
to assess the effects of land-use intensification on soil bacterial communities across a gra-
dient of anthropogenic disturbance in Trinidad. Three sub-watersheds (Arouca = pristine,
Maracas = intermediate, Tacarigua = intensive) were selected, each containing adjacent for-
est, grassland, and agricultural land uses. We combined geophysical soil apparent electrical
conductivity (ECa-directed) sampling with 16S rDNA gene amplicon sequencing to charac-
terize bacterial communities and their relationships with soil and landscape properties. Soil
properties were the primary determinant of bacterial community structure, explaining 56%
of the variation (p < 0.001), with pH, clay content, hygroscopic water, and nutrient avail-
ability as key drivers. Bacterial a-diversity differed significantly among sub-watersheds
(p < 0.01), with Tacarigua exhibiting lower richness and diversity compared to Arouca and
Maracas, but not across land uses. While a core microbiome of ten bacterial families was
ubiquitous across land uses, indicating a stable foundational community, land-use inten-
sification significantly altered 3-diversity (p < 0.01 among sub-watersheds). Agricultural
soils showed the greatest divergence from forest soils (p < 0.05), with a marked decline in
key Proteobacterial families (e.g., Xanthomonadaceae, Pseudomonadaceae) involved in
nutrient cycling and plant growth promotion. Although inherent soil properties shape
the core microbiome, land-use intensification acts as a strong secondary filter, shifting soil
bacterial communities toward more stress-resistant Firmicutes with potentially less diverse
functions. Our findings demonstrate the utility of integrating space-for-time substitution
with molecular profiling to predict long-term microbial responses to environmental change
in vulnerable tropical ecosystems.
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1. Introduction

Tropical regions, located between 23°28’ N and 23°28’ S, are characterized by year-
round warm temperatures and exceptionally high soil biodiversity [1,2]. In these regions,
the humid tropics receive over 2000 mm of annual rainfall, with high humidity throughout
the year. Soils in these environments are typically acidic, phosphorus-limited, and prone
to nutrient leaching, while high microbial activity and slow organic matter accumulation
create unique but fragile ecosystems [3-5]. Soil bacterial communities are fundamental to
these ecosystems, supporting functions such as nutrient cycling, organic matter decompo-
sition, soil aggregation, disease suppression, and climate regulation [6-10]. Despite their
ecological importance, tropical soils remain underrepresented in global soil microbiome
databases [11], leaving gaps in our understanding of how environmental and anthropogenic
pressures shape microbial communities in these systems.

Globally, bacterial communities respond strongly to gradients in soil pH, moisture, soil
texture, vegetation, and land-use practices [12-18]. However, findings from the tropics are
inconsistent. In the Amazon, land-use intensification increased bacterial alpha («) and beta
(B) diversities, with soil pH and chemical properties as major drivers [19,20], while other
studies found that forest soils supported the highest bacterial diversity relative to pastures
and croplands [20]. Similarly, across the Caribbean and Central America, results are mixed.
Soil pH strongly influenced bacterial communities in Trinidadian soils [21,22], but had little
effect on soils in Costa Rica [23]. In Jamaica, soil properties shaped bacterial composition
in post-mined and unmined bauxite soils [24], while Pittl et al. [25] reported significant
microbial differences among soil types in a rainforest in Costa Rica. These discrepancies
suggest that tropical microbiomes are shaped by complex, site-specific interactions between
soil properties, topography, vegetation, and land use, and that broader regional patterns
remain poorly understood.

The Caribbean archipelago, a recognized biodiversity hotspot, exhibits a mosaic of
soils due to its volcanic and tectonic history [26]. In Trinidad and Tobago, soil variability
ranges from highly weathered, clay-rich Ultisols in the south to nutrient-poor Oxisols in the
Northern Range [26]. The Northern Range of Trinidad, in particular, has undergone defor-
estation, hillside farming, and urban expansion, contributing to watershed degradation and
threatening ecosystem services such as freshwater supply and carbon storage [27,28]. Given
these pressures, soil microbial communities in this region are likely being reshaped, with
potential consequences for soil fertility and resilience. Yet, no systematic study has evalu-
ated how soil properties, landscape parameters, and land-use practices jointly influence
bacterial assemblages in Trinidad’s humid tropical watersheds.

Long-term monitoring of microbial responses to such land-use changes in the humid
tropics is rare. To overcome this limitation, we applied a space-for-time substitution ap-
proach [29,30], in which spatial contrasts among land uses are used as proxies for temporal
dynamics. Specifically, we treated forest, grassland, and agriculture within each sub-
watershed as a land-use chronosequence, representing successive stages of land conversion.
By embedding these land uses within three sub-watersheds of differing management in-
tensity (Arouca = pristine, Maracas = intermediate, Tacarigua = intensive), we inferred
trajectories of bacterial community change under land use intensification while simultane-
ously accounting for soil and landscape variability.
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In this study, we tested the following two hypotheses: (i) soil physicochemical proper-
ties are the primary determinants of bacterial community structure, reflecting adaptation
to local edaphic conditions, and (ii) land-use intensification modifies these intrinsic com-
munities, potentially reducing the abundance of sensitive taxa through soil disturbance
and management practices. Specifically, we aimed to (i) quantify differences in bacterial
a- and (3-diversity among land uses and sub-watersheds, (ii) identify soil and landscape
variables shaping community composition, and (iii) evaluate how land-use intensification
modulates soil-microbe relationships.

2. Materials and Methods
2.1. Region Description

The Northern Range of Trinidad and Tobago, the southernmost twin island nation
in the Caribbean archipelago, is the island’s primary relief landform and is the country’s
largest watershed [27]. The majority of the Northern Range is elevated between 90 m
and 450 m; however, elevations extend well over 600 m in some areas. The Range’s
climate is typical of a seasonal tropical regime with a dry season from January to May
and a wet season from June to December. Long-term rainfall records show that annual
rainfall decreases relative to elevation from 3048 mm in the northeast of the Range to
1524 mm towards the west and south [27]. Temperatures in the Northern Range are
generally similar to Trinidad’s mean annual maximum and minimum temperatures of
33.1 °C and 22.7 °C, while temperatures slightly decrease at higher elevations and within
shaded valleys. Natural vegetation formations in the Northern Range vary according
to temperature and moisture gradients associated with elevation and rainfall patterns.
However, due to anthropogenically driven land use change, much of the natural vegetation
has been converted to tree-crop estates, agricultural fields, quarries, and urban centers.

2.2. Site Description

Three sub-watersheds in the Northern Range of Trinidad were selected to rep-
resent a gradient of anthropogenic management intensity: Arouca (10°41'54.7" N
61°19'20.7"” W), considered the most pristine with minimal intervention; Maracas
(10°42'49.6" N 61°24’44.5" W), with intermediate management intensity; and Tacarigua
(10°42/02.5" N 61°21'00.5” W), the most intensively farmed sub-watershed, featuring high-
input vegetable production (Figure 1). Based on the USDA Keys to Soil Taxonomy, the
dominant soil types within the study area are Chromic Dystraquerts and Dystric Fluventic
Eutrudepts [31] (Figure 1). The three sub-watersheds vary in their level of farming intensity,
with Arouca being the most pristine and Tacarigua the most intensively farmed. Each
sub-watershed included three adjacent land use areas (forest, grass, agriculture), hereafter
referred to as plots; thus, land uses are nested in sub-watersheds. Forest plots were charac-
terized as seasonal evergreen forests. Perennial grass plots were dominated by a mixture of
Elephant grass (Pennisetum purpureum) and fowl-foot grass (Eleusine indica). Agricultural
plots varied from long-term plantation crops such as cocoa (Theobroma cacao L.), medium-
term green fig (Musa acuminata), short-term pigeon peas (Cajanus cajan), and habanero
peppers (Capsicum chinense habanero) (Table S1). Soil depth information is unavailable for
most of the study areas. However, De Caries et al. [32] measured soil depth (i.e., the depth
to the argillic horizon), which ranged from 0.17 m to 1.25 m along a transect in the same
study site in the Maracas sub-watershed. Based on soil sampling exercises, soil depth was
generally deepest in the Maracas sub-watershed, followed by the Tacarigua and then the
Arouca sub-watersheds.
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Figure 1. Map of Trinidad showing the study region and the location of each sampling point
within each sub-watershed. Note. The different colored areas represent land cover and soil types
within each watershed: Blue—Agricultural land, Green—Forested areas, Orange—Grassland or open
cover, Red outlines—Watershed boundaries, Blue lines—Major rivers, Soil Type Dystric Fluventic
Eutrudepts—Pink areas, and Soil Type Chromic Dystraquerts—Tan areas.
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2.3. Study Design Sampling Chronology

We adopted a space-for-time substitution (SFT) approach [30,33] to assess the effects of
land-use intensification on soil bacterial communities. In this framework, spatial variation
among land uses is interpreted as a proxy for temporal trajectories of change, enabling us
to infer long-term impacts of conversion without extended monitoring. Within each sub-
watershed (Arouca, Maracas, Tacarigua), we identified three adjacent land uses, namely
forest, grassland, and agriculture, that represent successive stages of land conversion,
hereafter referred to as a land-use chronosequence. We assumed that plots were compa-
rable in all factors within each sub-watershed except for land-use history, and therefore
differences in bacterial communities among land uses reflect cumulative effects of distur-
bance and management. The three sub-watersheds themselves were selected to represent a
broader gradient of management intensity across Trinidad’s Northern Range. This nested
design allowed us to capture both local chronosequences (land-use transitions within sub-
watersheds) and regional variation (differences in watershed-level management intensity).
All geophysical surveys and soil sampling were conducted during the dry season, between
September 2019 and March 2020, to minimize seasonal variation in soil conditions.

2.4. Soil Sampling and Analyses

A DUALEM-1S EC meter (Dualem, Milton, ON, Canada) equipped with supplemental
hardware and software as described by De Caires et al. [34] was used to perform geophysical
surveys of each land use plot by apparent soil electrical conductivity (EC;) readings
every 1 s at 0-0.5 m depth where possible. Geophysical surveys were conducted between
September 2019 and March 2020. The EC, data collected during the first survey (September
2019) were inputted into ESAP (ESAP-95 version 2.01 software package; [35]) to generate
a directed sampling design for each land use plot based on the spatial variability of
the EC, [36], hereafter referred to as the EC,-directed sampling design. Six EC,-directed
sampling points were identified in each of the three land use plots in each of the three above-
mentioned sub-watersheds (i.e., 54 sampling points in total).

In October 2019, at each predetermined sample location, a composite soil sample
(0-0.2 m depth) was collected using a Dutch auger, consisting of 3-5 sub-cores within a
1 m radius. A subsample (~20 g) was placed in a sterile bag for microbial analysis, and the
remainder of the soil was placed in a Ziplock bag for the analysis of soil physicochemical
properties. The samples collected for microbial analysis were placed in an ice cooler
immediately after sampling and transferred to a —80 °C freezer for storage. Before shipping
these soil samples for downstream analyses, they were treated with the LifeGaurd DNA
preservation solution according to the manufacturer’s protocol (Qiagen, Hilden, Germany).
Additionally, at each sampling point, the DUALEM-1S EC meter was placed flat on the
Earth’s surface and oriented as appropriate to obtain EC, point measurements.

At the laboratory, samples collected for physicochemical analysis were first analyzed
for gravimetric water content (0g) by drying approximately 30 g of moist soil to constant
weight at 105 °C [37]. The remaining soil was air-dried, mixed, crushed, and passed through
a 2 mm sieve. Particle size distribution was determined by the hydrometer method [38].
Hygroscopic water content (6;,) and water-stable aggregates (WSAs) were determined as
described in [39] and [28], respectively. Soil pH (soil-to-water ratio 1:1.25) [40], soluble salts
(SS) [41], and acid activity (AA) [42] were measured using standard methods. Exchangeable
Na, Ca, and Mg were extracted using neutral 1 M potassium chloride (KCl) [43] and then
determined by Atomic Absorption Spectroscopy. The loss-by-ignition method was used
to determine soil organic matter [44]. Available phosphorus (P), potassium (K), iron
(Fe), manganese (Mn), zinc (Zn), and copper (Cu) were extracted using a modified Olsen
sodium bicarbonate/EDTA extractant [45]. Phosphorus was measured by colorimetry
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(Portch and Hunter 2002), and K, Fe, Mn, Zn, and Cu were measured by atomic absorption
spectroscopy [46]. Available boron (B) and extractable sulfate-sulfur (S) were extracted with
calcium phosphate. Boron was determined by colorimetry with curcumin [47] and S by
turbidimetry with barium chloride [48]. Exchangeable ammonium nitrogen (i.e., available
nitrogen (N)) was extracted with 2 M KCI and determined by colorimetry [49]. Cation
exchange capacity (CEC) was determined by the summation of Ca, Mg, K, Na, and H
cations [50].

2.5. Digital Elevation-Derived Landscape Variables

Landscape variables (slope gradient and curvature) were extracted from digital ele-
vation models with a resolution of 2 m using ArcGIS Pro (v2.8). The slope was derived at
each sampling point using the Slope tool to calculate the maximum rate of change from a
raster cell to its neighboring cells, which provides a natural fit to the terrain. The Curvature
function was used to derive planform curvature, hereafter referred to as curvature, at
each sampling point as it relates to both the convergence and divergence of flow across a
surface [51].

2.6. rDNA Extraction, Library Preparation, Sequencing, and Processing

Genomic DNA was extracted from 0.25 g of soil using a DNeasy PowerSoil Pro
Kit (Qiagen, Hilden, Germany) following the manufacturer’s protocol. DNA concentra-
tions were quantified using a Qubit 2.0 fluorometer and dsDNA High Sensitivity kit both
from Thermo Fisher Scientific (Waltham, MA, USA), and standardized to 2.5 ng/uL be-
fore library preparation. The V3-V4 fragment of the 165 rDNA gene was polymerase
chain reaction (PCR)-amplified using 342F (5-CTACGGGGGGCAGCAG-3') and 806R
(5'-GACTACHVGGGTWTCTAAT-3') primers with Illumina adapters [5].

A reaction volume of 20 pL containing 2 uL of genomic DNA and 18 uL of a master
mix comprising 12.5 puL of nuclease-free water (HF-H20), 2.5 puL of DreamTaq buffer,
2.5 puL of 2 mM concentration dNTP (Invitrogen, Carlsbad, CA, USA), 0.25 uL of each
primer (IDTVR, Coralville, IA, USA) and 0.25 pL of DreamTaq Hot Start DNA Polymerase
(Thermo Scientific, Carlsbad, CA, USA) was prepared and used for amplification under
the following conditions: 5 min at 95 °C; 30 cycles of 30 s at 95 °C, 45 s at 54 °C, and 1 min
at 72 °C; 7 min at 72 °C in T100TM Thermal cycler (Bio-Rad Laboratories, Hercules, CA,
USA). Following amplification, 1% Agarose Gel with 0.1% SYBR Safe (Invitrogen, Carlsbad,
Hercules, CA, USA) was used to validate that the targeted region was amplified. PCR
products were purified using Sera-Mag DNA purification beads (Cytiva, Marlborough,
MA, USA) before and after indexing. A 25 uL volume mix containing 2.5 pL of purified
PCR product, 2.5 uL of both indexes in the Nextera XT Index Kit (Illumina Inc., San Diego,
CA, USA), and 17.5 pL of a DreamTaq reaction mix containing 12.25 uL of NF-H20, 2.5 pL
of Dreamtaq Buffer, 2.5 pL of 2 mM concentration dNTP, and 0.25 uL of DreamTaq was
indexed under the following conditions: 3 min at 95 °C; 8 cycles of 30 s at 95 °C, 30 s
at 55 °C, and 30 s at 72 °C; 5 min at 72 °C and held at 4 °C using a T1I00TM Thermal
cycler (Bio-Rad Laboratories, Hercules, CA, USA). Indexed purified PCR products were
quantified using a Qubit 2.0 fluorometer and dsDNA High Sensitivity kit and standardized
to 4 ng/uL before pooling all the purified indexed PCR products for Illumina Sequencing.
Negative controls containing no DNA and randomly selected replicates were used as
quality assurance/quality control measures throughout DNA library preparation. Negative
controls were quantified using Qubit and confirmed to contain negligible DNA. The pooled
sample was sequenced using 600 cycles of Illumina MiSeq Chemistry (Illumina, San Diego,
CA, USA).
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Cutadapt (v.4.1) [52] was used to remove the primer sequences from both forward and
reverse reads. Forward and reverse reads were imported into QIIME 2 (v.2022.2, [53]) using
the fastq manifest format, and both forward and reverse reads were visually inspected.
Overall, the reverse reads had low quality, which led to poor retention of paired reads
(26.5%) following merging and denoising using DADA?2 (even after optimized trimming
for low-quality base calls). As a result, analysis was performed using the forward reads
only, which resulted in 50.8% of reads retained after denoising using the DADA2 [53]
plugin for QIIME 2. A total of 1,495,672 reads and 5356 unique features were retained with
minimum (14,133), median (22,418), and maximum (32,691) reads per sample. Taxonomic
classification of each amplicon sequence variant (ASV) was performed using the g2-feature-
classifier plugin [54] in QIIME 2 and a classifier that was pre-trained from the SILVA
database v.138.1 [55] at 99% sequence similarity. The final output table of ASVs was used
to analyze bacterial community diversity, structure, and composition.

2.7. Statistical Analysis

All data and statistical analyses were performed using R Core Environment 4.5.1 [56]
and RStudio version 2024.12.1+563 [57]. The relative abundance and core microbiomes,
using 20% prevalence and 0.01% relative abundance thresholds. All subsequent analyses
were performed on a phyloseq object [58] that combined taxonomic, feature-table, and
categorical metadata information, and where chloroplast, mitochondria, and unclassified
phyla were removed. The analysis of microbiome compositions with bias correction
(ANCOMBC) [59] was used to identify taxa with differential abundance among land uses
and sub-watersheds. Samples were rarefied before x-diversity (Observed, Chaol, and
Shannon indexes) analysis at the lowest even sampling depth of 14,123. Rarefaction analysis
was performed using the ggrare function in the ggplot2 package (v3.5.1) [60] to confirm the
adequate sampling depth needed to capture bacterial diversity (Figure S1).

A two-factor nested analysis of variance (ANOVA), with sub-watershed as a fixed
factor and land use nested within the sub-watershed as a random factor, was used to evalu-
ate the effect of these factors on soil physicochemical, landform parameters, o-diversity.
Statistical significance and pairwise comparisons were performed using Tukey’s post hoc
tests using TukeyHSD function. Principal component analysis (PCA) was conducted on
the Bray—Curtis dissimilarity matrix following centered log-ratio transformation with zero
replacement [61,62] to assess the microbial community structure (f—diversity). This was
followed by a permutational analysis of variance (PERMANOVA) and pair-wise PER-
MANOVA to evaluate interactions among sub-watersheds and land uses using the vegan
package (v. 2.6-4) [63]. A redundancy analysis (RDA) was used to explore, visualize,
and model the relationship between soil bacterial communities, environmental (soil and
landform) parameters, and land use.

3. Results

3.1. Differences in Soil Physico-Chemistry and Landscape Parameters Among Sub-Watersheds and
Land Uses

The three sub-watersheds exhibited distinct soil physicochemical properties consistent
with their selection along a gradient of land-use intensity (Tables 1 and 2), while land uses
within them showed more variable differences. Landform parameters were very similar
across sub-watersheds except for a lower slope gradient in the Arouca sub-watershed
(Table 1). Soils were generally coarse-textured (600-814 g kg~! of sand), with silt and
clay contents of varying smaller proportions. The highest clay content (173 g kg~ !) was
observed in the Maracas sub-watershed, which also showed the largest gradient across
land uses, with the lowest and highest clay contents in agriculture (106 g kg ') and forest
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(237 g kg~ 1) plots, respectively. The amount of water-stable aggregates was doubled in the
Arouca sub-watershed (521 + 41 g kg~!) compared to the other two sub-watersheds. Water
contents (0, and 6g) did not vary significantly among sub-watersheds but significantly
differed across land use (Table 1). Generally, the forest land use showed the highest water
contents, with the largest range across land uses found in the Arouca sub-watershed,
with 0y, (the hygroscopic water content) in agriculture plots being lowest (0.008 g g~ 1),
intermediate in grassland (0.009 g g~ '), and highest in forest (0.013 g g~ !) plots.

Soil chemical properties, especially N, P, K, pH, Fe, Mn, Zn, AA, and SS, varied
significantly among sub-watersheds (Table 2). Specifically, Mn, P, N, and SS were sig-
nificantly higher in the Arouca sub-watershed compared to the Maracas and Tacarigua
sub-watersheds. Both Mn and P span a land use gradient in the Arouca sub-watershed
with Mn following the order of Forest < Agriculture < Grassland, and P following the
order Forest < Grassland < Agriculture. P was also significantly higher in agriculture
plots within each sub-watershed (Table 2). OM and CEC did not vary significantly across
sub-watersheds but differed across land uses within sub-watersheds. Many of the soil
physical and landscape parameters were co-correlated (Figure 2).
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Figure 2. Correlation matrix between landscape factors and soil properties across the three sub-
watersheds. Clay = Clay content, Fe = iron, Hygro = hygroscopic water content, Mn = man-
ganese, P = phosphorus, AA = acid activity, K = potassium, N = nitrogen, S = sulphur, Bo = boron,
Cu = copper, Zn = zinc, OM = soil organic matter content, SS = soluble salts, ECas = apparent soil
electrical conductivity (0-0.5 m), WSA = water-stable aggregates, Sand = sand content, Silt = silt
content, Curv = curvature.
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Table 1. Soil physical properties, water content, and landform parameters for sub-watersheds and land use.

Landform Parameters Physical Properties (g kg—1) Water Content (g g—1) Soil Texture
Watershed Land Use Slope Curvature 4 )
Gradient (°) (m-1) Sand Silt Clay WSA On Og
(a) Robust two-way ANOVA (n = 18)
Maracas 10.4 15 600 227 173 236 0.009 0.29 Sandy loam
(+2.0)2 (+1.8)2 (£29) P (£20) 2 (+16) 2 (+28)® (£0.0007) @ (+0.01) 2 y
Tacarioua 14.1 —0.5 814 98 88 211 0.009 0.26 Loamy sand
& (£1.6)? (£1.6)2 (£19)2 (+14)® (£8)b (+36) b (£0.0002) @ (40.02) 2 y

Ar 7.9 ~1.3 774 203 24 521 0.010 0.26 Loamy sand

ouca (£1.1) b (£2.4) (£16)2  (+13)2 (£8) (+£41)2 (£.0007)2  (+0.01)2 oamy sa

(b) Nested ANOVA (n = 54)

Agri 6.3°¢ —13.22 658 P 2352b 106 <4 273b 0.009 be 0.352 Sandy loam

Maracas For 6.1°¢ 273 464 © 2992 2372 144 b 0.0113° 0.30 2 Loam
Gra 18.9 2 292 678 ° 147° 175 be 291 P 0.007 ¢ 0.28 2b Sandy loam
Agri 7.7°¢ ~1.12 8432 84 ¢ 73 cde 237b 0.0078 © 0.20° Loamy sand
Tacarigua For 10.8° 252 746 2P 138 be 117 be 177b 0.0088 be 0.322b Sandy loam
Gra 2212 -302 854 2 72°¢ 74 cde 219° 0.0093 b¢ 0.25 2P Loamy sand
Agri 55¢ -092 8402 158 P 3f 560 2 0.0082 be 0.24 20 Loamy sand
Arouca For 9.2¢ —3432 718° 237 2b 45 def 4372 0.0133 2 0.26 2 Sandy loam
Gras 8.8¢ —0472 763 b 2132b 23 ¢f 565 2 0.0093 be 0.27 2b Loamy sand

Note. Means within a column followed by the same letter were not significantly different (p < 0.05). Agriculture (Agri), forest (For), grass (Gra), water-stable aggregates (WSA),
hydroscopic water content (8y,), gravimetric water content (8g). Values in parentheses are the standard error.
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Table 2. Soil chemical properties by sub-watersheds and land use.
Land Ca Mg K AA N P S B Cu Fe Mn Zn CEC SS ECas oM pH
Watershed Use (mea 100
(meq 100 cm~—3) (ug ecm~—3) cmq*3) (ppm) (mS m-1) (gkg1)
(a) Robust two-way ANOVA (n = 18)
Maracas 32 0.6 0.13 0.2 4 8 67 0.5 8 76 23 7.3 4 8 6.3 31 6.1
(£0.4)2  (£0.05)@  (+0.01)° (+£0.06) @ (£0.2)® (£1)® (&8)° (40.02) ® (£1)° (£22)° (x6)® (£1.4)2 (£0.4)2 (£0.9)® (40.6) 2 (£3)° (£0.2)2
Tacarioua 22 0.4 0.1 0.5 4 12 42 0.5 5 193 14 5.6 32 8.4 24 25 5.3
g (£0.1)2  (£0.01)@  (£0.01)P  (£0.07)° (£0.2)® (£3)® (£3)° (££0.02) @ (£1)° (&20) @ (x2)® (£2.6)° (£0.1)2 (£0.5) P (£0.2)2 (+4)° (+£0.2) b
Arouca 3.4 0.5 0.1 0(£0.00) 6 22 44 0.5 11 42 98 7.6 4.0 18.2 3.4 27 6.6
(£04)2  (£0.04)2  (£0.01)° : (£0.7)@ (£2)° (£10) @ (£0.02) @ (£2)° (£8)° (+6)° (£1.0)2 (£0.4)2 (£2.2)2 (£1.9)2 (£3)° (£0.1)2
(b) Nested ANOVA (n = 54)
Agri 572 0.763 2 0.132 0.0b 43 g be 72 abe 0.47 2 5b 36 11°b 122 6.6 102 102 17°¢ 6.65
Maracas For 200 0.432° 0.112 05° 3.7b 6¢ 110° 0.50° 102b 152° 44" 24 3.0b 72 52 442 5.18 4
Gra 3.0° 0.495 20 0.132 0.0° 412 g be 45 abc 0392 gb 41« 14° 84 36" 74 52 3Q abe 6.58 2bc
Agri 2.1° 0.430° 0.11% 02° 5.8 262 45 abe 0.47° 132 2742 19 192 2.7b 26° 24 16 6.08
Tacarigua For 25°b 0.447° 0.112 072 3.8° 4c 36 bc 0.48% 2b 139 be 12b 3a 37°b 83 32 402 4854
Gra 21° 0.403° 0.09 2 052 3.7b g be 48 2bc 0.452 5b 165 13b 22 31° 82 22 2] be 4484
Agri 25b 0.442° 0.10° 0.0 4373b 282 36bc 0.482 242 78 bed 912 82 3.1° 10?2 22 37ab 6.12b¢
Arouca For 4143 0.587 2 0.10° 0.0° 782 17 ab 102 20 0.512 4b 204 862 42 493b 272 52 18 be 6.972
Gra 35 0.543 b 0.112b 0.0° 6.8 202 26°¢ 038 102 29 od 1182 182 414 182 3 26 abc 6.722

Note. Means within a column followed by the same letter were not significantly different (p < 0.05). Calcium (Ca), magnesium (Mg), potassium (K), acid activity (AA), available nitrogen
(N), phosphorous (P), sulphur (S), boron (B), copper (Cu), iron (Fe), manganese (Mn), zinc (Zn), cation exchange capacity (CEC), soluble salts (SS), apparent soil electrical conductivity
(0-0.5 m, ECas), and organic matter content (OM). Note. Means within a column followed by the same letter were not significantly different (p < 0.05). Values in parentheses are the

standard error.
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3.2. Bacterial Community Composition Among Sub-Watersheds and Land Uses

The study used 54 samples collected from the three sub-watersheds and the three land
uses. After removing chloroplasts, mitochondria, and unclassified phyla, 1,228,727 ASVs
were retained, averaging 22,754 reads per sample with a range of 14,123 to 32,662. A
total of 5356 unique ASVs were identified. At the phylum level, Firmicutes were over-
whelmingly dominant, comprising 85% of ASVs across all sub-watersheds and land uses
(Figure 3a,b), followed by Proteobacteria and Actinobacteriota. We note that this high
relative abundance may be influenced by the use of LifeGuard DNA preservation solution,
which can enhance the recovery of endospore-forming Firmicutes [64]. Despite this po-
tential bias, clear patterns emerged: Firmicutes were least abundant in the most pristine
Arouca sub-watershed and under forest and grassland land uses, which are least affected
by anthropogenic activities.
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(c)

Enterobacteriaceae (2.6%!

Planococcaceae (19.7%)

Figure 3. Relative abundance of the dominant bacterial phyla in the soil bacterial microbiome
identified using the SILVA database across (a) sub-watersheds and (b) land uses. (c) Pie chart of
dominant bacterial families across the sub-watersheds and land uses.
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To examine the microbial community composition further, a “core microbiome” was

defined as ten core bacterial families present in every sample. These ten families included

Bacillaceae, Planococcaceae, Paenibacillaceae, Xanthobacteraceae, Enterobacteriaceae, Xan-

thomonadaceae, Pseudomonadaceae, and Chthoniobacteraceae, as well as Uncultured

and Not Assigned families (Figure 4). Four of the families (Bacillaceae, Planococcaceae,

Paenibacillaceae, and Peptostreptococcaceae) are common Gram-positive soil bacteria

families, and four families belong to Gram-negative bacteria commonly found in soils

(Xanthobacteraceae, Enterobacteriaceae, Xanthomonadaceae, and Chthoniobacteraceae).

The core microbiome was very similar across land uses (Figure 4), and it was not possible

to identify a core microbiome separated by sub-watershed.
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Figure 4. Core bacterial microbiome defined as 20% prevalence at an abundance threshold of at least

0.01% for (a) all samples and each land use; (b) forest; (c) grass; and (d) agriculture.
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The “core microbiome’ of ten bacterial families was found to be ubiquitous across all
samples (Figure 4). This indicates a stable foundational community which is resistant to
land-use change. Despite this stability at the broad taxonomic level, analysis of differential
abundance (ANCOM-BC) revealed significant shifts in specific taxa. A total of 159 ASVs
(from 54 families) were differentially abundant among sub-watersheds (Figure S2) and
32 ASVs (from 17 families) among land uses (Figure 5) (p < 0.001). Although there was
low differential abundance at the family level among land uses, bacterial abundance in the
forest and agricultural soils was most different (Figures 3 and 4). Both forest and grassland
showed high abundance of JG30-KF-AS9, which was not detected in agriculture plots.
However, in agriculture plots, Blastocatellaceae were highly abundant as well as in forest
plots, but were not detected in grassland plots. Overall, bacterial families in grassland plots

overlapped most with families found in both forest and agriculture plots.

Chthoniobacteraceae -
Xanthomonadaceae -
Pseudomonadaceae

Unknown_Family -
Hyphomicrobiaceae 1
Beijerinckiaceae 1
Xanthobacteraceae -
Methyloligellaceae -

uncultured
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Paenibacillaceae A
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JG30-KF-AS9 1
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MB-A2-108 -
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IMCC26256 -

Blastocatellaceae A
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Figure 5. Bacterial differential abundance showing differences in bacterial community composition
by family between land uses. Families shown as grey are not present. Differences in bacterial
communities for each sub-watershed are shown in Figure S3.
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3.3. Soil Bacterial Community Richness and Diversity (x-Diversity) and Community
Structure (B-Diversity)

The a-diversity indices (Observed, Chaol, and Shannon) were significantly differ-
ent among sub-watersheds (p < 0.05) (Table 3). Pair-wise comparisons revealed that all
a-diversity indices were significantly different between the Tacarigua and the Arouca
sub-watersheds (p < 0.05). Additionally, the Shannon index differed significantly between
Tacarigua and the Maracas sub-watersheds, indicating that these sub-watersheds had simi-
lar bacterial richness but different diversities (Table 4). In contrast, the a-diversity indices
were not significantly different among land uses.

Table 3. Results of a two-way nested ANOVA showing differences in «-diversity between watersheds
and land uses nested within watersheds. Significant differences (p < 0.05) shown in bold.

Observed Chaol Shannon
FValue Pr(>F) FValue Pr(F) FValue Pr(GF)
Watershed 6.06 0.005 6.00 0.005 12.59 <0.001
Watershed: Land use 1.60 0.170 1.62 0.163 0.33 0.912

Table 4. Pairwise comparisons showing differences in «-diversity between watersheds. Significant
differences (p < 0.05) shown in bold.

Watershed Observed Chao Shannon
Comparisons p-Value (adj.)
Tacarigua—Arouca 0.003 0.003 <0.001
Tacarigua—Maracas 0.265 0.253 0.014
Arouca—Maracas 0.151 0.164 0.111

In contrast to the clear effect of sub-watershed on the bacterial x-diversity, we ob-
served no significant differences in x-diversity indices among land uses (Table 3). How-
ever, an analysis of 3-diversity revealed strong and interpretable patterns consistent
with the SFT approach. Sub-watershed and land use both significantly impacted bac-
terial community structure (Figure 6 and Table 5). Bacterial communities were distinctly
clustered by sub-watershed, explaining 28% of the variation, while land use explained
an additional 20%. Along PC1, the Arouca (most pristine) and Tacarigua (most inten-
sively farmed) sub-watersheds were well separated, with Maracas in an intermediate
position. The observed pattern also mirrors the hypothesized temporal trajectory of land-
use intensification (forest — grassland — agriculture) across watersheds of increasing land
management pressure.

Table 5. Results of a PERMANOVA showing differences in 3-diversity between watersheds and land
use nested in watershed. Significant differences are shown in bold (p < 0.05).

Df R?2 F Pr >F)
Watershed 2 0.279 5.507 0.001
Watershed:LandUse 6 0.204 1.713 0.001

Within sub-watersheds, bacterial communities in agricultural plots showed greater
overlap with communities in forest and grassland plots, particularly in the Tacarigua
sub-watershed. This suggests that under intensive management, bacterial communities
may converge or homogenize across land uses, reflecting cumulative disturbance legacies.
Contrastingly, bacterial communities in forest and grassland remained more distinct in
the less disturbed Arouca sub-watershed, consistent with earlier stages of the land-use
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conversion sequence. Pairwise comparisons confirmed that bacterial 3-diversity was
significantly different (p < 0.01) among all sub-watersheds, and specifically between forest
and agricultural land uses (p < 0.05) (Table 6).
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Figure 6. Principal Component Analysis (PCA) was performed on centered-log transformed data
and shows the effect of land use (symbols) and sub-watershed (colors) on the -diversity of the soil
bacterial microbiome. Dashed circles mark the three sub-watersheds.

Table 6. Results of a PERMANOVA showing pair-wise comparisons in 3-diversity between water-
sheds and land uses. Significant differences are shown in bold (p < 0.05).

Watershed 2 .
Comparison R p Adjusted p
Tacarigua:Maracas 0.153 0.001 0.003
Tacarigua:Arouca 0.324 0.001 0.003
Maracas:Arouca 0.180 0.001 0.003
Land use R? p Adjusted p
comparison
Forest:Agriculture 0.066 0.015 0.045
Forest:Grass 0.038 0.169 0.284
0.038 0.142 0.284

Agriculture:Grass

Together, these results support the interpretation that bacterial community struc-
ture reflects not only spatial heterogeneity but also directional, stage-dependent changes

consistent with a chronosequence framework.
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3.4. Relationship Between Soil Physico-Chemistry Properties and Bacterial
Community Composition

Soil and landscape parameters explained 56% of the variation in the soil bacterial
composition across sample sites, with pH, Mn, Fe, clay content, 6}, and P (Figure 7) being
predictors of variation in soil bacterial community composition across the sub-watersheds
(Table 7; adjusted R? = 23%). In the Maracas sub-watershed, bacterial community composi-
tion was best described by clay content and K, whereas the major drivers were AA and
Fe in the Tacarigua sub-watershed, and pH, Mn, 6}, and P in the Arouca sub-watershed
(Table 7). These results demonstrate that while a common set of edaphic factors (pH, Mn,
Fe, clay, 6}, P) governs bacterial community composition at the regional scale, the primary
environmental filters are location-specific. This underscores that soil properties are the
foundational drivers of microbial community structure, but their relative importance is
modulated by the local land use context of each sub-watershed.

Land Use
Q Agriculture

ﬁ Forest
I:I Grass

Watershed

Arouca
® Maracas
®  Tacarigua

-0.8

04 U.IO 04 0.8
RDA1 ( 18.58 %)

Figure 7. Redundancy Analysis (RDA) biplot of soil bacterial communities across sub-watersheds
and land uses constrained by significantly correlated soil parameters; Fe = iron, Clay = clay content,
0, = hygroscopic water content, Mn = manganese, P = phosphorus, pH = soil pH.
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Table 7. Statistical summary of the significant soil physico-chemical predictors of bacterial commu-
nity composition as determined by redundancy analysis (RDA) shown in Figure 5. All measured
soil properties and landscape parameters were added in the analysis; only significant properties
are presented here. Significant differences are shown in bold (Pr (>F) < 0.05), RZ=0.32, adjusted
R? = 0.23; Mn = manganese, Fe = iron, 0}, = hygroscopic water content, P = phosphorus.

Soil Property R? F Pr (>F)
pH 0.059 10.50 0.001
Mn (ug cm™3) 0.026 4.13 0.001
Fe (ug cm~3) 0.015 2.34 0.005
Clay (%) 0.014 2.30 0.009
Oh(gg™) 0.013 211 0.011
P (ug cm™3) 0.011 1.69 0.045

4. Discussion
4.1. Landscape Parameters and Soil Physical Properties

Overall, the sub-watersheds in this study are prone to water stress, erosion, and
leaching, reflected in the generally low P, N, and K contents, high sand content, and poor
aggregate stability. The three most important nutrients required for plant growth (N, P,
and K; Table 2) were generally lower than the recommended threshold for crops [65]. In
comparison, though Cu, Fe, Mn, Zn, and S exceeded the recommended thresholds for
agricultural production in multiple sampling locations. However, the average nutrient
values were generally optimal for the growth and productivity of agricultural crops.

Aggregate stability with an average of 273 g kg ~! was similar to a study in the Maracas
sub-watershed [34]. The Arouca sub-watershed, which is least impacted by human activity,
had greater aggregate stability compared to the Maracas and Tacarigua sub-watersheds
(Table 1). Notably, forests had the lowest aggregate stability within their respective sub-
watersheds; barring this, forests may be more resilient to drought commonly experienced
in the dry season as they were able to hold more water and contained the highest clay
and slit content compared to the grassland agriculture land use within their respective
sub-watersheds. However, forests may be more resilient to dry-season drought because
of their higher clay and silt contents, which improve water-holding capacity relative to
grassland and agriculture plots. Tian et al. [66] reported that vegetated land had several
advantages over bare land. Thus, these results corroborate existing knowledge on the
potential benefits of vegetation restoration, particularly forest restoration, on improving
soil physicochemical properties.

These results corroborate existing knowledge that soil physicochemical properties are
dominant controls on microbial composition in the humid tropics. Soil pH, clay content,
and mineral type strongly regulate nutrient solubility, element toxicity, and the creation
of microsites that support microbial niches [12,67-69]. The low macronutrients (NPK) but
elevated trace metals we observed are consistent with Northern Range soils previously
reported as highly leached and erosion-prone [34,70].

4.2. Bacterial Community Composition

Our study reports on an overall dominance of Firmicutes (Figure 3). We acknowledge
that a dominance of Firmicutes may be an overestimation of this family based on the use of
LifeGuard DNA preserving solution as reported by [55]. However, another study published
by [71] reported no difference between soils that were treated or untreated with LifeGuard.
Nonetheless, soils dominated by Firmicutes are not uncommon, as studies such as [72] clas-
sified nearly all bacterial 165 rDNA sequences obtained from black soil in northeast China
into the phylum Firmicutes with Bacillus, Paenibacillus, and Lysinibacillus among the most
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abundant genera. The dominance of Firmicutes here is likely an ecological response to local
soil stressors, i.e., low macronutrients, coarse texture, water stress, and high trace metals,
conditions under which spore-forming Gram-positive taxa thrive (Tables 1 and 2).

The results of this study are different to previous studies conducted in open native
savannah grasslands, teak, and native forests in Trinidad [22,73], where Gram-negative
Proteobacteria and Acidobacteria dominated bacterial communities. This may reflect
differences in soil and landform parameters (i.e., slope and curvature), as soils in pre-
vious studies had significantly lower pH (range = 4.0-5.2) than in the current study
(range = 4.5-7.0), were finer in texture (silt + clay range = 650-910 g kg ') than the current
study (range = 145-536 g kg~!), and were more nutrient-rich.

4.3. Linking Bacterial Families to Soil Functions

In general, Firmicutes, a group of endospore-producing Gram-positive bacteria, can
tolerate harsh environmental conditions and plays important roles in nutrient cycling [74],
disease suppression [75], promotion of plant growth [76], enzyme activity [77] and soil
aggregation [78]. Firmicutes are a ubiquitous component of soil microbiomes and are
frequently found in relatively high abundances in extreme edaphic conditions such as
acidic, saline-alkali, and desert soils [72]. Soils in this study were located on gentle to steep
slopes. They were prone to erosion and subjected to extended periods of water stress. In
some instances, trace elements such as Cu, Fe, Mn, Zn, and S exceeded the recommended
thresholds for agricultural production at multiple sampling locations. We consequently
hypothesize that this resulted in water- and nutrient-stressed conditions, which are ideal
for Firmicutes to thrive.

Generally, Bacillaceae, Planococcaceae, Paenibacillaceae, and Peptostreptococcaceae
are well-adapted to survive in various environmental conditions, including soils with
strong temporal variations in temperature and moisture [79]. Many Gram-positive bacteria
produce endospores, which are highly resilient, dormant structures that can withstand
extreme conditions such as heat, desiccation, and nutrient scarcity [80]. Spore production is
a critical survival strategy, allowing these bacteria to persist through unfavorable periods,
such as prolonged drought in the humid tropics, and germinate when conditions become
favorable again [81]. Thus, the ability to produce endospores ensures that Gram-positive
bacteria can maintain their populations and continue to play essential roles in soil ecosys-
tems, such as nutrient cycling and organic matter decomposition, despite the challenges
posed by fluctuating environmental conditions.

Unlike several Gram-positive bacteria that produce dormant spores in response to low
nutrients and harsh conditions, Gram-negative bacteria generally develop resistance cells
without dormancy [82]. Overall, the bacteria in the total core microbiome are known to
play important roles in soil N and carbon cycling [83-85], decomposition [84,85], disease
suppression [86], and plant-microbe interactions [87]. However, it is important to note
that the ecological roles of bacteria can vary depending on the species and environmental
conditions, and further research is needed to fully understand their functions in humid
tropical soil ecosystems, where taxonomic information is unavailable at the species level.

4.4. Bacterial Families by Land Use

Concurrent with the core microbiome results, Methyloligellaceae was most abundant
in the agricultural plots. Additionally, the absence of Xanthomonadaceae, which can
degrade aromatic compounds and pesticides, fix N, and have plant growth-promoting
properties, such as the production of phytohormones and the ability to solubilize nutri-
ents like P [88], are likely to negatively impact important functions in agricultural soils.
Pseudomonadaceae also play important roles in soil as they can help plants tolerate biotic
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and abiotic stresses. Some species can fix N, solubilize P, degrade pesticides, and produce
plant growth-promoting compounds, thus improving nutrient uptake and plant produc-
tivity [89]. Thus, instead of concluding a direct “loss” of function, our findings indicate
that land-use intensification alters the balance of functionally relevant taxa, potentially
shifting nutrient cycling and agrochemical degradation capacity. It should be noted that sev-
eral unclassified /uncultured bacteria were differentially abundant among sub-watersheds;
therefore, more work is needed to isolate and characterize these species among these unique
humid tropical water-stressed sub-watersheds, as they may have undocumented novel
soil functions.

4.5. Drivers of Soil Bacterial Community Richness and Diversity (i.e., a-Diversity) and
Community Structure (i.e., B-Diversity)

Bacterial o-diversity differed between sub-watersheds (Table 3), and o-diversity sig-
nificantly differed in the Tacarigua sub-watershed compared to the Arouca sub-watershed
(Table 4). Additionally, the Shannon index differed significantly between Tacarigua and
the Maracas sub-watersheds, indicating that these sub-watersheds had similar bacterial
richness but different diversities. However, bacterial «-diversity was similar across land
uses, showing that inherent soil properties rather than anthropogenic influence (i.e., land
use) impacted bacterial species richness and diversity. Not surprisingly, refs. [22] and [90]
reported similar results, where land use did not affect the x-diversity of soil bacteria in
native forests vs. teak forests, and in native forests vs. grassland, respectively.

We observed similar results with respect to 3-diversity, the diversity between ecosys-
tems or habitats, with B-diversity being different between sub-watersheds, and only sig-
nificantly different between forest and agriculture plots (Figures 5 and 6, Table 7). Similar
results were observed by [12] who found that land use had a weak but significant effect
on the soil bacterial 3-diversity in Malaysia. Although land use plays a significant role in
shaping soil bacterial 3-diversity through the release of various root exudates, altering soil
pH, nutrient composition, nutrient availability, soil structure, soil moisture, and organic
matter, our results indicate that the pattern in 3-diversity is consistent with that of soil
physicochemical properties which differed more among sub-watersheds than land uses,
and which contrasted between forest and agriculture land uses (Tables 1 and 2). Thus,
our results support that soil physicochemical properties are the stronger determinant,
consistent with findings from Malaysia [75] and other tropical studies. As more variation is
observed among sub-watersheds than land uses, this strongly suggests that soil properties
that differ significantly among land uses and sub-watersheds are major drivers of bacterial
community spatial distribution (Figure 7).

4.6. Inherent Soil Properties, Land Use, and the Bacterial Community

Soil properties and landscape parameters explained 56% of the variation in the soil
bacterial composition across samples and sub-watersheds. While axes 1 and 2 of the ordi-
nation (Figure 7) explained only ~23% of variation (18.6% + 4.3%), the higher explanatory
power from environmental fitting reflects the multivariate influence of multiple soil factors
on bacterial composition. This discrepancy should be emphasized since ordination axes
visualize dominant gradients, but do not capture all ecological variance explained by pre-
dictor variables. This is a reasonable amount of variability explained when we consider
that rDNA captures all sequences present in soil, in both wet and dry seasons. Samples
were taken only during the dry season, e.g., nutrient availability changes with differences
in rainfall and soil water contents, but information captured in rDNA will extend to the
wet season too. Additionally, soil physico-chemical parameters co-change with season and
land use, resulting in co-correlations (Figure S52) despite explaining different parts of the
soil microbial community as described above.
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In this study, pH, Mn, Fe, clay content, 6},, and P separated soil bacterial commu-
nities from the three sub-watersheds. The explanatory soil properties separating bacte-
rial communities are those which are most distinct within and between sub-watersheds
(Tables 1 and 2), reinforcing that location and edaphic context determine bacterial composi-
tion. Indeed, numerous studies have demonstrated the significance of physicochemical soil
characteristics in determining the composition of microbial communities. Soil pH and clay
content are generally acknowledged key drivers of soil bacterial communities, which also
affect nutrient solubility and availability [39,91,92] similar to the results found in our study.

Other studies found CEC to be the major driver of rhizobacterial community composi-
tion in Trinidad savannas [73]. Soil pH affects the availability and solubility of nutrients,
bacterial enzyme activity, element toxicity, and root exudates, with several studies having
identified soil pH as a key driver of bacterial community composition [12,67,93]. Further,
Brandt et al. [68] and Yokobe et al. [69] showed that mineral type was the main factor
driving microbial community composition by influencing nutrient availability, regulating
soil pH, and creating microhabitats. They also found that land use had a smaller effect on
bacterial community composition than minerals (i.e., soil properties), similar to our results.

4.7. Evidence for a Space-for-Time Substitution Trajectory

Pairwise comparisons showed that 3-diversity was significantly different among
all sub-watersheds, and specifically between forest and agricultural land uses (Table 7).
This pattern supports the chronosequence assumption that forest represents the least
disturbed baseline and agriculture the most altered endpoint, with grassland and mixed-
use plots occupying intermediate positions. The separation of Arouca (least disturbed),
Maracas (intermediate), and Tacarigua (intensively managed) sub-watersheds along the
main p-diversity axis (Figure 4) mirrors a trajectory of land-use intensification. Thus,
although our study design was cross-sectional, the distinct clustering of communities
across land uses and watersheds is consistent with directional changes expected under a
SFT framework [30,94]. This strengthens our inference that soil bacterial communities are
not only shaped by site-specific soil properties but also reflect cumulative anthropogenic
pressures over time.

The SFT approach employed here rests on the assumption that the spatial sequence
of land uses (forest — grassland — agriculture) within each watershed represents a valid
chronosequence, approximating the temporal trajectory of microbial change following land
conversion. Our study design strengthens this assumption by nesting land uses within
watersheds, thereby controlling for underlying geology and climate; and focusing on a
region with a well-documented history of sequential land-use change.

While a true temporal study would be ideal, the SFT approach provides a powerful
and pragmatic alternative for inferring long-term trends in slow-responding systems such
as soil microbiomes [95]. We acknowledge that unmeasured historical contingencies or
site-specific factors could influence our results. However, the strong and consistent patterns
observed across multiple sub-watersheds, particularly the directional shift in community
composition from the most pristine (Arouca) to the most intensively managed (Tacarigua),
support the interpretation that our spatial gradients reflect genuine successional dynamics
driven by land-use intensification.

5. Conclusions

Our study demonstrates that in the humid tropical landscapes of Trinidad’s Northern
Range, inherent soil properties and landscape features form the primary template upon
which soil bacterial communities are structured, explaining the majority of the observed
variation in both richness and composition. This foundational template is characterized
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by gradients in pH, texture, and nutrient availability, which vary significantly across wa-
tersheds. However, land-use intensification acts as a powerful secondary filter, modifying
these inherent communities. By employing a space-for-time substitution approach, we
infer a trajectory of change associated with agricultural intensification. This trajectory is
marked not by a simple loss of diversity, but by a significant shift in community structure
(B-diversity) and a change in the balance of functionally relevant taxa. The inferred shift
is characterized by a decline in certain Proteobacterial groups associated with nutrient
cycling and plant growth promotion (e.g., Xanthomonadaceae, Pseudomonadaceae) and
an increase in stress-tolerant, sporulating taxa (e.g., Firmicutes), suggesting an adaptation
to the altered conditions of managed ecosystems.

Our integrated methodology, combining geophysical (ECa-directed) sampling with
high-resolution amplicon sequencing, proves to be a powerful tool for generating spa-
tially explicit insights into soil microbiome drivers at a landscape scale. This approach is
particularly valuable in heterogeneous tropical environments where long-term temporal
monitoring is challenging. The broader implications of our findings suggest that con-
servation of natural watershed areas is crucial for preserving the diverse soil microbial
communities that underpin tropical ecosystem resilience and function. For agricultural sus-
tainability, management practices that mitigate soil disturbance and foster a more beneficial
microbiome, should be explored.

Future research should focus on moving from correlation to causation by isolating and
characterizing the uncultured taxa identified in this study and through long-term, temporal
monitoring of microbial function in response to land-use management practices. This will
be essential for validating the trajectories inferred here and for developing strategies to
manage the tropical soil microbiome for ecosystem health.

Supplementary Materials: The following supporting information can be downloaded at:
https:/ /www.mdpi.com/article/10.3390/soilsystems9040112/s1, Figure S1: Rarefaction curve for
all samples across watersheds; Figure S2: Bacterial differential abundance depicting differences in
families between sub-watersheds. Families shown as grey are not present in the watershed; Table S1.
Descriptors of sampled sites. (References [96-119] are cited in the supplementary materials).
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